1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17 
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28 
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46 
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/set_memory.h>
52 #include <asm/vmx.h>
53 #include <asm/kvm_page_track.h>
54 #include "trace.h"
55 
56 extern bool itlb_multihit_kvm_mitigation;
57 
58 int __read_mostly nx_huge_pages = -1;
59 static uint __read_mostly nx_huge_pages_recovery_period_ms;
60 #ifdef CONFIG_PREEMPT_RT
61 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
62 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
63 #else
64 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
65 #endif
66 
67 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
68 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp);
69 
70 static const struct kernel_param_ops nx_huge_pages_ops = {
71 	.set = set_nx_huge_pages,
72 	.get = param_get_bool,
73 };
74 
75 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = {
76 	.set = set_nx_huge_pages_recovery_param,
77 	.get = param_get_uint,
78 };
79 
80 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
81 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
82 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops,
83 		&nx_huge_pages_recovery_ratio, 0644);
84 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
85 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops,
86 		&nx_huge_pages_recovery_period_ms, 0644);
87 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint");
88 
89 static bool __read_mostly force_flush_and_sync_on_reuse;
90 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
91 
92 /*
93  * When setting this variable to true it enables Two-Dimensional-Paging
94  * where the hardware walks 2 page tables:
95  * 1. the guest-virtual to guest-physical
96  * 2. while doing 1. it walks guest-physical to host-physical
97  * If the hardware supports that we don't need to do shadow paging.
98  */
99 bool tdp_enabled = false;
100 
101 static int max_huge_page_level __read_mostly;
102 static int tdp_root_level __read_mostly;
103 static int max_tdp_level __read_mostly;
104 
105 #ifdef MMU_DEBUG
106 bool dbg = 0;
107 module_param(dbg, bool, 0644);
108 #endif
109 
110 #define PTE_PREFETCH_NUM		8
111 
112 #include <trace/events/kvm.h>
113 
114 /* make pte_list_desc fit well in cache lines */
115 #define PTE_LIST_EXT 14
116 
117 /*
118  * Slight optimization of cacheline layout, by putting `more' and `spte_count'
119  * at the start; then accessing it will only use one single cacheline for
120  * either full (entries==PTE_LIST_EXT) case or entries<=6.
121  */
122 struct pte_list_desc {
123 	struct pte_list_desc *more;
124 	/*
125 	 * Stores number of entries stored in the pte_list_desc.  No need to be
126 	 * u64 but just for easier alignment.  When PTE_LIST_EXT, means full.
127 	 */
128 	u64 spte_count;
129 	u64 *sptes[PTE_LIST_EXT];
130 };
131 
132 struct kvm_shadow_walk_iterator {
133 	u64 addr;
134 	hpa_t shadow_addr;
135 	u64 *sptep;
136 	int level;
137 	unsigned index;
138 };
139 
140 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
141 	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
142 					 (_root), (_addr));                \
143 	     shadow_walk_okay(&(_walker));			           \
144 	     shadow_walk_next(&(_walker)))
145 
146 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
147 	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
148 	     shadow_walk_okay(&(_walker));			\
149 	     shadow_walk_next(&(_walker)))
150 
151 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
152 	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
153 	     shadow_walk_okay(&(_walker)) &&				\
154 		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
155 	     __shadow_walk_next(&(_walker), spte))
156 
157 static struct kmem_cache *pte_list_desc_cache;
158 struct kmem_cache *mmu_page_header_cache;
159 static struct percpu_counter kvm_total_used_mmu_pages;
160 
161 static void mmu_spte_set(u64 *sptep, u64 spte);
162 
163 struct kvm_mmu_role_regs {
164 	const unsigned long cr0;
165 	const unsigned long cr4;
166 	const u64 efer;
167 };
168 
169 #define CREATE_TRACE_POINTS
170 #include "mmutrace.h"
171 
172 /*
173  * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
174  * reading from the role_regs.  Once the root_role is constructed, it becomes
175  * the single source of truth for the MMU's state.
176  */
177 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)			\
178 static inline bool __maybe_unused					\
179 ____is_##reg##_##name(const struct kvm_mmu_role_regs *regs)		\
180 {									\
181 	return !!(regs->reg & flag);					\
182 }
183 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
184 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
185 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
186 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
187 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
188 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
189 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
190 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
191 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
192 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);
193 
194 /*
195  * The MMU itself (with a valid role) is the single source of truth for the
196  * MMU.  Do not use the regs used to build the MMU/role, nor the vCPU.  The
197  * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
198  * and the vCPU may be incorrect/irrelevant.
199  */
200 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name)		\
201 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu)	\
202 {								\
203 	return !!(mmu->cpu_role. base_or_ext . reg##_##name);	\
204 }
205 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
206 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pse);
207 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smep);
208 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smap);
209 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pke);
210 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, la57);
211 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
212 BUILD_MMU_ROLE_ACCESSOR(ext,  efer, lma);
213 
is_cr0_pg(struct kvm_mmu * mmu)214 static inline bool is_cr0_pg(struct kvm_mmu *mmu)
215 {
216         return mmu->cpu_role.base.level > 0;
217 }
218 
is_cr4_pae(struct kvm_mmu * mmu)219 static inline bool is_cr4_pae(struct kvm_mmu *mmu)
220 {
221         return !mmu->cpu_role.base.has_4_byte_gpte;
222 }
223 
vcpu_to_role_regs(struct kvm_vcpu * vcpu)224 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
225 {
226 	struct kvm_mmu_role_regs regs = {
227 		.cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
228 		.cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
229 		.efer = vcpu->arch.efer,
230 	};
231 
232 	return regs;
233 }
234 
kvm_available_flush_tlb_with_range(void)235 static inline bool kvm_available_flush_tlb_with_range(void)
236 {
237 	return kvm_x86_ops.tlb_remote_flush_with_range;
238 }
239 
kvm_flush_remote_tlbs_with_range(struct kvm * kvm,struct kvm_tlb_range * range)240 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
241 		struct kvm_tlb_range *range)
242 {
243 	int ret = -ENOTSUPP;
244 
245 	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
246 		ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
247 
248 	if (ret)
249 		kvm_flush_remote_tlbs(kvm);
250 }
251 
kvm_flush_remote_tlbs_with_address(struct kvm * kvm,u64 start_gfn,u64 pages)252 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
253 		u64 start_gfn, u64 pages)
254 {
255 	struct kvm_tlb_range range;
256 
257 	range.start_gfn = start_gfn;
258 	range.pages = pages;
259 
260 	kvm_flush_remote_tlbs_with_range(kvm, &range);
261 }
262 
mark_mmio_spte(struct kvm_vcpu * vcpu,u64 * sptep,u64 gfn,unsigned int access)263 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
264 			   unsigned int access)
265 {
266 	u64 spte = make_mmio_spte(vcpu, gfn, access);
267 
268 	trace_mark_mmio_spte(sptep, gfn, spte);
269 	mmu_spte_set(sptep, spte);
270 }
271 
get_mmio_spte_gfn(u64 spte)272 static gfn_t get_mmio_spte_gfn(u64 spte)
273 {
274 	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
275 
276 	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
277 	       & shadow_nonpresent_or_rsvd_mask;
278 
279 	return gpa >> PAGE_SHIFT;
280 }
281 
get_mmio_spte_access(u64 spte)282 static unsigned get_mmio_spte_access(u64 spte)
283 {
284 	return spte & shadow_mmio_access_mask;
285 }
286 
check_mmio_spte(struct kvm_vcpu * vcpu,u64 spte)287 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
288 {
289 	u64 kvm_gen, spte_gen, gen;
290 
291 	gen = kvm_vcpu_memslots(vcpu)->generation;
292 	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
293 		return false;
294 
295 	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
296 	spte_gen = get_mmio_spte_generation(spte);
297 
298 	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
299 	return likely(kvm_gen == spte_gen);
300 }
301 
is_cpuid_PSE36(void)302 static int is_cpuid_PSE36(void)
303 {
304 	return 1;
305 }
306 
307 #ifdef CONFIG_X86_64
__set_spte(u64 * sptep,u64 spte)308 static void __set_spte(u64 *sptep, u64 spte)
309 {
310 	WRITE_ONCE(*sptep, spte);
311 }
312 
__update_clear_spte_fast(u64 * sptep,u64 spte)313 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
314 {
315 	WRITE_ONCE(*sptep, spte);
316 }
317 
__update_clear_spte_slow(u64 * sptep,u64 spte)318 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
319 {
320 	return xchg(sptep, spte);
321 }
322 
__get_spte_lockless(u64 * sptep)323 static u64 __get_spte_lockless(u64 *sptep)
324 {
325 	return READ_ONCE(*sptep);
326 }
327 #else
328 union split_spte {
329 	struct {
330 		u32 spte_low;
331 		u32 spte_high;
332 	};
333 	u64 spte;
334 };
335 
count_spte_clear(u64 * sptep,u64 spte)336 static void count_spte_clear(u64 *sptep, u64 spte)
337 {
338 	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
339 
340 	if (is_shadow_present_pte(spte))
341 		return;
342 
343 	/* Ensure the spte is completely set before we increase the count */
344 	smp_wmb();
345 	sp->clear_spte_count++;
346 }
347 
__set_spte(u64 * sptep,u64 spte)348 static void __set_spte(u64 *sptep, u64 spte)
349 {
350 	union split_spte *ssptep, sspte;
351 
352 	ssptep = (union split_spte *)sptep;
353 	sspte = (union split_spte)spte;
354 
355 	ssptep->spte_high = sspte.spte_high;
356 
357 	/*
358 	 * If we map the spte from nonpresent to present, We should store
359 	 * the high bits firstly, then set present bit, so cpu can not
360 	 * fetch this spte while we are setting the spte.
361 	 */
362 	smp_wmb();
363 
364 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
365 }
366 
__update_clear_spte_fast(u64 * sptep,u64 spte)367 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
368 {
369 	union split_spte *ssptep, sspte;
370 
371 	ssptep = (union split_spte *)sptep;
372 	sspte = (union split_spte)spte;
373 
374 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
375 
376 	/*
377 	 * If we map the spte from present to nonpresent, we should clear
378 	 * present bit firstly to avoid vcpu fetch the old high bits.
379 	 */
380 	smp_wmb();
381 
382 	ssptep->spte_high = sspte.spte_high;
383 	count_spte_clear(sptep, spte);
384 }
385 
__update_clear_spte_slow(u64 * sptep,u64 spte)386 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
387 {
388 	union split_spte *ssptep, sspte, orig;
389 
390 	ssptep = (union split_spte *)sptep;
391 	sspte = (union split_spte)spte;
392 
393 	/* xchg acts as a barrier before the setting of the high bits */
394 	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
395 	orig.spte_high = ssptep->spte_high;
396 	ssptep->spte_high = sspte.spte_high;
397 	count_spte_clear(sptep, spte);
398 
399 	return orig.spte;
400 }
401 
402 /*
403  * The idea using the light way get the spte on x86_32 guest is from
404  * gup_get_pte (mm/gup.c).
405  *
406  * An spte tlb flush may be pending, because kvm_set_pte_rmap
407  * coalesces them and we are running out of the MMU lock.  Therefore
408  * we need to protect against in-progress updates of the spte.
409  *
410  * Reading the spte while an update is in progress may get the old value
411  * for the high part of the spte.  The race is fine for a present->non-present
412  * change (because the high part of the spte is ignored for non-present spte),
413  * but for a present->present change we must reread the spte.
414  *
415  * All such changes are done in two steps (present->non-present and
416  * non-present->present), hence it is enough to count the number of
417  * present->non-present updates: if it changed while reading the spte,
418  * we might have hit the race.  This is done using clear_spte_count.
419  */
__get_spte_lockless(u64 * sptep)420 static u64 __get_spte_lockless(u64 *sptep)
421 {
422 	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
423 	union split_spte spte, *orig = (union split_spte *)sptep;
424 	int count;
425 
426 retry:
427 	count = sp->clear_spte_count;
428 	smp_rmb();
429 
430 	spte.spte_low = orig->spte_low;
431 	smp_rmb();
432 
433 	spte.spte_high = orig->spte_high;
434 	smp_rmb();
435 
436 	if (unlikely(spte.spte_low != orig->spte_low ||
437 	      count != sp->clear_spte_count))
438 		goto retry;
439 
440 	return spte.spte;
441 }
442 #endif
443 
444 /* Rules for using mmu_spte_set:
445  * Set the sptep from nonpresent to present.
446  * Note: the sptep being assigned *must* be either not present
447  * or in a state where the hardware will not attempt to update
448  * the spte.
449  */
mmu_spte_set(u64 * sptep,u64 new_spte)450 static void mmu_spte_set(u64 *sptep, u64 new_spte)
451 {
452 	WARN_ON(is_shadow_present_pte(*sptep));
453 	__set_spte(sptep, new_spte);
454 }
455 
456 /*
457  * Update the SPTE (excluding the PFN), but do not track changes in its
458  * accessed/dirty status.
459  */
mmu_spte_update_no_track(u64 * sptep,u64 new_spte)460 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
461 {
462 	u64 old_spte = *sptep;
463 
464 	WARN_ON(!is_shadow_present_pte(new_spte));
465 	check_spte_writable_invariants(new_spte);
466 
467 	if (!is_shadow_present_pte(old_spte)) {
468 		mmu_spte_set(sptep, new_spte);
469 		return old_spte;
470 	}
471 
472 	if (!spte_has_volatile_bits(old_spte))
473 		__update_clear_spte_fast(sptep, new_spte);
474 	else
475 		old_spte = __update_clear_spte_slow(sptep, new_spte);
476 
477 	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
478 
479 	return old_spte;
480 }
481 
482 /* Rules for using mmu_spte_update:
483  * Update the state bits, it means the mapped pfn is not changed.
484  *
485  * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote
486  * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only
487  * spte, even though the writable spte might be cached on a CPU's TLB.
488  *
489  * Returns true if the TLB needs to be flushed
490  */
mmu_spte_update(u64 * sptep,u64 new_spte)491 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
492 {
493 	bool flush = false;
494 	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
495 
496 	if (!is_shadow_present_pte(old_spte))
497 		return false;
498 
499 	/*
500 	 * For the spte updated out of mmu-lock is safe, since
501 	 * we always atomically update it, see the comments in
502 	 * spte_has_volatile_bits().
503 	 */
504 	if (is_mmu_writable_spte(old_spte) &&
505 	      !is_writable_pte(new_spte))
506 		flush = true;
507 
508 	/*
509 	 * Flush TLB when accessed/dirty states are changed in the page tables,
510 	 * to guarantee consistency between TLB and page tables.
511 	 */
512 
513 	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
514 		flush = true;
515 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
516 	}
517 
518 	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
519 		flush = true;
520 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
521 	}
522 
523 	return flush;
524 }
525 
526 /*
527  * Rules for using mmu_spte_clear_track_bits:
528  * It sets the sptep from present to nonpresent, and track the
529  * state bits, it is used to clear the last level sptep.
530  * Returns the old PTE.
531  */
mmu_spte_clear_track_bits(struct kvm * kvm,u64 * sptep)532 static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
533 {
534 	kvm_pfn_t pfn;
535 	u64 old_spte = *sptep;
536 	int level = sptep_to_sp(sptep)->role.level;
537 	struct page *page;
538 
539 	if (!is_shadow_present_pte(old_spte) ||
540 	    !spte_has_volatile_bits(old_spte))
541 		__update_clear_spte_fast(sptep, 0ull);
542 	else
543 		old_spte = __update_clear_spte_slow(sptep, 0ull);
544 
545 	if (!is_shadow_present_pte(old_spte))
546 		return old_spte;
547 
548 	kvm_update_page_stats(kvm, level, -1);
549 
550 	pfn = spte_to_pfn(old_spte);
551 
552 	/*
553 	 * KVM doesn't hold a reference to any pages mapped into the guest, and
554 	 * instead uses the mmu_notifier to ensure that KVM unmaps any pages
555 	 * before they are reclaimed.  Sanity check that, if the pfn is backed
556 	 * by a refcounted page, the refcount is elevated.
557 	 */
558 	page = kvm_pfn_to_refcounted_page(pfn);
559 	WARN_ON(page && !page_count(page));
560 
561 	if (is_accessed_spte(old_spte))
562 		kvm_set_pfn_accessed(pfn);
563 
564 	if (is_dirty_spte(old_spte))
565 		kvm_set_pfn_dirty(pfn);
566 
567 	return old_spte;
568 }
569 
570 /*
571  * Rules for using mmu_spte_clear_no_track:
572  * Directly clear spte without caring the state bits of sptep,
573  * it is used to set the upper level spte.
574  */
mmu_spte_clear_no_track(u64 * sptep)575 static void mmu_spte_clear_no_track(u64 *sptep)
576 {
577 	__update_clear_spte_fast(sptep, 0ull);
578 }
579 
mmu_spte_get_lockless(u64 * sptep)580 static u64 mmu_spte_get_lockless(u64 *sptep)
581 {
582 	return __get_spte_lockless(sptep);
583 }
584 
585 /* Returns the Accessed status of the PTE and resets it at the same time. */
mmu_spte_age(u64 * sptep)586 static bool mmu_spte_age(u64 *sptep)
587 {
588 	u64 spte = mmu_spte_get_lockless(sptep);
589 
590 	if (!is_accessed_spte(spte))
591 		return false;
592 
593 	if (spte_ad_enabled(spte)) {
594 		clear_bit((ffs(shadow_accessed_mask) - 1),
595 			  (unsigned long *)sptep);
596 	} else {
597 		/*
598 		 * Capture the dirty status of the page, so that it doesn't get
599 		 * lost when the SPTE is marked for access tracking.
600 		 */
601 		if (is_writable_pte(spte))
602 			kvm_set_pfn_dirty(spte_to_pfn(spte));
603 
604 		spte = mark_spte_for_access_track(spte);
605 		mmu_spte_update_no_track(sptep, spte);
606 	}
607 
608 	return true;
609 }
610 
walk_shadow_page_lockless_begin(struct kvm_vcpu * vcpu)611 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
612 {
613 	if (is_tdp_mmu(vcpu->arch.mmu)) {
614 		kvm_tdp_mmu_walk_lockless_begin();
615 	} else {
616 		/*
617 		 * Prevent page table teardown by making any free-er wait during
618 		 * kvm_flush_remote_tlbs() IPI to all active vcpus.
619 		 */
620 		local_irq_disable();
621 
622 		/*
623 		 * Make sure a following spte read is not reordered ahead of the write
624 		 * to vcpu->mode.
625 		 */
626 		smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
627 	}
628 }
629 
walk_shadow_page_lockless_end(struct kvm_vcpu * vcpu)630 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
631 {
632 	if (is_tdp_mmu(vcpu->arch.mmu)) {
633 		kvm_tdp_mmu_walk_lockless_end();
634 	} else {
635 		/*
636 		 * Make sure the write to vcpu->mode is not reordered in front of
637 		 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
638 		 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
639 		 */
640 		smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
641 		local_irq_enable();
642 	}
643 }
644 
mmu_topup_memory_caches(struct kvm_vcpu * vcpu,bool maybe_indirect)645 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
646 {
647 	int r;
648 
649 	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
650 	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
651 				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
652 	if (r)
653 		return r;
654 	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
655 				       PT64_ROOT_MAX_LEVEL);
656 	if (r)
657 		return r;
658 	if (maybe_indirect) {
659 		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache,
660 					       PT64_ROOT_MAX_LEVEL);
661 		if (r)
662 			return r;
663 	}
664 	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
665 					  PT64_ROOT_MAX_LEVEL);
666 }
667 
mmu_free_memory_caches(struct kvm_vcpu * vcpu)668 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
669 {
670 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
671 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
672 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache);
673 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
674 }
675 
mmu_free_pte_list_desc(struct pte_list_desc * pte_list_desc)676 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
677 {
678 	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
679 }
680 
681 static bool sp_has_gptes(struct kvm_mmu_page *sp);
682 
kvm_mmu_page_get_gfn(struct kvm_mmu_page * sp,int index)683 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
684 {
685 	if (sp->role.passthrough)
686 		return sp->gfn;
687 
688 	if (!sp->role.direct)
689 		return sp->shadowed_translation[index] >> PAGE_SHIFT;
690 
691 	return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS));
692 }
693 
694 /*
695  * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note
696  * that the SPTE itself may have a more constrained access permissions that
697  * what the guest enforces. For example, a guest may create an executable
698  * huge PTE but KVM may disallow execution to mitigate iTLB multihit.
699  */
kvm_mmu_page_get_access(struct kvm_mmu_page * sp,int index)700 static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index)
701 {
702 	if (sp_has_gptes(sp))
703 		return sp->shadowed_translation[index] & ACC_ALL;
704 
705 	/*
706 	 * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs,
707 	 * KVM is not shadowing any guest page tables, so the "guest access
708 	 * permissions" are just ACC_ALL.
709 	 *
710 	 * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM
711 	 * is shadowing a guest huge page with small pages, the guest access
712 	 * permissions being shadowed are the access permissions of the huge
713 	 * page.
714 	 *
715 	 * In both cases, sp->role.access contains the correct access bits.
716 	 */
717 	return sp->role.access;
718 }
719 
kvm_mmu_page_set_translation(struct kvm_mmu_page * sp,int index,gfn_t gfn,unsigned int access)720 static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index,
721 					 gfn_t gfn, unsigned int access)
722 {
723 	if (sp_has_gptes(sp)) {
724 		sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access;
725 		return;
726 	}
727 
728 	WARN_ONCE(access != kvm_mmu_page_get_access(sp, index),
729 	          "access mismatch under %s page %llx (expected %u, got %u)\n",
730 	          sp->role.passthrough ? "passthrough" : "direct",
731 	          sp->gfn, kvm_mmu_page_get_access(sp, index), access);
732 
733 	WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index),
734 	          "gfn mismatch under %s page %llx (expected %llx, got %llx)\n",
735 	          sp->role.passthrough ? "passthrough" : "direct",
736 	          sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn);
737 }
738 
kvm_mmu_page_set_access(struct kvm_mmu_page * sp,int index,unsigned int access)739 static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index,
740 				    unsigned int access)
741 {
742 	gfn_t gfn = kvm_mmu_page_get_gfn(sp, index);
743 
744 	kvm_mmu_page_set_translation(sp, index, gfn, access);
745 }
746 
747 /*
748  * Return the pointer to the large page information for a given gfn,
749  * handling slots that are not large page aligned.
750  */
lpage_info_slot(gfn_t gfn,const struct kvm_memory_slot * slot,int level)751 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
752 		const struct kvm_memory_slot *slot, int level)
753 {
754 	unsigned long idx;
755 
756 	idx = gfn_to_index(gfn, slot->base_gfn, level);
757 	return &slot->arch.lpage_info[level - 2][idx];
758 }
759 
update_gfn_disallow_lpage_count(const struct kvm_memory_slot * slot,gfn_t gfn,int count)760 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
761 					    gfn_t gfn, int count)
762 {
763 	struct kvm_lpage_info *linfo;
764 	int i;
765 
766 	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
767 		linfo = lpage_info_slot(gfn, slot, i);
768 		linfo->disallow_lpage += count;
769 		WARN_ON(linfo->disallow_lpage < 0);
770 	}
771 }
772 
kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot * slot,gfn_t gfn)773 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
774 {
775 	update_gfn_disallow_lpage_count(slot, gfn, 1);
776 }
777 
kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot * slot,gfn_t gfn)778 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
779 {
780 	update_gfn_disallow_lpage_count(slot, gfn, -1);
781 }
782 
account_shadowed(struct kvm * kvm,struct kvm_mmu_page * sp)783 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
784 {
785 	struct kvm_memslots *slots;
786 	struct kvm_memory_slot *slot;
787 	gfn_t gfn;
788 
789 	kvm->arch.indirect_shadow_pages++;
790 	gfn = sp->gfn;
791 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
792 	slot = __gfn_to_memslot(slots, gfn);
793 
794 	/* the non-leaf shadow pages are keeping readonly. */
795 	if (sp->role.level > PG_LEVEL_4K)
796 		return kvm_slot_page_track_add_page(kvm, slot, gfn,
797 						    KVM_PAGE_TRACK_WRITE);
798 
799 	kvm_mmu_gfn_disallow_lpage(slot, gfn);
800 
801 	if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K))
802 		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
803 }
804 
account_huge_nx_page(struct kvm * kvm,struct kvm_mmu_page * sp)805 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
806 {
807 	if (sp->lpage_disallowed)
808 		return;
809 
810 	++kvm->stat.nx_lpage_splits;
811 	list_add_tail(&sp->lpage_disallowed_link,
812 		      &kvm->arch.lpage_disallowed_mmu_pages);
813 	sp->lpage_disallowed = true;
814 }
815 
unaccount_shadowed(struct kvm * kvm,struct kvm_mmu_page * sp)816 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
817 {
818 	struct kvm_memslots *slots;
819 	struct kvm_memory_slot *slot;
820 	gfn_t gfn;
821 
822 	kvm->arch.indirect_shadow_pages--;
823 	gfn = sp->gfn;
824 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
825 	slot = __gfn_to_memslot(slots, gfn);
826 	if (sp->role.level > PG_LEVEL_4K)
827 		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
828 						       KVM_PAGE_TRACK_WRITE);
829 
830 	kvm_mmu_gfn_allow_lpage(slot, gfn);
831 }
832 
unaccount_huge_nx_page(struct kvm * kvm,struct kvm_mmu_page * sp)833 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
834 {
835 	--kvm->stat.nx_lpage_splits;
836 	sp->lpage_disallowed = false;
837 	list_del(&sp->lpage_disallowed_link);
838 }
839 
840 static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu * vcpu,gfn_t gfn,bool no_dirty_log)841 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
842 			    bool no_dirty_log)
843 {
844 	struct kvm_memory_slot *slot;
845 
846 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
847 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
848 		return NULL;
849 	if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
850 		return NULL;
851 
852 	return slot;
853 }
854 
855 /*
856  * About rmap_head encoding:
857  *
858  * If the bit zero of rmap_head->val is clear, then it points to the only spte
859  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
860  * pte_list_desc containing more mappings.
861  */
862 
863 /*
864  * Returns the number of pointers in the rmap chain, not counting the new one.
865  */
pte_list_add(struct kvm_mmu_memory_cache * cache,u64 * spte,struct kvm_rmap_head * rmap_head)866 static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte,
867 			struct kvm_rmap_head *rmap_head)
868 {
869 	struct pte_list_desc *desc;
870 	int count = 0;
871 
872 	if (!rmap_head->val) {
873 		rmap_printk("%p %llx 0->1\n", spte, *spte);
874 		rmap_head->val = (unsigned long)spte;
875 	} else if (!(rmap_head->val & 1)) {
876 		rmap_printk("%p %llx 1->many\n", spte, *spte);
877 		desc = kvm_mmu_memory_cache_alloc(cache);
878 		desc->sptes[0] = (u64 *)rmap_head->val;
879 		desc->sptes[1] = spte;
880 		desc->spte_count = 2;
881 		rmap_head->val = (unsigned long)desc | 1;
882 		++count;
883 	} else {
884 		rmap_printk("%p %llx many->many\n", spte, *spte);
885 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
886 		while (desc->spte_count == PTE_LIST_EXT) {
887 			count += PTE_LIST_EXT;
888 			if (!desc->more) {
889 				desc->more = kvm_mmu_memory_cache_alloc(cache);
890 				desc = desc->more;
891 				desc->spte_count = 0;
892 				break;
893 			}
894 			desc = desc->more;
895 		}
896 		count += desc->spte_count;
897 		desc->sptes[desc->spte_count++] = spte;
898 	}
899 	return count;
900 }
901 
902 static void
pte_list_desc_remove_entry(struct kvm_rmap_head * rmap_head,struct pte_list_desc * desc,int i,struct pte_list_desc * prev_desc)903 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
904 			   struct pte_list_desc *desc, int i,
905 			   struct pte_list_desc *prev_desc)
906 {
907 	int j = desc->spte_count - 1;
908 
909 	desc->sptes[i] = desc->sptes[j];
910 	desc->sptes[j] = NULL;
911 	desc->spte_count--;
912 	if (desc->spte_count)
913 		return;
914 	if (!prev_desc && !desc->more)
915 		rmap_head->val = 0;
916 	else
917 		if (prev_desc)
918 			prev_desc->more = desc->more;
919 		else
920 			rmap_head->val = (unsigned long)desc->more | 1;
921 	mmu_free_pte_list_desc(desc);
922 }
923 
pte_list_remove(u64 * spte,struct kvm_rmap_head * rmap_head)924 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
925 {
926 	struct pte_list_desc *desc;
927 	struct pte_list_desc *prev_desc;
928 	int i;
929 
930 	if (!rmap_head->val) {
931 		pr_err("%s: %p 0->BUG\n", __func__, spte);
932 		BUG();
933 	} else if (!(rmap_head->val & 1)) {
934 		rmap_printk("%p 1->0\n", spte);
935 		if ((u64 *)rmap_head->val != spte) {
936 			pr_err("%s:  %p 1->BUG\n", __func__, spte);
937 			BUG();
938 		}
939 		rmap_head->val = 0;
940 	} else {
941 		rmap_printk("%p many->many\n", spte);
942 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
943 		prev_desc = NULL;
944 		while (desc) {
945 			for (i = 0; i < desc->spte_count; ++i) {
946 				if (desc->sptes[i] == spte) {
947 					pte_list_desc_remove_entry(rmap_head,
948 							desc, i, prev_desc);
949 					return;
950 				}
951 			}
952 			prev_desc = desc;
953 			desc = desc->more;
954 		}
955 		pr_err("%s: %p many->many\n", __func__, spte);
956 		BUG();
957 	}
958 }
959 
kvm_zap_one_rmap_spte(struct kvm * kvm,struct kvm_rmap_head * rmap_head,u64 * sptep)960 static void kvm_zap_one_rmap_spte(struct kvm *kvm,
961 				  struct kvm_rmap_head *rmap_head, u64 *sptep)
962 {
963 	mmu_spte_clear_track_bits(kvm, sptep);
964 	pte_list_remove(sptep, rmap_head);
965 }
966 
967 /* Return true if at least one SPTE was zapped, false otherwise */
kvm_zap_all_rmap_sptes(struct kvm * kvm,struct kvm_rmap_head * rmap_head)968 static bool kvm_zap_all_rmap_sptes(struct kvm *kvm,
969 				   struct kvm_rmap_head *rmap_head)
970 {
971 	struct pte_list_desc *desc, *next;
972 	int i;
973 
974 	if (!rmap_head->val)
975 		return false;
976 
977 	if (!(rmap_head->val & 1)) {
978 		mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val);
979 		goto out;
980 	}
981 
982 	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
983 
984 	for (; desc; desc = next) {
985 		for (i = 0; i < desc->spte_count; i++)
986 			mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
987 		next = desc->more;
988 		mmu_free_pte_list_desc(desc);
989 	}
990 out:
991 	/* rmap_head is meaningless now, remember to reset it */
992 	rmap_head->val = 0;
993 	return true;
994 }
995 
pte_list_count(struct kvm_rmap_head * rmap_head)996 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
997 {
998 	struct pte_list_desc *desc;
999 	unsigned int count = 0;
1000 
1001 	if (!rmap_head->val)
1002 		return 0;
1003 	else if (!(rmap_head->val & 1))
1004 		return 1;
1005 
1006 	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1007 
1008 	while (desc) {
1009 		count += desc->spte_count;
1010 		desc = desc->more;
1011 	}
1012 
1013 	return count;
1014 }
1015 
gfn_to_rmap(gfn_t gfn,int level,const struct kvm_memory_slot * slot)1016 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
1017 					 const struct kvm_memory_slot *slot)
1018 {
1019 	unsigned long idx;
1020 
1021 	idx = gfn_to_index(gfn, slot->base_gfn, level);
1022 	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1023 }
1024 
rmap_can_add(struct kvm_vcpu * vcpu)1025 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1026 {
1027 	struct kvm_mmu_memory_cache *mc;
1028 
1029 	mc = &vcpu->arch.mmu_pte_list_desc_cache;
1030 	return kvm_mmu_memory_cache_nr_free_objects(mc);
1031 }
1032 
rmap_remove(struct kvm * kvm,u64 * spte)1033 static void rmap_remove(struct kvm *kvm, u64 *spte)
1034 {
1035 	struct kvm_memslots *slots;
1036 	struct kvm_memory_slot *slot;
1037 	struct kvm_mmu_page *sp;
1038 	gfn_t gfn;
1039 	struct kvm_rmap_head *rmap_head;
1040 
1041 	sp = sptep_to_sp(spte);
1042 	gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte));
1043 
1044 	/*
1045 	 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU
1046 	 * so we have to determine which memslots to use based on context
1047 	 * information in sp->role.
1048 	 */
1049 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
1050 
1051 	slot = __gfn_to_memslot(slots, gfn);
1052 	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1053 
1054 	pte_list_remove(spte, rmap_head);
1055 }
1056 
1057 /*
1058  * Used by the following functions to iterate through the sptes linked by a
1059  * rmap.  All fields are private and not assumed to be used outside.
1060  */
1061 struct rmap_iterator {
1062 	/* private fields */
1063 	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
1064 	int pos;			/* index of the sptep */
1065 };
1066 
1067 /*
1068  * Iteration must be started by this function.  This should also be used after
1069  * removing/dropping sptes from the rmap link because in such cases the
1070  * information in the iterator may not be valid.
1071  *
1072  * Returns sptep if found, NULL otherwise.
1073  */
rmap_get_first(struct kvm_rmap_head * rmap_head,struct rmap_iterator * iter)1074 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1075 			   struct rmap_iterator *iter)
1076 {
1077 	u64 *sptep;
1078 
1079 	if (!rmap_head->val)
1080 		return NULL;
1081 
1082 	if (!(rmap_head->val & 1)) {
1083 		iter->desc = NULL;
1084 		sptep = (u64 *)rmap_head->val;
1085 		goto out;
1086 	}
1087 
1088 	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1089 	iter->pos = 0;
1090 	sptep = iter->desc->sptes[iter->pos];
1091 out:
1092 	BUG_ON(!is_shadow_present_pte(*sptep));
1093 	return sptep;
1094 }
1095 
1096 /*
1097  * Must be used with a valid iterator: e.g. after rmap_get_first().
1098  *
1099  * Returns sptep if found, NULL otherwise.
1100  */
rmap_get_next(struct rmap_iterator * iter)1101 static u64 *rmap_get_next(struct rmap_iterator *iter)
1102 {
1103 	u64 *sptep;
1104 
1105 	if (iter->desc) {
1106 		if (iter->pos < PTE_LIST_EXT - 1) {
1107 			++iter->pos;
1108 			sptep = iter->desc->sptes[iter->pos];
1109 			if (sptep)
1110 				goto out;
1111 		}
1112 
1113 		iter->desc = iter->desc->more;
1114 
1115 		if (iter->desc) {
1116 			iter->pos = 0;
1117 			/* desc->sptes[0] cannot be NULL */
1118 			sptep = iter->desc->sptes[iter->pos];
1119 			goto out;
1120 		}
1121 	}
1122 
1123 	return NULL;
1124 out:
1125 	BUG_ON(!is_shadow_present_pte(*sptep));
1126 	return sptep;
1127 }
1128 
1129 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
1130 	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1131 	     _spte_; _spte_ = rmap_get_next(_iter_))
1132 
drop_spte(struct kvm * kvm,u64 * sptep)1133 static void drop_spte(struct kvm *kvm, u64 *sptep)
1134 {
1135 	u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
1136 
1137 	if (is_shadow_present_pte(old_spte))
1138 		rmap_remove(kvm, sptep);
1139 }
1140 
drop_large_spte(struct kvm * kvm,u64 * sptep,bool flush)1141 static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush)
1142 {
1143 	struct kvm_mmu_page *sp;
1144 
1145 	sp = sptep_to_sp(sptep);
1146 	WARN_ON(sp->role.level == PG_LEVEL_4K);
1147 
1148 	drop_spte(kvm, sptep);
1149 
1150 	if (flush)
1151 		kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
1152 			KVM_PAGES_PER_HPAGE(sp->role.level));
1153 }
1154 
1155 /*
1156  * Write-protect on the specified @sptep, @pt_protect indicates whether
1157  * spte write-protection is caused by protecting shadow page table.
1158  *
1159  * Note: write protection is difference between dirty logging and spte
1160  * protection:
1161  * - for dirty logging, the spte can be set to writable at anytime if
1162  *   its dirty bitmap is properly set.
1163  * - for spte protection, the spte can be writable only after unsync-ing
1164  *   shadow page.
1165  *
1166  * Return true if tlb need be flushed.
1167  */
spte_write_protect(u64 * sptep,bool pt_protect)1168 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1169 {
1170 	u64 spte = *sptep;
1171 
1172 	if (!is_writable_pte(spte) &&
1173 	    !(pt_protect && is_mmu_writable_spte(spte)))
1174 		return false;
1175 
1176 	rmap_printk("spte %p %llx\n", sptep, *sptep);
1177 
1178 	if (pt_protect)
1179 		spte &= ~shadow_mmu_writable_mask;
1180 	spte = spte & ~PT_WRITABLE_MASK;
1181 
1182 	return mmu_spte_update(sptep, spte);
1183 }
1184 
rmap_write_protect(struct kvm_rmap_head * rmap_head,bool pt_protect)1185 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head,
1186 			       bool pt_protect)
1187 {
1188 	u64 *sptep;
1189 	struct rmap_iterator iter;
1190 	bool flush = false;
1191 
1192 	for_each_rmap_spte(rmap_head, &iter, sptep)
1193 		flush |= spte_write_protect(sptep, pt_protect);
1194 
1195 	return flush;
1196 }
1197 
spte_clear_dirty(u64 * sptep)1198 static bool spte_clear_dirty(u64 *sptep)
1199 {
1200 	u64 spte = *sptep;
1201 
1202 	rmap_printk("spte %p %llx\n", sptep, *sptep);
1203 
1204 	MMU_WARN_ON(!spte_ad_enabled(spte));
1205 	spte &= ~shadow_dirty_mask;
1206 	return mmu_spte_update(sptep, spte);
1207 }
1208 
spte_wrprot_for_clear_dirty(u64 * sptep)1209 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1210 {
1211 	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1212 					       (unsigned long *)sptep);
1213 	if (was_writable && !spte_ad_enabled(*sptep))
1214 		kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1215 
1216 	return was_writable;
1217 }
1218 
1219 /*
1220  * Gets the GFN ready for another round of dirty logging by clearing the
1221  *	- D bit on ad-enabled SPTEs, and
1222  *	- W bit on ad-disabled SPTEs.
1223  * Returns true iff any D or W bits were cleared.
1224  */
__rmap_clear_dirty(struct kvm * kvm,struct kvm_rmap_head * rmap_head,const struct kvm_memory_slot * slot)1225 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1226 			       const struct kvm_memory_slot *slot)
1227 {
1228 	u64 *sptep;
1229 	struct rmap_iterator iter;
1230 	bool flush = false;
1231 
1232 	for_each_rmap_spte(rmap_head, &iter, sptep)
1233 		if (spte_ad_need_write_protect(*sptep))
1234 			flush |= spte_wrprot_for_clear_dirty(sptep);
1235 		else
1236 			flush |= spte_clear_dirty(sptep);
1237 
1238 	return flush;
1239 }
1240 
1241 /**
1242  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1243  * @kvm: kvm instance
1244  * @slot: slot to protect
1245  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1246  * @mask: indicates which pages we should protect
1247  *
1248  * Used when we do not need to care about huge page mappings.
1249  */
kvm_mmu_write_protect_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1250 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1251 				     struct kvm_memory_slot *slot,
1252 				     gfn_t gfn_offset, unsigned long mask)
1253 {
1254 	struct kvm_rmap_head *rmap_head;
1255 
1256 	if (is_tdp_mmu_enabled(kvm))
1257 		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1258 				slot->base_gfn + gfn_offset, mask, true);
1259 
1260 	if (!kvm_memslots_have_rmaps(kvm))
1261 		return;
1262 
1263 	while (mask) {
1264 		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1265 					PG_LEVEL_4K, slot);
1266 		rmap_write_protect(rmap_head, false);
1267 
1268 		/* clear the first set bit */
1269 		mask &= mask - 1;
1270 	}
1271 }
1272 
1273 /**
1274  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1275  * protect the page if the D-bit isn't supported.
1276  * @kvm: kvm instance
1277  * @slot: slot to clear D-bit
1278  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1279  * @mask: indicates which pages we should clear D-bit
1280  *
1281  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1282  */
kvm_mmu_clear_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1283 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1284 					 struct kvm_memory_slot *slot,
1285 					 gfn_t gfn_offset, unsigned long mask)
1286 {
1287 	struct kvm_rmap_head *rmap_head;
1288 
1289 	if (is_tdp_mmu_enabled(kvm))
1290 		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1291 				slot->base_gfn + gfn_offset, mask, false);
1292 
1293 	if (!kvm_memslots_have_rmaps(kvm))
1294 		return;
1295 
1296 	while (mask) {
1297 		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1298 					PG_LEVEL_4K, slot);
1299 		__rmap_clear_dirty(kvm, rmap_head, slot);
1300 
1301 		/* clear the first set bit */
1302 		mask &= mask - 1;
1303 	}
1304 }
1305 
1306 /**
1307  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1308  * PT level pages.
1309  *
1310  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1311  * enable dirty logging for them.
1312  *
1313  * We need to care about huge page mappings: e.g. during dirty logging we may
1314  * have such mappings.
1315  */
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1316 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1317 				struct kvm_memory_slot *slot,
1318 				gfn_t gfn_offset, unsigned long mask)
1319 {
1320 	/*
1321 	 * Huge pages are NOT write protected when we start dirty logging in
1322 	 * initially-all-set mode; must write protect them here so that they
1323 	 * are split to 4K on the first write.
1324 	 *
1325 	 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
1326 	 * of memslot has no such restriction, so the range can cross two large
1327 	 * pages.
1328 	 */
1329 	if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1330 		gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
1331 		gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);
1332 
1333 		if (READ_ONCE(eager_page_split))
1334 			kvm_mmu_try_split_huge_pages(kvm, slot, start, end, PG_LEVEL_4K);
1335 
1336 		kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);
1337 
1338 		/* Cross two large pages? */
1339 		if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
1340 		    ALIGN(end << PAGE_SHIFT, PMD_SIZE))
1341 			kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
1342 						       PG_LEVEL_2M);
1343 	}
1344 
1345 	/* Now handle 4K PTEs.  */
1346 	if (kvm_x86_ops.cpu_dirty_log_size)
1347 		kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1348 	else
1349 		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1350 }
1351 
kvm_cpu_dirty_log_size(void)1352 int kvm_cpu_dirty_log_size(void)
1353 {
1354 	return kvm_x86_ops.cpu_dirty_log_size;
1355 }
1356 
kvm_mmu_slot_gfn_write_protect(struct kvm * kvm,struct kvm_memory_slot * slot,u64 gfn,int min_level)1357 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1358 				    struct kvm_memory_slot *slot, u64 gfn,
1359 				    int min_level)
1360 {
1361 	struct kvm_rmap_head *rmap_head;
1362 	int i;
1363 	bool write_protected = false;
1364 
1365 	if (kvm_memslots_have_rmaps(kvm)) {
1366 		for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1367 			rmap_head = gfn_to_rmap(gfn, i, slot);
1368 			write_protected |= rmap_write_protect(rmap_head, true);
1369 		}
1370 	}
1371 
1372 	if (is_tdp_mmu_enabled(kvm))
1373 		write_protected |=
1374 			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1375 
1376 	return write_protected;
1377 }
1378 
kvm_vcpu_write_protect_gfn(struct kvm_vcpu * vcpu,u64 gfn)1379 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn)
1380 {
1381 	struct kvm_memory_slot *slot;
1382 
1383 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1384 	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1385 }
1386 
__kvm_zap_rmap(struct kvm * kvm,struct kvm_rmap_head * rmap_head,const struct kvm_memory_slot * slot)1387 static bool __kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1388 			   const struct kvm_memory_slot *slot)
1389 {
1390 	return kvm_zap_all_rmap_sptes(kvm, rmap_head);
1391 }
1392 
kvm_zap_rmap(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,pte_t unused)1393 static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1394 			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1395 			 pte_t unused)
1396 {
1397 	return __kvm_zap_rmap(kvm, rmap_head, slot);
1398 }
1399 
kvm_set_pte_rmap(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,pte_t pte)1400 static bool kvm_set_pte_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1401 			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
1402 			     pte_t pte)
1403 {
1404 	u64 *sptep;
1405 	struct rmap_iterator iter;
1406 	bool need_flush = false;
1407 	u64 new_spte;
1408 	kvm_pfn_t new_pfn;
1409 
1410 	WARN_ON(pte_huge(pte));
1411 	new_pfn = pte_pfn(pte);
1412 
1413 restart:
1414 	for_each_rmap_spte(rmap_head, &iter, sptep) {
1415 		rmap_printk("spte %p %llx gfn %llx (%d)\n",
1416 			    sptep, *sptep, gfn, level);
1417 
1418 		need_flush = true;
1419 
1420 		if (pte_write(pte)) {
1421 			kvm_zap_one_rmap_spte(kvm, rmap_head, sptep);
1422 			goto restart;
1423 		} else {
1424 			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1425 					*sptep, new_pfn);
1426 
1427 			mmu_spte_clear_track_bits(kvm, sptep);
1428 			mmu_spte_set(sptep, new_spte);
1429 		}
1430 	}
1431 
1432 	if (need_flush && kvm_available_flush_tlb_with_range()) {
1433 		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1434 		return false;
1435 	}
1436 
1437 	return need_flush;
1438 }
1439 
1440 struct slot_rmap_walk_iterator {
1441 	/* input fields. */
1442 	const struct kvm_memory_slot *slot;
1443 	gfn_t start_gfn;
1444 	gfn_t end_gfn;
1445 	int start_level;
1446 	int end_level;
1447 
1448 	/* output fields. */
1449 	gfn_t gfn;
1450 	struct kvm_rmap_head *rmap;
1451 	int level;
1452 
1453 	/* private field. */
1454 	struct kvm_rmap_head *end_rmap;
1455 };
1456 
1457 static void
rmap_walk_init_level(struct slot_rmap_walk_iterator * iterator,int level)1458 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1459 {
1460 	iterator->level = level;
1461 	iterator->gfn = iterator->start_gfn;
1462 	iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
1463 	iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
1464 }
1465 
1466 static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator * iterator,const struct kvm_memory_slot * slot,int start_level,int end_level,gfn_t start_gfn,gfn_t end_gfn)1467 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1468 		    const struct kvm_memory_slot *slot, int start_level,
1469 		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
1470 {
1471 	iterator->slot = slot;
1472 	iterator->start_level = start_level;
1473 	iterator->end_level = end_level;
1474 	iterator->start_gfn = start_gfn;
1475 	iterator->end_gfn = end_gfn;
1476 
1477 	rmap_walk_init_level(iterator, iterator->start_level);
1478 }
1479 
slot_rmap_walk_okay(struct slot_rmap_walk_iterator * iterator)1480 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1481 {
1482 	return !!iterator->rmap;
1483 }
1484 
slot_rmap_walk_next(struct slot_rmap_walk_iterator * iterator)1485 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1486 {
1487 	while (++iterator->rmap <= iterator->end_rmap) {
1488 		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1489 
1490 		if (iterator->rmap->val)
1491 			return;
1492 	}
1493 
1494 	if (++iterator->level > iterator->end_level) {
1495 		iterator->rmap = NULL;
1496 		return;
1497 	}
1498 
1499 	rmap_walk_init_level(iterator, iterator->level);
1500 }
1501 
1502 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
1503 	   _start_gfn, _end_gfn, _iter_)				\
1504 	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
1505 				 _end_level_, _start_gfn, _end_gfn);	\
1506 	     slot_rmap_walk_okay(_iter_);				\
1507 	     slot_rmap_walk_next(_iter_))
1508 
1509 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1510 			       struct kvm_memory_slot *slot, gfn_t gfn,
1511 			       int level, pte_t pte);
1512 
kvm_handle_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range,rmap_handler_t handler)1513 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
1514 						 struct kvm_gfn_range *range,
1515 						 rmap_handler_t handler)
1516 {
1517 	struct slot_rmap_walk_iterator iterator;
1518 	bool ret = false;
1519 
1520 	for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1521 				 range->start, range->end - 1, &iterator)
1522 		ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
1523 			       iterator.level, range->pte);
1524 
1525 	return ret;
1526 }
1527 
kvm_unmap_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range)1528 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1529 {
1530 	bool flush = false;
1531 
1532 	if (kvm_memslots_have_rmaps(kvm))
1533 		flush = kvm_handle_gfn_range(kvm, range, kvm_zap_rmap);
1534 
1535 	if (is_tdp_mmu_enabled(kvm))
1536 		flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1537 
1538 	return flush;
1539 }
1540 
kvm_set_spte_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1541 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1542 {
1543 	bool flush = false;
1544 
1545 	if (kvm_memslots_have_rmaps(kvm))
1546 		flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmap);
1547 
1548 	if (is_tdp_mmu_enabled(kvm))
1549 		flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1550 
1551 	return flush;
1552 }
1553 
kvm_age_rmap(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,pte_t unused)1554 static bool kvm_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1555 			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1556 			 pte_t unused)
1557 {
1558 	u64 *sptep;
1559 	struct rmap_iterator iter;
1560 	int young = 0;
1561 
1562 	for_each_rmap_spte(rmap_head, &iter, sptep)
1563 		young |= mmu_spte_age(sptep);
1564 
1565 	return young;
1566 }
1567 
kvm_test_age_rmap(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,pte_t unused)1568 static bool kvm_test_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1569 			      struct kvm_memory_slot *slot, gfn_t gfn,
1570 			      int level, pte_t unused)
1571 {
1572 	u64 *sptep;
1573 	struct rmap_iterator iter;
1574 
1575 	for_each_rmap_spte(rmap_head, &iter, sptep)
1576 		if (is_accessed_spte(*sptep))
1577 			return true;
1578 	return false;
1579 }
1580 
1581 #define RMAP_RECYCLE_THRESHOLD 1000
1582 
__rmap_add(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,const struct kvm_memory_slot * slot,u64 * spte,gfn_t gfn,unsigned int access)1583 static void __rmap_add(struct kvm *kvm,
1584 		       struct kvm_mmu_memory_cache *cache,
1585 		       const struct kvm_memory_slot *slot,
1586 		       u64 *spte, gfn_t gfn, unsigned int access)
1587 {
1588 	struct kvm_mmu_page *sp;
1589 	struct kvm_rmap_head *rmap_head;
1590 	int rmap_count;
1591 
1592 	sp = sptep_to_sp(spte);
1593 	kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access);
1594 	kvm_update_page_stats(kvm, sp->role.level, 1);
1595 
1596 	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1597 	rmap_count = pte_list_add(cache, spte, rmap_head);
1598 
1599 	if (rmap_count > kvm->stat.max_mmu_rmap_size)
1600 		kvm->stat.max_mmu_rmap_size = rmap_count;
1601 	if (rmap_count > RMAP_RECYCLE_THRESHOLD) {
1602 		kvm_zap_all_rmap_sptes(kvm, rmap_head);
1603 		kvm_flush_remote_tlbs_with_address(
1604 				kvm, sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
1605 	}
1606 }
1607 
rmap_add(struct kvm_vcpu * vcpu,const struct kvm_memory_slot * slot,u64 * spte,gfn_t gfn,unsigned int access)1608 static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot,
1609 		     u64 *spte, gfn_t gfn, unsigned int access)
1610 {
1611 	struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache;
1612 
1613 	__rmap_add(vcpu->kvm, cache, slot, spte, gfn, access);
1614 }
1615 
kvm_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1616 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1617 {
1618 	bool young = false;
1619 
1620 	if (kvm_memslots_have_rmaps(kvm))
1621 		young = kvm_handle_gfn_range(kvm, range, kvm_age_rmap);
1622 
1623 	if (is_tdp_mmu_enabled(kvm))
1624 		young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1625 
1626 	return young;
1627 }
1628 
kvm_test_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1629 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1630 {
1631 	bool young = false;
1632 
1633 	if (kvm_memslots_have_rmaps(kvm))
1634 		young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmap);
1635 
1636 	if (is_tdp_mmu_enabled(kvm))
1637 		young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1638 
1639 	return young;
1640 }
1641 
1642 #ifdef MMU_DEBUG
is_empty_shadow_page(u64 * spt)1643 static int is_empty_shadow_page(u64 *spt)
1644 {
1645 	u64 *pos;
1646 	u64 *end;
1647 
1648 	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1649 		if (is_shadow_present_pte(*pos)) {
1650 			printk(KERN_ERR "%s: %p %llx\n", __func__,
1651 			       pos, *pos);
1652 			return 0;
1653 		}
1654 	return 1;
1655 }
1656 #endif
1657 
1658 /*
1659  * This value is the sum of all of the kvm instances's
1660  * kvm->arch.n_used_mmu_pages values.  We need a global,
1661  * aggregate version in order to make the slab shrinker
1662  * faster
1663  */
kvm_mod_used_mmu_pages(struct kvm * kvm,long nr)1664 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
1665 {
1666 	kvm->arch.n_used_mmu_pages += nr;
1667 	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1668 }
1669 
kvm_account_mmu_page(struct kvm * kvm,struct kvm_mmu_page * sp)1670 static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1671 {
1672 	kvm_mod_used_mmu_pages(kvm, +1);
1673 	kvm_account_pgtable_pages((void *)sp->spt, +1);
1674 }
1675 
kvm_unaccount_mmu_page(struct kvm * kvm,struct kvm_mmu_page * sp)1676 static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1677 {
1678 	kvm_mod_used_mmu_pages(kvm, -1);
1679 	kvm_account_pgtable_pages((void *)sp->spt, -1);
1680 }
1681 
kvm_mmu_free_shadow_page(struct kvm_mmu_page * sp)1682 static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp)
1683 {
1684 	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1685 	hlist_del(&sp->hash_link);
1686 	list_del(&sp->link);
1687 	free_page((unsigned long)sp->spt);
1688 	if (!sp->role.direct)
1689 		free_page((unsigned long)sp->shadowed_translation);
1690 	kmem_cache_free(mmu_page_header_cache, sp);
1691 }
1692 
kvm_page_table_hashfn(gfn_t gfn)1693 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1694 {
1695 	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1696 }
1697 
mmu_page_add_parent_pte(struct kvm_mmu_memory_cache * cache,struct kvm_mmu_page * sp,u64 * parent_pte)1698 static void mmu_page_add_parent_pte(struct kvm_mmu_memory_cache *cache,
1699 				    struct kvm_mmu_page *sp, u64 *parent_pte)
1700 {
1701 	if (!parent_pte)
1702 		return;
1703 
1704 	pte_list_add(cache, parent_pte, &sp->parent_ptes);
1705 }
1706 
mmu_page_remove_parent_pte(struct kvm_mmu_page * sp,u64 * parent_pte)1707 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1708 				       u64 *parent_pte)
1709 {
1710 	pte_list_remove(parent_pte, &sp->parent_ptes);
1711 }
1712 
drop_parent_pte(struct kvm_mmu_page * sp,u64 * parent_pte)1713 static void drop_parent_pte(struct kvm_mmu_page *sp,
1714 			    u64 *parent_pte)
1715 {
1716 	mmu_page_remove_parent_pte(sp, parent_pte);
1717 	mmu_spte_clear_no_track(parent_pte);
1718 }
1719 
1720 static void mark_unsync(u64 *spte);
kvm_mmu_mark_parents_unsync(struct kvm_mmu_page * sp)1721 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1722 {
1723 	u64 *sptep;
1724 	struct rmap_iterator iter;
1725 
1726 	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1727 		mark_unsync(sptep);
1728 	}
1729 }
1730 
mark_unsync(u64 * spte)1731 static void mark_unsync(u64 *spte)
1732 {
1733 	struct kvm_mmu_page *sp;
1734 
1735 	sp = sptep_to_sp(spte);
1736 	if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap))
1737 		return;
1738 	if (sp->unsync_children++)
1739 		return;
1740 	kvm_mmu_mark_parents_unsync(sp);
1741 }
1742 
nonpaging_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)1743 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1744 			       struct kvm_mmu_page *sp)
1745 {
1746 	return -1;
1747 }
1748 
1749 #define KVM_PAGE_ARRAY_NR 16
1750 
1751 struct kvm_mmu_pages {
1752 	struct mmu_page_and_offset {
1753 		struct kvm_mmu_page *sp;
1754 		unsigned int idx;
1755 	} page[KVM_PAGE_ARRAY_NR];
1756 	unsigned int nr;
1757 };
1758 
mmu_pages_add(struct kvm_mmu_pages * pvec,struct kvm_mmu_page * sp,int idx)1759 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1760 			 int idx)
1761 {
1762 	int i;
1763 
1764 	if (sp->unsync)
1765 		for (i=0; i < pvec->nr; i++)
1766 			if (pvec->page[i].sp == sp)
1767 				return 0;
1768 
1769 	pvec->page[pvec->nr].sp = sp;
1770 	pvec->page[pvec->nr].idx = idx;
1771 	pvec->nr++;
1772 	return (pvec->nr == KVM_PAGE_ARRAY_NR);
1773 }
1774 
clear_unsync_child_bit(struct kvm_mmu_page * sp,int idx)1775 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1776 {
1777 	--sp->unsync_children;
1778 	WARN_ON((int)sp->unsync_children < 0);
1779 	__clear_bit(idx, sp->unsync_child_bitmap);
1780 }
1781 
__mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)1782 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1783 			   struct kvm_mmu_pages *pvec)
1784 {
1785 	int i, ret, nr_unsync_leaf = 0;
1786 
1787 	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1788 		struct kvm_mmu_page *child;
1789 		u64 ent = sp->spt[i];
1790 
1791 		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1792 			clear_unsync_child_bit(sp, i);
1793 			continue;
1794 		}
1795 
1796 		child = to_shadow_page(ent & SPTE_BASE_ADDR_MASK);
1797 
1798 		if (child->unsync_children) {
1799 			if (mmu_pages_add(pvec, child, i))
1800 				return -ENOSPC;
1801 
1802 			ret = __mmu_unsync_walk(child, pvec);
1803 			if (!ret) {
1804 				clear_unsync_child_bit(sp, i);
1805 				continue;
1806 			} else if (ret > 0) {
1807 				nr_unsync_leaf += ret;
1808 			} else
1809 				return ret;
1810 		} else if (child->unsync) {
1811 			nr_unsync_leaf++;
1812 			if (mmu_pages_add(pvec, child, i))
1813 				return -ENOSPC;
1814 		} else
1815 			clear_unsync_child_bit(sp, i);
1816 	}
1817 
1818 	return nr_unsync_leaf;
1819 }
1820 
1821 #define INVALID_INDEX (-1)
1822 
mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)1823 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1824 			   struct kvm_mmu_pages *pvec)
1825 {
1826 	pvec->nr = 0;
1827 	if (!sp->unsync_children)
1828 		return 0;
1829 
1830 	mmu_pages_add(pvec, sp, INVALID_INDEX);
1831 	return __mmu_unsync_walk(sp, pvec);
1832 }
1833 
kvm_unlink_unsync_page(struct kvm * kvm,struct kvm_mmu_page * sp)1834 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1835 {
1836 	WARN_ON(!sp->unsync);
1837 	trace_kvm_mmu_sync_page(sp);
1838 	sp->unsync = 0;
1839 	--kvm->stat.mmu_unsync;
1840 }
1841 
1842 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1843 				     struct list_head *invalid_list);
1844 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1845 				    struct list_head *invalid_list);
1846 
sp_has_gptes(struct kvm_mmu_page * sp)1847 static bool sp_has_gptes(struct kvm_mmu_page *sp)
1848 {
1849 	if (sp->role.direct)
1850 		return false;
1851 
1852 	if (sp->role.passthrough)
1853 		return false;
1854 
1855 	return true;
1856 }
1857 
1858 #define for_each_valid_sp(_kvm, _sp, _list)				\
1859 	hlist_for_each_entry(_sp, _list, hash_link)			\
1860 		if (is_obsolete_sp((_kvm), (_sp))) {			\
1861 		} else
1862 
1863 #define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn)		\
1864 	for_each_valid_sp(_kvm, _sp,					\
1865 	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1866 		if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else
1867 
kvm_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,struct list_head * invalid_list)1868 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1869 			 struct list_head *invalid_list)
1870 {
1871 	int ret = vcpu->arch.mmu->sync_page(vcpu, sp);
1872 
1873 	if (ret < 0)
1874 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1875 	return ret;
1876 }
1877 
kvm_mmu_remote_flush_or_zap(struct kvm * kvm,struct list_head * invalid_list,bool remote_flush)1878 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1879 					struct list_head *invalid_list,
1880 					bool remote_flush)
1881 {
1882 	if (!remote_flush && list_empty(invalid_list))
1883 		return false;
1884 
1885 	if (!list_empty(invalid_list))
1886 		kvm_mmu_commit_zap_page(kvm, invalid_list);
1887 	else
1888 		kvm_flush_remote_tlbs(kvm);
1889 	return true;
1890 }
1891 
is_obsolete_sp(struct kvm * kvm,struct kvm_mmu_page * sp)1892 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1893 {
1894 	if (sp->role.invalid)
1895 		return true;
1896 
1897 	/* TDP MMU pages due not use the MMU generation. */
1898 	return !sp->tdp_mmu_page &&
1899 	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1900 }
1901 
1902 struct mmu_page_path {
1903 	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1904 	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1905 };
1906 
1907 #define for_each_sp(pvec, sp, parents, i)			\
1908 		for (i = mmu_pages_first(&pvec, &parents);	\
1909 			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
1910 			i = mmu_pages_next(&pvec, &parents, i))
1911 
mmu_pages_next(struct kvm_mmu_pages * pvec,struct mmu_page_path * parents,int i)1912 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1913 			  struct mmu_page_path *parents,
1914 			  int i)
1915 {
1916 	int n;
1917 
1918 	for (n = i+1; n < pvec->nr; n++) {
1919 		struct kvm_mmu_page *sp = pvec->page[n].sp;
1920 		unsigned idx = pvec->page[n].idx;
1921 		int level = sp->role.level;
1922 
1923 		parents->idx[level-1] = idx;
1924 		if (level == PG_LEVEL_4K)
1925 			break;
1926 
1927 		parents->parent[level-2] = sp;
1928 	}
1929 
1930 	return n;
1931 }
1932 
mmu_pages_first(struct kvm_mmu_pages * pvec,struct mmu_page_path * parents)1933 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1934 			   struct mmu_page_path *parents)
1935 {
1936 	struct kvm_mmu_page *sp;
1937 	int level;
1938 
1939 	if (pvec->nr == 0)
1940 		return 0;
1941 
1942 	WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1943 
1944 	sp = pvec->page[0].sp;
1945 	level = sp->role.level;
1946 	WARN_ON(level == PG_LEVEL_4K);
1947 
1948 	parents->parent[level-2] = sp;
1949 
1950 	/* Also set up a sentinel.  Further entries in pvec are all
1951 	 * children of sp, so this element is never overwritten.
1952 	 */
1953 	parents->parent[level-1] = NULL;
1954 	return mmu_pages_next(pvec, parents, 0);
1955 }
1956 
mmu_pages_clear_parents(struct mmu_page_path * parents)1957 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1958 {
1959 	struct kvm_mmu_page *sp;
1960 	unsigned int level = 0;
1961 
1962 	do {
1963 		unsigned int idx = parents->idx[level];
1964 		sp = parents->parent[level];
1965 		if (!sp)
1966 			return;
1967 
1968 		WARN_ON(idx == INVALID_INDEX);
1969 		clear_unsync_child_bit(sp, idx);
1970 		level++;
1971 	} while (!sp->unsync_children);
1972 }
1973 
mmu_sync_children(struct kvm_vcpu * vcpu,struct kvm_mmu_page * parent,bool can_yield)1974 static int mmu_sync_children(struct kvm_vcpu *vcpu,
1975 			     struct kvm_mmu_page *parent, bool can_yield)
1976 {
1977 	int i;
1978 	struct kvm_mmu_page *sp;
1979 	struct mmu_page_path parents;
1980 	struct kvm_mmu_pages pages;
1981 	LIST_HEAD(invalid_list);
1982 	bool flush = false;
1983 
1984 	while (mmu_unsync_walk(parent, &pages)) {
1985 		bool protected = false;
1986 
1987 		for_each_sp(pages, sp, parents, i)
1988 			protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn);
1989 
1990 		if (protected) {
1991 			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true);
1992 			flush = false;
1993 		}
1994 
1995 		for_each_sp(pages, sp, parents, i) {
1996 			kvm_unlink_unsync_page(vcpu->kvm, sp);
1997 			flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0;
1998 			mmu_pages_clear_parents(&parents);
1999 		}
2000 		if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
2001 			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2002 			if (!can_yield) {
2003 				kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2004 				return -EINTR;
2005 			}
2006 
2007 			cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2008 			flush = false;
2009 		}
2010 	}
2011 
2012 	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2013 	return 0;
2014 }
2015 
__clear_sp_write_flooding_count(struct kvm_mmu_page * sp)2016 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2017 {
2018 	atomic_set(&sp->write_flooding_count,  0);
2019 }
2020 
clear_sp_write_flooding_count(u64 * spte)2021 static void clear_sp_write_flooding_count(u64 *spte)
2022 {
2023 	__clear_sp_write_flooding_count(sptep_to_sp(spte));
2024 }
2025 
2026 /*
2027  * The vCPU is required when finding indirect shadow pages; the shadow
2028  * page may already exist and syncing it needs the vCPU pointer in
2029  * order to read guest page tables.  Direct shadow pages are never
2030  * unsync, thus @vcpu can be NULL if @role.direct is true.
2031  */
kvm_mmu_find_shadow_page(struct kvm * kvm,struct kvm_vcpu * vcpu,gfn_t gfn,struct hlist_head * sp_list,union kvm_mmu_page_role role)2032 static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm,
2033 						     struct kvm_vcpu *vcpu,
2034 						     gfn_t gfn,
2035 						     struct hlist_head *sp_list,
2036 						     union kvm_mmu_page_role role)
2037 {
2038 	struct kvm_mmu_page *sp;
2039 	int ret;
2040 	int collisions = 0;
2041 	LIST_HEAD(invalid_list);
2042 
2043 	for_each_valid_sp(kvm, sp, sp_list) {
2044 		if (sp->gfn != gfn) {
2045 			collisions++;
2046 			continue;
2047 		}
2048 
2049 		if (sp->role.word != role.word) {
2050 			/*
2051 			 * If the guest is creating an upper-level page, zap
2052 			 * unsync pages for the same gfn.  While it's possible
2053 			 * the guest is using recursive page tables, in all
2054 			 * likelihood the guest has stopped using the unsync
2055 			 * page and is installing a completely unrelated page.
2056 			 * Unsync pages must not be left as is, because the new
2057 			 * upper-level page will be write-protected.
2058 			 */
2059 			if (role.level > PG_LEVEL_4K && sp->unsync)
2060 				kvm_mmu_prepare_zap_page(kvm, sp,
2061 							 &invalid_list);
2062 			continue;
2063 		}
2064 
2065 		/* unsync and write-flooding only apply to indirect SPs. */
2066 		if (sp->role.direct)
2067 			goto out;
2068 
2069 		if (sp->unsync) {
2070 			if (KVM_BUG_ON(!vcpu, kvm))
2071 				break;
2072 
2073 			/*
2074 			 * The page is good, but is stale.  kvm_sync_page does
2075 			 * get the latest guest state, but (unlike mmu_unsync_children)
2076 			 * it doesn't write-protect the page or mark it synchronized!
2077 			 * This way the validity of the mapping is ensured, but the
2078 			 * overhead of write protection is not incurred until the
2079 			 * guest invalidates the TLB mapping.  This allows multiple
2080 			 * SPs for a single gfn to be unsync.
2081 			 *
2082 			 * If the sync fails, the page is zapped.  If so, break
2083 			 * in order to rebuild it.
2084 			 */
2085 			ret = kvm_sync_page(vcpu, sp, &invalid_list);
2086 			if (ret < 0)
2087 				break;
2088 
2089 			WARN_ON(!list_empty(&invalid_list));
2090 			if (ret > 0)
2091 				kvm_flush_remote_tlbs(kvm);
2092 		}
2093 
2094 		__clear_sp_write_flooding_count(sp);
2095 
2096 		goto out;
2097 	}
2098 
2099 	sp = NULL;
2100 	++kvm->stat.mmu_cache_miss;
2101 
2102 out:
2103 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2104 
2105 	if (collisions > kvm->stat.max_mmu_page_hash_collisions)
2106 		kvm->stat.max_mmu_page_hash_collisions = collisions;
2107 	return sp;
2108 }
2109 
2110 /* Caches used when allocating a new shadow page. */
2111 struct shadow_page_caches {
2112 	struct kvm_mmu_memory_cache *page_header_cache;
2113 	struct kvm_mmu_memory_cache *shadow_page_cache;
2114 	struct kvm_mmu_memory_cache *shadowed_info_cache;
2115 };
2116 
kvm_mmu_alloc_shadow_page(struct kvm * kvm,struct shadow_page_caches * caches,gfn_t gfn,struct hlist_head * sp_list,union kvm_mmu_page_role role)2117 static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm,
2118 						      struct shadow_page_caches *caches,
2119 						      gfn_t gfn,
2120 						      struct hlist_head *sp_list,
2121 						      union kvm_mmu_page_role role)
2122 {
2123 	struct kvm_mmu_page *sp;
2124 
2125 	sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache);
2126 	sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache);
2127 	if (!role.direct)
2128 		sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache);
2129 
2130 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2131 
2132 	/*
2133 	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2134 	 * depends on valid pages being added to the head of the list.  See
2135 	 * comments in kvm_zap_obsolete_pages().
2136 	 */
2137 	sp->mmu_valid_gen = kvm->arch.mmu_valid_gen;
2138 	list_add(&sp->link, &kvm->arch.active_mmu_pages);
2139 	kvm_account_mmu_page(kvm, sp);
2140 
2141 	sp->gfn = gfn;
2142 	sp->role = role;
2143 	hlist_add_head(&sp->hash_link, sp_list);
2144 	if (sp_has_gptes(sp))
2145 		account_shadowed(kvm, sp);
2146 
2147 	return sp;
2148 }
2149 
2150 /* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */
__kvm_mmu_get_shadow_page(struct kvm * kvm,struct kvm_vcpu * vcpu,struct shadow_page_caches * caches,gfn_t gfn,union kvm_mmu_page_role role)2151 static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm,
2152 						      struct kvm_vcpu *vcpu,
2153 						      struct shadow_page_caches *caches,
2154 						      gfn_t gfn,
2155 						      union kvm_mmu_page_role role)
2156 {
2157 	struct hlist_head *sp_list;
2158 	struct kvm_mmu_page *sp;
2159 	bool created = false;
2160 
2161 	sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2162 
2163 	sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role);
2164 	if (!sp) {
2165 		created = true;
2166 		sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role);
2167 	}
2168 
2169 	trace_kvm_mmu_get_page(sp, created);
2170 	return sp;
2171 }
2172 
kvm_mmu_get_shadow_page(struct kvm_vcpu * vcpu,gfn_t gfn,union kvm_mmu_page_role role)2173 static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu,
2174 						    gfn_t gfn,
2175 						    union kvm_mmu_page_role role)
2176 {
2177 	struct shadow_page_caches caches = {
2178 		.page_header_cache = &vcpu->arch.mmu_page_header_cache,
2179 		.shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache,
2180 		.shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache,
2181 	};
2182 
2183 	return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role);
2184 }
2185 
kvm_mmu_child_role(u64 * sptep,bool direct,unsigned int access)2186 static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct,
2187 						  unsigned int access)
2188 {
2189 	struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep);
2190 	union kvm_mmu_page_role role;
2191 
2192 	role = parent_sp->role;
2193 	role.level--;
2194 	role.access = access;
2195 	role.direct = direct;
2196 	role.passthrough = 0;
2197 
2198 	/*
2199 	 * If the guest has 4-byte PTEs then that means it's using 32-bit,
2200 	 * 2-level, non-PAE paging. KVM shadows such guests with PAE paging
2201 	 * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must
2202 	 * shadow each guest page table with multiple shadow page tables, which
2203 	 * requires extra bookkeeping in the role.
2204 	 *
2205 	 * Specifically, to shadow the guest's page directory (which covers a
2206 	 * 4GiB address space), KVM uses 4 PAE page directories, each mapping
2207 	 * 1GiB of the address space. @role.quadrant encodes which quarter of
2208 	 * the address space each maps.
2209 	 *
2210 	 * To shadow the guest's page tables (which each map a 4MiB region), KVM
2211 	 * uses 2 PAE page tables, each mapping a 2MiB region. For these,
2212 	 * @role.quadrant encodes which half of the region they map.
2213 	 *
2214 	 * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE
2215 	 * consumes bits 29:21.  To consume bits 31:30, KVM's uses 4 shadow
2216 	 * PDPTEs; those 4 PAE page directories are pre-allocated and their
2217 	 * quadrant is assigned in mmu_alloc_root().   A 4-byte PTE consumes
2218 	 * bits 21:12, while an 8-byte PTE consumes bits 20:12.  To consume
2219 	 * bit 21 in the PTE (the child here), KVM propagates that bit to the
2220 	 * quadrant, i.e. sets quadrant to '0' or '1'.  The parent 8-byte PDE
2221 	 * covers bit 21 (see above), thus the quadrant is calculated from the
2222 	 * _least_ significant bit of the PDE index.
2223 	 */
2224 	if (role.has_4_byte_gpte) {
2225 		WARN_ON_ONCE(role.level != PG_LEVEL_4K);
2226 		role.quadrant = spte_index(sptep) & 1;
2227 	}
2228 
2229 	return role;
2230 }
2231 
kvm_mmu_get_child_sp(struct kvm_vcpu * vcpu,u64 * sptep,gfn_t gfn,bool direct,unsigned int access)2232 static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu,
2233 						 u64 *sptep, gfn_t gfn,
2234 						 bool direct, unsigned int access)
2235 {
2236 	union kvm_mmu_page_role role;
2237 
2238 	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep))
2239 		return ERR_PTR(-EEXIST);
2240 
2241 	role = kvm_mmu_child_role(sptep, direct, access);
2242 	return kvm_mmu_get_shadow_page(vcpu, gfn, role);
2243 }
2244 
shadow_walk_init_using_root(struct kvm_shadow_walk_iterator * iterator,struct kvm_vcpu * vcpu,hpa_t root,u64 addr)2245 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2246 					struct kvm_vcpu *vcpu, hpa_t root,
2247 					u64 addr)
2248 {
2249 	iterator->addr = addr;
2250 	iterator->shadow_addr = root;
2251 	iterator->level = vcpu->arch.mmu->root_role.level;
2252 
2253 	if (iterator->level >= PT64_ROOT_4LEVEL &&
2254 	    vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL &&
2255 	    !vcpu->arch.mmu->root_role.direct)
2256 		iterator->level = PT32E_ROOT_LEVEL;
2257 
2258 	if (iterator->level == PT32E_ROOT_LEVEL) {
2259 		/*
2260 		 * prev_root is currently only used for 64-bit hosts. So only
2261 		 * the active root_hpa is valid here.
2262 		 */
2263 		BUG_ON(root != vcpu->arch.mmu->root.hpa);
2264 
2265 		iterator->shadow_addr
2266 			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2267 		iterator->shadow_addr &= SPTE_BASE_ADDR_MASK;
2268 		--iterator->level;
2269 		if (!iterator->shadow_addr)
2270 			iterator->level = 0;
2271 	}
2272 }
2273 
shadow_walk_init(struct kvm_shadow_walk_iterator * iterator,struct kvm_vcpu * vcpu,u64 addr)2274 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2275 			     struct kvm_vcpu *vcpu, u64 addr)
2276 {
2277 	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa,
2278 				    addr);
2279 }
2280 
shadow_walk_okay(struct kvm_shadow_walk_iterator * iterator)2281 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2282 {
2283 	if (iterator->level < PG_LEVEL_4K)
2284 		return false;
2285 
2286 	iterator->index = SPTE_INDEX(iterator->addr, iterator->level);
2287 	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2288 	return true;
2289 }
2290 
__shadow_walk_next(struct kvm_shadow_walk_iterator * iterator,u64 spte)2291 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2292 			       u64 spte)
2293 {
2294 	if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) {
2295 		iterator->level = 0;
2296 		return;
2297 	}
2298 
2299 	iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK;
2300 	--iterator->level;
2301 }
2302 
shadow_walk_next(struct kvm_shadow_walk_iterator * iterator)2303 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2304 {
2305 	__shadow_walk_next(iterator, *iterator->sptep);
2306 }
2307 
__link_shadow_page(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,u64 * sptep,struct kvm_mmu_page * sp,bool flush)2308 static void __link_shadow_page(struct kvm *kvm,
2309 			       struct kvm_mmu_memory_cache *cache, u64 *sptep,
2310 			       struct kvm_mmu_page *sp, bool flush)
2311 {
2312 	u64 spte;
2313 
2314 	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2315 
2316 	/*
2317 	 * If an SPTE is present already, it must be a leaf and therefore
2318 	 * a large one.  Drop it, and flush the TLB if needed, before
2319 	 * installing sp.
2320 	 */
2321 	if (is_shadow_present_pte(*sptep))
2322 		drop_large_spte(kvm, sptep, flush);
2323 
2324 	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2325 
2326 	mmu_spte_set(sptep, spte);
2327 
2328 	mmu_page_add_parent_pte(cache, sp, sptep);
2329 
2330 	if (sp->unsync_children || sp->unsync)
2331 		mark_unsync(sptep);
2332 }
2333 
link_shadow_page(struct kvm_vcpu * vcpu,u64 * sptep,struct kvm_mmu_page * sp)2334 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2335 			     struct kvm_mmu_page *sp)
2336 {
2337 	__link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true);
2338 }
2339 
validate_direct_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned direct_access)2340 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2341 				   unsigned direct_access)
2342 {
2343 	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2344 		struct kvm_mmu_page *child;
2345 
2346 		/*
2347 		 * For the direct sp, if the guest pte's dirty bit
2348 		 * changed form clean to dirty, it will corrupt the
2349 		 * sp's access: allow writable in the read-only sp,
2350 		 * so we should update the spte at this point to get
2351 		 * a new sp with the correct access.
2352 		 */
2353 		child = to_shadow_page(*sptep & SPTE_BASE_ADDR_MASK);
2354 		if (child->role.access == direct_access)
2355 			return;
2356 
2357 		drop_parent_pte(child, sptep);
2358 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2359 	}
2360 }
2361 
2362 /* Returns the number of zapped non-leaf child shadow pages. */
mmu_page_zap_pte(struct kvm * kvm,struct kvm_mmu_page * sp,u64 * spte,struct list_head * invalid_list)2363 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2364 			    u64 *spte, struct list_head *invalid_list)
2365 {
2366 	u64 pte;
2367 	struct kvm_mmu_page *child;
2368 
2369 	pte = *spte;
2370 	if (is_shadow_present_pte(pte)) {
2371 		if (is_last_spte(pte, sp->role.level)) {
2372 			drop_spte(kvm, spte);
2373 		} else {
2374 			child = to_shadow_page(pte & SPTE_BASE_ADDR_MASK);
2375 			drop_parent_pte(child, spte);
2376 
2377 			/*
2378 			 * Recursively zap nested TDP SPs, parentless SPs are
2379 			 * unlikely to be used again in the near future.  This
2380 			 * avoids retaining a large number of stale nested SPs.
2381 			 */
2382 			if (tdp_enabled && invalid_list &&
2383 			    child->role.guest_mode && !child->parent_ptes.val)
2384 				return kvm_mmu_prepare_zap_page(kvm, child,
2385 								invalid_list);
2386 		}
2387 	} else if (is_mmio_spte(pte)) {
2388 		mmu_spte_clear_no_track(spte);
2389 	}
2390 	return 0;
2391 }
2392 
kvm_mmu_page_unlink_children(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list)2393 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2394 					struct kvm_mmu_page *sp,
2395 					struct list_head *invalid_list)
2396 {
2397 	int zapped = 0;
2398 	unsigned i;
2399 
2400 	for (i = 0; i < SPTE_ENT_PER_PAGE; ++i)
2401 		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2402 
2403 	return zapped;
2404 }
2405 
kvm_mmu_unlink_parents(struct kvm_mmu_page * sp)2406 static void kvm_mmu_unlink_parents(struct kvm_mmu_page *sp)
2407 {
2408 	u64 *sptep;
2409 	struct rmap_iterator iter;
2410 
2411 	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2412 		drop_parent_pte(sp, sptep);
2413 }
2414 
mmu_zap_unsync_children(struct kvm * kvm,struct kvm_mmu_page * parent,struct list_head * invalid_list)2415 static int mmu_zap_unsync_children(struct kvm *kvm,
2416 				   struct kvm_mmu_page *parent,
2417 				   struct list_head *invalid_list)
2418 {
2419 	int i, zapped = 0;
2420 	struct mmu_page_path parents;
2421 	struct kvm_mmu_pages pages;
2422 
2423 	if (parent->role.level == PG_LEVEL_4K)
2424 		return 0;
2425 
2426 	while (mmu_unsync_walk(parent, &pages)) {
2427 		struct kvm_mmu_page *sp;
2428 
2429 		for_each_sp(pages, sp, parents, i) {
2430 			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2431 			mmu_pages_clear_parents(&parents);
2432 			zapped++;
2433 		}
2434 	}
2435 
2436 	return zapped;
2437 }
2438 
__kvm_mmu_prepare_zap_page(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list,int * nr_zapped)2439 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2440 				       struct kvm_mmu_page *sp,
2441 				       struct list_head *invalid_list,
2442 				       int *nr_zapped)
2443 {
2444 	bool list_unstable, zapped_root = false;
2445 
2446 	lockdep_assert_held_write(&kvm->mmu_lock);
2447 	trace_kvm_mmu_prepare_zap_page(sp);
2448 	++kvm->stat.mmu_shadow_zapped;
2449 	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2450 	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2451 	kvm_mmu_unlink_parents(sp);
2452 
2453 	/* Zapping children means active_mmu_pages has become unstable. */
2454 	list_unstable = *nr_zapped;
2455 
2456 	if (!sp->role.invalid && sp_has_gptes(sp))
2457 		unaccount_shadowed(kvm, sp);
2458 
2459 	if (sp->unsync)
2460 		kvm_unlink_unsync_page(kvm, sp);
2461 	if (!sp->root_count) {
2462 		/* Count self */
2463 		(*nr_zapped)++;
2464 
2465 		/*
2466 		 * Already invalid pages (previously active roots) are not on
2467 		 * the active page list.  See list_del() in the "else" case of
2468 		 * !sp->root_count.
2469 		 */
2470 		if (sp->role.invalid)
2471 			list_add(&sp->link, invalid_list);
2472 		else
2473 			list_move(&sp->link, invalid_list);
2474 		kvm_unaccount_mmu_page(kvm, sp);
2475 	} else {
2476 		/*
2477 		 * Remove the active root from the active page list, the root
2478 		 * will be explicitly freed when the root_count hits zero.
2479 		 */
2480 		list_del(&sp->link);
2481 
2482 		/*
2483 		 * Obsolete pages cannot be used on any vCPUs, see the comment
2484 		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2485 		 * treats invalid shadow pages as being obsolete.
2486 		 */
2487 		zapped_root = !is_obsolete_sp(kvm, sp);
2488 	}
2489 
2490 	if (sp->lpage_disallowed)
2491 		unaccount_huge_nx_page(kvm, sp);
2492 
2493 	sp->role.invalid = 1;
2494 
2495 	/*
2496 	 * Make the request to free obsolete roots after marking the root
2497 	 * invalid, otherwise other vCPUs may not see it as invalid.
2498 	 */
2499 	if (zapped_root)
2500 		kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
2501 	return list_unstable;
2502 }
2503 
kvm_mmu_prepare_zap_page(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list)2504 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2505 				     struct list_head *invalid_list)
2506 {
2507 	int nr_zapped;
2508 
2509 	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2510 	return nr_zapped;
2511 }
2512 
kvm_mmu_commit_zap_page(struct kvm * kvm,struct list_head * invalid_list)2513 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2514 				    struct list_head *invalid_list)
2515 {
2516 	struct kvm_mmu_page *sp, *nsp;
2517 
2518 	if (list_empty(invalid_list))
2519 		return;
2520 
2521 	/*
2522 	 * We need to make sure everyone sees our modifications to
2523 	 * the page tables and see changes to vcpu->mode here. The barrier
2524 	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2525 	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2526 	 *
2527 	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2528 	 * guest mode and/or lockless shadow page table walks.
2529 	 */
2530 	kvm_flush_remote_tlbs(kvm);
2531 
2532 	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2533 		WARN_ON(!sp->role.invalid || sp->root_count);
2534 		kvm_mmu_free_shadow_page(sp);
2535 	}
2536 }
2537 
kvm_mmu_zap_oldest_mmu_pages(struct kvm * kvm,unsigned long nr_to_zap)2538 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2539 						  unsigned long nr_to_zap)
2540 {
2541 	unsigned long total_zapped = 0;
2542 	struct kvm_mmu_page *sp, *tmp;
2543 	LIST_HEAD(invalid_list);
2544 	bool unstable;
2545 	int nr_zapped;
2546 
2547 	if (list_empty(&kvm->arch.active_mmu_pages))
2548 		return 0;
2549 
2550 restart:
2551 	list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2552 		/*
2553 		 * Don't zap active root pages, the page itself can't be freed
2554 		 * and zapping it will just force vCPUs to realloc and reload.
2555 		 */
2556 		if (sp->root_count)
2557 			continue;
2558 
2559 		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2560 						      &nr_zapped);
2561 		total_zapped += nr_zapped;
2562 		if (total_zapped >= nr_to_zap)
2563 			break;
2564 
2565 		if (unstable)
2566 			goto restart;
2567 	}
2568 
2569 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2570 
2571 	kvm->stat.mmu_recycled += total_zapped;
2572 	return total_zapped;
2573 }
2574 
kvm_mmu_available_pages(struct kvm * kvm)2575 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2576 {
2577 	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2578 		return kvm->arch.n_max_mmu_pages -
2579 			kvm->arch.n_used_mmu_pages;
2580 
2581 	return 0;
2582 }
2583 
make_mmu_pages_available(struct kvm_vcpu * vcpu)2584 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2585 {
2586 	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2587 
2588 	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2589 		return 0;
2590 
2591 	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2592 
2593 	/*
2594 	 * Note, this check is intentionally soft, it only guarantees that one
2595 	 * page is available, while the caller may end up allocating as many as
2596 	 * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
2597 	 * exceeding the (arbitrary by default) limit will not harm the host,
2598 	 * being too aggressive may unnecessarily kill the guest, and getting an
2599 	 * exact count is far more trouble than it's worth, especially in the
2600 	 * page fault paths.
2601 	 */
2602 	if (!kvm_mmu_available_pages(vcpu->kvm))
2603 		return -ENOSPC;
2604 	return 0;
2605 }
2606 
2607 /*
2608  * Changing the number of mmu pages allocated to the vm
2609  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2610  */
kvm_mmu_change_mmu_pages(struct kvm * kvm,unsigned long goal_nr_mmu_pages)2611 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2612 {
2613 	write_lock(&kvm->mmu_lock);
2614 
2615 	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2616 		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2617 						  goal_nr_mmu_pages);
2618 
2619 		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2620 	}
2621 
2622 	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2623 
2624 	write_unlock(&kvm->mmu_lock);
2625 }
2626 
kvm_mmu_unprotect_page(struct kvm * kvm,gfn_t gfn)2627 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2628 {
2629 	struct kvm_mmu_page *sp;
2630 	LIST_HEAD(invalid_list);
2631 	int r;
2632 
2633 	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2634 	r = 0;
2635 	write_lock(&kvm->mmu_lock);
2636 	for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) {
2637 		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2638 			 sp->role.word);
2639 		r = 1;
2640 		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2641 	}
2642 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2643 	write_unlock(&kvm->mmu_lock);
2644 
2645 	return r;
2646 }
2647 
kvm_mmu_unprotect_page_virt(struct kvm_vcpu * vcpu,gva_t gva)2648 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2649 {
2650 	gpa_t gpa;
2651 	int r;
2652 
2653 	if (vcpu->arch.mmu->root_role.direct)
2654 		return 0;
2655 
2656 	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2657 
2658 	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2659 
2660 	return r;
2661 }
2662 
kvm_unsync_page(struct kvm * kvm,struct kvm_mmu_page * sp)2663 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2664 {
2665 	trace_kvm_mmu_unsync_page(sp);
2666 	++kvm->stat.mmu_unsync;
2667 	sp->unsync = 1;
2668 
2669 	kvm_mmu_mark_parents_unsync(sp);
2670 }
2671 
2672 /*
2673  * Attempt to unsync any shadow pages that can be reached by the specified gfn,
2674  * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
2675  * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
2676  * be write-protected.
2677  */
mmu_try_to_unsync_pages(struct kvm * kvm,const struct kvm_memory_slot * slot,gfn_t gfn,bool can_unsync,bool prefetch)2678 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
2679 			    gfn_t gfn, bool can_unsync, bool prefetch)
2680 {
2681 	struct kvm_mmu_page *sp;
2682 	bool locked = false;
2683 
2684 	/*
2685 	 * Force write-protection if the page is being tracked.  Note, the page
2686 	 * track machinery is used to write-protect upper-level shadow pages,
2687 	 * i.e. this guards the role.level == 4K assertion below!
2688 	 */
2689 	if (kvm_slot_page_track_is_active(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE))
2690 		return -EPERM;
2691 
2692 	/*
2693 	 * The page is not write-tracked, mark existing shadow pages unsync
2694 	 * unless KVM is synchronizing an unsync SP (can_unsync = false).  In
2695 	 * that case, KVM must complete emulation of the guest TLB flush before
2696 	 * allowing shadow pages to become unsync (writable by the guest).
2697 	 */
2698 	for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) {
2699 		if (!can_unsync)
2700 			return -EPERM;
2701 
2702 		if (sp->unsync)
2703 			continue;
2704 
2705 		if (prefetch)
2706 			return -EEXIST;
2707 
2708 		/*
2709 		 * TDP MMU page faults require an additional spinlock as they
2710 		 * run with mmu_lock held for read, not write, and the unsync
2711 		 * logic is not thread safe.  Take the spinklock regardless of
2712 		 * the MMU type to avoid extra conditionals/parameters, there's
2713 		 * no meaningful penalty if mmu_lock is held for write.
2714 		 */
2715 		if (!locked) {
2716 			locked = true;
2717 			spin_lock(&kvm->arch.mmu_unsync_pages_lock);
2718 
2719 			/*
2720 			 * Recheck after taking the spinlock, a different vCPU
2721 			 * may have since marked the page unsync.  A false
2722 			 * positive on the unprotected check above is not
2723 			 * possible as clearing sp->unsync _must_ hold mmu_lock
2724 			 * for write, i.e. unsync cannot transition from 0->1
2725 			 * while this CPU holds mmu_lock for read (or write).
2726 			 */
2727 			if (READ_ONCE(sp->unsync))
2728 				continue;
2729 		}
2730 
2731 		WARN_ON(sp->role.level != PG_LEVEL_4K);
2732 		kvm_unsync_page(kvm, sp);
2733 	}
2734 	if (locked)
2735 		spin_unlock(&kvm->arch.mmu_unsync_pages_lock);
2736 
2737 	/*
2738 	 * We need to ensure that the marking of unsync pages is visible
2739 	 * before the SPTE is updated to allow writes because
2740 	 * kvm_mmu_sync_roots() checks the unsync flags without holding
2741 	 * the MMU lock and so can race with this. If the SPTE was updated
2742 	 * before the page had been marked as unsync-ed, something like the
2743 	 * following could happen:
2744 	 *
2745 	 * CPU 1                    CPU 2
2746 	 * ---------------------------------------------------------------------
2747 	 * 1.2 Host updates SPTE
2748 	 *     to be writable
2749 	 *                      2.1 Guest writes a GPTE for GVA X.
2750 	 *                          (GPTE being in the guest page table shadowed
2751 	 *                           by the SP from CPU 1.)
2752 	 *                          This reads SPTE during the page table walk.
2753 	 *                          Since SPTE.W is read as 1, there is no
2754 	 *                          fault.
2755 	 *
2756 	 *                      2.2 Guest issues TLB flush.
2757 	 *                          That causes a VM Exit.
2758 	 *
2759 	 *                      2.3 Walking of unsync pages sees sp->unsync is
2760 	 *                          false and skips the page.
2761 	 *
2762 	 *                      2.4 Guest accesses GVA X.
2763 	 *                          Since the mapping in the SP was not updated,
2764 	 *                          so the old mapping for GVA X incorrectly
2765 	 *                          gets used.
2766 	 * 1.1 Host marks SP
2767 	 *     as unsync
2768 	 *     (sp->unsync = true)
2769 	 *
2770 	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2771 	 * the situation in 2.4 does not arise.  It pairs with the read barrier
2772 	 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3.
2773 	 */
2774 	smp_wmb();
2775 
2776 	return 0;
2777 }
2778 
mmu_set_spte(struct kvm_vcpu * vcpu,struct kvm_memory_slot * slot,u64 * sptep,unsigned int pte_access,gfn_t gfn,kvm_pfn_t pfn,struct kvm_page_fault * fault)2779 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
2780 			u64 *sptep, unsigned int pte_access, gfn_t gfn,
2781 			kvm_pfn_t pfn, struct kvm_page_fault *fault)
2782 {
2783 	struct kvm_mmu_page *sp = sptep_to_sp(sptep);
2784 	int level = sp->role.level;
2785 	int was_rmapped = 0;
2786 	int ret = RET_PF_FIXED;
2787 	bool flush = false;
2788 	bool wrprot;
2789 	u64 spte;
2790 
2791 	/* Prefetching always gets a writable pfn.  */
2792 	bool host_writable = !fault || fault->map_writable;
2793 	bool prefetch = !fault || fault->prefetch;
2794 	bool write_fault = fault && fault->write;
2795 
2796 	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2797 		 *sptep, write_fault, gfn);
2798 
2799 	if (unlikely(is_noslot_pfn(pfn))) {
2800 		vcpu->stat.pf_mmio_spte_created++;
2801 		mark_mmio_spte(vcpu, sptep, gfn, pte_access);
2802 		return RET_PF_EMULATE;
2803 	}
2804 
2805 	if (is_shadow_present_pte(*sptep)) {
2806 		/*
2807 		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2808 		 * the parent of the now unreachable PTE.
2809 		 */
2810 		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2811 			struct kvm_mmu_page *child;
2812 			u64 pte = *sptep;
2813 
2814 			child = to_shadow_page(pte & SPTE_BASE_ADDR_MASK);
2815 			drop_parent_pte(child, sptep);
2816 			flush = true;
2817 		} else if (pfn != spte_to_pfn(*sptep)) {
2818 			pgprintk("hfn old %llx new %llx\n",
2819 				 spte_to_pfn(*sptep), pfn);
2820 			drop_spte(vcpu->kvm, sptep);
2821 			flush = true;
2822 		} else
2823 			was_rmapped = 1;
2824 	}
2825 
2826 	wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch,
2827 			   true, host_writable, &spte);
2828 
2829 	if (*sptep == spte) {
2830 		ret = RET_PF_SPURIOUS;
2831 	} else {
2832 		flush |= mmu_spte_update(sptep, spte);
2833 		trace_kvm_mmu_set_spte(level, gfn, sptep);
2834 	}
2835 
2836 	if (wrprot) {
2837 		if (write_fault)
2838 			ret = RET_PF_EMULATE;
2839 	}
2840 
2841 	if (flush)
2842 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2843 				KVM_PAGES_PER_HPAGE(level));
2844 
2845 	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2846 
2847 	if (!was_rmapped) {
2848 		WARN_ON_ONCE(ret == RET_PF_SPURIOUS);
2849 		rmap_add(vcpu, slot, sptep, gfn, pte_access);
2850 	} else {
2851 		/* Already rmapped but the pte_access bits may have changed. */
2852 		kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access);
2853 	}
2854 
2855 	return ret;
2856 }
2857 
direct_pte_prefetch_many(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * start,u64 * end)2858 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2859 				    struct kvm_mmu_page *sp,
2860 				    u64 *start, u64 *end)
2861 {
2862 	struct page *pages[PTE_PREFETCH_NUM];
2863 	struct kvm_memory_slot *slot;
2864 	unsigned int access = sp->role.access;
2865 	int i, ret;
2866 	gfn_t gfn;
2867 
2868 	gfn = kvm_mmu_page_get_gfn(sp, spte_index(start));
2869 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2870 	if (!slot)
2871 		return -1;
2872 
2873 	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2874 	if (ret <= 0)
2875 		return -1;
2876 
2877 	for (i = 0; i < ret; i++, gfn++, start++) {
2878 		mmu_set_spte(vcpu, slot, start, access, gfn,
2879 			     page_to_pfn(pages[i]), NULL);
2880 		put_page(pages[i]);
2881 	}
2882 
2883 	return 0;
2884 }
2885 
__direct_pte_prefetch(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * sptep)2886 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2887 				  struct kvm_mmu_page *sp, u64 *sptep)
2888 {
2889 	u64 *spte, *start = NULL;
2890 	int i;
2891 
2892 	WARN_ON(!sp->role.direct);
2893 
2894 	i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1);
2895 	spte = sp->spt + i;
2896 
2897 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2898 		if (is_shadow_present_pte(*spte) || spte == sptep) {
2899 			if (!start)
2900 				continue;
2901 			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2902 				return;
2903 			start = NULL;
2904 		} else if (!start)
2905 			start = spte;
2906 	}
2907 	if (start)
2908 		direct_pte_prefetch_many(vcpu, sp, start, spte);
2909 }
2910 
direct_pte_prefetch(struct kvm_vcpu * vcpu,u64 * sptep)2911 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2912 {
2913 	struct kvm_mmu_page *sp;
2914 
2915 	sp = sptep_to_sp(sptep);
2916 
2917 	/*
2918 	 * Without accessed bits, there's no way to distinguish between
2919 	 * actually accessed translations and prefetched, so disable pte
2920 	 * prefetch if accessed bits aren't available.
2921 	 */
2922 	if (sp_ad_disabled(sp))
2923 		return;
2924 
2925 	if (sp->role.level > PG_LEVEL_4K)
2926 		return;
2927 
2928 	/*
2929 	 * If addresses are being invalidated, skip prefetching to avoid
2930 	 * accidentally prefetching those addresses.
2931 	 */
2932 	if (unlikely(vcpu->kvm->mmu_invalidate_in_progress))
2933 		return;
2934 
2935 	__direct_pte_prefetch(vcpu, sp, sptep);
2936 }
2937 
2938 /*
2939  * Lookup the mapping level for @gfn in the current mm.
2940  *
2941  * WARNING!  Use of host_pfn_mapping_level() requires the caller and the end
2942  * consumer to be tied into KVM's handlers for MMU notifier events!
2943  *
2944  * There are several ways to safely use this helper:
2945  *
2946  * - Check mmu_invalidate_retry_hva() after grabbing the mapping level, before
2947  *   consuming it.  In this case, mmu_lock doesn't need to be held during the
2948  *   lookup, but it does need to be held while checking the MMU notifier.
2949  *
2950  * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation
2951  *   event for the hva.  This can be done by explicit checking the MMU notifier
2952  *   or by ensuring that KVM already has a valid mapping that covers the hva.
2953  *
2954  * - Do not use the result to install new mappings, e.g. use the host mapping
2955  *   level only to decide whether or not to zap an entry.  In this case, it's
2956  *   not required to hold mmu_lock (though it's highly likely the caller will
2957  *   want to hold mmu_lock anyways, e.g. to modify SPTEs).
2958  *
2959  * Note!  The lookup can still race with modifications to host page tables, but
2960  * the above "rules" ensure KVM will not _consume_ the result of the walk if a
2961  * race with the primary MMU occurs.
2962  */
host_pfn_mapping_level(struct kvm * kvm,gfn_t gfn,const struct kvm_memory_slot * slot)2963 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn,
2964 				  const struct kvm_memory_slot *slot)
2965 {
2966 	int level = PG_LEVEL_4K;
2967 	unsigned long hva;
2968 	unsigned long flags;
2969 	pgd_t pgd;
2970 	p4d_t p4d;
2971 	pud_t pud;
2972 	pmd_t pmd;
2973 
2974 	/*
2975 	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2976 	 * is not solely for performance, it's also necessary to avoid the
2977 	 * "writable" check in __gfn_to_hva_many(), which will always fail on
2978 	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
2979 	 * page fault steps have already verified the guest isn't writing a
2980 	 * read-only memslot.
2981 	 */
2982 	hva = __gfn_to_hva_memslot(slot, gfn);
2983 
2984 	/*
2985 	 * Disable IRQs to prevent concurrent tear down of host page tables,
2986 	 * e.g. if the primary MMU promotes a P*D to a huge page and then frees
2987 	 * the original page table.
2988 	 */
2989 	local_irq_save(flags);
2990 
2991 	/*
2992 	 * Read each entry once.  As above, a non-leaf entry can be promoted to
2993 	 * a huge page _during_ this walk.  Re-reading the entry could send the
2994 	 * walk into the weeks, e.g. p*d_large() returns false (sees the old
2995 	 * value) and then p*d_offset() walks into the target huge page instead
2996 	 * of the old page table (sees the new value).
2997 	 */
2998 	pgd = READ_ONCE(*pgd_offset(kvm->mm, hva));
2999 	if (pgd_none(pgd))
3000 		goto out;
3001 
3002 	p4d = READ_ONCE(*p4d_offset(&pgd, hva));
3003 	if (p4d_none(p4d) || !p4d_present(p4d))
3004 		goto out;
3005 
3006 	pud = READ_ONCE(*pud_offset(&p4d, hva));
3007 	if (pud_none(pud) || !pud_present(pud))
3008 		goto out;
3009 
3010 	if (pud_large(pud)) {
3011 		level = PG_LEVEL_1G;
3012 		goto out;
3013 	}
3014 
3015 	pmd = READ_ONCE(*pmd_offset(&pud, hva));
3016 	if (pmd_none(pmd) || !pmd_present(pmd))
3017 		goto out;
3018 
3019 	if (pmd_large(pmd))
3020 		level = PG_LEVEL_2M;
3021 
3022 out:
3023 	local_irq_restore(flags);
3024 	return level;
3025 }
3026 
kvm_mmu_max_mapping_level(struct kvm * kvm,const struct kvm_memory_slot * slot,gfn_t gfn,int max_level)3027 int kvm_mmu_max_mapping_level(struct kvm *kvm,
3028 			      const struct kvm_memory_slot *slot, gfn_t gfn,
3029 			      int max_level)
3030 {
3031 	struct kvm_lpage_info *linfo;
3032 	int host_level;
3033 
3034 	max_level = min(max_level, max_huge_page_level);
3035 	for ( ; max_level > PG_LEVEL_4K; max_level--) {
3036 		linfo = lpage_info_slot(gfn, slot, max_level);
3037 		if (!linfo->disallow_lpage)
3038 			break;
3039 	}
3040 
3041 	if (max_level == PG_LEVEL_4K)
3042 		return PG_LEVEL_4K;
3043 
3044 	host_level = host_pfn_mapping_level(kvm, gfn, slot);
3045 	return min(host_level, max_level);
3046 }
3047 
kvm_mmu_hugepage_adjust(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)3048 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3049 {
3050 	struct kvm_memory_slot *slot = fault->slot;
3051 	kvm_pfn_t mask;
3052 
3053 	fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled;
3054 
3055 	if (unlikely(fault->max_level == PG_LEVEL_4K))
3056 		return;
3057 
3058 	if (is_error_noslot_pfn(fault->pfn))
3059 		return;
3060 
3061 	if (kvm_slot_dirty_track_enabled(slot))
3062 		return;
3063 
3064 	/*
3065 	 * Enforce the iTLB multihit workaround after capturing the requested
3066 	 * level, which will be used to do precise, accurate accounting.
3067 	 */
3068 	fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot,
3069 						     fault->gfn, fault->max_level);
3070 	if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed)
3071 		return;
3072 
3073 	/*
3074 	 * mmu_invalidate_retry() was successful and mmu_lock is held, so
3075 	 * the pmd can't be split from under us.
3076 	 */
3077 	fault->goal_level = fault->req_level;
3078 	mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1;
3079 	VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask));
3080 	fault->pfn &= ~mask;
3081 }
3082 
disallowed_hugepage_adjust(struct kvm_page_fault * fault,u64 spte,int cur_level)3083 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level)
3084 {
3085 	if (cur_level > PG_LEVEL_4K &&
3086 	    cur_level == fault->goal_level &&
3087 	    is_shadow_present_pte(spte) &&
3088 	    !is_large_pte(spte)) {
3089 		/*
3090 		 * A small SPTE exists for this pfn, but FNAME(fetch)
3091 		 * and __direct_map would like to create a large PTE
3092 		 * instead: just force them to go down another level,
3093 		 * patching back for them into pfn the next 9 bits of
3094 		 * the address.
3095 		 */
3096 		u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) -
3097 				KVM_PAGES_PER_HPAGE(cur_level - 1);
3098 		fault->pfn |= fault->gfn & page_mask;
3099 		fault->goal_level--;
3100 	}
3101 }
3102 
__direct_map(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)3103 static int __direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3104 {
3105 	struct kvm_shadow_walk_iterator it;
3106 	struct kvm_mmu_page *sp;
3107 	int ret;
3108 	gfn_t base_gfn = fault->gfn;
3109 
3110 	kvm_mmu_hugepage_adjust(vcpu, fault);
3111 
3112 	trace_kvm_mmu_spte_requested(fault);
3113 	for_each_shadow_entry(vcpu, fault->addr, it) {
3114 		/*
3115 		 * We cannot overwrite existing page tables with an NX
3116 		 * large page, as the leaf could be executable.
3117 		 */
3118 		if (fault->nx_huge_page_workaround_enabled)
3119 			disallowed_hugepage_adjust(fault, *it.sptep, it.level);
3120 
3121 		base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3122 		if (it.level == fault->goal_level)
3123 			break;
3124 
3125 		sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL);
3126 		if (sp == ERR_PTR(-EEXIST))
3127 			continue;
3128 
3129 		link_shadow_page(vcpu, it.sptep, sp);
3130 		if (fault->is_tdp && fault->huge_page_disallowed &&
3131 		    fault->req_level >= it.level)
3132 			account_huge_nx_page(vcpu->kvm, sp);
3133 	}
3134 
3135 	if (WARN_ON_ONCE(it.level != fault->goal_level))
3136 		return -EFAULT;
3137 
3138 	ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL,
3139 			   base_gfn, fault->pfn, fault);
3140 	if (ret == RET_PF_SPURIOUS)
3141 		return ret;
3142 
3143 	direct_pte_prefetch(vcpu, it.sptep);
3144 	return ret;
3145 }
3146 
kvm_send_hwpoison_signal(unsigned long address,struct task_struct * tsk)3147 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3148 {
3149 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3150 }
3151 
kvm_handle_bad_page(struct kvm_vcpu * vcpu,gfn_t gfn,kvm_pfn_t pfn)3152 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3153 {
3154 	/*
3155 	 * Do not cache the mmio info caused by writing the readonly gfn
3156 	 * into the spte otherwise read access on readonly gfn also can
3157 	 * caused mmio page fault and treat it as mmio access.
3158 	 */
3159 	if (pfn == KVM_PFN_ERR_RO_FAULT)
3160 		return RET_PF_EMULATE;
3161 
3162 	if (pfn == KVM_PFN_ERR_HWPOISON) {
3163 		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3164 		return RET_PF_RETRY;
3165 	}
3166 
3167 	return -EFAULT;
3168 }
3169 
handle_abnormal_pfn(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault,unsigned int access)3170 static int handle_abnormal_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
3171 			       unsigned int access)
3172 {
3173 	/* The pfn is invalid, report the error! */
3174 	if (unlikely(is_error_pfn(fault->pfn)))
3175 		return kvm_handle_bad_page(vcpu, fault->gfn, fault->pfn);
3176 
3177 	if (unlikely(!fault->slot)) {
3178 		gva_t gva = fault->is_tdp ? 0 : fault->addr;
3179 
3180 		vcpu_cache_mmio_info(vcpu, gva, fault->gfn,
3181 				     access & shadow_mmio_access_mask);
3182 		/*
3183 		 * If MMIO caching is disabled, emulate immediately without
3184 		 * touching the shadow page tables as attempting to install an
3185 		 * MMIO SPTE will just be an expensive nop.  Do not cache MMIO
3186 		 * whose gfn is greater than host.MAXPHYADDR, any guest that
3187 		 * generates such gfns is running nested and is being tricked
3188 		 * by L0 userspace (you can observe gfn > L1.MAXPHYADDR if
3189 		 * and only if L1's MAXPHYADDR is inaccurate with respect to
3190 		 * the hardware's).
3191 		 */
3192 		if (unlikely(!enable_mmio_caching) ||
3193 		    unlikely(fault->gfn > kvm_mmu_max_gfn()))
3194 			return RET_PF_EMULATE;
3195 	}
3196 
3197 	return RET_PF_CONTINUE;
3198 }
3199 
page_fault_can_be_fast(struct kvm_page_fault * fault)3200 static bool page_fault_can_be_fast(struct kvm_page_fault *fault)
3201 {
3202 	/*
3203 	 * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only
3204 	 * reach the common page fault handler if the SPTE has an invalid MMIO
3205 	 * generation number.  Refreshing the MMIO generation needs to go down
3206 	 * the slow path.  Note, EPT Misconfigs do NOT set the PRESENT flag!
3207 	 */
3208 	if (fault->rsvd)
3209 		return false;
3210 
3211 	/*
3212 	 * #PF can be fast if:
3213 	 *
3214 	 * 1. The shadow page table entry is not present and A/D bits are
3215 	 *    disabled _by KVM_, which could mean that the fault is potentially
3216 	 *    caused by access tracking (if enabled).  If A/D bits are enabled
3217 	 *    by KVM, but disabled by L1 for L2, KVM is forced to disable A/D
3218 	 *    bits for L2 and employ access tracking, but the fast page fault
3219 	 *    mechanism only supports direct MMUs.
3220 	 * 2. The shadow page table entry is present, the access is a write,
3221 	 *    and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e.
3222 	 *    the fault was caused by a write-protection violation.  If the
3223 	 *    SPTE is MMU-writable (determined later), the fault can be fixed
3224 	 *    by setting the Writable bit, which can be done out of mmu_lock.
3225 	 */
3226 	if (!fault->present)
3227 		return !kvm_ad_enabled();
3228 
3229 	/*
3230 	 * Note, instruction fetches and writes are mutually exclusive, ignore
3231 	 * the "exec" flag.
3232 	 */
3233 	return fault->write;
3234 }
3235 
3236 /*
3237  * Returns true if the SPTE was fixed successfully. Otherwise,
3238  * someone else modified the SPTE from its original value.
3239  */
3240 static bool
fast_pf_fix_direct_spte(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault,u64 * sptep,u64 old_spte,u64 new_spte)3241 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
3242 			u64 *sptep, u64 old_spte, u64 new_spte)
3243 {
3244 	/*
3245 	 * Theoretically we could also set dirty bit (and flush TLB) here in
3246 	 * order to eliminate unnecessary PML logging. See comments in
3247 	 * set_spte. But fast_page_fault is very unlikely to happen with PML
3248 	 * enabled, so we do not do this. This might result in the same GPA
3249 	 * to be logged in PML buffer again when the write really happens, and
3250 	 * eventually to be called by mark_page_dirty twice. But it's also no
3251 	 * harm. This also avoids the TLB flush needed after setting dirty bit
3252 	 * so non-PML cases won't be impacted.
3253 	 *
3254 	 * Compare with set_spte where instead shadow_dirty_mask is set.
3255 	 */
3256 	if (!try_cmpxchg64(sptep, &old_spte, new_spte))
3257 		return false;
3258 
3259 	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte))
3260 		mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn);
3261 
3262 	return true;
3263 }
3264 
is_access_allowed(struct kvm_page_fault * fault,u64 spte)3265 static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte)
3266 {
3267 	if (fault->exec)
3268 		return is_executable_pte(spte);
3269 
3270 	if (fault->write)
3271 		return is_writable_pte(spte);
3272 
3273 	/* Fault was on Read access */
3274 	return spte & PT_PRESENT_MASK;
3275 }
3276 
3277 /*
3278  * Returns the last level spte pointer of the shadow page walk for the given
3279  * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
3280  * walk could be performed, returns NULL and *spte does not contain valid data.
3281  *
3282  * Contract:
3283  *  - Must be called between walk_shadow_page_lockless_{begin,end}.
3284  *  - The returned sptep must not be used after walk_shadow_page_lockless_end.
3285  */
fast_pf_get_last_sptep(struct kvm_vcpu * vcpu,gpa_t gpa,u64 * spte)3286 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
3287 {
3288 	struct kvm_shadow_walk_iterator iterator;
3289 	u64 old_spte;
3290 	u64 *sptep = NULL;
3291 
3292 	for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
3293 		sptep = iterator.sptep;
3294 		*spte = old_spte;
3295 	}
3296 
3297 	return sptep;
3298 }
3299 
3300 /*
3301  * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3302  */
fast_page_fault(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)3303 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3304 {
3305 	struct kvm_mmu_page *sp;
3306 	int ret = RET_PF_INVALID;
3307 	u64 spte = 0ull;
3308 	u64 *sptep = NULL;
3309 	uint retry_count = 0;
3310 
3311 	if (!page_fault_can_be_fast(fault))
3312 		return ret;
3313 
3314 	walk_shadow_page_lockless_begin(vcpu);
3315 
3316 	do {
3317 		u64 new_spte;
3318 
3319 		if (is_tdp_mmu(vcpu->arch.mmu))
3320 			sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3321 		else
3322 			sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3323 
3324 		if (!is_shadow_present_pte(spte))
3325 			break;
3326 
3327 		sp = sptep_to_sp(sptep);
3328 		if (!is_last_spte(spte, sp->role.level))
3329 			break;
3330 
3331 		/*
3332 		 * Check whether the memory access that caused the fault would
3333 		 * still cause it if it were to be performed right now. If not,
3334 		 * then this is a spurious fault caused by TLB lazily flushed,
3335 		 * or some other CPU has already fixed the PTE after the
3336 		 * current CPU took the fault.
3337 		 *
3338 		 * Need not check the access of upper level table entries since
3339 		 * they are always ACC_ALL.
3340 		 */
3341 		if (is_access_allowed(fault, spte)) {
3342 			ret = RET_PF_SPURIOUS;
3343 			break;
3344 		}
3345 
3346 		new_spte = spte;
3347 
3348 		/*
3349 		 * KVM only supports fixing page faults outside of MMU lock for
3350 		 * direct MMUs, nested MMUs are always indirect, and KVM always
3351 		 * uses A/D bits for non-nested MMUs.  Thus, if A/D bits are
3352 		 * enabled, the SPTE can't be an access-tracked SPTE.
3353 		 */
3354 		if (unlikely(!kvm_ad_enabled()) && is_access_track_spte(spte))
3355 			new_spte = restore_acc_track_spte(new_spte);
3356 
3357 		/*
3358 		 * To keep things simple, only SPTEs that are MMU-writable can
3359 		 * be made fully writable outside of mmu_lock, e.g. only SPTEs
3360 		 * that were write-protected for dirty-logging or access
3361 		 * tracking are handled here.  Don't bother checking if the
3362 		 * SPTE is writable to prioritize running with A/D bits enabled.
3363 		 * The is_access_allowed() check above handles the common case
3364 		 * of the fault being spurious, and the SPTE is known to be
3365 		 * shadow-present, i.e. except for access tracking restoration
3366 		 * making the new SPTE writable, the check is wasteful.
3367 		 */
3368 		if (fault->write && is_mmu_writable_spte(spte)) {
3369 			new_spte |= PT_WRITABLE_MASK;
3370 
3371 			/*
3372 			 * Do not fix write-permission on the large spte when
3373 			 * dirty logging is enabled. Since we only dirty the
3374 			 * first page into the dirty-bitmap in
3375 			 * fast_pf_fix_direct_spte(), other pages are missed
3376 			 * if its slot has dirty logging enabled.
3377 			 *
3378 			 * Instead, we let the slow page fault path create a
3379 			 * normal spte to fix the access.
3380 			 */
3381 			if (sp->role.level > PG_LEVEL_4K &&
3382 			    kvm_slot_dirty_track_enabled(fault->slot))
3383 				break;
3384 		}
3385 
3386 		/* Verify that the fault can be handled in the fast path */
3387 		if (new_spte == spte ||
3388 		    !is_access_allowed(fault, new_spte))
3389 			break;
3390 
3391 		/*
3392 		 * Currently, fast page fault only works for direct mapping
3393 		 * since the gfn is not stable for indirect shadow page. See
3394 		 * Documentation/virt/kvm/locking.rst to get more detail.
3395 		 */
3396 		if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) {
3397 			ret = RET_PF_FIXED;
3398 			break;
3399 		}
3400 
3401 		if (++retry_count > 4) {
3402 			printk_once(KERN_WARNING
3403 				"kvm: Fast #PF retrying more than 4 times.\n");
3404 			break;
3405 		}
3406 
3407 	} while (true);
3408 
3409 	trace_fast_page_fault(vcpu, fault, sptep, spte, ret);
3410 	walk_shadow_page_lockless_end(vcpu);
3411 
3412 	if (ret != RET_PF_INVALID)
3413 		vcpu->stat.pf_fast++;
3414 
3415 	return ret;
3416 }
3417 
mmu_free_root_page(struct kvm * kvm,hpa_t * root_hpa,struct list_head * invalid_list)3418 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3419 			       struct list_head *invalid_list)
3420 {
3421 	struct kvm_mmu_page *sp;
3422 
3423 	if (!VALID_PAGE(*root_hpa))
3424 		return;
3425 
3426 	sp = to_shadow_page(*root_hpa & SPTE_BASE_ADDR_MASK);
3427 	if (WARN_ON(!sp))
3428 		return;
3429 
3430 	if (is_tdp_mmu_page(sp))
3431 		kvm_tdp_mmu_put_root(kvm, sp, false);
3432 	else if (!--sp->root_count && sp->role.invalid)
3433 		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3434 
3435 	*root_hpa = INVALID_PAGE;
3436 }
3437 
3438 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
kvm_mmu_free_roots(struct kvm * kvm,struct kvm_mmu * mmu,ulong roots_to_free)3439 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
3440 			ulong roots_to_free)
3441 {
3442 	int i;
3443 	LIST_HEAD(invalid_list);
3444 	bool free_active_root;
3445 
3446 	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3447 
3448 	/* Before acquiring the MMU lock, see if we need to do any real work. */
3449 	free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT)
3450 		&& VALID_PAGE(mmu->root.hpa);
3451 
3452 	if (!free_active_root) {
3453 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3454 			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3455 			    VALID_PAGE(mmu->prev_roots[i].hpa))
3456 				break;
3457 
3458 		if (i == KVM_MMU_NUM_PREV_ROOTS)
3459 			return;
3460 	}
3461 
3462 	write_lock(&kvm->mmu_lock);
3463 
3464 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3465 		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3466 			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3467 					   &invalid_list);
3468 
3469 	if (free_active_root) {
3470 		if (to_shadow_page(mmu->root.hpa)) {
3471 			mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list);
3472 		} else if (mmu->pae_root) {
3473 			for (i = 0; i < 4; ++i) {
3474 				if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3475 					continue;
3476 
3477 				mmu_free_root_page(kvm, &mmu->pae_root[i],
3478 						   &invalid_list);
3479 				mmu->pae_root[i] = INVALID_PAE_ROOT;
3480 			}
3481 		}
3482 		mmu->root.hpa = INVALID_PAGE;
3483 		mmu->root.pgd = 0;
3484 	}
3485 
3486 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3487 	write_unlock(&kvm->mmu_lock);
3488 }
3489 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3490 
kvm_mmu_free_guest_mode_roots(struct kvm * kvm,struct kvm_mmu * mmu)3491 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu)
3492 {
3493 	unsigned long roots_to_free = 0;
3494 	hpa_t root_hpa;
3495 	int i;
3496 
3497 	/*
3498 	 * This should not be called while L2 is active, L2 can't invalidate
3499 	 * _only_ its own roots, e.g. INVVPID unconditionally exits.
3500 	 */
3501 	WARN_ON_ONCE(mmu->root_role.guest_mode);
3502 
3503 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3504 		root_hpa = mmu->prev_roots[i].hpa;
3505 		if (!VALID_PAGE(root_hpa))
3506 			continue;
3507 
3508 		if (!to_shadow_page(root_hpa) ||
3509 			to_shadow_page(root_hpa)->role.guest_mode)
3510 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3511 	}
3512 
3513 	kvm_mmu_free_roots(kvm, mmu, roots_to_free);
3514 }
3515 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);
3516 
3517 
mmu_check_root(struct kvm_vcpu * vcpu,gfn_t root_gfn)3518 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3519 {
3520 	int ret = 0;
3521 
3522 	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3523 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3524 		ret = 1;
3525 	}
3526 
3527 	return ret;
3528 }
3529 
mmu_alloc_root(struct kvm_vcpu * vcpu,gfn_t gfn,int quadrant,u8 level)3530 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant,
3531 			    u8 level)
3532 {
3533 	union kvm_mmu_page_role role = vcpu->arch.mmu->root_role;
3534 	struct kvm_mmu_page *sp;
3535 
3536 	role.level = level;
3537 	role.quadrant = quadrant;
3538 
3539 	WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte);
3540 	WARN_ON_ONCE(role.direct && role.has_4_byte_gpte);
3541 
3542 	sp = kvm_mmu_get_shadow_page(vcpu, gfn, role);
3543 	++sp->root_count;
3544 
3545 	return __pa(sp->spt);
3546 }
3547 
mmu_alloc_direct_roots(struct kvm_vcpu * vcpu)3548 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3549 {
3550 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3551 	u8 shadow_root_level = mmu->root_role.level;
3552 	hpa_t root;
3553 	unsigned i;
3554 	int r;
3555 
3556 	write_lock(&vcpu->kvm->mmu_lock);
3557 	r = make_mmu_pages_available(vcpu);
3558 	if (r < 0)
3559 		goto out_unlock;
3560 
3561 	if (is_tdp_mmu_enabled(vcpu->kvm)) {
3562 		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3563 		mmu->root.hpa = root;
3564 	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3565 		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level);
3566 		mmu->root.hpa = root;
3567 	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3568 		if (WARN_ON_ONCE(!mmu->pae_root)) {
3569 			r = -EIO;
3570 			goto out_unlock;
3571 		}
3572 
3573 		for (i = 0; i < 4; ++i) {
3574 			WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3575 
3576 			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0,
3577 					      PT32_ROOT_LEVEL);
3578 			mmu->pae_root[i] = root | PT_PRESENT_MASK |
3579 					   shadow_me_value;
3580 		}
3581 		mmu->root.hpa = __pa(mmu->pae_root);
3582 	} else {
3583 		WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3584 		r = -EIO;
3585 		goto out_unlock;
3586 	}
3587 
3588 	/* root.pgd is ignored for direct MMUs. */
3589 	mmu->root.pgd = 0;
3590 out_unlock:
3591 	write_unlock(&vcpu->kvm->mmu_lock);
3592 	return r;
3593 }
3594 
mmu_first_shadow_root_alloc(struct kvm * kvm)3595 static int mmu_first_shadow_root_alloc(struct kvm *kvm)
3596 {
3597 	struct kvm_memslots *slots;
3598 	struct kvm_memory_slot *slot;
3599 	int r = 0, i, bkt;
3600 
3601 	/*
3602 	 * Check if this is the first shadow root being allocated before
3603 	 * taking the lock.
3604 	 */
3605 	if (kvm_shadow_root_allocated(kvm))
3606 		return 0;
3607 
3608 	mutex_lock(&kvm->slots_arch_lock);
3609 
3610 	/* Recheck, under the lock, whether this is the first shadow root. */
3611 	if (kvm_shadow_root_allocated(kvm))
3612 		goto out_unlock;
3613 
3614 	/*
3615 	 * Check if anything actually needs to be allocated, e.g. all metadata
3616 	 * will be allocated upfront if TDP is disabled.
3617 	 */
3618 	if (kvm_memslots_have_rmaps(kvm) &&
3619 	    kvm_page_track_write_tracking_enabled(kvm))
3620 		goto out_success;
3621 
3622 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
3623 		slots = __kvm_memslots(kvm, i);
3624 		kvm_for_each_memslot(slot, bkt, slots) {
3625 			/*
3626 			 * Both of these functions are no-ops if the target is
3627 			 * already allocated, so unconditionally calling both
3628 			 * is safe.  Intentionally do NOT free allocations on
3629 			 * failure to avoid having to track which allocations
3630 			 * were made now versus when the memslot was created.
3631 			 * The metadata is guaranteed to be freed when the slot
3632 			 * is freed, and will be kept/used if userspace retries
3633 			 * KVM_RUN instead of killing the VM.
3634 			 */
3635 			r = memslot_rmap_alloc(slot, slot->npages);
3636 			if (r)
3637 				goto out_unlock;
3638 			r = kvm_page_track_write_tracking_alloc(slot);
3639 			if (r)
3640 				goto out_unlock;
3641 		}
3642 	}
3643 
3644 	/*
3645 	 * Ensure that shadow_root_allocated becomes true strictly after
3646 	 * all the related pointers are set.
3647 	 */
3648 out_success:
3649 	smp_store_release(&kvm->arch.shadow_root_allocated, true);
3650 
3651 out_unlock:
3652 	mutex_unlock(&kvm->slots_arch_lock);
3653 	return r;
3654 }
3655 
mmu_alloc_shadow_roots(struct kvm_vcpu * vcpu)3656 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3657 {
3658 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3659 	u64 pdptrs[4], pm_mask;
3660 	gfn_t root_gfn, root_pgd;
3661 	int quadrant, i, r;
3662 	hpa_t root;
3663 
3664 	root_pgd = mmu->get_guest_pgd(vcpu);
3665 	root_gfn = root_pgd >> PAGE_SHIFT;
3666 
3667 	if (mmu_check_root(vcpu, root_gfn))
3668 		return 1;
3669 
3670 	/*
3671 	 * On SVM, reading PDPTRs might access guest memory, which might fault
3672 	 * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
3673 	 */
3674 	if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
3675 		for (i = 0; i < 4; ++i) {
3676 			pdptrs[i] = mmu->get_pdptr(vcpu, i);
3677 			if (!(pdptrs[i] & PT_PRESENT_MASK))
3678 				continue;
3679 
3680 			if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
3681 				return 1;
3682 		}
3683 	}
3684 
3685 	r = mmu_first_shadow_root_alloc(vcpu->kvm);
3686 	if (r)
3687 		return r;
3688 
3689 	write_lock(&vcpu->kvm->mmu_lock);
3690 	r = make_mmu_pages_available(vcpu);
3691 	if (r < 0)
3692 		goto out_unlock;
3693 
3694 	/*
3695 	 * Do we shadow a long mode page table? If so we need to
3696 	 * write-protect the guests page table root.
3697 	 */
3698 	if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
3699 		root = mmu_alloc_root(vcpu, root_gfn, 0,
3700 				      mmu->root_role.level);
3701 		mmu->root.hpa = root;
3702 		goto set_root_pgd;
3703 	}
3704 
3705 	if (WARN_ON_ONCE(!mmu->pae_root)) {
3706 		r = -EIO;
3707 		goto out_unlock;
3708 	}
3709 
3710 	/*
3711 	 * We shadow a 32 bit page table. This may be a legacy 2-level
3712 	 * or a PAE 3-level page table. In either case we need to be aware that
3713 	 * the shadow page table may be a PAE or a long mode page table.
3714 	 */
3715 	pm_mask = PT_PRESENT_MASK | shadow_me_value;
3716 	if (mmu->root_role.level >= PT64_ROOT_4LEVEL) {
3717 		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3718 
3719 		if (WARN_ON_ONCE(!mmu->pml4_root)) {
3720 			r = -EIO;
3721 			goto out_unlock;
3722 		}
3723 		mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3724 
3725 		if (mmu->root_role.level == PT64_ROOT_5LEVEL) {
3726 			if (WARN_ON_ONCE(!mmu->pml5_root)) {
3727 				r = -EIO;
3728 				goto out_unlock;
3729 			}
3730 			mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
3731 		}
3732 	}
3733 
3734 	for (i = 0; i < 4; ++i) {
3735 		WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3736 
3737 		if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
3738 			if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3739 				mmu->pae_root[i] = INVALID_PAE_ROOT;
3740 				continue;
3741 			}
3742 			root_gfn = pdptrs[i] >> PAGE_SHIFT;
3743 		}
3744 
3745 		/*
3746 		 * If shadowing 32-bit non-PAE page tables, each PAE page
3747 		 * directory maps one quarter of the guest's non-PAE page
3748 		 * directory. Othwerise each PAE page direct shadows one guest
3749 		 * PAE page directory so that quadrant should be 0.
3750 		 */
3751 		quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0;
3752 
3753 		root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL);
3754 		mmu->pae_root[i] = root | pm_mask;
3755 	}
3756 
3757 	if (mmu->root_role.level == PT64_ROOT_5LEVEL)
3758 		mmu->root.hpa = __pa(mmu->pml5_root);
3759 	else if (mmu->root_role.level == PT64_ROOT_4LEVEL)
3760 		mmu->root.hpa = __pa(mmu->pml4_root);
3761 	else
3762 		mmu->root.hpa = __pa(mmu->pae_root);
3763 
3764 set_root_pgd:
3765 	mmu->root.pgd = root_pgd;
3766 out_unlock:
3767 	write_unlock(&vcpu->kvm->mmu_lock);
3768 
3769 	return r;
3770 }
3771 
mmu_alloc_special_roots(struct kvm_vcpu * vcpu)3772 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
3773 {
3774 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3775 	bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL;
3776 	u64 *pml5_root = NULL;
3777 	u64 *pml4_root = NULL;
3778 	u64 *pae_root;
3779 
3780 	/*
3781 	 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3782 	 * tables are allocated and initialized at root creation as there is no
3783 	 * equivalent level in the guest's NPT to shadow.  Allocate the tables
3784 	 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3785 	 */
3786 	if (mmu->root_role.direct ||
3787 	    mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL ||
3788 	    mmu->root_role.level < PT64_ROOT_4LEVEL)
3789 		return 0;
3790 
3791 	/*
3792 	 * NPT, the only paging mode that uses this horror, uses a fixed number
3793 	 * of levels for the shadow page tables, e.g. all MMUs are 4-level or
3794 	 * all MMus are 5-level.  Thus, this can safely require that pml5_root
3795 	 * is allocated if the other roots are valid and pml5 is needed, as any
3796 	 * prior MMU would also have required pml5.
3797 	 */
3798 	if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
3799 		return 0;
3800 
3801 	/*
3802 	 * The special roots should always be allocated in concert.  Yell and
3803 	 * bail if KVM ends up in a state where only one of the roots is valid.
3804 	 */
3805 	if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
3806 			 (need_pml5 && mmu->pml5_root)))
3807 		return -EIO;
3808 
3809 	/*
3810 	 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
3811 	 * doesn't need to be decrypted.
3812 	 */
3813 	pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3814 	if (!pae_root)
3815 		return -ENOMEM;
3816 
3817 #ifdef CONFIG_X86_64
3818 	pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3819 	if (!pml4_root)
3820 		goto err_pml4;
3821 
3822 	if (need_pml5) {
3823 		pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3824 		if (!pml5_root)
3825 			goto err_pml5;
3826 	}
3827 #endif
3828 
3829 	mmu->pae_root = pae_root;
3830 	mmu->pml4_root = pml4_root;
3831 	mmu->pml5_root = pml5_root;
3832 
3833 	return 0;
3834 
3835 #ifdef CONFIG_X86_64
3836 err_pml5:
3837 	free_page((unsigned long)pml4_root);
3838 err_pml4:
3839 	free_page((unsigned long)pae_root);
3840 	return -ENOMEM;
3841 #endif
3842 }
3843 
is_unsync_root(hpa_t root)3844 static bool is_unsync_root(hpa_t root)
3845 {
3846 	struct kvm_mmu_page *sp;
3847 
3848 	if (!VALID_PAGE(root))
3849 		return false;
3850 
3851 	/*
3852 	 * The read barrier orders the CPU's read of SPTE.W during the page table
3853 	 * walk before the reads of sp->unsync/sp->unsync_children here.
3854 	 *
3855 	 * Even if another CPU was marking the SP as unsync-ed simultaneously,
3856 	 * any guest page table changes are not guaranteed to be visible anyway
3857 	 * until this VCPU issues a TLB flush strictly after those changes are
3858 	 * made.  We only need to ensure that the other CPU sets these flags
3859 	 * before any actual changes to the page tables are made.  The comments
3860 	 * in mmu_try_to_unsync_pages() describe what could go wrong if this
3861 	 * requirement isn't satisfied.
3862 	 */
3863 	smp_rmb();
3864 	sp = to_shadow_page(root);
3865 
3866 	/*
3867 	 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the
3868 	 * PDPTEs for a given PAE root need to be synchronized individually.
3869 	 */
3870 	if (WARN_ON_ONCE(!sp))
3871 		return false;
3872 
3873 	if (sp->unsync || sp->unsync_children)
3874 		return true;
3875 
3876 	return false;
3877 }
3878 
kvm_mmu_sync_roots(struct kvm_vcpu * vcpu)3879 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3880 {
3881 	int i;
3882 	struct kvm_mmu_page *sp;
3883 
3884 	if (vcpu->arch.mmu->root_role.direct)
3885 		return;
3886 
3887 	if (!VALID_PAGE(vcpu->arch.mmu->root.hpa))
3888 		return;
3889 
3890 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3891 
3892 	if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
3893 		hpa_t root = vcpu->arch.mmu->root.hpa;
3894 		sp = to_shadow_page(root);
3895 
3896 		if (!is_unsync_root(root))
3897 			return;
3898 
3899 		write_lock(&vcpu->kvm->mmu_lock);
3900 		mmu_sync_children(vcpu, sp, true);
3901 		write_unlock(&vcpu->kvm->mmu_lock);
3902 		return;
3903 	}
3904 
3905 	write_lock(&vcpu->kvm->mmu_lock);
3906 
3907 	for (i = 0; i < 4; ++i) {
3908 		hpa_t root = vcpu->arch.mmu->pae_root[i];
3909 
3910 		if (IS_VALID_PAE_ROOT(root)) {
3911 			root &= SPTE_BASE_ADDR_MASK;
3912 			sp = to_shadow_page(root);
3913 			mmu_sync_children(vcpu, sp, true);
3914 		}
3915 	}
3916 
3917 	write_unlock(&vcpu->kvm->mmu_lock);
3918 }
3919 
kvm_mmu_sync_prev_roots(struct kvm_vcpu * vcpu)3920 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu)
3921 {
3922 	unsigned long roots_to_free = 0;
3923 	int i;
3924 
3925 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3926 		if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa))
3927 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3928 
3929 	/* sync prev_roots by simply freeing them */
3930 	kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free);
3931 }
3932 
nonpaging_gva_to_gpa(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,gpa_t vaddr,u64 access,struct x86_exception * exception)3933 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3934 				  gpa_t vaddr, u64 access,
3935 				  struct x86_exception *exception)
3936 {
3937 	if (exception)
3938 		exception->error_code = 0;
3939 	return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception);
3940 }
3941 
mmio_info_in_cache(struct kvm_vcpu * vcpu,u64 addr,bool direct)3942 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3943 {
3944 	/*
3945 	 * A nested guest cannot use the MMIO cache if it is using nested
3946 	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3947 	 */
3948 	if (mmu_is_nested(vcpu))
3949 		return false;
3950 
3951 	if (direct)
3952 		return vcpu_match_mmio_gpa(vcpu, addr);
3953 
3954 	return vcpu_match_mmio_gva(vcpu, addr);
3955 }
3956 
3957 /*
3958  * Return the level of the lowest level SPTE added to sptes.
3959  * That SPTE may be non-present.
3960  *
3961  * Must be called between walk_shadow_page_lockless_{begin,end}.
3962  */
get_walk(struct kvm_vcpu * vcpu,u64 addr,u64 * sptes,int * root_level)3963 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3964 {
3965 	struct kvm_shadow_walk_iterator iterator;
3966 	int leaf = -1;
3967 	u64 spte;
3968 
3969 	for (shadow_walk_init(&iterator, vcpu, addr),
3970 	     *root_level = iterator.level;
3971 	     shadow_walk_okay(&iterator);
3972 	     __shadow_walk_next(&iterator, spte)) {
3973 		leaf = iterator.level;
3974 		spte = mmu_spte_get_lockless(iterator.sptep);
3975 
3976 		sptes[leaf] = spte;
3977 	}
3978 
3979 	return leaf;
3980 }
3981 
3982 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
get_mmio_spte(struct kvm_vcpu * vcpu,u64 addr,u64 * sptep)3983 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3984 {
3985 	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3986 	struct rsvd_bits_validate *rsvd_check;
3987 	int root, leaf, level;
3988 	bool reserved = false;
3989 
3990 	walk_shadow_page_lockless_begin(vcpu);
3991 
3992 	if (is_tdp_mmu(vcpu->arch.mmu))
3993 		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3994 	else
3995 		leaf = get_walk(vcpu, addr, sptes, &root);
3996 
3997 	walk_shadow_page_lockless_end(vcpu);
3998 
3999 	if (unlikely(leaf < 0)) {
4000 		*sptep = 0ull;
4001 		return reserved;
4002 	}
4003 
4004 	*sptep = sptes[leaf];
4005 
4006 	/*
4007 	 * Skip reserved bits checks on the terminal leaf if it's not a valid
4008 	 * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
4009 	 * design, always have reserved bits set.  The purpose of the checks is
4010 	 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
4011 	 */
4012 	if (!is_shadow_present_pte(sptes[leaf]))
4013 		leaf++;
4014 
4015 	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
4016 
4017 	for (level = root; level >= leaf; level--)
4018 		reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
4019 
4020 	if (reserved) {
4021 		pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
4022 		       __func__, addr);
4023 		for (level = root; level >= leaf; level--)
4024 			pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
4025 			       sptes[level], level,
4026 			       get_rsvd_bits(rsvd_check, sptes[level], level));
4027 	}
4028 
4029 	return reserved;
4030 }
4031 
handle_mmio_page_fault(struct kvm_vcpu * vcpu,u64 addr,bool direct)4032 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4033 {
4034 	u64 spte;
4035 	bool reserved;
4036 
4037 	if (mmio_info_in_cache(vcpu, addr, direct))
4038 		return RET_PF_EMULATE;
4039 
4040 	reserved = get_mmio_spte(vcpu, addr, &spte);
4041 	if (WARN_ON(reserved))
4042 		return -EINVAL;
4043 
4044 	if (is_mmio_spte(spte)) {
4045 		gfn_t gfn = get_mmio_spte_gfn(spte);
4046 		unsigned int access = get_mmio_spte_access(spte);
4047 
4048 		if (!check_mmio_spte(vcpu, spte))
4049 			return RET_PF_INVALID;
4050 
4051 		if (direct)
4052 			addr = 0;
4053 
4054 		trace_handle_mmio_page_fault(addr, gfn, access);
4055 		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
4056 		return RET_PF_EMULATE;
4057 	}
4058 
4059 	/*
4060 	 * If the page table is zapped by other cpus, let CPU fault again on
4061 	 * the address.
4062 	 */
4063 	return RET_PF_RETRY;
4064 }
4065 
page_fault_handle_page_track(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4066 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
4067 					 struct kvm_page_fault *fault)
4068 {
4069 	if (unlikely(fault->rsvd))
4070 		return false;
4071 
4072 	if (!fault->present || !fault->write)
4073 		return false;
4074 
4075 	/*
4076 	 * guest is writing the page which is write tracked which can
4077 	 * not be fixed by page fault handler.
4078 	 */
4079 	if (kvm_slot_page_track_is_active(vcpu->kvm, fault->slot, fault->gfn, KVM_PAGE_TRACK_WRITE))
4080 		return true;
4081 
4082 	return false;
4083 }
4084 
shadow_page_table_clear_flood(struct kvm_vcpu * vcpu,gva_t addr)4085 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4086 {
4087 	struct kvm_shadow_walk_iterator iterator;
4088 	u64 spte;
4089 
4090 	walk_shadow_page_lockless_begin(vcpu);
4091 	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
4092 		clear_sp_write_flooding_count(iterator.sptep);
4093 	walk_shadow_page_lockless_end(vcpu);
4094 }
4095 
alloc_apf_token(struct kvm_vcpu * vcpu)4096 static u32 alloc_apf_token(struct kvm_vcpu *vcpu)
4097 {
4098 	/* make sure the token value is not 0 */
4099 	u32 id = vcpu->arch.apf.id;
4100 
4101 	if (id << 12 == 0)
4102 		vcpu->arch.apf.id = 1;
4103 
4104 	return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4105 }
4106 
kvm_arch_setup_async_pf(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,gfn_t gfn)4107 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
4108 				    gfn_t gfn)
4109 {
4110 	struct kvm_arch_async_pf arch;
4111 
4112 	arch.token = alloc_apf_token(vcpu);
4113 	arch.gfn = gfn;
4114 	arch.direct_map = vcpu->arch.mmu->root_role.direct;
4115 	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
4116 
4117 	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
4118 				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
4119 }
4120 
kvm_arch_async_page_ready(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)4121 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
4122 {
4123 	int r;
4124 
4125 	if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) ||
4126 	      work->wakeup_all)
4127 		return;
4128 
4129 	r = kvm_mmu_reload(vcpu);
4130 	if (unlikely(r))
4131 		return;
4132 
4133 	if (!vcpu->arch.mmu->root_role.direct &&
4134 	      work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
4135 		return;
4136 
4137 	kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
4138 }
4139 
kvm_faultin_pfn(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4140 static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4141 {
4142 	struct kvm_memory_slot *slot = fault->slot;
4143 	bool async;
4144 
4145 	/*
4146 	 * Retry the page fault if the gfn hit a memslot that is being deleted
4147 	 * or moved.  This ensures any existing SPTEs for the old memslot will
4148 	 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
4149 	 */
4150 	if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
4151 		return RET_PF_RETRY;
4152 
4153 	if (!kvm_is_visible_memslot(slot)) {
4154 		/* Don't expose private memslots to L2. */
4155 		if (is_guest_mode(vcpu)) {
4156 			fault->slot = NULL;
4157 			fault->pfn = KVM_PFN_NOSLOT;
4158 			fault->map_writable = false;
4159 			return RET_PF_CONTINUE;
4160 		}
4161 		/*
4162 		 * If the APIC access page exists but is disabled, go directly
4163 		 * to emulation without caching the MMIO access or creating a
4164 		 * MMIO SPTE.  That way the cache doesn't need to be purged
4165 		 * when the AVIC is re-enabled.
4166 		 */
4167 		if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT &&
4168 		    !kvm_apicv_activated(vcpu->kvm))
4169 			return RET_PF_EMULATE;
4170 	}
4171 
4172 	async = false;
4173 	fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, &async,
4174 					  fault->write, &fault->map_writable,
4175 					  &fault->hva);
4176 	if (!async)
4177 		return RET_PF_CONTINUE; /* *pfn has correct page already */
4178 
4179 	if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) {
4180 		trace_kvm_try_async_get_page(fault->addr, fault->gfn);
4181 		if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) {
4182 			trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn);
4183 			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4184 			return RET_PF_RETRY;
4185 		} else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn)) {
4186 			return RET_PF_RETRY;
4187 		}
4188 	}
4189 
4190 	fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, NULL,
4191 					  fault->write, &fault->map_writable,
4192 					  &fault->hva);
4193 	return RET_PF_CONTINUE;
4194 }
4195 
4196 /*
4197  * Returns true if the page fault is stale and needs to be retried, i.e. if the
4198  * root was invalidated by a memslot update or a relevant mmu_notifier fired.
4199  */
is_page_fault_stale(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault,int mmu_seq)4200 static bool is_page_fault_stale(struct kvm_vcpu *vcpu,
4201 				struct kvm_page_fault *fault, int mmu_seq)
4202 {
4203 	struct kvm_mmu_page *sp = to_shadow_page(vcpu->arch.mmu->root.hpa);
4204 
4205 	/* Special roots, e.g. pae_root, are not backed by shadow pages. */
4206 	if (sp && is_obsolete_sp(vcpu->kvm, sp))
4207 		return true;
4208 
4209 	/*
4210 	 * Roots without an associated shadow page are considered invalid if
4211 	 * there is a pending request to free obsolete roots.  The request is
4212 	 * only a hint that the current root _may_ be obsolete and needs to be
4213 	 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a
4214 	 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs
4215 	 * to reload even if no vCPU is actively using the root.
4216 	 */
4217 	if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
4218 		return true;
4219 
4220 	return fault->slot &&
4221 	       mmu_invalidate_retry_hva(vcpu->kvm, mmu_seq, fault->hva);
4222 }
4223 
direct_page_fault(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4224 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4225 {
4226 	bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
4227 
4228 	unsigned long mmu_seq;
4229 	int r;
4230 
4231 	fault->gfn = fault->addr >> PAGE_SHIFT;
4232 	fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn);
4233 
4234 	if (page_fault_handle_page_track(vcpu, fault))
4235 		return RET_PF_EMULATE;
4236 
4237 	r = fast_page_fault(vcpu, fault);
4238 	if (r != RET_PF_INVALID)
4239 		return r;
4240 
4241 	r = mmu_topup_memory_caches(vcpu, false);
4242 	if (r)
4243 		return r;
4244 
4245 	mmu_seq = vcpu->kvm->mmu_invalidate_seq;
4246 	smp_rmb();
4247 
4248 	r = kvm_faultin_pfn(vcpu, fault);
4249 	if (r != RET_PF_CONTINUE)
4250 		return r;
4251 
4252 	r = handle_abnormal_pfn(vcpu, fault, ACC_ALL);
4253 	if (r != RET_PF_CONTINUE)
4254 		return r;
4255 
4256 	r = RET_PF_RETRY;
4257 
4258 	if (is_tdp_mmu_fault)
4259 		read_lock(&vcpu->kvm->mmu_lock);
4260 	else
4261 		write_lock(&vcpu->kvm->mmu_lock);
4262 
4263 	if (is_page_fault_stale(vcpu, fault, mmu_seq))
4264 		goto out_unlock;
4265 
4266 	if (is_tdp_mmu_fault) {
4267 		r = kvm_tdp_mmu_map(vcpu, fault);
4268 	} else {
4269 		r = make_mmu_pages_available(vcpu);
4270 		if (r)
4271 			goto out_unlock;
4272 		r = __direct_map(vcpu, fault);
4273 	}
4274 
4275 out_unlock:
4276 	if (is_tdp_mmu_fault)
4277 		read_unlock(&vcpu->kvm->mmu_lock);
4278 	else
4279 		write_unlock(&vcpu->kvm->mmu_lock);
4280 	kvm_release_pfn_clean(fault->pfn);
4281 	return r;
4282 }
4283 
nonpaging_page_fault(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4284 static int nonpaging_page_fault(struct kvm_vcpu *vcpu,
4285 				struct kvm_page_fault *fault)
4286 {
4287 	pgprintk("%s: gva %lx error %x\n", __func__, fault->addr, fault->error_code);
4288 
4289 	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4290 	fault->max_level = PG_LEVEL_2M;
4291 	return direct_page_fault(vcpu, fault);
4292 }
4293 
kvm_handle_page_fault(struct kvm_vcpu * vcpu,u64 error_code,u64 fault_address,char * insn,int insn_len)4294 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4295 				u64 fault_address, char *insn, int insn_len)
4296 {
4297 	int r = 1;
4298 	u32 flags = vcpu->arch.apf.host_apf_flags;
4299 
4300 #ifndef CONFIG_X86_64
4301 	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
4302 	if (WARN_ON_ONCE(fault_address >> 32))
4303 		return -EFAULT;
4304 #endif
4305 
4306 	vcpu->arch.l1tf_flush_l1d = true;
4307 	if (!flags) {
4308 		trace_kvm_page_fault(vcpu, fault_address, error_code);
4309 
4310 		if (kvm_event_needs_reinjection(vcpu))
4311 			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4312 		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4313 				insn_len);
4314 	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4315 		vcpu->arch.apf.host_apf_flags = 0;
4316 		local_irq_disable();
4317 		kvm_async_pf_task_wait_schedule(fault_address);
4318 		local_irq_enable();
4319 	} else {
4320 		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4321 	}
4322 
4323 	return r;
4324 }
4325 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4326 
kvm_tdp_page_fault(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4327 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4328 {
4329 	/*
4330 	 * If the guest's MTRRs may be used to compute the "real" memtype,
4331 	 * restrict the mapping level to ensure KVM uses a consistent memtype
4332 	 * across the entire mapping.  If the host MTRRs are ignored by TDP
4333 	 * (shadow_memtype_mask is non-zero), and the VM has non-coherent DMA
4334 	 * (DMA doesn't snoop CPU caches), KVM's ABI is to honor the memtype
4335 	 * from the guest's MTRRs so that guest accesses to memory that is
4336 	 * DMA'd aren't cached against the guest's wishes.
4337 	 *
4338 	 * Note, KVM may still ultimately ignore guest MTRRs for certain PFNs,
4339 	 * e.g. KVM will force UC memtype for host MMIO.
4340 	 */
4341 	if (shadow_memtype_mask && kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
4342 		for ( ; fault->max_level > PG_LEVEL_4K; --fault->max_level) {
4343 			int page_num = KVM_PAGES_PER_HPAGE(fault->max_level);
4344 			gfn_t base = (fault->addr >> PAGE_SHIFT) & ~(page_num - 1);
4345 
4346 			if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
4347 				break;
4348 		}
4349 	}
4350 
4351 	return direct_page_fault(vcpu, fault);
4352 }
4353 
nonpaging_init_context(struct kvm_mmu * context)4354 static void nonpaging_init_context(struct kvm_mmu *context)
4355 {
4356 	context->page_fault = nonpaging_page_fault;
4357 	context->gva_to_gpa = nonpaging_gva_to_gpa;
4358 	context->sync_page = nonpaging_sync_page;
4359 	context->invlpg = NULL;
4360 }
4361 
is_root_usable(struct kvm_mmu_root_info * root,gpa_t pgd,union kvm_mmu_page_role role)4362 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4363 				  union kvm_mmu_page_role role)
4364 {
4365 	return (role.direct || pgd == root->pgd) &&
4366 	       VALID_PAGE(root->hpa) &&
4367 	       role.word == to_shadow_page(root->hpa)->role.word;
4368 }
4369 
4370 /*
4371  * Find out if a previously cached root matching the new pgd/role is available,
4372  * and insert the current root as the MRU in the cache.
4373  * If a matching root is found, it is assigned to kvm_mmu->root and
4374  * true is returned.
4375  * If no match is found, kvm_mmu->root is left invalid, the LRU root is
4376  * evicted to make room for the current root, and false is returned.
4377  */
cached_root_find_and_keep_current(struct kvm * kvm,struct kvm_mmu * mmu,gpa_t new_pgd,union kvm_mmu_page_role new_role)4378 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu,
4379 					      gpa_t new_pgd,
4380 					      union kvm_mmu_page_role new_role)
4381 {
4382 	uint i;
4383 
4384 	if (is_root_usable(&mmu->root, new_pgd, new_role))
4385 		return true;
4386 
4387 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4388 		/*
4389 		 * The swaps end up rotating the cache like this:
4390 		 *   C   0 1 2 3   (on entry to the function)
4391 		 *   0   C 1 2 3
4392 		 *   1   C 0 2 3
4393 		 *   2   C 0 1 3
4394 		 *   3   C 0 1 2   (on exit from the loop)
4395 		 */
4396 		swap(mmu->root, mmu->prev_roots[i]);
4397 		if (is_root_usable(&mmu->root, new_pgd, new_role))
4398 			return true;
4399 	}
4400 
4401 	kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
4402 	return false;
4403 }
4404 
4405 /*
4406  * Find out if a previously cached root matching the new pgd/role is available.
4407  * On entry, mmu->root is invalid.
4408  * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry
4409  * of the cache becomes invalid, and true is returned.
4410  * If no match is found, kvm_mmu->root is left invalid and false is returned.
4411  */
cached_root_find_without_current(struct kvm * kvm,struct kvm_mmu * mmu,gpa_t new_pgd,union kvm_mmu_page_role new_role)4412 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu,
4413 					     gpa_t new_pgd,
4414 					     union kvm_mmu_page_role new_role)
4415 {
4416 	uint i;
4417 
4418 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4419 		if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role))
4420 			goto hit;
4421 
4422 	return false;
4423 
4424 hit:
4425 	swap(mmu->root, mmu->prev_roots[i]);
4426 	/* Bubble up the remaining roots.  */
4427 	for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++)
4428 		mmu->prev_roots[i] = mmu->prev_roots[i + 1];
4429 	mmu->prev_roots[i].hpa = INVALID_PAGE;
4430 	return true;
4431 }
4432 
fast_pgd_switch(struct kvm * kvm,struct kvm_mmu * mmu,gpa_t new_pgd,union kvm_mmu_page_role new_role)4433 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu,
4434 			    gpa_t new_pgd, union kvm_mmu_page_role new_role)
4435 {
4436 	/*
4437 	 * For now, limit the caching to 64-bit hosts+VMs in order to avoid
4438 	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4439 	 * later if necessary.
4440 	 */
4441 	if (VALID_PAGE(mmu->root.hpa) && !to_shadow_page(mmu->root.hpa))
4442 		kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
4443 
4444 	if (VALID_PAGE(mmu->root.hpa))
4445 		return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role);
4446 	else
4447 		return cached_root_find_without_current(kvm, mmu, new_pgd, new_role);
4448 }
4449 
kvm_mmu_new_pgd(struct kvm_vcpu * vcpu,gpa_t new_pgd)4450 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4451 {
4452 	struct kvm_mmu *mmu = vcpu->arch.mmu;
4453 	union kvm_mmu_page_role new_role = mmu->root_role;
4454 
4455 	if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) {
4456 		/* kvm_mmu_ensure_valid_pgd will set up a new root.  */
4457 		return;
4458 	}
4459 
4460 	/*
4461 	 * It's possible that the cached previous root page is obsolete because
4462 	 * of a change in the MMU generation number. However, changing the
4463 	 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS,
4464 	 * which will free the root set here and allocate a new one.
4465 	 */
4466 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4467 
4468 	if (force_flush_and_sync_on_reuse) {
4469 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4470 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4471 	}
4472 
4473 	/*
4474 	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
4475 	 * switching to a new CR3, that GVA->GPA mapping may no longer be
4476 	 * valid. So clear any cached MMIO info even when we don't need to sync
4477 	 * the shadow page tables.
4478 	 */
4479 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4480 
4481 	/*
4482 	 * If this is a direct root page, it doesn't have a write flooding
4483 	 * count. Otherwise, clear the write flooding count.
4484 	 */
4485 	if (!new_role.direct)
4486 		__clear_sp_write_flooding_count(
4487 				to_shadow_page(vcpu->arch.mmu->root.hpa));
4488 }
4489 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4490 
get_cr3(struct kvm_vcpu * vcpu)4491 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4492 {
4493 	return kvm_read_cr3(vcpu);
4494 }
4495 
sync_mmio_spte(struct kvm_vcpu * vcpu,u64 * sptep,gfn_t gfn,unsigned int access)4496 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4497 			   unsigned int access)
4498 {
4499 	if (unlikely(is_mmio_spte(*sptep))) {
4500 		if (gfn != get_mmio_spte_gfn(*sptep)) {
4501 			mmu_spte_clear_no_track(sptep);
4502 			return true;
4503 		}
4504 
4505 		mark_mmio_spte(vcpu, sptep, gfn, access);
4506 		return true;
4507 	}
4508 
4509 	return false;
4510 }
4511 
4512 #define PTTYPE_EPT 18 /* arbitrary */
4513 #define PTTYPE PTTYPE_EPT
4514 #include "paging_tmpl.h"
4515 #undef PTTYPE
4516 
4517 #define PTTYPE 64
4518 #include "paging_tmpl.h"
4519 #undef PTTYPE
4520 
4521 #define PTTYPE 32
4522 #include "paging_tmpl.h"
4523 #undef PTTYPE
4524 
4525 static void
__reset_rsvds_bits_mask(struct rsvd_bits_validate * rsvd_check,u64 pa_bits_rsvd,int level,bool nx,bool gbpages,bool pse,bool amd)4526 __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4527 			u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4528 			bool pse, bool amd)
4529 {
4530 	u64 gbpages_bit_rsvd = 0;
4531 	u64 nonleaf_bit8_rsvd = 0;
4532 	u64 high_bits_rsvd;
4533 
4534 	rsvd_check->bad_mt_xwr = 0;
4535 
4536 	if (!gbpages)
4537 		gbpages_bit_rsvd = rsvd_bits(7, 7);
4538 
4539 	if (level == PT32E_ROOT_LEVEL)
4540 		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4541 	else
4542 		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4543 
4544 	/* Note, NX doesn't exist in PDPTEs, this is handled below. */
4545 	if (!nx)
4546 		high_bits_rsvd |= rsvd_bits(63, 63);
4547 
4548 	/*
4549 	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4550 	 * leaf entries) on AMD CPUs only.
4551 	 */
4552 	if (amd)
4553 		nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4554 
4555 	switch (level) {
4556 	case PT32_ROOT_LEVEL:
4557 		/* no rsvd bits for 2 level 4K page table entries */
4558 		rsvd_check->rsvd_bits_mask[0][1] = 0;
4559 		rsvd_check->rsvd_bits_mask[0][0] = 0;
4560 		rsvd_check->rsvd_bits_mask[1][0] =
4561 			rsvd_check->rsvd_bits_mask[0][0];
4562 
4563 		if (!pse) {
4564 			rsvd_check->rsvd_bits_mask[1][1] = 0;
4565 			break;
4566 		}
4567 
4568 		if (is_cpuid_PSE36())
4569 			/* 36bits PSE 4MB page */
4570 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4571 		else
4572 			/* 32 bits PSE 4MB page */
4573 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4574 		break;
4575 	case PT32E_ROOT_LEVEL:
4576 		rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4577 						   high_bits_rsvd |
4578 						   rsvd_bits(5, 8) |
4579 						   rsvd_bits(1, 2);	/* PDPTE */
4580 		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;	/* PDE */
4581 		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;	/* PTE */
4582 		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4583 						   rsvd_bits(13, 20);	/* large page */
4584 		rsvd_check->rsvd_bits_mask[1][0] =
4585 			rsvd_check->rsvd_bits_mask[0][0];
4586 		break;
4587 	case PT64_ROOT_5LEVEL:
4588 		rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4589 						   nonleaf_bit8_rsvd |
4590 						   rsvd_bits(7, 7);
4591 		rsvd_check->rsvd_bits_mask[1][4] =
4592 			rsvd_check->rsvd_bits_mask[0][4];
4593 		fallthrough;
4594 	case PT64_ROOT_4LEVEL:
4595 		rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4596 						   nonleaf_bit8_rsvd |
4597 						   rsvd_bits(7, 7);
4598 		rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4599 						   gbpages_bit_rsvd;
4600 		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4601 		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4602 		rsvd_check->rsvd_bits_mask[1][3] =
4603 			rsvd_check->rsvd_bits_mask[0][3];
4604 		rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4605 						   gbpages_bit_rsvd |
4606 						   rsvd_bits(13, 29);
4607 		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4608 						   rsvd_bits(13, 20); /* large page */
4609 		rsvd_check->rsvd_bits_mask[1][0] =
4610 			rsvd_check->rsvd_bits_mask[0][0];
4611 		break;
4612 	}
4613 }
4614 
guest_can_use_gbpages(struct kvm_vcpu * vcpu)4615 static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu)
4616 {
4617 	/*
4618 	 * If TDP is enabled, let the guest use GBPAGES if they're supported in
4619 	 * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
4620 	 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
4621 	 * walk for performance and complexity reasons.  Not to mention KVM
4622 	 * _can't_ solve the problem because GVA->GPA walks aren't visible to
4623 	 * KVM once a TDP translation is installed.  Mimic hardware behavior so
4624 	 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
4625 	 */
4626 	return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
4627 			     guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
4628 }
4629 
reset_guest_rsvds_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4630 static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4631 					struct kvm_mmu *context)
4632 {
4633 	__reset_rsvds_bits_mask(&context->guest_rsvd_check,
4634 				vcpu->arch.reserved_gpa_bits,
4635 				context->cpu_role.base.level, is_efer_nx(context),
4636 				guest_can_use_gbpages(vcpu),
4637 				is_cr4_pse(context),
4638 				guest_cpuid_is_amd_or_hygon(vcpu));
4639 }
4640 
4641 static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate * rsvd_check,u64 pa_bits_rsvd,bool execonly,int huge_page_level)4642 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4643 			    u64 pa_bits_rsvd, bool execonly, int huge_page_level)
4644 {
4645 	u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4646 	u64 large_1g_rsvd = 0, large_2m_rsvd = 0;
4647 	u64 bad_mt_xwr;
4648 
4649 	if (huge_page_level < PG_LEVEL_1G)
4650 		large_1g_rsvd = rsvd_bits(7, 7);
4651 	if (huge_page_level < PG_LEVEL_2M)
4652 		large_2m_rsvd = rsvd_bits(7, 7);
4653 
4654 	rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4655 	rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4656 	rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd;
4657 	rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd;
4658 	rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4659 
4660 	/* large page */
4661 	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4662 	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4663 	rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd;
4664 	rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd;
4665 	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4666 
4667 	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
4668 	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
4669 	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
4670 	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
4671 	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
4672 	if (!execonly) {
4673 		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
4674 		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4675 	}
4676 	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4677 }
4678 
reset_rsvds_bits_mask_ept(struct kvm_vcpu * vcpu,struct kvm_mmu * context,bool execonly,int huge_page_level)4679 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4680 		struct kvm_mmu *context, bool execonly, int huge_page_level)
4681 {
4682 	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4683 				    vcpu->arch.reserved_gpa_bits, execonly,
4684 				    huge_page_level);
4685 }
4686 
reserved_hpa_bits(void)4687 static inline u64 reserved_hpa_bits(void)
4688 {
4689 	return rsvd_bits(shadow_phys_bits, 63);
4690 }
4691 
4692 /*
4693  * the page table on host is the shadow page table for the page
4694  * table in guest or amd nested guest, its mmu features completely
4695  * follow the features in guest.
4696  */
reset_shadow_zero_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4697 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4698 					struct kvm_mmu *context)
4699 {
4700 	/* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
4701 	bool is_amd = true;
4702 	/* KVM doesn't use 2-level page tables for the shadow MMU. */
4703 	bool is_pse = false;
4704 	struct rsvd_bits_validate *shadow_zero_check;
4705 	int i;
4706 
4707 	WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL);
4708 
4709 	shadow_zero_check = &context->shadow_zero_check;
4710 	__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4711 				context->root_role.level,
4712 				context->root_role.efer_nx,
4713 				guest_can_use_gbpages(vcpu), is_pse, is_amd);
4714 
4715 	if (!shadow_me_mask)
4716 		return;
4717 
4718 	for (i = context->root_role.level; --i >= 0;) {
4719 		/*
4720 		 * So far shadow_me_value is a constant during KVM's life
4721 		 * time.  Bits in shadow_me_value are allowed to be set.
4722 		 * Bits in shadow_me_mask but not in shadow_me_value are
4723 		 * not allowed to be set.
4724 		 */
4725 		shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask;
4726 		shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask;
4727 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value;
4728 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value;
4729 	}
4730 
4731 }
4732 
boot_cpu_is_amd(void)4733 static inline bool boot_cpu_is_amd(void)
4734 {
4735 	WARN_ON_ONCE(!tdp_enabled);
4736 	return shadow_x_mask == 0;
4737 }
4738 
4739 /*
4740  * the direct page table on host, use as much mmu features as
4741  * possible, however, kvm currently does not do execution-protection.
4742  */
4743 static void
reset_tdp_shadow_zero_bits_mask(struct kvm_mmu * context)4744 reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context)
4745 {
4746 	struct rsvd_bits_validate *shadow_zero_check;
4747 	int i;
4748 
4749 	shadow_zero_check = &context->shadow_zero_check;
4750 
4751 	if (boot_cpu_is_amd())
4752 		__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4753 					context->root_role.level, true,
4754 					boot_cpu_has(X86_FEATURE_GBPAGES),
4755 					false, true);
4756 	else
4757 		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4758 					    reserved_hpa_bits(), false,
4759 					    max_huge_page_level);
4760 
4761 	if (!shadow_me_mask)
4762 		return;
4763 
4764 	for (i = context->root_role.level; --i >= 0;) {
4765 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4766 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4767 	}
4768 }
4769 
4770 /*
4771  * as the comments in reset_shadow_zero_bits_mask() except it
4772  * is the shadow page table for intel nested guest.
4773  */
4774 static void
reset_ept_shadow_zero_bits_mask(struct kvm_mmu * context,bool execonly)4775 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly)
4776 {
4777 	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4778 				    reserved_hpa_bits(), execonly,
4779 				    max_huge_page_level);
4780 }
4781 
4782 #define BYTE_MASK(access) \
4783 	((1 & (access) ? 2 : 0) | \
4784 	 (2 & (access) ? 4 : 0) | \
4785 	 (3 & (access) ? 8 : 0) | \
4786 	 (4 & (access) ? 16 : 0) | \
4787 	 (5 & (access) ? 32 : 0) | \
4788 	 (6 & (access) ? 64 : 0) | \
4789 	 (7 & (access) ? 128 : 0))
4790 
4791 
update_permission_bitmask(struct kvm_mmu * mmu,bool ept)4792 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
4793 {
4794 	unsigned byte;
4795 
4796 	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4797 	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4798 	const u8 u = BYTE_MASK(ACC_USER_MASK);
4799 
4800 	bool cr4_smep = is_cr4_smep(mmu);
4801 	bool cr4_smap = is_cr4_smap(mmu);
4802 	bool cr0_wp = is_cr0_wp(mmu);
4803 	bool efer_nx = is_efer_nx(mmu);
4804 
4805 	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4806 		unsigned pfec = byte << 1;
4807 
4808 		/*
4809 		 * Each "*f" variable has a 1 bit for each UWX value
4810 		 * that causes a fault with the given PFEC.
4811 		 */
4812 
4813 		/* Faults from writes to non-writable pages */
4814 		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4815 		/* Faults from user mode accesses to supervisor pages */
4816 		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4817 		/* Faults from fetches of non-executable pages*/
4818 		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4819 		/* Faults from kernel mode fetches of user pages */
4820 		u8 smepf = 0;
4821 		/* Faults from kernel mode accesses of user pages */
4822 		u8 smapf = 0;
4823 
4824 		if (!ept) {
4825 			/* Faults from kernel mode accesses to user pages */
4826 			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4827 
4828 			/* Not really needed: !nx will cause pte.nx to fault */
4829 			if (!efer_nx)
4830 				ff = 0;
4831 
4832 			/* Allow supervisor writes if !cr0.wp */
4833 			if (!cr0_wp)
4834 				wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4835 
4836 			/* Disallow supervisor fetches of user code if cr4.smep */
4837 			if (cr4_smep)
4838 				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4839 
4840 			/*
4841 			 * SMAP:kernel-mode data accesses from user-mode
4842 			 * mappings should fault. A fault is considered
4843 			 * as a SMAP violation if all of the following
4844 			 * conditions are true:
4845 			 *   - X86_CR4_SMAP is set in CR4
4846 			 *   - A user page is accessed
4847 			 *   - The access is not a fetch
4848 			 *   - The access is supervisor mode
4849 			 *   - If implicit supervisor access or X86_EFLAGS_AC is clear
4850 			 *
4851 			 * Here, we cover the first four conditions.
4852 			 * The fifth is computed dynamically in permission_fault();
4853 			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4854 			 * *not* subject to SMAP restrictions.
4855 			 */
4856 			if (cr4_smap)
4857 				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4858 		}
4859 
4860 		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4861 	}
4862 }
4863 
4864 /*
4865 * PKU is an additional mechanism by which the paging controls access to
4866 * user-mode addresses based on the value in the PKRU register.  Protection
4867 * key violations are reported through a bit in the page fault error code.
4868 * Unlike other bits of the error code, the PK bit is not known at the
4869 * call site of e.g. gva_to_gpa; it must be computed directly in
4870 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4871 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4872 *
4873 * In particular the following conditions come from the error code, the
4874 * page tables and the machine state:
4875 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4876 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4877 * - PK is always zero if U=0 in the page tables
4878 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4879 *
4880 * The PKRU bitmask caches the result of these four conditions.  The error
4881 * code (minus the P bit) and the page table's U bit form an index into the
4882 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4883 * with the two bits of the PKRU register corresponding to the protection key.
4884 * For the first three conditions above the bits will be 00, thus masking
4885 * away both AD and WD.  For all reads or if the last condition holds, WD
4886 * only will be masked away.
4887 */
update_pkru_bitmask(struct kvm_mmu * mmu)4888 static void update_pkru_bitmask(struct kvm_mmu *mmu)
4889 {
4890 	unsigned bit;
4891 	bool wp;
4892 
4893 	mmu->pkru_mask = 0;
4894 
4895 	if (!is_cr4_pke(mmu))
4896 		return;
4897 
4898 	wp = is_cr0_wp(mmu);
4899 
4900 	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4901 		unsigned pfec, pkey_bits;
4902 		bool check_pkey, check_write, ff, uf, wf, pte_user;
4903 
4904 		pfec = bit << 1;
4905 		ff = pfec & PFERR_FETCH_MASK;
4906 		uf = pfec & PFERR_USER_MASK;
4907 		wf = pfec & PFERR_WRITE_MASK;
4908 
4909 		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
4910 		pte_user = pfec & PFERR_RSVD_MASK;
4911 
4912 		/*
4913 		 * Only need to check the access which is not an
4914 		 * instruction fetch and is to a user page.
4915 		 */
4916 		check_pkey = (!ff && pte_user);
4917 		/*
4918 		 * write access is controlled by PKRU if it is a
4919 		 * user access or CR0.WP = 1.
4920 		 */
4921 		check_write = check_pkey && wf && (uf || wp);
4922 
4923 		/* PKRU.AD stops both read and write access. */
4924 		pkey_bits = !!check_pkey;
4925 		/* PKRU.WD stops write access. */
4926 		pkey_bits |= (!!check_write) << 1;
4927 
4928 		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4929 	}
4930 }
4931 
reset_guest_paging_metadata(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)4932 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
4933 					struct kvm_mmu *mmu)
4934 {
4935 	if (!is_cr0_pg(mmu))
4936 		return;
4937 
4938 	reset_guest_rsvds_bits_mask(vcpu, mmu);
4939 	update_permission_bitmask(mmu, false);
4940 	update_pkru_bitmask(mmu);
4941 }
4942 
paging64_init_context(struct kvm_mmu * context)4943 static void paging64_init_context(struct kvm_mmu *context)
4944 {
4945 	context->page_fault = paging64_page_fault;
4946 	context->gva_to_gpa = paging64_gva_to_gpa;
4947 	context->sync_page = paging64_sync_page;
4948 	context->invlpg = paging64_invlpg;
4949 }
4950 
paging32_init_context(struct kvm_mmu * context)4951 static void paging32_init_context(struct kvm_mmu *context)
4952 {
4953 	context->page_fault = paging32_page_fault;
4954 	context->gva_to_gpa = paging32_gva_to_gpa;
4955 	context->sync_page = paging32_sync_page;
4956 	context->invlpg = paging32_invlpg;
4957 }
4958 
4959 static union kvm_cpu_role
kvm_calc_cpu_role(struct kvm_vcpu * vcpu,const struct kvm_mmu_role_regs * regs)4960 kvm_calc_cpu_role(struct kvm_vcpu *vcpu, const struct kvm_mmu_role_regs *regs)
4961 {
4962 	union kvm_cpu_role role = {0};
4963 
4964 	role.base.access = ACC_ALL;
4965 	role.base.smm = is_smm(vcpu);
4966 	role.base.guest_mode = is_guest_mode(vcpu);
4967 	role.ext.valid = 1;
4968 
4969 	if (!____is_cr0_pg(regs)) {
4970 		role.base.direct = 1;
4971 		return role;
4972 	}
4973 
4974 	role.base.efer_nx = ____is_efer_nx(regs);
4975 	role.base.cr0_wp = ____is_cr0_wp(regs);
4976 	role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs);
4977 	role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs);
4978 	role.base.has_4_byte_gpte = !____is_cr4_pae(regs);
4979 
4980 	if (____is_efer_lma(regs))
4981 		role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL
4982 							: PT64_ROOT_4LEVEL;
4983 	else if (____is_cr4_pae(regs))
4984 		role.base.level = PT32E_ROOT_LEVEL;
4985 	else
4986 		role.base.level = PT32_ROOT_LEVEL;
4987 
4988 	role.ext.cr4_smep = ____is_cr4_smep(regs);
4989 	role.ext.cr4_smap = ____is_cr4_smap(regs);
4990 	role.ext.cr4_pse = ____is_cr4_pse(regs);
4991 
4992 	/* PKEY and LA57 are active iff long mode is active. */
4993 	role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
4994 	role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
4995 	role.ext.efer_lma = ____is_efer_lma(regs);
4996 	return role;
4997 }
4998 
kvm_mmu_get_tdp_level(struct kvm_vcpu * vcpu)4999 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
5000 {
5001 	/* tdp_root_level is architecture forced level, use it if nonzero */
5002 	if (tdp_root_level)
5003 		return tdp_root_level;
5004 
5005 	/* Use 5-level TDP if and only if it's useful/necessary. */
5006 	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
5007 		return 4;
5008 
5009 	return max_tdp_level;
5010 }
5011 
5012 static union kvm_mmu_page_role
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu * vcpu,union kvm_cpu_role cpu_role)5013 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
5014 				union kvm_cpu_role cpu_role)
5015 {
5016 	union kvm_mmu_page_role role = {0};
5017 
5018 	role.access = ACC_ALL;
5019 	role.cr0_wp = true;
5020 	role.efer_nx = true;
5021 	role.smm = cpu_role.base.smm;
5022 	role.guest_mode = cpu_role.base.guest_mode;
5023 	role.ad_disabled = !kvm_ad_enabled();
5024 	role.level = kvm_mmu_get_tdp_level(vcpu);
5025 	role.direct = true;
5026 	role.has_4_byte_gpte = false;
5027 
5028 	return role;
5029 }
5030 
init_kvm_tdp_mmu(struct kvm_vcpu * vcpu,union kvm_cpu_role cpu_role)5031 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu,
5032 			     union kvm_cpu_role cpu_role)
5033 {
5034 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
5035 	union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role);
5036 
5037 	if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
5038 	    root_role.word == context->root_role.word)
5039 		return;
5040 
5041 	context->cpu_role.as_u64 = cpu_role.as_u64;
5042 	context->root_role.word = root_role.word;
5043 	context->page_fault = kvm_tdp_page_fault;
5044 	context->sync_page = nonpaging_sync_page;
5045 	context->invlpg = NULL;
5046 	context->get_guest_pgd = get_cr3;
5047 	context->get_pdptr = kvm_pdptr_read;
5048 	context->inject_page_fault = kvm_inject_page_fault;
5049 
5050 	if (!is_cr0_pg(context))
5051 		context->gva_to_gpa = nonpaging_gva_to_gpa;
5052 	else if (is_cr4_pae(context))
5053 		context->gva_to_gpa = paging64_gva_to_gpa;
5054 	else
5055 		context->gva_to_gpa = paging32_gva_to_gpa;
5056 
5057 	reset_guest_paging_metadata(vcpu, context);
5058 	reset_tdp_shadow_zero_bits_mask(context);
5059 }
5060 
shadow_mmu_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context,union kvm_cpu_role cpu_role,union kvm_mmu_page_role root_role)5061 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
5062 				    union kvm_cpu_role cpu_role,
5063 				    union kvm_mmu_page_role root_role)
5064 {
5065 	if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
5066 	    root_role.word == context->root_role.word)
5067 		return;
5068 
5069 	context->cpu_role.as_u64 = cpu_role.as_u64;
5070 	context->root_role.word = root_role.word;
5071 
5072 	if (!is_cr0_pg(context))
5073 		nonpaging_init_context(context);
5074 	else if (is_cr4_pae(context))
5075 		paging64_init_context(context);
5076 	else
5077 		paging32_init_context(context);
5078 
5079 	reset_guest_paging_metadata(vcpu, context);
5080 	reset_shadow_zero_bits_mask(vcpu, context);
5081 }
5082 
kvm_init_shadow_mmu(struct kvm_vcpu * vcpu,union kvm_cpu_role cpu_role)5083 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
5084 				union kvm_cpu_role cpu_role)
5085 {
5086 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
5087 	union kvm_mmu_page_role root_role;
5088 
5089 	root_role = cpu_role.base;
5090 
5091 	/* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */
5092 	root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL);
5093 
5094 	/*
5095 	 * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role.
5096 	 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
5097 	 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
5098 	 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
5099 	 * The iTLB multi-hit workaround can be toggled at any time, so assume
5100 	 * NX can be used by any non-nested shadow MMU to avoid having to reset
5101 	 * MMU contexts.
5102 	 */
5103 	root_role.efer_nx = true;
5104 
5105 	shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
5106 }
5107 
kvm_init_shadow_npt_mmu(struct kvm_vcpu * vcpu,unsigned long cr0,unsigned long cr4,u64 efer,gpa_t nested_cr3)5108 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
5109 			     unsigned long cr4, u64 efer, gpa_t nested_cr3)
5110 {
5111 	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
5112 	struct kvm_mmu_role_regs regs = {
5113 		.cr0 = cr0,
5114 		.cr4 = cr4 & ~X86_CR4_PKE,
5115 		.efer = efer,
5116 	};
5117 	union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, &regs);
5118 	union kvm_mmu_page_role root_role;
5119 
5120 	/* NPT requires CR0.PG=1. */
5121 	WARN_ON_ONCE(cpu_role.base.direct);
5122 
5123 	root_role = cpu_role.base;
5124 	root_role.level = kvm_mmu_get_tdp_level(vcpu);
5125 	if (root_role.level == PT64_ROOT_5LEVEL &&
5126 	    cpu_role.base.level == PT64_ROOT_4LEVEL)
5127 		root_role.passthrough = 1;
5128 
5129 	shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
5130 	kvm_mmu_new_pgd(vcpu, nested_cr3);
5131 }
5132 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
5133 
5134 static union kvm_cpu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu * vcpu,bool accessed_dirty,bool execonly,u8 level)5135 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
5136 				   bool execonly, u8 level)
5137 {
5138 	union kvm_cpu_role role = {0};
5139 
5140 	/*
5141 	 * KVM does not support SMM transfer monitors, and consequently does not
5142 	 * support the "entry to SMM" control either.  role.base.smm is always 0.
5143 	 */
5144 	WARN_ON_ONCE(is_smm(vcpu));
5145 	role.base.level = level;
5146 	role.base.has_4_byte_gpte = false;
5147 	role.base.direct = false;
5148 	role.base.ad_disabled = !accessed_dirty;
5149 	role.base.guest_mode = true;
5150 	role.base.access = ACC_ALL;
5151 
5152 	role.ext.word = 0;
5153 	role.ext.execonly = execonly;
5154 	role.ext.valid = 1;
5155 
5156 	return role;
5157 }
5158 
kvm_init_shadow_ept_mmu(struct kvm_vcpu * vcpu,bool execonly,int huge_page_level,bool accessed_dirty,gpa_t new_eptp)5159 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5160 			     int huge_page_level, bool accessed_dirty,
5161 			     gpa_t new_eptp)
5162 {
5163 	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
5164 	u8 level = vmx_eptp_page_walk_level(new_eptp);
5165 	union kvm_cpu_role new_mode =
5166 		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5167 						   execonly, level);
5168 
5169 	if (new_mode.as_u64 != context->cpu_role.as_u64) {
5170 		/* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
5171 		context->cpu_role.as_u64 = new_mode.as_u64;
5172 		context->root_role.word = new_mode.base.word;
5173 
5174 		context->page_fault = ept_page_fault;
5175 		context->gva_to_gpa = ept_gva_to_gpa;
5176 		context->sync_page = ept_sync_page;
5177 		context->invlpg = ept_invlpg;
5178 
5179 		update_permission_bitmask(context, true);
5180 		context->pkru_mask = 0;
5181 		reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level);
5182 		reset_ept_shadow_zero_bits_mask(context, execonly);
5183 	}
5184 
5185 	kvm_mmu_new_pgd(vcpu, new_eptp);
5186 }
5187 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5188 
init_kvm_softmmu(struct kvm_vcpu * vcpu,union kvm_cpu_role cpu_role)5189 static void init_kvm_softmmu(struct kvm_vcpu *vcpu,
5190 			     union kvm_cpu_role cpu_role)
5191 {
5192 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
5193 
5194 	kvm_init_shadow_mmu(vcpu, cpu_role);
5195 
5196 	context->get_guest_pgd     = get_cr3;
5197 	context->get_pdptr         = kvm_pdptr_read;
5198 	context->inject_page_fault = kvm_inject_page_fault;
5199 }
5200 
init_kvm_nested_mmu(struct kvm_vcpu * vcpu,union kvm_cpu_role new_mode)5201 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu,
5202 				union kvm_cpu_role new_mode)
5203 {
5204 	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5205 
5206 	if (new_mode.as_u64 == g_context->cpu_role.as_u64)
5207 		return;
5208 
5209 	g_context->cpu_role.as_u64   = new_mode.as_u64;
5210 	g_context->get_guest_pgd     = get_cr3;
5211 	g_context->get_pdptr         = kvm_pdptr_read;
5212 	g_context->inject_page_fault = kvm_inject_page_fault;
5213 
5214 	/*
5215 	 * L2 page tables are never shadowed, so there is no need to sync
5216 	 * SPTEs.
5217 	 */
5218 	g_context->invlpg            = NULL;
5219 
5220 	/*
5221 	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5222 	 * L1's nested page tables (e.g. EPT12). The nested translation
5223 	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5224 	 * L2's page tables as the first level of translation and L1's
5225 	 * nested page tables as the second level of translation. Basically
5226 	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5227 	 */
5228 	if (!is_paging(vcpu))
5229 		g_context->gva_to_gpa = nonpaging_gva_to_gpa;
5230 	else if (is_long_mode(vcpu))
5231 		g_context->gva_to_gpa = paging64_gva_to_gpa;
5232 	else if (is_pae(vcpu))
5233 		g_context->gva_to_gpa = paging64_gva_to_gpa;
5234 	else
5235 		g_context->gva_to_gpa = paging32_gva_to_gpa;
5236 
5237 	reset_guest_paging_metadata(vcpu, g_context);
5238 }
5239 
kvm_init_mmu(struct kvm_vcpu * vcpu)5240 void kvm_init_mmu(struct kvm_vcpu *vcpu)
5241 {
5242 	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
5243 	union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, &regs);
5244 
5245 	if (mmu_is_nested(vcpu))
5246 		init_kvm_nested_mmu(vcpu, cpu_role);
5247 	else if (tdp_enabled)
5248 		init_kvm_tdp_mmu(vcpu, cpu_role);
5249 	else
5250 		init_kvm_softmmu(vcpu, cpu_role);
5251 }
5252 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5253 
kvm_mmu_after_set_cpuid(struct kvm_vcpu * vcpu)5254 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
5255 {
5256 	/*
5257 	 * Invalidate all MMU roles to force them to reinitialize as CPUID
5258 	 * information is factored into reserved bit calculations.
5259 	 *
5260 	 * Correctly handling multiple vCPU models with respect to paging and
5261 	 * physical address properties) in a single VM would require tracking
5262 	 * all relevant CPUID information in kvm_mmu_page_role. That is very
5263 	 * undesirable as it would increase the memory requirements for
5264 	 * gfn_track (see struct kvm_mmu_page_role comments).  For now that
5265 	 * problem is swept under the rug; KVM's CPUID API is horrific and
5266 	 * it's all but impossible to solve it without introducing a new API.
5267 	 */
5268 	vcpu->arch.root_mmu.root_role.word = 0;
5269 	vcpu->arch.guest_mmu.root_role.word = 0;
5270 	vcpu->arch.nested_mmu.root_role.word = 0;
5271 	vcpu->arch.root_mmu.cpu_role.ext.valid = 0;
5272 	vcpu->arch.guest_mmu.cpu_role.ext.valid = 0;
5273 	vcpu->arch.nested_mmu.cpu_role.ext.valid = 0;
5274 	kvm_mmu_reset_context(vcpu);
5275 
5276 	/*
5277 	 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in
5278 	 * kvm_arch_vcpu_ioctl().
5279 	 */
5280 	KVM_BUG_ON(vcpu->arch.last_vmentry_cpu != -1, vcpu->kvm);
5281 }
5282 
kvm_mmu_reset_context(struct kvm_vcpu * vcpu)5283 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5284 {
5285 	kvm_mmu_unload(vcpu);
5286 	kvm_init_mmu(vcpu);
5287 }
5288 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5289 
kvm_mmu_load(struct kvm_vcpu * vcpu)5290 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5291 {
5292 	int r;
5293 
5294 	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct);
5295 	if (r)
5296 		goto out;
5297 	r = mmu_alloc_special_roots(vcpu);
5298 	if (r)
5299 		goto out;
5300 	if (vcpu->arch.mmu->root_role.direct)
5301 		r = mmu_alloc_direct_roots(vcpu);
5302 	else
5303 		r = mmu_alloc_shadow_roots(vcpu);
5304 	if (r)
5305 		goto out;
5306 
5307 	kvm_mmu_sync_roots(vcpu);
5308 
5309 	kvm_mmu_load_pgd(vcpu);
5310 
5311 	/*
5312 	 * Flush any TLB entries for the new root, the provenance of the root
5313 	 * is unknown.  Even if KVM ensures there are no stale TLB entries
5314 	 * for a freed root, in theory another hypervisor could have left
5315 	 * stale entries.  Flushing on alloc also allows KVM to skip the TLB
5316 	 * flush when freeing a root (see kvm_tdp_mmu_put_root()).
5317 	 */
5318 	static_call(kvm_x86_flush_tlb_current)(vcpu);
5319 out:
5320 	return r;
5321 }
5322 
kvm_mmu_unload(struct kvm_vcpu * vcpu)5323 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5324 {
5325 	struct kvm *kvm = vcpu->kvm;
5326 
5327 	kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5328 	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root.hpa));
5329 	kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5330 	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa));
5331 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
5332 }
5333 
is_obsolete_root(struct kvm * kvm,hpa_t root_hpa)5334 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa)
5335 {
5336 	struct kvm_mmu_page *sp;
5337 
5338 	if (!VALID_PAGE(root_hpa))
5339 		return false;
5340 
5341 	/*
5342 	 * When freeing obsolete roots, treat roots as obsolete if they don't
5343 	 * have an associated shadow page.  This does mean KVM will get false
5344 	 * positives and free roots that don't strictly need to be freed, but
5345 	 * such false positives are relatively rare:
5346 	 *
5347 	 *  (a) only PAE paging and nested NPT has roots without shadow pages
5348 	 *  (b) remote reloads due to a memslot update obsoletes _all_ roots
5349 	 *  (c) KVM doesn't track previous roots for PAE paging, and the guest
5350 	 *      is unlikely to zap an in-use PGD.
5351 	 */
5352 	sp = to_shadow_page(root_hpa);
5353 	return !sp || is_obsolete_sp(kvm, sp);
5354 }
5355 
__kvm_mmu_free_obsolete_roots(struct kvm * kvm,struct kvm_mmu * mmu)5356 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu)
5357 {
5358 	unsigned long roots_to_free = 0;
5359 	int i;
5360 
5361 	if (is_obsolete_root(kvm, mmu->root.hpa))
5362 		roots_to_free |= KVM_MMU_ROOT_CURRENT;
5363 
5364 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5365 		if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa))
5366 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5367 	}
5368 
5369 	if (roots_to_free)
5370 		kvm_mmu_free_roots(kvm, mmu, roots_to_free);
5371 }
5372 
kvm_mmu_free_obsolete_roots(struct kvm_vcpu * vcpu)5373 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu)
5374 {
5375 	__kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu);
5376 	__kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu);
5377 }
5378 
mmu_pte_write_fetch_gpte(struct kvm_vcpu * vcpu,gpa_t * gpa,int * bytes)5379 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5380 				    int *bytes)
5381 {
5382 	u64 gentry = 0;
5383 	int r;
5384 
5385 	/*
5386 	 * Assume that the pte write on a page table of the same type
5387 	 * as the current vcpu paging mode since we update the sptes only
5388 	 * when they have the same mode.
5389 	 */
5390 	if (is_pae(vcpu) && *bytes == 4) {
5391 		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5392 		*gpa &= ~(gpa_t)7;
5393 		*bytes = 8;
5394 	}
5395 
5396 	if (*bytes == 4 || *bytes == 8) {
5397 		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5398 		if (r)
5399 			gentry = 0;
5400 	}
5401 
5402 	return gentry;
5403 }
5404 
5405 /*
5406  * If we're seeing too many writes to a page, it may no longer be a page table,
5407  * or we may be forking, in which case it is better to unmap the page.
5408  */
detect_write_flooding(struct kvm_mmu_page * sp)5409 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5410 {
5411 	/*
5412 	 * Skip write-flooding detected for the sp whose level is 1, because
5413 	 * it can become unsync, then the guest page is not write-protected.
5414 	 */
5415 	if (sp->role.level == PG_LEVEL_4K)
5416 		return false;
5417 
5418 	atomic_inc(&sp->write_flooding_count);
5419 	return atomic_read(&sp->write_flooding_count) >= 3;
5420 }
5421 
5422 /*
5423  * Misaligned accesses are too much trouble to fix up; also, they usually
5424  * indicate a page is not used as a page table.
5425  */
detect_write_misaligned(struct kvm_mmu_page * sp,gpa_t gpa,int bytes)5426 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5427 				    int bytes)
5428 {
5429 	unsigned offset, pte_size, misaligned;
5430 
5431 	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5432 		 gpa, bytes, sp->role.word);
5433 
5434 	offset = offset_in_page(gpa);
5435 	pte_size = sp->role.has_4_byte_gpte ? 4 : 8;
5436 
5437 	/*
5438 	 * Sometimes, the OS only writes the last one bytes to update status
5439 	 * bits, for example, in linux, andb instruction is used in clear_bit().
5440 	 */
5441 	if (!(offset & (pte_size - 1)) && bytes == 1)
5442 		return false;
5443 
5444 	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5445 	misaligned |= bytes < 4;
5446 
5447 	return misaligned;
5448 }
5449 
get_written_sptes(struct kvm_mmu_page * sp,gpa_t gpa,int * nspte)5450 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5451 {
5452 	unsigned page_offset, quadrant;
5453 	u64 *spte;
5454 	int level;
5455 
5456 	page_offset = offset_in_page(gpa);
5457 	level = sp->role.level;
5458 	*nspte = 1;
5459 	if (sp->role.has_4_byte_gpte) {
5460 		page_offset <<= 1;	/* 32->64 */
5461 		/*
5462 		 * A 32-bit pde maps 4MB while the shadow pdes map
5463 		 * only 2MB.  So we need to double the offset again
5464 		 * and zap two pdes instead of one.
5465 		 */
5466 		if (level == PT32_ROOT_LEVEL) {
5467 			page_offset &= ~7; /* kill rounding error */
5468 			page_offset <<= 1;
5469 			*nspte = 2;
5470 		}
5471 		quadrant = page_offset >> PAGE_SHIFT;
5472 		page_offset &= ~PAGE_MASK;
5473 		if (quadrant != sp->role.quadrant)
5474 			return NULL;
5475 	}
5476 
5477 	spte = &sp->spt[page_offset / sizeof(*spte)];
5478 	return spte;
5479 }
5480 
kvm_mmu_pte_write(struct kvm_vcpu * vcpu,gpa_t gpa,const u8 * new,int bytes,struct kvm_page_track_notifier_node * node)5481 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5482 			      const u8 *new, int bytes,
5483 			      struct kvm_page_track_notifier_node *node)
5484 {
5485 	gfn_t gfn = gpa >> PAGE_SHIFT;
5486 	struct kvm_mmu_page *sp;
5487 	LIST_HEAD(invalid_list);
5488 	u64 entry, gentry, *spte;
5489 	int npte;
5490 	bool flush = false;
5491 
5492 	/*
5493 	 * If we don't have indirect shadow pages, it means no page is
5494 	 * write-protected, so we can exit simply.
5495 	 */
5496 	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5497 		return;
5498 
5499 	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5500 
5501 	write_lock(&vcpu->kvm->mmu_lock);
5502 
5503 	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5504 
5505 	++vcpu->kvm->stat.mmu_pte_write;
5506 
5507 	for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) {
5508 		if (detect_write_misaligned(sp, gpa, bytes) ||
5509 		      detect_write_flooding(sp)) {
5510 			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5511 			++vcpu->kvm->stat.mmu_flooded;
5512 			continue;
5513 		}
5514 
5515 		spte = get_written_sptes(sp, gpa, &npte);
5516 		if (!spte)
5517 			continue;
5518 
5519 		while (npte--) {
5520 			entry = *spte;
5521 			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5522 			if (gentry && sp->role.level != PG_LEVEL_4K)
5523 				++vcpu->kvm->stat.mmu_pde_zapped;
5524 			if (is_shadow_present_pte(entry))
5525 				flush = true;
5526 			++spte;
5527 		}
5528 	}
5529 	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
5530 	write_unlock(&vcpu->kvm->mmu_lock);
5531 }
5532 
kvm_mmu_page_fault(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,u64 error_code,void * insn,int insn_len)5533 int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5534 		       void *insn, int insn_len)
5535 {
5536 	int r, emulation_type = EMULTYPE_PF;
5537 	bool direct = vcpu->arch.mmu->root_role.direct;
5538 
5539 	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root.hpa)))
5540 		return RET_PF_RETRY;
5541 
5542 	r = RET_PF_INVALID;
5543 	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5544 		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5545 		if (r == RET_PF_EMULATE)
5546 			goto emulate;
5547 	}
5548 
5549 	if (r == RET_PF_INVALID) {
5550 		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5551 					  lower_32_bits(error_code), false);
5552 		if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
5553 			return -EIO;
5554 	}
5555 
5556 	if (r < 0)
5557 		return r;
5558 	if (r != RET_PF_EMULATE)
5559 		return 1;
5560 
5561 	/*
5562 	 * Before emulating the instruction, check if the error code
5563 	 * was due to a RO violation while translating the guest page.
5564 	 * This can occur when using nested virtualization with nested
5565 	 * paging in both guests. If true, we simply unprotect the page
5566 	 * and resume the guest.
5567 	 */
5568 	if (vcpu->arch.mmu->root_role.direct &&
5569 	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5570 		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5571 		return 1;
5572 	}
5573 
5574 	/*
5575 	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5576 	 * optimistically try to just unprotect the page and let the processor
5577 	 * re-execute the instruction that caused the page fault.  Do not allow
5578 	 * retrying MMIO emulation, as it's not only pointless but could also
5579 	 * cause us to enter an infinite loop because the processor will keep
5580 	 * faulting on the non-existent MMIO address.  Retrying an instruction
5581 	 * from a nested guest is also pointless and dangerous as we are only
5582 	 * explicitly shadowing L1's page tables, i.e. unprotecting something
5583 	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5584 	 */
5585 	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5586 		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5587 emulate:
5588 	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5589 				       insn_len);
5590 }
5591 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5592 
kvm_mmu_invalidate_gva(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,gva_t gva,hpa_t root_hpa)5593 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5594 			    gva_t gva, hpa_t root_hpa)
5595 {
5596 	int i;
5597 
5598 	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
5599 	if (mmu != &vcpu->arch.guest_mmu) {
5600 		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5601 		if (is_noncanonical_address(gva, vcpu))
5602 			return;
5603 
5604 		static_call(kvm_x86_flush_tlb_gva)(vcpu, gva);
5605 	}
5606 
5607 	if (!mmu->invlpg)
5608 		return;
5609 
5610 	if (root_hpa == INVALID_PAGE) {
5611 		mmu->invlpg(vcpu, gva, mmu->root.hpa);
5612 
5613 		/*
5614 		 * INVLPG is required to invalidate any global mappings for the VA,
5615 		 * irrespective of PCID. Since it would take us roughly similar amount
5616 		 * of work to determine whether any of the prev_root mappings of the VA
5617 		 * is marked global, or to just sync it blindly, so we might as well
5618 		 * just always sync it.
5619 		 *
5620 		 * Mappings not reachable via the current cr3 or the prev_roots will be
5621 		 * synced when switching to that cr3, so nothing needs to be done here
5622 		 * for them.
5623 		 */
5624 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5625 			if (VALID_PAGE(mmu->prev_roots[i].hpa))
5626 				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5627 	} else {
5628 		mmu->invlpg(vcpu, gva, root_hpa);
5629 	}
5630 }
5631 
kvm_mmu_invlpg(struct kvm_vcpu * vcpu,gva_t gva)5632 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5633 {
5634 	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.walk_mmu, gva, INVALID_PAGE);
5635 	++vcpu->stat.invlpg;
5636 }
5637 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5638 
5639 
kvm_mmu_invpcid_gva(struct kvm_vcpu * vcpu,gva_t gva,unsigned long pcid)5640 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5641 {
5642 	struct kvm_mmu *mmu = vcpu->arch.mmu;
5643 	bool tlb_flush = false;
5644 	uint i;
5645 
5646 	if (pcid == kvm_get_active_pcid(vcpu)) {
5647 		if (mmu->invlpg)
5648 			mmu->invlpg(vcpu, gva, mmu->root.hpa);
5649 		tlb_flush = true;
5650 	}
5651 
5652 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5653 		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5654 		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5655 			if (mmu->invlpg)
5656 				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5657 			tlb_flush = true;
5658 		}
5659 	}
5660 
5661 	if (tlb_flush)
5662 		static_call(kvm_x86_flush_tlb_gva)(vcpu, gva);
5663 
5664 	++vcpu->stat.invlpg;
5665 
5666 	/*
5667 	 * Mappings not reachable via the current cr3 or the prev_roots will be
5668 	 * synced when switching to that cr3, so nothing needs to be done here
5669 	 * for them.
5670 	 */
5671 }
5672 
kvm_configure_mmu(bool enable_tdp,int tdp_forced_root_level,int tdp_max_root_level,int tdp_huge_page_level)5673 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
5674 		       int tdp_max_root_level, int tdp_huge_page_level)
5675 {
5676 	tdp_enabled = enable_tdp;
5677 	tdp_root_level = tdp_forced_root_level;
5678 	max_tdp_level = tdp_max_root_level;
5679 
5680 	/*
5681 	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5682 	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5683 	 * the kernel is not.  But, KVM never creates a page size greater than
5684 	 * what is used by the kernel for any given HVA, i.e. the kernel's
5685 	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5686 	 */
5687 	if (tdp_enabled)
5688 		max_huge_page_level = tdp_huge_page_level;
5689 	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5690 		max_huge_page_level = PG_LEVEL_1G;
5691 	else
5692 		max_huge_page_level = PG_LEVEL_2M;
5693 }
5694 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5695 
5696 /* The return value indicates if tlb flush on all vcpus is needed. */
5697 typedef bool (*slot_level_handler) (struct kvm *kvm,
5698 				    struct kvm_rmap_head *rmap_head,
5699 				    const struct kvm_memory_slot *slot);
5700 
5701 /* The caller should hold mmu-lock before calling this function. */
5702 static __always_inline bool
slot_handle_level_range(struct kvm * kvm,const struct kvm_memory_slot * memslot,slot_level_handler fn,int start_level,int end_level,gfn_t start_gfn,gfn_t end_gfn,bool flush_on_yield,bool flush)5703 slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5704 			slot_level_handler fn, int start_level, int end_level,
5705 			gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
5706 			bool flush)
5707 {
5708 	struct slot_rmap_walk_iterator iterator;
5709 
5710 	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5711 			end_gfn, &iterator) {
5712 		if (iterator.rmap)
5713 			flush |= fn(kvm, iterator.rmap, memslot);
5714 
5715 		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5716 			if (flush && flush_on_yield) {
5717 				kvm_flush_remote_tlbs_with_address(kvm,
5718 						start_gfn,
5719 						iterator.gfn - start_gfn + 1);
5720 				flush = false;
5721 			}
5722 			cond_resched_rwlock_write(&kvm->mmu_lock);
5723 		}
5724 	}
5725 
5726 	return flush;
5727 }
5728 
5729 static __always_inline bool
slot_handle_level(struct kvm * kvm,const struct kvm_memory_slot * memslot,slot_level_handler fn,int start_level,int end_level,bool flush_on_yield)5730 slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5731 		  slot_level_handler fn, int start_level, int end_level,
5732 		  bool flush_on_yield)
5733 {
5734 	return slot_handle_level_range(kvm, memslot, fn, start_level,
5735 			end_level, memslot->base_gfn,
5736 			memslot->base_gfn + memslot->npages - 1,
5737 			flush_on_yield, false);
5738 }
5739 
5740 static __always_inline bool
slot_handle_level_4k(struct kvm * kvm,const struct kvm_memory_slot * memslot,slot_level_handler fn,bool flush_on_yield)5741 slot_handle_level_4k(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5742 		     slot_level_handler fn, bool flush_on_yield)
5743 {
5744 	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5745 				 PG_LEVEL_4K, flush_on_yield);
5746 }
5747 
free_mmu_pages(struct kvm_mmu * mmu)5748 static void free_mmu_pages(struct kvm_mmu *mmu)
5749 {
5750 	if (!tdp_enabled && mmu->pae_root)
5751 		set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5752 	free_page((unsigned long)mmu->pae_root);
5753 	free_page((unsigned long)mmu->pml4_root);
5754 	free_page((unsigned long)mmu->pml5_root);
5755 }
5756 
__kvm_mmu_create(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)5757 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5758 {
5759 	struct page *page;
5760 	int i;
5761 
5762 	mmu->root.hpa = INVALID_PAGE;
5763 	mmu->root.pgd = 0;
5764 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5765 		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5766 
5767 	/* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */
5768 	if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu)
5769 		return 0;
5770 
5771 	/*
5772 	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5773 	 * while the PDP table is a per-vCPU construct that's allocated at MMU
5774 	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5775 	 * x86_64.  Therefore we need to allocate the PDP table in the first
5776 	 * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
5777 	 * generally doesn't use PAE paging and can skip allocating the PDP
5778 	 * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
5779 	 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5780 	 * KVM; that horror is handled on-demand by mmu_alloc_special_roots().
5781 	 */
5782 	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5783 		return 0;
5784 
5785 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5786 	if (!page)
5787 		return -ENOMEM;
5788 
5789 	mmu->pae_root = page_address(page);
5790 
5791 	/*
5792 	 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
5793 	 * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
5794 	 * that KVM's writes and the CPU's reads get along.  Note, this is
5795 	 * only necessary when using shadow paging, as 64-bit NPT can get at
5796 	 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
5797 	 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
5798 	 */
5799 	if (!tdp_enabled)
5800 		set_memory_decrypted((unsigned long)mmu->pae_root, 1);
5801 	else
5802 		WARN_ON_ONCE(shadow_me_value);
5803 
5804 	for (i = 0; i < 4; ++i)
5805 		mmu->pae_root[i] = INVALID_PAE_ROOT;
5806 
5807 	return 0;
5808 }
5809 
kvm_mmu_create(struct kvm_vcpu * vcpu)5810 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5811 {
5812 	int ret;
5813 
5814 	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5815 	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5816 
5817 	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5818 	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5819 
5820 	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5821 
5822 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
5823 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5824 
5825 	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5826 	if (ret)
5827 		return ret;
5828 
5829 	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5830 	if (ret)
5831 		goto fail_allocate_root;
5832 
5833 	return ret;
5834  fail_allocate_root:
5835 	free_mmu_pages(&vcpu->arch.guest_mmu);
5836 	return ret;
5837 }
5838 
5839 #define BATCH_ZAP_PAGES	10
kvm_zap_obsolete_pages(struct kvm * kvm)5840 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5841 {
5842 	struct kvm_mmu_page *sp, *node;
5843 	int nr_zapped, batch = 0;
5844 	bool unstable;
5845 
5846 restart:
5847 	list_for_each_entry_safe_reverse(sp, node,
5848 	      &kvm->arch.active_mmu_pages, link) {
5849 		/*
5850 		 * No obsolete valid page exists before a newly created page
5851 		 * since active_mmu_pages is a FIFO list.
5852 		 */
5853 		if (!is_obsolete_sp(kvm, sp))
5854 			break;
5855 
5856 		/*
5857 		 * Invalid pages should never land back on the list of active
5858 		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
5859 		 * infinite loop if the page gets put back on the list (again).
5860 		 */
5861 		if (WARN_ON(sp->role.invalid))
5862 			continue;
5863 
5864 		/*
5865 		 * No need to flush the TLB since we're only zapping shadow
5866 		 * pages with an obsolete generation number and all vCPUS have
5867 		 * loaded a new root, i.e. the shadow pages being zapped cannot
5868 		 * be in active use by the guest.
5869 		 */
5870 		if (batch >= BATCH_ZAP_PAGES &&
5871 		    cond_resched_rwlock_write(&kvm->mmu_lock)) {
5872 			batch = 0;
5873 			goto restart;
5874 		}
5875 
5876 		unstable = __kvm_mmu_prepare_zap_page(kvm, sp,
5877 				&kvm->arch.zapped_obsolete_pages, &nr_zapped);
5878 		batch += nr_zapped;
5879 
5880 		if (unstable)
5881 			goto restart;
5882 	}
5883 
5884 	/*
5885 	 * Kick all vCPUs (via remote TLB flush) before freeing the page tables
5886 	 * to ensure KVM is not in the middle of a lockless shadow page table
5887 	 * walk, which may reference the pages.  The remote TLB flush itself is
5888 	 * not required and is simply a convenient way to kick vCPUs as needed.
5889 	 * KVM performs a local TLB flush when allocating a new root (see
5890 	 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are
5891 	 * running with an obsolete MMU.
5892 	 */
5893 	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5894 }
5895 
5896 /*
5897  * Fast invalidate all shadow pages and use lock-break technique
5898  * to zap obsolete pages.
5899  *
5900  * It's required when memslot is being deleted or VM is being
5901  * destroyed, in these cases, we should ensure that KVM MMU does
5902  * not use any resource of the being-deleted slot or all slots
5903  * after calling the function.
5904  */
kvm_mmu_zap_all_fast(struct kvm * kvm)5905 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5906 {
5907 	lockdep_assert_held(&kvm->slots_lock);
5908 
5909 	write_lock(&kvm->mmu_lock);
5910 	trace_kvm_mmu_zap_all_fast(kvm);
5911 
5912 	/*
5913 	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5914 	 * held for the entire duration of zapping obsolete pages, it's
5915 	 * impossible for there to be multiple invalid generations associated
5916 	 * with *valid* shadow pages at any given time, i.e. there is exactly
5917 	 * one valid generation and (at most) one invalid generation.
5918 	 */
5919 	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5920 
5921 	/*
5922 	 * In order to ensure all vCPUs drop their soon-to-be invalid roots,
5923 	 * invalidating TDP MMU roots must be done while holding mmu_lock for
5924 	 * write and in the same critical section as making the reload request,
5925 	 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield.
5926 	 */
5927 	if (is_tdp_mmu_enabled(kvm))
5928 		kvm_tdp_mmu_invalidate_all_roots(kvm);
5929 
5930 	/*
5931 	 * Notify all vcpus to reload its shadow page table and flush TLB.
5932 	 * Then all vcpus will switch to new shadow page table with the new
5933 	 * mmu_valid_gen.
5934 	 *
5935 	 * Note: we need to do this under the protection of mmu_lock,
5936 	 * otherwise, vcpu would purge shadow page but miss tlb flush.
5937 	 */
5938 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
5939 
5940 	kvm_zap_obsolete_pages(kvm);
5941 
5942 	write_unlock(&kvm->mmu_lock);
5943 
5944 	/*
5945 	 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before
5946 	 * returning to the caller, e.g. if the zap is in response to a memslot
5947 	 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs
5948 	 * associated with the deleted memslot once the update completes, and
5949 	 * Deferring the zap until the final reference to the root is put would
5950 	 * lead to use-after-free.
5951 	 */
5952 	if (is_tdp_mmu_enabled(kvm))
5953 		kvm_tdp_mmu_zap_invalidated_roots(kvm);
5954 }
5955 
kvm_has_zapped_obsolete_pages(struct kvm * kvm)5956 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5957 {
5958 	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5959 }
5960 
kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm * kvm,struct kvm_memory_slot * slot,struct kvm_page_track_notifier_node * node)5961 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5962 			struct kvm_memory_slot *slot,
5963 			struct kvm_page_track_notifier_node *node)
5964 {
5965 	kvm_mmu_zap_all_fast(kvm);
5966 }
5967 
kvm_mmu_init_vm(struct kvm * kvm)5968 int kvm_mmu_init_vm(struct kvm *kvm)
5969 {
5970 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5971 	int r;
5972 
5973 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5974 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
5975 	INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
5976 	spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);
5977 
5978 	r = kvm_mmu_init_tdp_mmu(kvm);
5979 	if (r < 0)
5980 		return r;
5981 
5982 	node->track_write = kvm_mmu_pte_write;
5983 	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5984 	kvm_page_track_register_notifier(kvm, node);
5985 
5986 	kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache;
5987 	kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO;
5988 
5989 	kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO;
5990 
5991 	kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache;
5992 	kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO;
5993 
5994 	return 0;
5995 }
5996 
mmu_free_vm_memory_caches(struct kvm * kvm)5997 static void mmu_free_vm_memory_caches(struct kvm *kvm)
5998 {
5999 	kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache);
6000 	kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache);
6001 	kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache);
6002 }
6003 
kvm_mmu_uninit_vm(struct kvm * kvm)6004 void kvm_mmu_uninit_vm(struct kvm *kvm)
6005 {
6006 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
6007 
6008 	kvm_page_track_unregister_notifier(kvm, node);
6009 
6010 	kvm_mmu_uninit_tdp_mmu(kvm);
6011 
6012 	mmu_free_vm_memory_caches(kvm);
6013 }
6014 
kvm_rmap_zap_gfn_range(struct kvm * kvm,gfn_t gfn_start,gfn_t gfn_end)6015 static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
6016 {
6017 	const struct kvm_memory_slot *memslot;
6018 	struct kvm_memslots *slots;
6019 	struct kvm_memslot_iter iter;
6020 	bool flush = false;
6021 	gfn_t start, end;
6022 	int i;
6023 
6024 	if (!kvm_memslots_have_rmaps(kvm))
6025 		return flush;
6026 
6027 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6028 		slots = __kvm_memslots(kvm, i);
6029 
6030 		kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) {
6031 			memslot = iter.slot;
6032 			start = max(gfn_start, memslot->base_gfn);
6033 			end = min(gfn_end, memslot->base_gfn + memslot->npages);
6034 			if (WARN_ON_ONCE(start >= end))
6035 				continue;
6036 
6037 			flush = slot_handle_level_range(kvm, memslot, __kvm_zap_rmap,
6038 							PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
6039 							start, end - 1, true, flush);
6040 		}
6041 	}
6042 
6043 	return flush;
6044 }
6045 
6046 /*
6047  * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
6048  * (not including it)
6049  */
kvm_zap_gfn_range(struct kvm * kvm,gfn_t gfn_start,gfn_t gfn_end)6050 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
6051 {
6052 	bool flush;
6053 	int i;
6054 
6055 	if (WARN_ON_ONCE(gfn_end <= gfn_start))
6056 		return;
6057 
6058 	write_lock(&kvm->mmu_lock);
6059 
6060 	kvm_mmu_invalidate_begin(kvm, 0, -1ul);
6061 
6062 	flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end);
6063 
6064 	if (is_tdp_mmu_enabled(kvm)) {
6065 		for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
6066 			flush = kvm_tdp_mmu_zap_leafs(kvm, i, gfn_start,
6067 						      gfn_end, true, flush);
6068 	}
6069 
6070 	if (flush)
6071 		kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
6072 						   gfn_end - gfn_start);
6073 
6074 	kvm_mmu_invalidate_end(kvm, 0, -1ul);
6075 
6076 	write_unlock(&kvm->mmu_lock);
6077 }
6078 
slot_rmap_write_protect(struct kvm * kvm,struct kvm_rmap_head * rmap_head,const struct kvm_memory_slot * slot)6079 static bool slot_rmap_write_protect(struct kvm *kvm,
6080 				    struct kvm_rmap_head *rmap_head,
6081 				    const struct kvm_memory_slot *slot)
6082 {
6083 	return rmap_write_protect(rmap_head, false);
6084 }
6085 
kvm_mmu_slot_remove_write_access(struct kvm * kvm,const struct kvm_memory_slot * memslot,int start_level)6086 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
6087 				      const struct kvm_memory_slot *memslot,
6088 				      int start_level)
6089 {
6090 	if (kvm_memslots_have_rmaps(kvm)) {
6091 		write_lock(&kvm->mmu_lock);
6092 		slot_handle_level(kvm, memslot, slot_rmap_write_protect,
6093 				  start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
6094 		write_unlock(&kvm->mmu_lock);
6095 	}
6096 
6097 	if (is_tdp_mmu_enabled(kvm)) {
6098 		read_lock(&kvm->mmu_lock);
6099 		kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
6100 		read_unlock(&kvm->mmu_lock);
6101 	}
6102 }
6103 
need_topup(struct kvm_mmu_memory_cache * cache,int min)6104 static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min)
6105 {
6106 	return kvm_mmu_memory_cache_nr_free_objects(cache) < min;
6107 }
6108 
need_topup_split_caches_or_resched(struct kvm * kvm)6109 static bool need_topup_split_caches_or_resched(struct kvm *kvm)
6110 {
6111 	if (need_resched() || rwlock_needbreak(&kvm->mmu_lock))
6112 		return true;
6113 
6114 	/*
6115 	 * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed
6116 	 * to split a single huge page. Calculating how many are actually needed
6117 	 * is possible but not worth the complexity.
6118 	 */
6119 	return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) ||
6120 	       need_topup(&kvm->arch.split_page_header_cache, 1) ||
6121 	       need_topup(&kvm->arch.split_shadow_page_cache, 1);
6122 }
6123 
topup_split_caches(struct kvm * kvm)6124 static int topup_split_caches(struct kvm *kvm)
6125 {
6126 	/*
6127 	 * Allocating rmap list entries when splitting huge pages for nested
6128 	 * MMUs is uncommon as KVM needs to use a list if and only if there is
6129 	 * more than one rmap entry for a gfn, i.e. requires an L1 gfn to be
6130 	 * aliased by multiple L2 gfns and/or from multiple nested roots with
6131 	 * different roles.  Aliasing gfns when using TDP is atypical for VMMs;
6132 	 * a few gfns are often aliased during boot, e.g. when remapping BIOS,
6133 	 * but aliasing rarely occurs post-boot or for many gfns.  If there is
6134 	 * only one rmap entry, rmap->val points directly at that one entry and
6135 	 * doesn't need to allocate a list.  Buffer the cache by the default
6136 	 * capacity so that KVM doesn't have to drop mmu_lock to topup if KVM
6137 	 * encounters an aliased gfn or two.
6138 	 */
6139 	const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS +
6140 			     KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE;
6141 	int r;
6142 
6143 	lockdep_assert_held(&kvm->slots_lock);
6144 
6145 	r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity,
6146 					 SPLIT_DESC_CACHE_MIN_NR_OBJECTS);
6147 	if (r)
6148 		return r;
6149 
6150 	r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1);
6151 	if (r)
6152 		return r;
6153 
6154 	return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1);
6155 }
6156 
shadow_mmu_get_sp_for_split(struct kvm * kvm,u64 * huge_sptep)6157 static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep)
6158 {
6159 	struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep);
6160 	struct shadow_page_caches caches = {};
6161 	union kvm_mmu_page_role role;
6162 	unsigned int access;
6163 	gfn_t gfn;
6164 
6165 	gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep));
6166 	access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep));
6167 
6168 	/*
6169 	 * Note, huge page splitting always uses direct shadow pages, regardless
6170 	 * of whether the huge page itself is mapped by a direct or indirect
6171 	 * shadow page, since the huge page region itself is being directly
6172 	 * mapped with smaller pages.
6173 	 */
6174 	role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access);
6175 
6176 	/* Direct SPs do not require a shadowed_info_cache. */
6177 	caches.page_header_cache = &kvm->arch.split_page_header_cache;
6178 	caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache;
6179 
6180 	/* Safe to pass NULL for vCPU since requesting a direct SP. */
6181 	return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role);
6182 }
6183 
shadow_mmu_split_huge_page(struct kvm * kvm,const struct kvm_memory_slot * slot,u64 * huge_sptep)6184 static void shadow_mmu_split_huge_page(struct kvm *kvm,
6185 				       const struct kvm_memory_slot *slot,
6186 				       u64 *huge_sptep)
6187 
6188 {
6189 	struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache;
6190 	u64 huge_spte = READ_ONCE(*huge_sptep);
6191 	struct kvm_mmu_page *sp;
6192 	bool flush = false;
6193 	u64 *sptep, spte;
6194 	gfn_t gfn;
6195 	int index;
6196 
6197 	sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep);
6198 
6199 	for (index = 0; index < SPTE_ENT_PER_PAGE; index++) {
6200 		sptep = &sp->spt[index];
6201 		gfn = kvm_mmu_page_get_gfn(sp, index);
6202 
6203 		/*
6204 		 * The SP may already have populated SPTEs, e.g. if this huge
6205 		 * page is aliased by multiple sptes with the same access
6206 		 * permissions. These entries are guaranteed to map the same
6207 		 * gfn-to-pfn translation since the SP is direct, so no need to
6208 		 * modify them.
6209 		 *
6210 		 * However, if a given SPTE points to a lower level page table,
6211 		 * that lower level page table may only be partially populated.
6212 		 * Installing such SPTEs would effectively unmap a potion of the
6213 		 * huge page. Unmapping guest memory always requires a TLB flush
6214 		 * since a subsequent operation on the unmapped regions would
6215 		 * fail to detect the need to flush.
6216 		 */
6217 		if (is_shadow_present_pte(*sptep)) {
6218 			flush |= !is_last_spte(*sptep, sp->role.level);
6219 			continue;
6220 		}
6221 
6222 		spte = make_huge_page_split_spte(kvm, huge_spte, sp->role, index);
6223 		mmu_spte_set(sptep, spte);
6224 		__rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access);
6225 	}
6226 
6227 	__link_shadow_page(kvm, cache, huge_sptep, sp, flush);
6228 }
6229 
shadow_mmu_try_split_huge_page(struct kvm * kvm,const struct kvm_memory_slot * slot,u64 * huge_sptep)6230 static int shadow_mmu_try_split_huge_page(struct kvm *kvm,
6231 					  const struct kvm_memory_slot *slot,
6232 					  u64 *huge_sptep)
6233 {
6234 	struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep);
6235 	int level, r = 0;
6236 	gfn_t gfn;
6237 	u64 spte;
6238 
6239 	/* Grab information for the tracepoint before dropping the MMU lock. */
6240 	gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep));
6241 	level = huge_sp->role.level;
6242 	spte = *huge_sptep;
6243 
6244 	if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) {
6245 		r = -ENOSPC;
6246 		goto out;
6247 	}
6248 
6249 	if (need_topup_split_caches_or_resched(kvm)) {
6250 		write_unlock(&kvm->mmu_lock);
6251 		cond_resched();
6252 		/*
6253 		 * If the topup succeeds, return -EAGAIN to indicate that the
6254 		 * rmap iterator should be restarted because the MMU lock was
6255 		 * dropped.
6256 		 */
6257 		r = topup_split_caches(kvm) ?: -EAGAIN;
6258 		write_lock(&kvm->mmu_lock);
6259 		goto out;
6260 	}
6261 
6262 	shadow_mmu_split_huge_page(kvm, slot, huge_sptep);
6263 
6264 out:
6265 	trace_kvm_mmu_split_huge_page(gfn, spte, level, r);
6266 	return r;
6267 }
6268 
shadow_mmu_try_split_huge_pages(struct kvm * kvm,struct kvm_rmap_head * rmap_head,const struct kvm_memory_slot * slot)6269 static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm,
6270 					    struct kvm_rmap_head *rmap_head,
6271 					    const struct kvm_memory_slot *slot)
6272 {
6273 	struct rmap_iterator iter;
6274 	struct kvm_mmu_page *sp;
6275 	u64 *huge_sptep;
6276 	int r;
6277 
6278 restart:
6279 	for_each_rmap_spte(rmap_head, &iter, huge_sptep) {
6280 		sp = sptep_to_sp(huge_sptep);
6281 
6282 		/* TDP MMU is enabled, so rmap only contains nested MMU SPs. */
6283 		if (WARN_ON_ONCE(!sp->role.guest_mode))
6284 			continue;
6285 
6286 		/* The rmaps should never contain non-leaf SPTEs. */
6287 		if (WARN_ON_ONCE(!is_large_pte(*huge_sptep)))
6288 			continue;
6289 
6290 		/* SPs with level >PG_LEVEL_4K should never by unsync. */
6291 		if (WARN_ON_ONCE(sp->unsync))
6292 			continue;
6293 
6294 		/* Don't bother splitting huge pages on invalid SPs. */
6295 		if (sp->role.invalid)
6296 			continue;
6297 
6298 		r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep);
6299 
6300 		/*
6301 		 * The split succeeded or needs to be retried because the MMU
6302 		 * lock was dropped. Either way, restart the iterator to get it
6303 		 * back into a consistent state.
6304 		 */
6305 		if (!r || r == -EAGAIN)
6306 			goto restart;
6307 
6308 		/* The split failed and shouldn't be retried (e.g. -ENOMEM). */
6309 		break;
6310 	}
6311 
6312 	return false;
6313 }
6314 
kvm_shadow_mmu_try_split_huge_pages(struct kvm * kvm,const struct kvm_memory_slot * slot,gfn_t start,gfn_t end,int target_level)6315 static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm,
6316 						const struct kvm_memory_slot *slot,
6317 						gfn_t start, gfn_t end,
6318 						int target_level)
6319 {
6320 	int level;
6321 
6322 	/*
6323 	 * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working
6324 	 * down to the target level. This ensures pages are recursively split
6325 	 * all the way to the target level. There's no need to split pages
6326 	 * already at the target level.
6327 	 */
6328 	for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--) {
6329 		slot_handle_level_range(kvm, slot, shadow_mmu_try_split_huge_pages,
6330 					level, level, start, end - 1, true, false);
6331 	}
6332 }
6333 
6334 /* Must be called with the mmu_lock held in write-mode. */
kvm_mmu_try_split_huge_pages(struct kvm * kvm,const struct kvm_memory_slot * memslot,u64 start,u64 end,int target_level)6335 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
6336 				   const struct kvm_memory_slot *memslot,
6337 				   u64 start, u64 end,
6338 				   int target_level)
6339 {
6340 	if (!is_tdp_mmu_enabled(kvm))
6341 		return;
6342 
6343 	if (kvm_memslots_have_rmaps(kvm))
6344 		kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level);
6345 
6346 	kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false);
6347 
6348 	/*
6349 	 * A TLB flush is unnecessary at this point for the same resons as in
6350 	 * kvm_mmu_slot_try_split_huge_pages().
6351 	 */
6352 }
6353 
kvm_mmu_slot_try_split_huge_pages(struct kvm * kvm,const struct kvm_memory_slot * memslot,int target_level)6354 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
6355 					const struct kvm_memory_slot *memslot,
6356 					int target_level)
6357 {
6358 	u64 start = memslot->base_gfn;
6359 	u64 end = start + memslot->npages;
6360 
6361 	if (!is_tdp_mmu_enabled(kvm))
6362 		return;
6363 
6364 	if (kvm_memslots_have_rmaps(kvm)) {
6365 		write_lock(&kvm->mmu_lock);
6366 		kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level);
6367 		write_unlock(&kvm->mmu_lock);
6368 	}
6369 
6370 	read_lock(&kvm->mmu_lock);
6371 	kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true);
6372 	read_unlock(&kvm->mmu_lock);
6373 
6374 	/*
6375 	 * No TLB flush is necessary here. KVM will flush TLBs after
6376 	 * write-protecting and/or clearing dirty on the newly split SPTEs to
6377 	 * ensure that guest writes are reflected in the dirty log before the
6378 	 * ioctl to enable dirty logging on this memslot completes. Since the
6379 	 * split SPTEs retain the write and dirty bits of the huge SPTE, it is
6380 	 * safe for KVM to decide if a TLB flush is necessary based on the split
6381 	 * SPTEs.
6382 	 */
6383 }
6384 
kvm_mmu_zap_collapsible_spte(struct kvm * kvm,struct kvm_rmap_head * rmap_head,const struct kvm_memory_slot * slot)6385 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
6386 					 struct kvm_rmap_head *rmap_head,
6387 					 const struct kvm_memory_slot *slot)
6388 {
6389 	u64 *sptep;
6390 	struct rmap_iterator iter;
6391 	int need_tlb_flush = 0;
6392 	struct kvm_mmu_page *sp;
6393 
6394 restart:
6395 	for_each_rmap_spte(rmap_head, &iter, sptep) {
6396 		sp = sptep_to_sp(sptep);
6397 
6398 		/*
6399 		 * We cannot do huge page mapping for indirect shadow pages,
6400 		 * which are found on the last rmap (level = 1) when not using
6401 		 * tdp; such shadow pages are synced with the page table in
6402 		 * the guest, and the guest page table is using 4K page size
6403 		 * mapping if the indirect sp has level = 1.
6404 		 */
6405 		if (sp->role.direct &&
6406 		    sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
6407 							       PG_LEVEL_NUM)) {
6408 			kvm_zap_one_rmap_spte(kvm, rmap_head, sptep);
6409 
6410 			if (kvm_available_flush_tlb_with_range())
6411 				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
6412 					KVM_PAGES_PER_HPAGE(sp->role.level));
6413 			else
6414 				need_tlb_flush = 1;
6415 
6416 			goto restart;
6417 		}
6418 	}
6419 
6420 	return need_tlb_flush;
6421 }
6422 
kvm_rmap_zap_collapsible_sptes(struct kvm * kvm,const struct kvm_memory_slot * slot)6423 static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm,
6424 					   const struct kvm_memory_slot *slot)
6425 {
6426 	/*
6427 	 * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap
6428 	 * pages that are already mapped at the maximum hugepage level.
6429 	 */
6430 	if (slot_handle_level(kvm, slot, kvm_mmu_zap_collapsible_spte,
6431 			      PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true))
6432 		kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
6433 }
6434 
kvm_mmu_zap_collapsible_sptes(struct kvm * kvm,const struct kvm_memory_slot * slot)6435 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
6436 				   const struct kvm_memory_slot *slot)
6437 {
6438 	if (kvm_memslots_have_rmaps(kvm)) {
6439 		write_lock(&kvm->mmu_lock);
6440 		kvm_rmap_zap_collapsible_sptes(kvm, slot);
6441 		write_unlock(&kvm->mmu_lock);
6442 	}
6443 
6444 	if (is_tdp_mmu_enabled(kvm)) {
6445 		read_lock(&kvm->mmu_lock);
6446 		kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot);
6447 		read_unlock(&kvm->mmu_lock);
6448 	}
6449 }
6450 
kvm_arch_flush_remote_tlbs_memslot(struct kvm * kvm,const struct kvm_memory_slot * memslot)6451 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
6452 					const struct kvm_memory_slot *memslot)
6453 {
6454 	/*
6455 	 * All current use cases for flushing the TLBs for a specific memslot
6456 	 * related to dirty logging, and many do the TLB flush out of mmu_lock.
6457 	 * The interaction between the various operations on memslot must be
6458 	 * serialized by slots_locks to ensure the TLB flush from one operation
6459 	 * is observed by any other operation on the same memslot.
6460 	 */
6461 	lockdep_assert_held(&kvm->slots_lock);
6462 	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
6463 					   memslot->npages);
6464 }
6465 
kvm_mmu_slot_leaf_clear_dirty(struct kvm * kvm,const struct kvm_memory_slot * memslot)6466 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
6467 				   const struct kvm_memory_slot *memslot)
6468 {
6469 	if (kvm_memslots_have_rmaps(kvm)) {
6470 		write_lock(&kvm->mmu_lock);
6471 		/*
6472 		 * Clear dirty bits only on 4k SPTEs since the legacy MMU only
6473 		 * support dirty logging at a 4k granularity.
6474 		 */
6475 		slot_handle_level_4k(kvm, memslot, __rmap_clear_dirty, false);
6476 		write_unlock(&kvm->mmu_lock);
6477 	}
6478 
6479 	if (is_tdp_mmu_enabled(kvm)) {
6480 		read_lock(&kvm->mmu_lock);
6481 		kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
6482 		read_unlock(&kvm->mmu_lock);
6483 	}
6484 
6485 	/*
6486 	 * The caller will flush the TLBs after this function returns.
6487 	 *
6488 	 * It's also safe to flush TLBs out of mmu lock here as currently this
6489 	 * function is only used for dirty logging, in which case flushing TLB
6490 	 * out of mmu lock also guarantees no dirty pages will be lost in
6491 	 * dirty_bitmap.
6492 	 */
6493 }
6494 
kvm_mmu_zap_all(struct kvm * kvm)6495 void kvm_mmu_zap_all(struct kvm *kvm)
6496 {
6497 	struct kvm_mmu_page *sp, *node;
6498 	LIST_HEAD(invalid_list);
6499 	int ign;
6500 
6501 	write_lock(&kvm->mmu_lock);
6502 restart:
6503 	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6504 		if (WARN_ON(sp->role.invalid))
6505 			continue;
6506 		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6507 			goto restart;
6508 		if (cond_resched_rwlock_write(&kvm->mmu_lock))
6509 			goto restart;
6510 	}
6511 
6512 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
6513 
6514 	if (is_tdp_mmu_enabled(kvm))
6515 		kvm_tdp_mmu_zap_all(kvm);
6516 
6517 	write_unlock(&kvm->mmu_lock);
6518 }
6519 
kvm_mmu_invalidate_mmio_sptes(struct kvm * kvm,u64 gen)6520 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6521 {
6522 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6523 
6524 	gen &= MMIO_SPTE_GEN_MASK;
6525 
6526 	/*
6527 	 * Generation numbers are incremented in multiples of the number of
6528 	 * address spaces in order to provide unique generations across all
6529 	 * address spaces.  Strip what is effectively the address space
6530 	 * modifier prior to checking for a wrap of the MMIO generation so
6531 	 * that a wrap in any address space is detected.
6532 	 */
6533 	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
6534 
6535 	/*
6536 	 * The very rare case: if the MMIO generation number has wrapped,
6537 	 * zap all shadow pages.
6538 	 */
6539 	if (unlikely(gen == 0)) {
6540 		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
6541 		kvm_mmu_zap_all_fast(kvm);
6542 	}
6543 }
6544 
6545 static unsigned long
mmu_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)6546 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
6547 {
6548 	struct kvm *kvm;
6549 	int nr_to_scan = sc->nr_to_scan;
6550 	unsigned long freed = 0;
6551 
6552 	mutex_lock(&kvm_lock);
6553 
6554 	list_for_each_entry(kvm, &vm_list, vm_list) {
6555 		int idx;
6556 		LIST_HEAD(invalid_list);
6557 
6558 		/*
6559 		 * Never scan more than sc->nr_to_scan VM instances.
6560 		 * Will not hit this condition practically since we do not try
6561 		 * to shrink more than one VM and it is very unlikely to see
6562 		 * !n_used_mmu_pages so many times.
6563 		 */
6564 		if (!nr_to_scan--)
6565 			break;
6566 		/*
6567 		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6568 		 * here. We may skip a VM instance errorneosly, but we do not
6569 		 * want to shrink a VM that only started to populate its MMU
6570 		 * anyway.
6571 		 */
6572 		if (!kvm->arch.n_used_mmu_pages &&
6573 		    !kvm_has_zapped_obsolete_pages(kvm))
6574 			continue;
6575 
6576 		idx = srcu_read_lock(&kvm->srcu);
6577 		write_lock(&kvm->mmu_lock);
6578 
6579 		if (kvm_has_zapped_obsolete_pages(kvm)) {
6580 			kvm_mmu_commit_zap_page(kvm,
6581 			      &kvm->arch.zapped_obsolete_pages);
6582 			goto unlock;
6583 		}
6584 
6585 		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
6586 
6587 unlock:
6588 		write_unlock(&kvm->mmu_lock);
6589 		srcu_read_unlock(&kvm->srcu, idx);
6590 
6591 		/*
6592 		 * unfair on small ones
6593 		 * per-vm shrinkers cry out
6594 		 * sadness comes quickly
6595 		 */
6596 		list_move_tail(&kvm->vm_list, &vm_list);
6597 		break;
6598 	}
6599 
6600 	mutex_unlock(&kvm_lock);
6601 	return freed;
6602 }
6603 
6604 static unsigned long
mmu_shrink_count(struct shrinker * shrink,struct shrink_control * sc)6605 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
6606 {
6607 	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6608 }
6609 
6610 static struct shrinker mmu_shrinker = {
6611 	.count_objects = mmu_shrink_count,
6612 	.scan_objects = mmu_shrink_scan,
6613 	.seeks = DEFAULT_SEEKS * 10,
6614 };
6615 
mmu_destroy_caches(void)6616 static void mmu_destroy_caches(void)
6617 {
6618 	kmem_cache_destroy(pte_list_desc_cache);
6619 	kmem_cache_destroy(mmu_page_header_cache);
6620 }
6621 
get_nx_auto_mode(void)6622 static bool get_nx_auto_mode(void)
6623 {
6624 	/* Return true when CPU has the bug, and mitigations are ON */
6625 	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6626 }
6627 
__set_nx_huge_pages(bool val)6628 static void __set_nx_huge_pages(bool val)
6629 {
6630 	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6631 }
6632 
set_nx_huge_pages(const char * val,const struct kernel_param * kp)6633 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6634 {
6635 	bool old_val = nx_huge_pages;
6636 	bool new_val;
6637 
6638 	/* In "auto" mode deploy workaround only if CPU has the bug. */
6639 	if (sysfs_streq(val, "off"))
6640 		new_val = 0;
6641 	else if (sysfs_streq(val, "force"))
6642 		new_val = 1;
6643 	else if (sysfs_streq(val, "auto"))
6644 		new_val = get_nx_auto_mode();
6645 	else if (strtobool(val, &new_val) < 0)
6646 		return -EINVAL;
6647 
6648 	__set_nx_huge_pages(new_val);
6649 
6650 	if (new_val != old_val) {
6651 		struct kvm *kvm;
6652 
6653 		mutex_lock(&kvm_lock);
6654 
6655 		list_for_each_entry(kvm, &vm_list, vm_list) {
6656 			mutex_lock(&kvm->slots_lock);
6657 			kvm_mmu_zap_all_fast(kvm);
6658 			mutex_unlock(&kvm->slots_lock);
6659 
6660 			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6661 		}
6662 		mutex_unlock(&kvm_lock);
6663 	}
6664 
6665 	return 0;
6666 }
6667 
6668 /*
6669  * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as
6670  * its default value of -1 is technically undefined behavior for a boolean.
6671  * Forward the module init call to SPTE code so that it too can handle module
6672  * params that need to be resolved/snapshot.
6673  */
kvm_mmu_x86_module_init(void)6674 void __init kvm_mmu_x86_module_init(void)
6675 {
6676 	if (nx_huge_pages == -1)
6677 		__set_nx_huge_pages(get_nx_auto_mode());
6678 
6679 	kvm_mmu_spte_module_init();
6680 }
6681 
6682 /*
6683  * The bulk of the MMU initialization is deferred until the vendor module is
6684  * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need
6685  * to be reset when a potentially different vendor module is loaded.
6686  */
kvm_mmu_vendor_module_init(void)6687 int kvm_mmu_vendor_module_init(void)
6688 {
6689 	int ret = -ENOMEM;
6690 
6691 	/*
6692 	 * MMU roles use union aliasing which is, generally speaking, an
6693 	 * undefined behavior. However, we supposedly know how compilers behave
6694 	 * and the current status quo is unlikely to change. Guardians below are
6695 	 * supposed to let us know if the assumption becomes false.
6696 	 */
6697 	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6698 	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6699 	BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64));
6700 
6701 	kvm_mmu_reset_all_pte_masks();
6702 
6703 	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6704 					    sizeof(struct pte_list_desc),
6705 					    0, SLAB_ACCOUNT, NULL);
6706 	if (!pte_list_desc_cache)
6707 		goto out;
6708 
6709 	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6710 						  sizeof(struct kvm_mmu_page),
6711 						  0, SLAB_ACCOUNT, NULL);
6712 	if (!mmu_page_header_cache)
6713 		goto out;
6714 
6715 	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6716 		goto out;
6717 
6718 	ret = register_shrinker(&mmu_shrinker, "x86-mmu");
6719 	if (ret)
6720 		goto out_shrinker;
6721 
6722 	return 0;
6723 
6724 out_shrinker:
6725 	percpu_counter_destroy(&kvm_total_used_mmu_pages);
6726 out:
6727 	mmu_destroy_caches();
6728 	return ret;
6729 }
6730 
kvm_mmu_destroy(struct kvm_vcpu * vcpu)6731 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6732 {
6733 	kvm_mmu_unload(vcpu);
6734 	free_mmu_pages(&vcpu->arch.root_mmu);
6735 	free_mmu_pages(&vcpu->arch.guest_mmu);
6736 	mmu_free_memory_caches(vcpu);
6737 }
6738 
kvm_mmu_vendor_module_exit(void)6739 void kvm_mmu_vendor_module_exit(void)
6740 {
6741 	mmu_destroy_caches();
6742 	percpu_counter_destroy(&kvm_total_used_mmu_pages);
6743 	unregister_shrinker(&mmu_shrinker);
6744 }
6745 
6746 /*
6747  * Calculate the effective recovery period, accounting for '0' meaning "let KVM
6748  * select a halving time of 1 hour".  Returns true if recovery is enabled.
6749  */
calc_nx_huge_pages_recovery_period(uint * period)6750 static bool calc_nx_huge_pages_recovery_period(uint *period)
6751 {
6752 	/*
6753 	 * Use READ_ONCE to get the params, this may be called outside of the
6754 	 * param setters, e.g. by the kthread to compute its next timeout.
6755 	 */
6756 	bool enabled = READ_ONCE(nx_huge_pages);
6757 	uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6758 
6759 	if (!enabled || !ratio)
6760 		return false;
6761 
6762 	*period = READ_ONCE(nx_huge_pages_recovery_period_ms);
6763 	if (!*period) {
6764 		/* Make sure the period is not less than one second.  */
6765 		ratio = min(ratio, 3600u);
6766 		*period = 60 * 60 * 1000 / ratio;
6767 	}
6768 	return true;
6769 }
6770 
set_nx_huge_pages_recovery_param(const char * val,const struct kernel_param * kp)6771 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp)
6772 {
6773 	bool was_recovery_enabled, is_recovery_enabled;
6774 	uint old_period, new_period;
6775 	int err;
6776 
6777 	was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period);
6778 
6779 	err = param_set_uint(val, kp);
6780 	if (err)
6781 		return err;
6782 
6783 	is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period);
6784 
6785 	if (is_recovery_enabled &&
6786 	    (!was_recovery_enabled || old_period > new_period)) {
6787 		struct kvm *kvm;
6788 
6789 		mutex_lock(&kvm_lock);
6790 
6791 		list_for_each_entry(kvm, &vm_list, vm_list)
6792 			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6793 
6794 		mutex_unlock(&kvm_lock);
6795 	}
6796 
6797 	return err;
6798 }
6799 
kvm_recover_nx_lpages(struct kvm * kvm)6800 static void kvm_recover_nx_lpages(struct kvm *kvm)
6801 {
6802 	unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
6803 	int rcu_idx;
6804 	struct kvm_mmu_page *sp;
6805 	unsigned int ratio;
6806 	LIST_HEAD(invalid_list);
6807 	bool flush = false;
6808 	ulong to_zap;
6809 
6810 	rcu_idx = srcu_read_lock(&kvm->srcu);
6811 	write_lock(&kvm->mmu_lock);
6812 
6813 	/*
6814 	 * Zapping TDP MMU shadow pages, including the remote TLB flush, must
6815 	 * be done under RCU protection, because the pages are freed via RCU
6816 	 * callback.
6817 	 */
6818 	rcu_read_lock();
6819 
6820 	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6821 	to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
6822 	for ( ; to_zap; --to_zap) {
6823 		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
6824 			break;
6825 
6826 		/*
6827 		 * We use a separate list instead of just using active_mmu_pages
6828 		 * because the number of lpage_disallowed pages is expected to
6829 		 * be relatively small compared to the total.
6830 		 */
6831 		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6832 				      struct kvm_mmu_page,
6833 				      lpage_disallowed_link);
6834 		WARN_ON_ONCE(!sp->lpage_disallowed);
6835 		if (is_tdp_mmu_page(sp)) {
6836 			flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6837 		} else {
6838 			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6839 			WARN_ON_ONCE(sp->lpage_disallowed);
6840 		}
6841 
6842 		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6843 			kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6844 			rcu_read_unlock();
6845 
6846 			cond_resched_rwlock_write(&kvm->mmu_lock);
6847 			flush = false;
6848 
6849 			rcu_read_lock();
6850 		}
6851 	}
6852 	kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6853 
6854 	rcu_read_unlock();
6855 
6856 	write_unlock(&kvm->mmu_lock);
6857 	srcu_read_unlock(&kvm->srcu, rcu_idx);
6858 }
6859 
get_nx_lpage_recovery_timeout(u64 start_time)6860 static long get_nx_lpage_recovery_timeout(u64 start_time)
6861 {
6862 	bool enabled;
6863 	uint period;
6864 
6865 	enabled = calc_nx_huge_pages_recovery_period(&period);
6866 
6867 	return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64()
6868 		       : MAX_SCHEDULE_TIMEOUT;
6869 }
6870 
kvm_nx_lpage_recovery_worker(struct kvm * kvm,uintptr_t data)6871 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6872 {
6873 	u64 start_time;
6874 	long remaining_time;
6875 
6876 	while (true) {
6877 		start_time = get_jiffies_64();
6878 		remaining_time = get_nx_lpage_recovery_timeout(start_time);
6879 
6880 		set_current_state(TASK_INTERRUPTIBLE);
6881 		while (!kthread_should_stop() && remaining_time > 0) {
6882 			schedule_timeout(remaining_time);
6883 			remaining_time = get_nx_lpage_recovery_timeout(start_time);
6884 			set_current_state(TASK_INTERRUPTIBLE);
6885 		}
6886 
6887 		set_current_state(TASK_RUNNING);
6888 
6889 		if (kthread_should_stop())
6890 			return 0;
6891 
6892 		kvm_recover_nx_lpages(kvm);
6893 	}
6894 }
6895 
kvm_mmu_post_init_vm(struct kvm * kvm)6896 int kvm_mmu_post_init_vm(struct kvm *kvm)
6897 {
6898 	int err;
6899 
6900 	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6901 					  "kvm-nx-lpage-recovery",
6902 					  &kvm->arch.nx_lpage_recovery_thread);
6903 	if (!err)
6904 		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6905 
6906 	return err;
6907 }
6908 
kvm_mmu_pre_destroy_vm(struct kvm * kvm)6909 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6910 {
6911 	if (kvm->arch.nx_lpage_recovery_thread)
6912 		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6913 }
6914