1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 ARM Ltd.
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7 #include <linux/cpu.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/interrupt.h>
11 #include <linux/irq.h>
12 #include <linux/irqdomain.h>
13 #include <linux/uaccess.h>
14
15 #include <clocksource/arm_arch_timer.h>
16 #include <asm/arch_timer.h>
17 #include <asm/kvm_emulate.h>
18 #include <asm/kvm_hyp.h>
19 #include <asm/kvm_nested.h>
20
21 #include <kvm/arm_vgic.h>
22 #include <kvm/arm_arch_timer.h>
23
24 #include "trace.h"
25
26 static struct timecounter *timecounter;
27 static unsigned int host_vtimer_irq;
28 static unsigned int host_ptimer_irq;
29 static u32 host_vtimer_irq_flags;
30 static u32 host_ptimer_irq_flags;
31
32 static DEFINE_STATIC_KEY_FALSE(has_gic_active_state);
33
34 static const u8 default_ppi[] = {
35 [TIMER_PTIMER] = 30,
36 [TIMER_VTIMER] = 27,
37 [TIMER_HPTIMER] = 26,
38 [TIMER_HVTIMER] = 28,
39 };
40
41 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
42 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
43 struct arch_timer_context *timer_ctx);
44 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
45 static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
46 struct arch_timer_context *timer,
47 enum kvm_arch_timer_regs treg,
48 u64 val);
49 static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
50 struct arch_timer_context *timer,
51 enum kvm_arch_timer_regs treg);
52 static bool kvm_arch_timer_get_input_level(int vintid);
53
54 static struct irq_ops arch_timer_irq_ops = {
55 .get_input_level = kvm_arch_timer_get_input_level,
56 };
57
nr_timers(struct kvm_vcpu * vcpu)58 static int nr_timers(struct kvm_vcpu *vcpu)
59 {
60 if (!vcpu_has_nv(vcpu))
61 return NR_KVM_EL0_TIMERS;
62
63 return NR_KVM_TIMERS;
64 }
65
timer_get_ctl(struct arch_timer_context * ctxt)66 u32 timer_get_ctl(struct arch_timer_context *ctxt)
67 {
68 struct kvm_vcpu *vcpu = ctxt->vcpu;
69
70 switch(arch_timer_ctx_index(ctxt)) {
71 case TIMER_VTIMER:
72 return __vcpu_sys_reg(vcpu, CNTV_CTL_EL0);
73 case TIMER_PTIMER:
74 return __vcpu_sys_reg(vcpu, CNTP_CTL_EL0);
75 case TIMER_HVTIMER:
76 return __vcpu_sys_reg(vcpu, CNTHV_CTL_EL2);
77 case TIMER_HPTIMER:
78 return __vcpu_sys_reg(vcpu, CNTHP_CTL_EL2);
79 default:
80 WARN_ON(1);
81 return 0;
82 }
83 }
84
timer_get_cval(struct arch_timer_context * ctxt)85 u64 timer_get_cval(struct arch_timer_context *ctxt)
86 {
87 struct kvm_vcpu *vcpu = ctxt->vcpu;
88
89 switch(arch_timer_ctx_index(ctxt)) {
90 case TIMER_VTIMER:
91 return __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0);
92 case TIMER_PTIMER:
93 return __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0);
94 case TIMER_HVTIMER:
95 return __vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2);
96 case TIMER_HPTIMER:
97 return __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2);
98 default:
99 WARN_ON(1);
100 return 0;
101 }
102 }
103
timer_get_offset(struct arch_timer_context * ctxt)104 static u64 timer_get_offset(struct arch_timer_context *ctxt)
105 {
106 u64 offset = 0;
107
108 if (!ctxt)
109 return 0;
110
111 if (ctxt->offset.vm_offset)
112 offset += *ctxt->offset.vm_offset;
113 if (ctxt->offset.vcpu_offset)
114 offset += *ctxt->offset.vcpu_offset;
115
116 return offset;
117 }
118
timer_set_ctl(struct arch_timer_context * ctxt,u32 ctl)119 static void timer_set_ctl(struct arch_timer_context *ctxt, u32 ctl)
120 {
121 struct kvm_vcpu *vcpu = ctxt->vcpu;
122
123 switch(arch_timer_ctx_index(ctxt)) {
124 case TIMER_VTIMER:
125 __vcpu_sys_reg(vcpu, CNTV_CTL_EL0) = ctl;
126 break;
127 case TIMER_PTIMER:
128 __vcpu_sys_reg(vcpu, CNTP_CTL_EL0) = ctl;
129 break;
130 case TIMER_HVTIMER:
131 __vcpu_sys_reg(vcpu, CNTHV_CTL_EL2) = ctl;
132 break;
133 case TIMER_HPTIMER:
134 __vcpu_sys_reg(vcpu, CNTHP_CTL_EL2) = ctl;
135 break;
136 default:
137 WARN_ON(1);
138 }
139 }
140
timer_set_cval(struct arch_timer_context * ctxt,u64 cval)141 static void timer_set_cval(struct arch_timer_context *ctxt, u64 cval)
142 {
143 struct kvm_vcpu *vcpu = ctxt->vcpu;
144
145 switch(arch_timer_ctx_index(ctxt)) {
146 case TIMER_VTIMER:
147 __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0) = cval;
148 break;
149 case TIMER_PTIMER:
150 __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = cval;
151 break;
152 case TIMER_HVTIMER:
153 __vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2) = cval;
154 break;
155 case TIMER_HPTIMER:
156 __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2) = cval;
157 break;
158 default:
159 WARN_ON(1);
160 }
161 }
162
timer_set_offset(struct arch_timer_context * ctxt,u64 offset)163 static void timer_set_offset(struct arch_timer_context *ctxt, u64 offset)
164 {
165 if (!ctxt->offset.vm_offset) {
166 WARN(offset, "timer %ld\n", arch_timer_ctx_index(ctxt));
167 return;
168 }
169
170 WRITE_ONCE(*ctxt->offset.vm_offset, offset);
171 }
172
kvm_phys_timer_read(void)173 u64 kvm_phys_timer_read(void)
174 {
175 return timecounter->cc->read(timecounter->cc);
176 }
177
get_timer_map(struct kvm_vcpu * vcpu,struct timer_map * map)178 void get_timer_map(struct kvm_vcpu *vcpu, struct timer_map *map)
179 {
180 if (vcpu_has_nv(vcpu)) {
181 if (is_hyp_ctxt(vcpu)) {
182 map->direct_vtimer = vcpu_hvtimer(vcpu);
183 map->direct_ptimer = vcpu_hptimer(vcpu);
184 map->emul_vtimer = vcpu_vtimer(vcpu);
185 map->emul_ptimer = vcpu_ptimer(vcpu);
186 } else {
187 map->direct_vtimer = vcpu_vtimer(vcpu);
188 map->direct_ptimer = vcpu_ptimer(vcpu);
189 map->emul_vtimer = vcpu_hvtimer(vcpu);
190 map->emul_ptimer = vcpu_hptimer(vcpu);
191 }
192 } else if (has_vhe()) {
193 map->direct_vtimer = vcpu_vtimer(vcpu);
194 map->direct_ptimer = vcpu_ptimer(vcpu);
195 map->emul_vtimer = NULL;
196 map->emul_ptimer = NULL;
197 } else {
198 map->direct_vtimer = vcpu_vtimer(vcpu);
199 map->direct_ptimer = NULL;
200 map->emul_vtimer = NULL;
201 map->emul_ptimer = vcpu_ptimer(vcpu);
202 }
203
204 trace_kvm_get_timer_map(vcpu->vcpu_id, map);
205 }
206
userspace_irqchip(struct kvm * kvm)207 static inline bool userspace_irqchip(struct kvm *kvm)
208 {
209 return static_branch_unlikely(&userspace_irqchip_in_use) &&
210 unlikely(!irqchip_in_kernel(kvm));
211 }
212
soft_timer_start(struct hrtimer * hrt,u64 ns)213 static void soft_timer_start(struct hrtimer *hrt, u64 ns)
214 {
215 hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
216 HRTIMER_MODE_ABS_HARD);
217 }
218
soft_timer_cancel(struct hrtimer * hrt)219 static void soft_timer_cancel(struct hrtimer *hrt)
220 {
221 hrtimer_cancel(hrt);
222 }
223
kvm_arch_timer_handler(int irq,void * dev_id)224 static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
225 {
226 struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
227 struct arch_timer_context *ctx;
228 struct timer_map map;
229
230 /*
231 * We may see a timer interrupt after vcpu_put() has been called which
232 * sets the CPU's vcpu pointer to NULL, because even though the timer
233 * has been disabled in timer_save_state(), the hardware interrupt
234 * signal may not have been retired from the interrupt controller yet.
235 */
236 if (!vcpu)
237 return IRQ_HANDLED;
238
239 get_timer_map(vcpu, &map);
240
241 if (irq == host_vtimer_irq)
242 ctx = map.direct_vtimer;
243 else
244 ctx = map.direct_ptimer;
245
246 if (kvm_timer_should_fire(ctx))
247 kvm_timer_update_irq(vcpu, true, ctx);
248
249 if (userspace_irqchip(vcpu->kvm) &&
250 !static_branch_unlikely(&has_gic_active_state))
251 disable_percpu_irq(host_vtimer_irq);
252
253 return IRQ_HANDLED;
254 }
255
kvm_counter_compute_delta(struct arch_timer_context * timer_ctx,u64 val)256 static u64 kvm_counter_compute_delta(struct arch_timer_context *timer_ctx,
257 u64 val)
258 {
259 u64 now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
260
261 if (now < val) {
262 u64 ns;
263
264 ns = cyclecounter_cyc2ns(timecounter->cc,
265 val - now,
266 timecounter->mask,
267 &timer_ctx->ns_frac);
268 return ns;
269 }
270
271 return 0;
272 }
273
kvm_timer_compute_delta(struct arch_timer_context * timer_ctx)274 static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
275 {
276 return kvm_counter_compute_delta(timer_ctx, timer_get_cval(timer_ctx));
277 }
278
kvm_timer_irq_can_fire(struct arch_timer_context * timer_ctx)279 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
280 {
281 WARN_ON(timer_ctx && timer_ctx->loaded);
282 return timer_ctx &&
283 ((timer_get_ctl(timer_ctx) &
284 (ARCH_TIMER_CTRL_IT_MASK | ARCH_TIMER_CTRL_ENABLE)) == ARCH_TIMER_CTRL_ENABLE);
285 }
286
vcpu_has_wfit_active(struct kvm_vcpu * vcpu)287 static bool vcpu_has_wfit_active(struct kvm_vcpu *vcpu)
288 {
289 return (cpus_have_final_cap(ARM64_HAS_WFXT) &&
290 vcpu_get_flag(vcpu, IN_WFIT));
291 }
292
wfit_delay_ns(struct kvm_vcpu * vcpu)293 static u64 wfit_delay_ns(struct kvm_vcpu *vcpu)
294 {
295 u64 val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu));
296 struct arch_timer_context *ctx;
297
298 ctx = (vcpu_has_nv(vcpu) && is_hyp_ctxt(vcpu)) ? vcpu_hvtimer(vcpu)
299 : vcpu_vtimer(vcpu);
300
301 return kvm_counter_compute_delta(ctx, val);
302 }
303
304 /*
305 * Returns the earliest expiration time in ns among guest timers.
306 * Note that it will return 0 if none of timers can fire.
307 */
kvm_timer_earliest_exp(struct kvm_vcpu * vcpu)308 static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
309 {
310 u64 min_delta = ULLONG_MAX;
311 int i;
312
313 for (i = 0; i < nr_timers(vcpu); i++) {
314 struct arch_timer_context *ctx = &vcpu->arch.timer_cpu.timers[i];
315
316 WARN(ctx->loaded, "timer %d loaded\n", i);
317 if (kvm_timer_irq_can_fire(ctx))
318 min_delta = min(min_delta, kvm_timer_compute_delta(ctx));
319 }
320
321 if (vcpu_has_wfit_active(vcpu))
322 min_delta = min(min_delta, wfit_delay_ns(vcpu));
323
324 /* If none of timers can fire, then return 0 */
325 if (min_delta == ULLONG_MAX)
326 return 0;
327
328 return min_delta;
329 }
330
kvm_bg_timer_expire(struct hrtimer * hrt)331 static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
332 {
333 struct arch_timer_cpu *timer;
334 struct kvm_vcpu *vcpu;
335 u64 ns;
336
337 timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
338 vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
339
340 /*
341 * Check that the timer has really expired from the guest's
342 * PoV (NTP on the host may have forced it to expire
343 * early). If we should have slept longer, restart it.
344 */
345 ns = kvm_timer_earliest_exp(vcpu);
346 if (unlikely(ns)) {
347 hrtimer_forward_now(hrt, ns_to_ktime(ns));
348 return HRTIMER_RESTART;
349 }
350
351 kvm_vcpu_wake_up(vcpu);
352 return HRTIMER_NORESTART;
353 }
354
kvm_hrtimer_expire(struct hrtimer * hrt)355 static enum hrtimer_restart kvm_hrtimer_expire(struct hrtimer *hrt)
356 {
357 struct arch_timer_context *ctx;
358 struct kvm_vcpu *vcpu;
359 u64 ns;
360
361 ctx = container_of(hrt, struct arch_timer_context, hrtimer);
362 vcpu = ctx->vcpu;
363
364 trace_kvm_timer_hrtimer_expire(ctx);
365
366 /*
367 * Check that the timer has really expired from the guest's
368 * PoV (NTP on the host may have forced it to expire
369 * early). If not ready, schedule for a later time.
370 */
371 ns = kvm_timer_compute_delta(ctx);
372 if (unlikely(ns)) {
373 hrtimer_forward_now(hrt, ns_to_ktime(ns));
374 return HRTIMER_RESTART;
375 }
376
377 kvm_timer_update_irq(vcpu, true, ctx);
378 return HRTIMER_NORESTART;
379 }
380
kvm_timer_should_fire(struct arch_timer_context * timer_ctx)381 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
382 {
383 enum kvm_arch_timers index;
384 u64 cval, now;
385
386 if (!timer_ctx)
387 return false;
388
389 index = arch_timer_ctx_index(timer_ctx);
390
391 if (timer_ctx->loaded) {
392 u32 cnt_ctl = 0;
393
394 switch (index) {
395 case TIMER_VTIMER:
396 case TIMER_HVTIMER:
397 cnt_ctl = read_sysreg_el0(SYS_CNTV_CTL);
398 break;
399 case TIMER_PTIMER:
400 case TIMER_HPTIMER:
401 cnt_ctl = read_sysreg_el0(SYS_CNTP_CTL);
402 break;
403 case NR_KVM_TIMERS:
404 /* GCC is braindead */
405 cnt_ctl = 0;
406 break;
407 }
408
409 return (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) &&
410 (cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) &&
411 !(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK);
412 }
413
414 if (!kvm_timer_irq_can_fire(timer_ctx))
415 return false;
416
417 cval = timer_get_cval(timer_ctx);
418 now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
419
420 return cval <= now;
421 }
422
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)423 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
424 {
425 return vcpu_has_wfit_active(vcpu) && wfit_delay_ns(vcpu) == 0;
426 }
427
428 /*
429 * Reflect the timer output level into the kvm_run structure
430 */
kvm_timer_update_run(struct kvm_vcpu * vcpu)431 void kvm_timer_update_run(struct kvm_vcpu *vcpu)
432 {
433 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
434 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
435 struct kvm_sync_regs *regs = &vcpu->run->s.regs;
436
437 /* Populate the device bitmap with the timer states */
438 regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
439 KVM_ARM_DEV_EL1_PTIMER);
440 if (kvm_timer_should_fire(vtimer))
441 regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
442 if (kvm_timer_should_fire(ptimer))
443 regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
444 }
445
kvm_timer_update_irq(struct kvm_vcpu * vcpu,bool new_level,struct arch_timer_context * timer_ctx)446 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
447 struct arch_timer_context *timer_ctx)
448 {
449 int ret;
450
451 timer_ctx->irq.level = new_level;
452 trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_irq(timer_ctx),
453 timer_ctx->irq.level);
454
455 if (!userspace_irqchip(vcpu->kvm)) {
456 ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
457 timer_irq(timer_ctx),
458 timer_ctx->irq.level,
459 timer_ctx);
460 WARN_ON(ret);
461 }
462 }
463
464 /* Only called for a fully emulated timer */
timer_emulate(struct arch_timer_context * ctx)465 static void timer_emulate(struct arch_timer_context *ctx)
466 {
467 bool should_fire = kvm_timer_should_fire(ctx);
468
469 trace_kvm_timer_emulate(ctx, should_fire);
470
471 if (should_fire != ctx->irq.level) {
472 kvm_timer_update_irq(ctx->vcpu, should_fire, ctx);
473 return;
474 }
475
476 /*
477 * If the timer can fire now, we don't need to have a soft timer
478 * scheduled for the future. If the timer cannot fire at all,
479 * then we also don't need a soft timer.
480 */
481 if (should_fire || !kvm_timer_irq_can_fire(ctx))
482 return;
483
484 soft_timer_start(&ctx->hrtimer, kvm_timer_compute_delta(ctx));
485 }
486
set_cntvoff(u64 cntvoff)487 static void set_cntvoff(u64 cntvoff)
488 {
489 kvm_call_hyp(__kvm_timer_set_cntvoff, cntvoff);
490 }
491
set_cntpoff(u64 cntpoff)492 static void set_cntpoff(u64 cntpoff)
493 {
494 if (has_cntpoff())
495 write_sysreg_s(cntpoff, SYS_CNTPOFF_EL2);
496 }
497
timer_save_state(struct arch_timer_context * ctx)498 static void timer_save_state(struct arch_timer_context *ctx)
499 {
500 struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
501 enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
502 unsigned long flags;
503
504 if (!timer->enabled)
505 return;
506
507 local_irq_save(flags);
508
509 if (!ctx->loaded)
510 goto out;
511
512 switch (index) {
513 u64 cval;
514
515 case TIMER_VTIMER:
516 case TIMER_HVTIMER:
517 timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTV_CTL));
518 timer_set_cval(ctx, read_sysreg_el0(SYS_CNTV_CVAL));
519
520 /* Disable the timer */
521 write_sysreg_el0(0, SYS_CNTV_CTL);
522 isb();
523
524 /*
525 * The kernel may decide to run userspace after
526 * calling vcpu_put, so we reset cntvoff to 0 to
527 * ensure a consistent read between user accesses to
528 * the virtual counter and kernel access to the
529 * physical counter of non-VHE case.
530 *
531 * For VHE, the virtual counter uses a fixed virtual
532 * offset of zero, so no need to zero CNTVOFF_EL2
533 * register, but this is actually useful when switching
534 * between EL1/vEL2 with NV.
535 *
536 * Do it unconditionally, as this is either unavoidable
537 * or dirt cheap.
538 */
539 set_cntvoff(0);
540 break;
541 case TIMER_PTIMER:
542 case TIMER_HPTIMER:
543 timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTP_CTL));
544 cval = read_sysreg_el0(SYS_CNTP_CVAL);
545
546 cval -= timer_get_offset(ctx);
547
548 timer_set_cval(ctx, cval);
549
550 /* Disable the timer */
551 write_sysreg_el0(0, SYS_CNTP_CTL);
552 isb();
553
554 set_cntpoff(0);
555 break;
556 case NR_KVM_TIMERS:
557 BUG();
558 }
559
560 trace_kvm_timer_save_state(ctx);
561
562 ctx->loaded = false;
563 out:
564 local_irq_restore(flags);
565 }
566
567 /*
568 * Schedule the background timer before calling kvm_vcpu_halt, so that this
569 * thread is removed from its waitqueue and made runnable when there's a timer
570 * interrupt to handle.
571 */
kvm_timer_blocking(struct kvm_vcpu * vcpu)572 static void kvm_timer_blocking(struct kvm_vcpu *vcpu)
573 {
574 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
575 struct timer_map map;
576
577 get_timer_map(vcpu, &map);
578
579 /*
580 * If no timers are capable of raising interrupts (disabled or
581 * masked), then there's no more work for us to do.
582 */
583 if (!kvm_timer_irq_can_fire(map.direct_vtimer) &&
584 !kvm_timer_irq_can_fire(map.direct_ptimer) &&
585 !kvm_timer_irq_can_fire(map.emul_vtimer) &&
586 !kvm_timer_irq_can_fire(map.emul_ptimer) &&
587 !vcpu_has_wfit_active(vcpu))
588 return;
589
590 /*
591 * At least one guest time will expire. Schedule a background timer.
592 * Set the earliest expiration time among the guest timers.
593 */
594 soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
595 }
596
kvm_timer_unblocking(struct kvm_vcpu * vcpu)597 static void kvm_timer_unblocking(struct kvm_vcpu *vcpu)
598 {
599 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
600
601 soft_timer_cancel(&timer->bg_timer);
602 }
603
timer_restore_state(struct arch_timer_context * ctx)604 static void timer_restore_state(struct arch_timer_context *ctx)
605 {
606 struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
607 enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
608 unsigned long flags;
609
610 if (!timer->enabled)
611 return;
612
613 local_irq_save(flags);
614
615 if (ctx->loaded)
616 goto out;
617
618 switch (index) {
619 u64 cval, offset;
620
621 case TIMER_VTIMER:
622 case TIMER_HVTIMER:
623 set_cntvoff(timer_get_offset(ctx));
624 write_sysreg_el0(timer_get_cval(ctx), SYS_CNTV_CVAL);
625 isb();
626 write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTV_CTL);
627 break;
628 case TIMER_PTIMER:
629 case TIMER_HPTIMER:
630 cval = timer_get_cval(ctx);
631 offset = timer_get_offset(ctx);
632 set_cntpoff(offset);
633 cval += offset;
634 write_sysreg_el0(cval, SYS_CNTP_CVAL);
635 isb();
636 write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTP_CTL);
637 break;
638 case NR_KVM_TIMERS:
639 BUG();
640 }
641
642 trace_kvm_timer_restore_state(ctx);
643
644 ctx->loaded = true;
645 out:
646 local_irq_restore(flags);
647 }
648
set_timer_irq_phys_active(struct arch_timer_context * ctx,bool active)649 static inline void set_timer_irq_phys_active(struct arch_timer_context *ctx, bool active)
650 {
651 int r;
652 r = irq_set_irqchip_state(ctx->host_timer_irq, IRQCHIP_STATE_ACTIVE, active);
653 WARN_ON(r);
654 }
655
kvm_timer_vcpu_load_gic(struct arch_timer_context * ctx)656 static void kvm_timer_vcpu_load_gic(struct arch_timer_context *ctx)
657 {
658 struct kvm_vcpu *vcpu = ctx->vcpu;
659 bool phys_active = false;
660
661 /*
662 * Update the timer output so that it is likely to match the
663 * state we're about to restore. If the timer expires between
664 * this point and the register restoration, we'll take the
665 * interrupt anyway.
666 */
667 kvm_timer_update_irq(ctx->vcpu, kvm_timer_should_fire(ctx), ctx);
668
669 if (irqchip_in_kernel(vcpu->kvm))
670 phys_active = kvm_vgic_map_is_active(vcpu, timer_irq(ctx));
671
672 phys_active |= ctx->irq.level;
673
674 set_timer_irq_phys_active(ctx, phys_active);
675 }
676
kvm_timer_vcpu_load_nogic(struct kvm_vcpu * vcpu)677 static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu)
678 {
679 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
680
681 /*
682 * Update the timer output so that it is likely to match the
683 * state we're about to restore. If the timer expires between
684 * this point and the register restoration, we'll take the
685 * interrupt anyway.
686 */
687 kvm_timer_update_irq(vcpu, kvm_timer_should_fire(vtimer), vtimer);
688
689 /*
690 * When using a userspace irqchip with the architected timers and a
691 * host interrupt controller that doesn't support an active state, we
692 * must still prevent continuously exiting from the guest, and
693 * therefore mask the physical interrupt by disabling it on the host
694 * interrupt controller when the virtual level is high, such that the
695 * guest can make forward progress. Once we detect the output level
696 * being de-asserted, we unmask the interrupt again so that we exit
697 * from the guest when the timer fires.
698 */
699 if (vtimer->irq.level)
700 disable_percpu_irq(host_vtimer_irq);
701 else
702 enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
703 }
704
705 /* If _pred is true, set bit in _set, otherwise set it in _clr */
706 #define assign_clear_set_bit(_pred, _bit, _clr, _set) \
707 do { \
708 if (_pred) \
709 (_set) |= (_bit); \
710 else \
711 (_clr) |= (_bit); \
712 } while (0)
713
kvm_timer_vcpu_load_nested_switch(struct kvm_vcpu * vcpu,struct timer_map * map)714 static void kvm_timer_vcpu_load_nested_switch(struct kvm_vcpu *vcpu,
715 struct timer_map *map)
716 {
717 int hw, ret;
718
719 if (!irqchip_in_kernel(vcpu->kvm))
720 return;
721
722 /*
723 * We only ever unmap the vtimer irq on a VHE system that runs nested
724 * virtualization, in which case we have both a valid emul_vtimer,
725 * emul_ptimer, direct_vtimer, and direct_ptimer.
726 *
727 * Since this is called from kvm_timer_vcpu_load(), a change between
728 * vEL2 and vEL1/0 will have just happened, and the timer_map will
729 * represent this, and therefore we switch the emul/direct mappings
730 * below.
731 */
732 hw = kvm_vgic_get_map(vcpu, timer_irq(map->direct_vtimer));
733 if (hw < 0) {
734 kvm_vgic_unmap_phys_irq(vcpu, timer_irq(map->emul_vtimer));
735 kvm_vgic_unmap_phys_irq(vcpu, timer_irq(map->emul_ptimer));
736
737 ret = kvm_vgic_map_phys_irq(vcpu,
738 map->direct_vtimer->host_timer_irq,
739 timer_irq(map->direct_vtimer),
740 &arch_timer_irq_ops);
741 WARN_ON_ONCE(ret);
742 ret = kvm_vgic_map_phys_irq(vcpu,
743 map->direct_ptimer->host_timer_irq,
744 timer_irq(map->direct_ptimer),
745 &arch_timer_irq_ops);
746 WARN_ON_ONCE(ret);
747
748 /*
749 * The virtual offset behaviour is "interresting", as it
750 * always applies when HCR_EL2.E2H==0, but only when
751 * accessed from EL1 when HCR_EL2.E2H==1. So make sure we
752 * track E2H when putting the HV timer in "direct" mode.
753 */
754 if (map->direct_vtimer == vcpu_hvtimer(vcpu)) {
755 struct arch_timer_offset *offs = &map->direct_vtimer->offset;
756
757 if (vcpu_el2_e2h_is_set(vcpu))
758 offs->vcpu_offset = NULL;
759 else
760 offs->vcpu_offset = &__vcpu_sys_reg(vcpu, CNTVOFF_EL2);
761 }
762 }
763 }
764
timer_set_traps(struct kvm_vcpu * vcpu,struct timer_map * map)765 static void timer_set_traps(struct kvm_vcpu *vcpu, struct timer_map *map)
766 {
767 bool tpt, tpc;
768 u64 clr, set;
769
770 /*
771 * No trapping gets configured here with nVHE. See
772 * __timer_enable_traps(), which is where the stuff happens.
773 */
774 if (!has_vhe())
775 return;
776
777 /*
778 * Our default policy is not to trap anything. As we progress
779 * within this function, reality kicks in and we start adding
780 * traps based on emulation requirements.
781 */
782 tpt = tpc = false;
783
784 /*
785 * We have two possibility to deal with a physical offset:
786 *
787 * - Either we have CNTPOFF (yay!) or the offset is 0:
788 * we let the guest freely access the HW
789 *
790 * - or neither of these condition apply:
791 * we trap accesses to the HW, but still use it
792 * after correcting the physical offset
793 */
794 if (!has_cntpoff() && timer_get_offset(map->direct_ptimer))
795 tpt = tpc = true;
796
797 /*
798 * Apply the enable bits that the guest hypervisor has requested for
799 * its own guest. We can only add traps that wouldn't have been set
800 * above.
801 */
802 if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) {
803 u64 val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2);
804
805 /* Use the VHE format for mental sanity */
806 if (!vcpu_el2_e2h_is_set(vcpu))
807 val = (val & (CNTHCTL_EL1PCEN | CNTHCTL_EL1PCTEN)) << 10;
808
809 tpt |= !(val & (CNTHCTL_EL1PCEN << 10));
810 tpc |= !(val & (CNTHCTL_EL1PCTEN << 10));
811 }
812
813 /*
814 * Now that we have collected our requirements, compute the
815 * trap and enable bits.
816 */
817 set = 0;
818 clr = 0;
819
820 assign_clear_set_bit(tpt, CNTHCTL_EL1PCEN << 10, set, clr);
821 assign_clear_set_bit(tpc, CNTHCTL_EL1PCTEN << 10, set, clr);
822
823 /* This only happens on VHE, so use the CNTHCTL_EL2 accessor. */
824 sysreg_clear_set(cnthctl_el2, clr, set);
825 }
826
kvm_timer_vcpu_load(struct kvm_vcpu * vcpu)827 void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
828 {
829 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
830 struct timer_map map;
831
832 if (unlikely(!timer->enabled))
833 return;
834
835 get_timer_map(vcpu, &map);
836
837 if (static_branch_likely(&has_gic_active_state)) {
838 if (vcpu_has_nv(vcpu))
839 kvm_timer_vcpu_load_nested_switch(vcpu, &map);
840
841 kvm_timer_vcpu_load_gic(map.direct_vtimer);
842 if (map.direct_ptimer)
843 kvm_timer_vcpu_load_gic(map.direct_ptimer);
844 } else {
845 kvm_timer_vcpu_load_nogic(vcpu);
846 }
847
848 kvm_timer_unblocking(vcpu);
849
850 timer_restore_state(map.direct_vtimer);
851 if (map.direct_ptimer)
852 timer_restore_state(map.direct_ptimer);
853 if (map.emul_vtimer)
854 timer_emulate(map.emul_vtimer);
855 if (map.emul_ptimer)
856 timer_emulate(map.emul_ptimer);
857
858 timer_set_traps(vcpu, &map);
859 }
860
kvm_timer_should_notify_user(struct kvm_vcpu * vcpu)861 bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
862 {
863 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
864 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
865 struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
866 bool vlevel, plevel;
867
868 if (likely(irqchip_in_kernel(vcpu->kvm)))
869 return false;
870
871 vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
872 plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;
873
874 return kvm_timer_should_fire(vtimer) != vlevel ||
875 kvm_timer_should_fire(ptimer) != plevel;
876 }
877
kvm_timer_vcpu_put(struct kvm_vcpu * vcpu)878 void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
879 {
880 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
881 struct timer_map map;
882
883 if (unlikely(!timer->enabled))
884 return;
885
886 get_timer_map(vcpu, &map);
887
888 timer_save_state(map.direct_vtimer);
889 if (map.direct_ptimer)
890 timer_save_state(map.direct_ptimer);
891
892 /*
893 * Cancel soft timer emulation, because the only case where we
894 * need it after a vcpu_put is in the context of a sleeping VCPU, and
895 * in that case we already factor in the deadline for the physical
896 * timer when scheduling the bg_timer.
897 *
898 * In any case, we re-schedule the hrtimer for the physical timer when
899 * coming back to the VCPU thread in kvm_timer_vcpu_load().
900 */
901 if (map.emul_vtimer)
902 soft_timer_cancel(&map.emul_vtimer->hrtimer);
903 if (map.emul_ptimer)
904 soft_timer_cancel(&map.emul_ptimer->hrtimer);
905
906 if (kvm_vcpu_is_blocking(vcpu))
907 kvm_timer_blocking(vcpu);
908 }
909
910 /*
911 * With a userspace irqchip we have to check if the guest de-asserted the
912 * timer and if so, unmask the timer irq signal on the host interrupt
913 * controller to ensure that we see future timer signals.
914 */
unmask_vtimer_irq_user(struct kvm_vcpu * vcpu)915 static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu)
916 {
917 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
918
919 if (!kvm_timer_should_fire(vtimer)) {
920 kvm_timer_update_irq(vcpu, false, vtimer);
921 if (static_branch_likely(&has_gic_active_state))
922 set_timer_irq_phys_active(vtimer, false);
923 else
924 enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
925 }
926 }
927
kvm_timer_sync_user(struct kvm_vcpu * vcpu)928 void kvm_timer_sync_user(struct kvm_vcpu *vcpu)
929 {
930 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
931
932 if (unlikely(!timer->enabled))
933 return;
934
935 if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
936 unmask_vtimer_irq_user(vcpu);
937 }
938
kvm_timer_vcpu_reset(struct kvm_vcpu * vcpu)939 int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
940 {
941 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
942 struct timer_map map;
943
944 get_timer_map(vcpu, &map);
945
946 /*
947 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
948 * and to 0 for ARMv7. We provide an implementation that always
949 * resets the timer to be disabled and unmasked and is compliant with
950 * the ARMv7 architecture.
951 */
952 for (int i = 0; i < nr_timers(vcpu); i++)
953 timer_set_ctl(vcpu_get_timer(vcpu, i), 0);
954
955 /*
956 * A vcpu running at EL2 is in charge of the offset applied to
957 * the virtual timer, so use the physical VM offset, and point
958 * the vcpu offset to CNTVOFF_EL2.
959 */
960 if (vcpu_has_nv(vcpu)) {
961 struct arch_timer_offset *offs = &vcpu_vtimer(vcpu)->offset;
962
963 offs->vcpu_offset = &__vcpu_sys_reg(vcpu, CNTVOFF_EL2);
964 offs->vm_offset = &vcpu->kvm->arch.timer_data.poffset;
965 }
966
967 if (timer->enabled) {
968 for (int i = 0; i < nr_timers(vcpu); i++)
969 kvm_timer_update_irq(vcpu, false,
970 vcpu_get_timer(vcpu, i));
971
972 if (irqchip_in_kernel(vcpu->kvm)) {
973 kvm_vgic_reset_mapped_irq(vcpu, timer_irq(map.direct_vtimer));
974 if (map.direct_ptimer)
975 kvm_vgic_reset_mapped_irq(vcpu, timer_irq(map.direct_ptimer));
976 }
977 }
978
979 if (map.emul_vtimer)
980 soft_timer_cancel(&map.emul_vtimer->hrtimer);
981 if (map.emul_ptimer)
982 soft_timer_cancel(&map.emul_ptimer->hrtimer);
983
984 return 0;
985 }
986
timer_context_init(struct kvm_vcpu * vcpu,int timerid)987 static void timer_context_init(struct kvm_vcpu *vcpu, int timerid)
988 {
989 struct arch_timer_context *ctxt = vcpu_get_timer(vcpu, timerid);
990 struct kvm *kvm = vcpu->kvm;
991
992 ctxt->vcpu = vcpu;
993
994 if (timerid == TIMER_VTIMER)
995 ctxt->offset.vm_offset = &kvm->arch.timer_data.voffset;
996 else
997 ctxt->offset.vm_offset = &kvm->arch.timer_data.poffset;
998
999 hrtimer_init(&ctxt->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1000 ctxt->hrtimer.function = kvm_hrtimer_expire;
1001
1002 switch (timerid) {
1003 case TIMER_PTIMER:
1004 case TIMER_HPTIMER:
1005 ctxt->host_timer_irq = host_ptimer_irq;
1006 break;
1007 case TIMER_VTIMER:
1008 case TIMER_HVTIMER:
1009 ctxt->host_timer_irq = host_vtimer_irq;
1010 break;
1011 }
1012 }
1013
kvm_timer_vcpu_init(struct kvm_vcpu * vcpu)1014 void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
1015 {
1016 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1017
1018 for (int i = 0; i < NR_KVM_TIMERS; i++)
1019 timer_context_init(vcpu, i);
1020
1021 /* Synchronize offsets across timers of a VM if not already provided */
1022 if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &vcpu->kvm->arch.flags)) {
1023 timer_set_offset(vcpu_vtimer(vcpu), kvm_phys_timer_read());
1024 timer_set_offset(vcpu_ptimer(vcpu), 0);
1025 }
1026
1027 hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1028 timer->bg_timer.function = kvm_bg_timer_expire;
1029 }
1030
kvm_timer_init_vm(struct kvm * kvm)1031 void kvm_timer_init_vm(struct kvm *kvm)
1032 {
1033 for (int i = 0; i < NR_KVM_TIMERS; i++)
1034 kvm->arch.timer_data.ppi[i] = default_ppi[i];
1035 }
1036
kvm_timer_cpu_up(void)1037 void kvm_timer_cpu_up(void)
1038 {
1039 enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
1040 if (host_ptimer_irq)
1041 enable_percpu_irq(host_ptimer_irq, host_ptimer_irq_flags);
1042 }
1043
kvm_timer_cpu_down(void)1044 void kvm_timer_cpu_down(void)
1045 {
1046 disable_percpu_irq(host_vtimer_irq);
1047 if (host_ptimer_irq)
1048 disable_percpu_irq(host_ptimer_irq);
1049 }
1050
kvm_arm_timer_set_reg(struct kvm_vcpu * vcpu,u64 regid,u64 value)1051 int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
1052 {
1053 struct arch_timer_context *timer;
1054
1055 switch (regid) {
1056 case KVM_REG_ARM_TIMER_CTL:
1057 timer = vcpu_vtimer(vcpu);
1058 kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
1059 break;
1060 case KVM_REG_ARM_TIMER_CNT:
1061 if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET,
1062 &vcpu->kvm->arch.flags)) {
1063 timer = vcpu_vtimer(vcpu);
1064 timer_set_offset(timer, kvm_phys_timer_read() - value);
1065 }
1066 break;
1067 case KVM_REG_ARM_TIMER_CVAL:
1068 timer = vcpu_vtimer(vcpu);
1069 kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
1070 break;
1071 case KVM_REG_ARM_PTIMER_CTL:
1072 timer = vcpu_ptimer(vcpu);
1073 kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
1074 break;
1075 case KVM_REG_ARM_PTIMER_CNT:
1076 if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET,
1077 &vcpu->kvm->arch.flags)) {
1078 timer = vcpu_ptimer(vcpu);
1079 timer_set_offset(timer, kvm_phys_timer_read() - value);
1080 }
1081 break;
1082 case KVM_REG_ARM_PTIMER_CVAL:
1083 timer = vcpu_ptimer(vcpu);
1084 kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
1085 break;
1086
1087 default:
1088 return -1;
1089 }
1090
1091 return 0;
1092 }
1093
read_timer_ctl(struct arch_timer_context * timer)1094 static u64 read_timer_ctl(struct arch_timer_context *timer)
1095 {
1096 /*
1097 * Set ISTATUS bit if it's expired.
1098 * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
1099 * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
1100 * regardless of ENABLE bit for our implementation convenience.
1101 */
1102 u32 ctl = timer_get_ctl(timer);
1103
1104 if (!kvm_timer_compute_delta(timer))
1105 ctl |= ARCH_TIMER_CTRL_IT_STAT;
1106
1107 return ctl;
1108 }
1109
kvm_arm_timer_get_reg(struct kvm_vcpu * vcpu,u64 regid)1110 u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
1111 {
1112 switch (regid) {
1113 case KVM_REG_ARM_TIMER_CTL:
1114 return kvm_arm_timer_read(vcpu,
1115 vcpu_vtimer(vcpu), TIMER_REG_CTL);
1116 case KVM_REG_ARM_TIMER_CNT:
1117 return kvm_arm_timer_read(vcpu,
1118 vcpu_vtimer(vcpu), TIMER_REG_CNT);
1119 case KVM_REG_ARM_TIMER_CVAL:
1120 return kvm_arm_timer_read(vcpu,
1121 vcpu_vtimer(vcpu), TIMER_REG_CVAL);
1122 case KVM_REG_ARM_PTIMER_CTL:
1123 return kvm_arm_timer_read(vcpu,
1124 vcpu_ptimer(vcpu), TIMER_REG_CTL);
1125 case KVM_REG_ARM_PTIMER_CNT:
1126 return kvm_arm_timer_read(vcpu,
1127 vcpu_ptimer(vcpu), TIMER_REG_CNT);
1128 case KVM_REG_ARM_PTIMER_CVAL:
1129 return kvm_arm_timer_read(vcpu,
1130 vcpu_ptimer(vcpu), TIMER_REG_CVAL);
1131 }
1132 return (u64)-1;
1133 }
1134
kvm_arm_timer_read(struct kvm_vcpu * vcpu,struct arch_timer_context * timer,enum kvm_arch_timer_regs treg)1135 static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
1136 struct arch_timer_context *timer,
1137 enum kvm_arch_timer_regs treg)
1138 {
1139 u64 val;
1140
1141 switch (treg) {
1142 case TIMER_REG_TVAL:
1143 val = timer_get_cval(timer) - kvm_phys_timer_read() + timer_get_offset(timer);
1144 val = lower_32_bits(val);
1145 break;
1146
1147 case TIMER_REG_CTL:
1148 val = read_timer_ctl(timer);
1149 break;
1150
1151 case TIMER_REG_CVAL:
1152 val = timer_get_cval(timer);
1153 break;
1154
1155 case TIMER_REG_CNT:
1156 val = kvm_phys_timer_read() - timer_get_offset(timer);
1157 break;
1158
1159 case TIMER_REG_VOFF:
1160 val = *timer->offset.vcpu_offset;
1161 break;
1162
1163 default:
1164 BUG();
1165 }
1166
1167 return val;
1168 }
1169
kvm_arm_timer_read_sysreg(struct kvm_vcpu * vcpu,enum kvm_arch_timers tmr,enum kvm_arch_timer_regs treg)1170 u64 kvm_arm_timer_read_sysreg(struct kvm_vcpu *vcpu,
1171 enum kvm_arch_timers tmr,
1172 enum kvm_arch_timer_regs treg)
1173 {
1174 struct arch_timer_context *timer;
1175 struct timer_map map;
1176 u64 val;
1177
1178 get_timer_map(vcpu, &map);
1179 timer = vcpu_get_timer(vcpu, tmr);
1180
1181 if (timer == map.emul_vtimer || timer == map.emul_ptimer)
1182 return kvm_arm_timer_read(vcpu, timer, treg);
1183
1184 preempt_disable();
1185 timer_save_state(timer);
1186
1187 val = kvm_arm_timer_read(vcpu, timer, treg);
1188
1189 timer_restore_state(timer);
1190 preempt_enable();
1191
1192 return val;
1193 }
1194
kvm_arm_timer_write(struct kvm_vcpu * vcpu,struct arch_timer_context * timer,enum kvm_arch_timer_regs treg,u64 val)1195 static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
1196 struct arch_timer_context *timer,
1197 enum kvm_arch_timer_regs treg,
1198 u64 val)
1199 {
1200 switch (treg) {
1201 case TIMER_REG_TVAL:
1202 timer_set_cval(timer, kvm_phys_timer_read() - timer_get_offset(timer) + (s32)val);
1203 break;
1204
1205 case TIMER_REG_CTL:
1206 timer_set_ctl(timer, val & ~ARCH_TIMER_CTRL_IT_STAT);
1207 break;
1208
1209 case TIMER_REG_CVAL:
1210 timer_set_cval(timer, val);
1211 break;
1212
1213 case TIMER_REG_VOFF:
1214 *timer->offset.vcpu_offset = val;
1215 break;
1216
1217 default:
1218 BUG();
1219 }
1220 }
1221
kvm_arm_timer_write_sysreg(struct kvm_vcpu * vcpu,enum kvm_arch_timers tmr,enum kvm_arch_timer_regs treg,u64 val)1222 void kvm_arm_timer_write_sysreg(struct kvm_vcpu *vcpu,
1223 enum kvm_arch_timers tmr,
1224 enum kvm_arch_timer_regs treg,
1225 u64 val)
1226 {
1227 struct arch_timer_context *timer;
1228 struct timer_map map;
1229
1230 get_timer_map(vcpu, &map);
1231 timer = vcpu_get_timer(vcpu, tmr);
1232 if (timer == map.emul_vtimer || timer == map.emul_ptimer) {
1233 soft_timer_cancel(&timer->hrtimer);
1234 kvm_arm_timer_write(vcpu, timer, treg, val);
1235 timer_emulate(timer);
1236 } else {
1237 preempt_disable();
1238 timer_save_state(timer);
1239 kvm_arm_timer_write(vcpu, timer, treg, val);
1240 timer_restore_state(timer);
1241 preempt_enable();
1242 }
1243 }
1244
timer_irq_set_vcpu_affinity(struct irq_data * d,void * vcpu)1245 static int timer_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
1246 {
1247 if (vcpu)
1248 irqd_set_forwarded_to_vcpu(d);
1249 else
1250 irqd_clr_forwarded_to_vcpu(d);
1251
1252 return 0;
1253 }
1254
timer_irq_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool val)1255 static int timer_irq_set_irqchip_state(struct irq_data *d,
1256 enum irqchip_irq_state which, bool val)
1257 {
1258 if (which != IRQCHIP_STATE_ACTIVE || !irqd_is_forwarded_to_vcpu(d))
1259 return irq_chip_set_parent_state(d, which, val);
1260
1261 if (val)
1262 irq_chip_mask_parent(d);
1263 else
1264 irq_chip_unmask_parent(d);
1265
1266 return 0;
1267 }
1268
timer_irq_eoi(struct irq_data * d)1269 static void timer_irq_eoi(struct irq_data *d)
1270 {
1271 if (!irqd_is_forwarded_to_vcpu(d))
1272 irq_chip_eoi_parent(d);
1273 }
1274
timer_irq_ack(struct irq_data * d)1275 static void timer_irq_ack(struct irq_data *d)
1276 {
1277 d = d->parent_data;
1278 if (d->chip->irq_ack)
1279 d->chip->irq_ack(d);
1280 }
1281
1282 static struct irq_chip timer_chip = {
1283 .name = "KVM",
1284 .irq_ack = timer_irq_ack,
1285 .irq_mask = irq_chip_mask_parent,
1286 .irq_unmask = irq_chip_unmask_parent,
1287 .irq_eoi = timer_irq_eoi,
1288 .irq_set_type = irq_chip_set_type_parent,
1289 .irq_set_vcpu_affinity = timer_irq_set_vcpu_affinity,
1290 .irq_set_irqchip_state = timer_irq_set_irqchip_state,
1291 };
1292
timer_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)1293 static int timer_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1294 unsigned int nr_irqs, void *arg)
1295 {
1296 irq_hw_number_t hwirq = (uintptr_t)arg;
1297
1298 return irq_domain_set_hwirq_and_chip(domain, virq, hwirq,
1299 &timer_chip, NULL);
1300 }
1301
timer_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)1302 static void timer_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1303 unsigned int nr_irqs)
1304 {
1305 }
1306
1307 static const struct irq_domain_ops timer_domain_ops = {
1308 .alloc = timer_irq_domain_alloc,
1309 .free = timer_irq_domain_free,
1310 };
1311
kvm_irq_fixup_flags(unsigned int virq,u32 * flags)1312 static void kvm_irq_fixup_flags(unsigned int virq, u32 *flags)
1313 {
1314 *flags = irq_get_trigger_type(virq);
1315 if (*flags != IRQF_TRIGGER_HIGH && *flags != IRQF_TRIGGER_LOW) {
1316 kvm_err("Invalid trigger for timer IRQ%d, assuming level low\n",
1317 virq);
1318 *flags = IRQF_TRIGGER_LOW;
1319 }
1320 }
1321
kvm_irq_init(struct arch_timer_kvm_info * info)1322 static int kvm_irq_init(struct arch_timer_kvm_info *info)
1323 {
1324 struct irq_domain *domain = NULL;
1325
1326 if (info->virtual_irq <= 0) {
1327 kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
1328 info->virtual_irq);
1329 return -ENODEV;
1330 }
1331
1332 host_vtimer_irq = info->virtual_irq;
1333 kvm_irq_fixup_flags(host_vtimer_irq, &host_vtimer_irq_flags);
1334
1335 if (kvm_vgic_global_state.no_hw_deactivation) {
1336 struct fwnode_handle *fwnode;
1337 struct irq_data *data;
1338
1339 fwnode = irq_domain_alloc_named_fwnode("kvm-timer");
1340 if (!fwnode)
1341 return -ENOMEM;
1342
1343 /* Assume both vtimer and ptimer in the same parent */
1344 data = irq_get_irq_data(host_vtimer_irq);
1345 domain = irq_domain_create_hierarchy(data->domain, 0,
1346 NR_KVM_TIMERS, fwnode,
1347 &timer_domain_ops, NULL);
1348 if (!domain) {
1349 irq_domain_free_fwnode(fwnode);
1350 return -ENOMEM;
1351 }
1352
1353 arch_timer_irq_ops.flags |= VGIC_IRQ_SW_RESAMPLE;
1354 WARN_ON(irq_domain_push_irq(domain, host_vtimer_irq,
1355 (void *)TIMER_VTIMER));
1356 }
1357
1358 if (info->physical_irq > 0) {
1359 host_ptimer_irq = info->physical_irq;
1360 kvm_irq_fixup_flags(host_ptimer_irq, &host_ptimer_irq_flags);
1361
1362 if (domain)
1363 WARN_ON(irq_domain_push_irq(domain, host_ptimer_irq,
1364 (void *)TIMER_PTIMER));
1365 }
1366
1367 return 0;
1368 }
1369
kvm_timer_hyp_init(bool has_gic)1370 int __init kvm_timer_hyp_init(bool has_gic)
1371 {
1372 struct arch_timer_kvm_info *info;
1373 int err;
1374
1375 info = arch_timer_get_kvm_info();
1376 timecounter = &info->timecounter;
1377
1378 if (!timecounter->cc) {
1379 kvm_err("kvm_arch_timer: uninitialized timecounter\n");
1380 return -ENODEV;
1381 }
1382
1383 err = kvm_irq_init(info);
1384 if (err)
1385 return err;
1386
1387 /* First, do the virtual EL1 timer irq */
1388
1389 err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
1390 "kvm guest vtimer", kvm_get_running_vcpus());
1391 if (err) {
1392 kvm_err("kvm_arch_timer: can't request vtimer interrupt %d (%d)\n",
1393 host_vtimer_irq, err);
1394 return err;
1395 }
1396
1397 if (has_gic) {
1398 err = irq_set_vcpu_affinity(host_vtimer_irq,
1399 kvm_get_running_vcpus());
1400 if (err) {
1401 kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1402 goto out_free_vtimer_irq;
1403 }
1404
1405 static_branch_enable(&has_gic_active_state);
1406 }
1407
1408 kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq);
1409
1410 /* Now let's do the physical EL1 timer irq */
1411
1412 if (info->physical_irq > 0) {
1413 err = request_percpu_irq(host_ptimer_irq, kvm_arch_timer_handler,
1414 "kvm guest ptimer", kvm_get_running_vcpus());
1415 if (err) {
1416 kvm_err("kvm_arch_timer: can't request ptimer interrupt %d (%d)\n",
1417 host_ptimer_irq, err);
1418 goto out_free_vtimer_irq;
1419 }
1420
1421 if (has_gic) {
1422 err = irq_set_vcpu_affinity(host_ptimer_irq,
1423 kvm_get_running_vcpus());
1424 if (err) {
1425 kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1426 goto out_free_ptimer_irq;
1427 }
1428 }
1429
1430 kvm_debug("physical timer IRQ%d\n", host_ptimer_irq);
1431 } else if (has_vhe()) {
1432 kvm_err("kvm_arch_timer: invalid physical timer IRQ: %d\n",
1433 info->physical_irq);
1434 err = -ENODEV;
1435 goto out_free_vtimer_irq;
1436 }
1437
1438 return 0;
1439
1440 out_free_ptimer_irq:
1441 if (info->physical_irq > 0)
1442 free_percpu_irq(host_ptimer_irq, kvm_get_running_vcpus());
1443 out_free_vtimer_irq:
1444 free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
1445 return err;
1446 }
1447
kvm_timer_vcpu_terminate(struct kvm_vcpu * vcpu)1448 void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
1449 {
1450 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1451
1452 soft_timer_cancel(&timer->bg_timer);
1453 }
1454
timer_irqs_are_valid(struct kvm_vcpu * vcpu)1455 static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
1456 {
1457 u32 ppis = 0;
1458 bool valid;
1459
1460 mutex_lock(&vcpu->kvm->arch.config_lock);
1461
1462 for (int i = 0; i < nr_timers(vcpu); i++) {
1463 struct arch_timer_context *ctx;
1464 int irq;
1465
1466 ctx = vcpu_get_timer(vcpu, i);
1467 irq = timer_irq(ctx);
1468 if (kvm_vgic_set_owner(vcpu, irq, ctx))
1469 break;
1470
1471 /*
1472 * We know by construction that we only have PPIs, so
1473 * all values are less than 32.
1474 */
1475 ppis |= BIT(irq);
1476 }
1477
1478 valid = hweight32(ppis) == nr_timers(vcpu);
1479
1480 if (valid)
1481 set_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE, &vcpu->kvm->arch.flags);
1482
1483 mutex_unlock(&vcpu->kvm->arch.config_lock);
1484
1485 return valid;
1486 }
1487
kvm_arch_timer_get_input_level(int vintid)1488 static bool kvm_arch_timer_get_input_level(int vintid)
1489 {
1490 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
1491
1492 if (WARN(!vcpu, "No vcpu context!\n"))
1493 return false;
1494
1495 for (int i = 0; i < nr_timers(vcpu); i++) {
1496 struct arch_timer_context *ctx;
1497
1498 ctx = vcpu_get_timer(vcpu, i);
1499 if (timer_irq(ctx) == vintid)
1500 return kvm_timer_should_fire(ctx);
1501 }
1502
1503 /* A timer IRQ has fired, but no matching timer was found? */
1504 WARN_RATELIMIT(1, "timer INTID%d unknown\n", vintid);
1505
1506 return false;
1507 }
1508
kvm_timer_enable(struct kvm_vcpu * vcpu)1509 int kvm_timer_enable(struct kvm_vcpu *vcpu)
1510 {
1511 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1512 struct timer_map map;
1513 int ret;
1514
1515 if (timer->enabled)
1516 return 0;
1517
1518 /* Without a VGIC we do not map virtual IRQs to physical IRQs */
1519 if (!irqchip_in_kernel(vcpu->kvm))
1520 goto no_vgic;
1521
1522 /*
1523 * At this stage, we have the guarantee that the vgic is both
1524 * available and initialized.
1525 */
1526 if (!timer_irqs_are_valid(vcpu)) {
1527 kvm_debug("incorrectly configured timer irqs\n");
1528 return -EINVAL;
1529 }
1530
1531 get_timer_map(vcpu, &map);
1532
1533 ret = kvm_vgic_map_phys_irq(vcpu,
1534 map.direct_vtimer->host_timer_irq,
1535 timer_irq(map.direct_vtimer),
1536 &arch_timer_irq_ops);
1537 if (ret)
1538 return ret;
1539
1540 if (map.direct_ptimer) {
1541 ret = kvm_vgic_map_phys_irq(vcpu,
1542 map.direct_ptimer->host_timer_irq,
1543 timer_irq(map.direct_ptimer),
1544 &arch_timer_irq_ops);
1545 }
1546
1547 if (ret)
1548 return ret;
1549
1550 no_vgic:
1551 timer->enabled = 1;
1552 return 0;
1553 }
1554
1555 /* If we have CNTPOFF, permanently set ECV to enable it */
kvm_timer_init_vhe(void)1556 void kvm_timer_init_vhe(void)
1557 {
1558 if (cpus_have_final_cap(ARM64_HAS_ECV_CNTPOFF))
1559 sysreg_clear_set(cnthctl_el2, 0, CNTHCTL_ECV);
1560 }
1561
kvm_arm_timer_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1562 int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1563 {
1564 int __user *uaddr = (int __user *)(long)attr->addr;
1565 int irq, idx, ret = 0;
1566
1567 if (!irqchip_in_kernel(vcpu->kvm))
1568 return -EINVAL;
1569
1570 if (get_user(irq, uaddr))
1571 return -EFAULT;
1572
1573 if (!(irq_is_ppi(irq)))
1574 return -EINVAL;
1575
1576 mutex_lock(&vcpu->kvm->arch.config_lock);
1577
1578 if (test_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE,
1579 &vcpu->kvm->arch.flags)) {
1580 ret = -EBUSY;
1581 goto out;
1582 }
1583
1584 switch (attr->attr) {
1585 case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1586 idx = TIMER_VTIMER;
1587 break;
1588 case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1589 idx = TIMER_PTIMER;
1590 break;
1591 case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1592 idx = TIMER_HVTIMER;
1593 break;
1594 case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1595 idx = TIMER_HPTIMER;
1596 break;
1597 default:
1598 ret = -ENXIO;
1599 goto out;
1600 }
1601
1602 /*
1603 * We cannot validate the IRQ unicity before we run, so take it at
1604 * face value. The verdict will be given on first vcpu run, for each
1605 * vcpu. Yes this is late. Blame it on the stupid API.
1606 */
1607 vcpu->kvm->arch.timer_data.ppi[idx] = irq;
1608
1609 out:
1610 mutex_unlock(&vcpu->kvm->arch.config_lock);
1611 return ret;
1612 }
1613
kvm_arm_timer_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1614 int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1615 {
1616 int __user *uaddr = (int __user *)(long)attr->addr;
1617 struct arch_timer_context *timer;
1618 int irq;
1619
1620 switch (attr->attr) {
1621 case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1622 timer = vcpu_vtimer(vcpu);
1623 break;
1624 case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1625 timer = vcpu_ptimer(vcpu);
1626 break;
1627 case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1628 timer = vcpu_hvtimer(vcpu);
1629 break;
1630 case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1631 timer = vcpu_hptimer(vcpu);
1632 break;
1633 default:
1634 return -ENXIO;
1635 }
1636
1637 irq = timer_irq(timer);
1638 return put_user(irq, uaddr);
1639 }
1640
kvm_arm_timer_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1641 int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1642 {
1643 switch (attr->attr) {
1644 case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1645 case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1646 case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1647 case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1648 return 0;
1649 }
1650
1651 return -ENXIO;
1652 }
1653
kvm_vm_ioctl_set_counter_offset(struct kvm * kvm,struct kvm_arm_counter_offset * offset)1654 int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm,
1655 struct kvm_arm_counter_offset *offset)
1656 {
1657 int ret = 0;
1658
1659 if (offset->reserved)
1660 return -EINVAL;
1661
1662 mutex_lock(&kvm->lock);
1663
1664 if (lock_all_vcpus(kvm)) {
1665 set_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &kvm->arch.flags);
1666
1667 /*
1668 * If userspace decides to set the offset using this
1669 * API rather than merely restoring the counter
1670 * values, the offset applies to both the virtual and
1671 * physical views.
1672 */
1673 kvm->arch.timer_data.voffset = offset->counter_offset;
1674 kvm->arch.timer_data.poffset = offset->counter_offset;
1675
1676 unlock_all_vcpus(kvm);
1677 } else {
1678 ret = -EBUSY;
1679 }
1680
1681 mutex_unlock(&kvm->lock);
1682
1683 return ret;
1684 }
1685