1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * kvm nested virtualization support for s390x
4 *
5 * Copyright IBM Corp. 2016, 2018
6 *
7 * Author(s): David Hildenbrand <dahi@linux.vnet.ibm.com>
8 */
9 #include <linux/vmalloc.h>
10 #include <linux/kvm_host.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/bitmap.h>
14 #include <linux/sched/signal.h>
15
16 #include <asm/gmap.h>
17 #include <asm/mmu_context.h>
18 #include <asm/sclp.h>
19 #include <asm/nmi.h>
20 #include <asm/dis.h>
21 #include <asm/fpu/api.h>
22 #include "kvm-s390.h"
23 #include "gaccess.h"
24
25 struct vsie_page {
26 struct kvm_s390_sie_block scb_s; /* 0x0000 */
27 /*
28 * the backup info for machine check. ensure it's at
29 * the same offset as that in struct sie_page!
30 */
31 struct mcck_volatile_info mcck_info; /* 0x0200 */
32 /*
33 * The pinned original scb. Be aware that other VCPUs can modify
34 * it while we read from it. Values that are used for conditions or
35 * are reused conditionally, should be accessed via READ_ONCE.
36 */
37 struct kvm_s390_sie_block *scb_o; /* 0x0218 */
38 /* the shadow gmap in use by the vsie_page */
39 struct gmap *gmap; /* 0x0220 */
40 /* address of the last reported fault to guest2 */
41 unsigned long fault_addr; /* 0x0228 */
42 /* calculated guest addresses of satellite control blocks */
43 gpa_t sca_gpa; /* 0x0230 */
44 gpa_t itdba_gpa; /* 0x0238 */
45 gpa_t gvrd_gpa; /* 0x0240 */
46 gpa_t riccbd_gpa; /* 0x0248 */
47 gpa_t sdnx_gpa; /* 0x0250 */
48 __u8 reserved[0x0700 - 0x0258]; /* 0x0258 */
49 struct kvm_s390_crypto_cb crycb; /* 0x0700 */
50 __u8 fac[S390_ARCH_FAC_LIST_SIZE_BYTE]; /* 0x0800 */
51 };
52
53 /* trigger a validity icpt for the given scb */
set_validity_icpt(struct kvm_s390_sie_block * scb,__u16 reason_code)54 static int set_validity_icpt(struct kvm_s390_sie_block *scb,
55 __u16 reason_code)
56 {
57 scb->ipa = 0x1000;
58 scb->ipb = ((__u32) reason_code) << 16;
59 scb->icptcode = ICPT_VALIDITY;
60 return 1;
61 }
62
63 /* mark the prefix as unmapped, this will block the VSIE */
prefix_unmapped(struct vsie_page * vsie_page)64 static void prefix_unmapped(struct vsie_page *vsie_page)
65 {
66 atomic_or(PROG_REQUEST, &vsie_page->scb_s.prog20);
67 }
68
69 /* mark the prefix as unmapped and wait until the VSIE has been left */
prefix_unmapped_sync(struct vsie_page * vsie_page)70 static void prefix_unmapped_sync(struct vsie_page *vsie_page)
71 {
72 prefix_unmapped(vsie_page);
73 if (vsie_page->scb_s.prog0c & PROG_IN_SIE)
74 atomic_or(CPUSTAT_STOP_INT, &vsie_page->scb_s.cpuflags);
75 while (vsie_page->scb_s.prog0c & PROG_IN_SIE)
76 cpu_relax();
77 }
78
79 /* mark the prefix as mapped, this will allow the VSIE to run */
prefix_mapped(struct vsie_page * vsie_page)80 static void prefix_mapped(struct vsie_page *vsie_page)
81 {
82 atomic_andnot(PROG_REQUEST, &vsie_page->scb_s.prog20);
83 }
84
85 /* test if the prefix is mapped into the gmap shadow */
prefix_is_mapped(struct vsie_page * vsie_page)86 static int prefix_is_mapped(struct vsie_page *vsie_page)
87 {
88 return !(atomic_read(&vsie_page->scb_s.prog20) & PROG_REQUEST);
89 }
90
91 /* copy the updated intervention request bits into the shadow scb */
update_intervention_requests(struct vsie_page * vsie_page)92 static void update_intervention_requests(struct vsie_page *vsie_page)
93 {
94 const int bits = CPUSTAT_STOP_INT | CPUSTAT_IO_INT | CPUSTAT_EXT_INT;
95 int cpuflags;
96
97 cpuflags = atomic_read(&vsie_page->scb_o->cpuflags);
98 atomic_andnot(bits, &vsie_page->scb_s.cpuflags);
99 atomic_or(cpuflags & bits, &vsie_page->scb_s.cpuflags);
100 }
101
102 /* shadow (filter and validate) the cpuflags */
prepare_cpuflags(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)103 static int prepare_cpuflags(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
104 {
105 struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
106 struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
107 int newflags, cpuflags = atomic_read(&scb_o->cpuflags);
108
109 /* we don't allow ESA/390 guests */
110 if (!(cpuflags & CPUSTAT_ZARCH))
111 return set_validity_icpt(scb_s, 0x0001U);
112
113 if (cpuflags & (CPUSTAT_RRF | CPUSTAT_MCDS))
114 return set_validity_icpt(scb_s, 0x0001U);
115 else if (cpuflags & (CPUSTAT_SLSV | CPUSTAT_SLSR))
116 return set_validity_icpt(scb_s, 0x0007U);
117
118 /* intervention requests will be set later */
119 newflags = CPUSTAT_ZARCH;
120 if (cpuflags & CPUSTAT_GED && test_kvm_facility(vcpu->kvm, 8))
121 newflags |= CPUSTAT_GED;
122 if (cpuflags & CPUSTAT_GED2 && test_kvm_facility(vcpu->kvm, 78)) {
123 if (cpuflags & CPUSTAT_GED)
124 return set_validity_icpt(scb_s, 0x0001U);
125 newflags |= CPUSTAT_GED2;
126 }
127 if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_GPERE))
128 newflags |= cpuflags & CPUSTAT_P;
129 if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_GSLS))
130 newflags |= cpuflags & CPUSTAT_SM;
131 if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_IBS))
132 newflags |= cpuflags & CPUSTAT_IBS;
133 if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_KSS))
134 newflags |= cpuflags & CPUSTAT_KSS;
135
136 atomic_set(&scb_s->cpuflags, newflags);
137 return 0;
138 }
139 /* Copy to APCB FORMAT1 from APCB FORMAT0 */
setup_apcb10(struct kvm_vcpu * vcpu,struct kvm_s390_apcb1 * apcb_s,unsigned long crycb_gpa,struct kvm_s390_apcb1 * apcb_h)140 static int setup_apcb10(struct kvm_vcpu *vcpu, struct kvm_s390_apcb1 *apcb_s,
141 unsigned long crycb_gpa, struct kvm_s390_apcb1 *apcb_h)
142 {
143 struct kvm_s390_apcb0 tmp;
144 unsigned long apcb_gpa;
145
146 apcb_gpa = crycb_gpa + offsetof(struct kvm_s390_crypto_cb, apcb0);
147
148 if (read_guest_real(vcpu, apcb_gpa, &tmp,
149 sizeof(struct kvm_s390_apcb0)))
150 return -EFAULT;
151
152 apcb_s->apm[0] = apcb_h->apm[0] & tmp.apm[0];
153 apcb_s->aqm[0] = apcb_h->aqm[0] & tmp.aqm[0] & 0xffff000000000000UL;
154 apcb_s->adm[0] = apcb_h->adm[0] & tmp.adm[0] & 0xffff000000000000UL;
155
156 return 0;
157
158 }
159
160 /**
161 * setup_apcb00 - Copy to APCB FORMAT0 from APCB FORMAT0
162 * @vcpu: pointer to the virtual CPU
163 * @apcb_s: pointer to start of apcb in the shadow crycb
164 * @crycb_gpa: guest physical address to start of original guest crycb
165 * @apcb_h: pointer to start of apcb in the guest1
166 *
167 * Returns 0 and -EFAULT on error reading guest apcb
168 */
setup_apcb00(struct kvm_vcpu * vcpu,unsigned long * apcb_s,unsigned long crycb_gpa,unsigned long * apcb_h)169 static int setup_apcb00(struct kvm_vcpu *vcpu, unsigned long *apcb_s,
170 unsigned long crycb_gpa, unsigned long *apcb_h)
171 {
172 unsigned long apcb_gpa;
173
174 apcb_gpa = crycb_gpa + offsetof(struct kvm_s390_crypto_cb, apcb0);
175
176 if (read_guest_real(vcpu, apcb_gpa, apcb_s,
177 sizeof(struct kvm_s390_apcb0)))
178 return -EFAULT;
179
180 bitmap_and(apcb_s, apcb_s, apcb_h,
181 BITS_PER_BYTE * sizeof(struct kvm_s390_apcb0));
182
183 return 0;
184 }
185
186 /**
187 * setup_apcb11 - Copy the FORMAT1 APCB from the guest to the shadow CRYCB
188 * @vcpu: pointer to the virtual CPU
189 * @apcb_s: pointer to start of apcb in the shadow crycb
190 * @crycb_gpa: guest physical address to start of original guest crycb
191 * @apcb_h: pointer to start of apcb in the host
192 *
193 * Returns 0 and -EFAULT on error reading guest apcb
194 */
setup_apcb11(struct kvm_vcpu * vcpu,unsigned long * apcb_s,unsigned long crycb_gpa,unsigned long * apcb_h)195 static int setup_apcb11(struct kvm_vcpu *vcpu, unsigned long *apcb_s,
196 unsigned long crycb_gpa,
197 unsigned long *apcb_h)
198 {
199 unsigned long apcb_gpa;
200
201 apcb_gpa = crycb_gpa + offsetof(struct kvm_s390_crypto_cb, apcb1);
202
203 if (read_guest_real(vcpu, apcb_gpa, apcb_s,
204 sizeof(struct kvm_s390_apcb1)))
205 return -EFAULT;
206
207 bitmap_and(apcb_s, apcb_s, apcb_h,
208 BITS_PER_BYTE * sizeof(struct kvm_s390_apcb1));
209
210 return 0;
211 }
212
213 /**
214 * setup_apcb - Create a shadow copy of the apcb.
215 * @vcpu: pointer to the virtual CPU
216 * @crycb_s: pointer to shadow crycb
217 * @crycb_gpa: guest physical address of original guest crycb
218 * @crycb_h: pointer to the host crycb
219 * @fmt_o: format of the original guest crycb.
220 * @fmt_h: format of the host crycb.
221 *
222 * Checks the compatibility between the guest and host crycb and calls the
223 * appropriate copy function.
224 *
225 * Return 0 or an error number if the guest and host crycb are incompatible.
226 */
setup_apcb(struct kvm_vcpu * vcpu,struct kvm_s390_crypto_cb * crycb_s,const u32 crycb_gpa,struct kvm_s390_crypto_cb * crycb_h,int fmt_o,int fmt_h)227 static int setup_apcb(struct kvm_vcpu *vcpu, struct kvm_s390_crypto_cb *crycb_s,
228 const u32 crycb_gpa,
229 struct kvm_s390_crypto_cb *crycb_h,
230 int fmt_o, int fmt_h)
231 {
232 switch (fmt_o) {
233 case CRYCB_FORMAT2:
234 if ((crycb_gpa & PAGE_MASK) != ((crycb_gpa + 256) & PAGE_MASK))
235 return -EACCES;
236 if (fmt_h != CRYCB_FORMAT2)
237 return -EINVAL;
238 return setup_apcb11(vcpu, (unsigned long *)&crycb_s->apcb1,
239 crycb_gpa,
240 (unsigned long *)&crycb_h->apcb1);
241 case CRYCB_FORMAT1:
242 switch (fmt_h) {
243 case CRYCB_FORMAT2:
244 return setup_apcb10(vcpu, &crycb_s->apcb1,
245 crycb_gpa,
246 &crycb_h->apcb1);
247 case CRYCB_FORMAT1:
248 return setup_apcb00(vcpu,
249 (unsigned long *) &crycb_s->apcb0,
250 crycb_gpa,
251 (unsigned long *) &crycb_h->apcb0);
252 }
253 break;
254 case CRYCB_FORMAT0:
255 if ((crycb_gpa & PAGE_MASK) != ((crycb_gpa + 32) & PAGE_MASK))
256 return -EACCES;
257
258 switch (fmt_h) {
259 case CRYCB_FORMAT2:
260 return setup_apcb10(vcpu, &crycb_s->apcb1,
261 crycb_gpa,
262 &crycb_h->apcb1);
263 case CRYCB_FORMAT1:
264 case CRYCB_FORMAT0:
265 return setup_apcb00(vcpu,
266 (unsigned long *) &crycb_s->apcb0,
267 crycb_gpa,
268 (unsigned long *) &crycb_h->apcb0);
269 }
270 }
271 return -EINVAL;
272 }
273
274 /**
275 * shadow_crycb - Create a shadow copy of the crycb block
276 * @vcpu: a pointer to the virtual CPU
277 * @vsie_page: a pointer to internal date used for the vSIE
278 *
279 * Create a shadow copy of the crycb block and setup key wrapping, if
280 * requested for guest 3 and enabled for guest 2.
281 *
282 * We accept format-1 or format-2, but we convert format-1 into format-2
283 * in the shadow CRYCB.
284 * Using format-2 enables the firmware to choose the right format when
285 * scheduling the SIE.
286 * There is nothing to do for format-0.
287 *
288 * This function centralize the issuing of set_validity_icpt() for all
289 * the subfunctions working on the crycb.
290 *
291 * Returns: - 0 if shadowed or nothing to do
292 * - > 0 if control has to be given to guest 2
293 */
shadow_crycb(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)294 static int shadow_crycb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
295 {
296 struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
297 struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
298 const uint32_t crycbd_o = READ_ONCE(scb_o->crycbd);
299 const u32 crycb_addr = crycbd_o & 0x7ffffff8U;
300 unsigned long *b1, *b2;
301 u8 ecb3_flags;
302 u32 ecd_flags;
303 int apie_h;
304 int apie_s;
305 int key_msk = test_kvm_facility(vcpu->kvm, 76);
306 int fmt_o = crycbd_o & CRYCB_FORMAT_MASK;
307 int fmt_h = vcpu->arch.sie_block->crycbd & CRYCB_FORMAT_MASK;
308 int ret = 0;
309
310 scb_s->crycbd = 0;
311
312 apie_h = vcpu->arch.sie_block->eca & ECA_APIE;
313 apie_s = apie_h & scb_o->eca;
314 if (!apie_s && (!key_msk || (fmt_o == CRYCB_FORMAT0)))
315 return 0;
316
317 if (!crycb_addr)
318 return set_validity_icpt(scb_s, 0x0039U);
319
320 if (fmt_o == CRYCB_FORMAT1)
321 if ((crycb_addr & PAGE_MASK) !=
322 ((crycb_addr + 128) & PAGE_MASK))
323 return set_validity_icpt(scb_s, 0x003CU);
324
325 if (apie_s) {
326 ret = setup_apcb(vcpu, &vsie_page->crycb, crycb_addr,
327 vcpu->kvm->arch.crypto.crycb,
328 fmt_o, fmt_h);
329 if (ret)
330 goto end;
331 scb_s->eca |= scb_o->eca & ECA_APIE;
332 }
333
334 /* we may only allow it if enabled for guest 2 */
335 ecb3_flags = scb_o->ecb3 & vcpu->arch.sie_block->ecb3 &
336 (ECB3_AES | ECB3_DEA);
337 ecd_flags = scb_o->ecd & vcpu->arch.sie_block->ecd & ECD_ECC;
338 if (!ecb3_flags && !ecd_flags)
339 goto end;
340
341 /* copy only the wrapping keys */
342 if (read_guest_real(vcpu, crycb_addr + 72,
343 vsie_page->crycb.dea_wrapping_key_mask, 56))
344 return set_validity_icpt(scb_s, 0x0035U);
345
346 scb_s->ecb3 |= ecb3_flags;
347 scb_s->ecd |= ecd_flags;
348
349 /* xor both blocks in one run */
350 b1 = (unsigned long *) vsie_page->crycb.dea_wrapping_key_mask;
351 b2 = (unsigned long *)
352 vcpu->kvm->arch.crypto.crycb->dea_wrapping_key_mask;
353 /* as 56%8 == 0, bitmap_xor won't overwrite any data */
354 bitmap_xor(b1, b1, b2, BITS_PER_BYTE * 56);
355 end:
356 switch (ret) {
357 case -EINVAL:
358 return set_validity_icpt(scb_s, 0x0022U);
359 case -EFAULT:
360 return set_validity_icpt(scb_s, 0x0035U);
361 case -EACCES:
362 return set_validity_icpt(scb_s, 0x003CU);
363 }
364 scb_s->crycbd = ((__u32)(__u64) &vsie_page->crycb) | CRYCB_FORMAT2;
365 return 0;
366 }
367
368 /* shadow (round up/down) the ibc to avoid validity icpt */
prepare_ibc(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)369 static void prepare_ibc(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
370 {
371 struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
372 struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
373 /* READ_ONCE does not work on bitfields - use a temporary variable */
374 const uint32_t __new_ibc = scb_o->ibc;
375 const uint32_t new_ibc = READ_ONCE(__new_ibc) & 0x0fffU;
376 __u64 min_ibc = (sclp.ibc >> 16) & 0x0fffU;
377
378 scb_s->ibc = 0;
379 /* ibc installed in g2 and requested for g3 */
380 if (vcpu->kvm->arch.model.ibc && new_ibc) {
381 scb_s->ibc = new_ibc;
382 /* takte care of the minimum ibc level of the machine */
383 if (scb_s->ibc < min_ibc)
384 scb_s->ibc = min_ibc;
385 /* take care of the maximum ibc level set for the guest */
386 if (scb_s->ibc > vcpu->kvm->arch.model.ibc)
387 scb_s->ibc = vcpu->kvm->arch.model.ibc;
388 }
389 }
390
391 /* unshadow the scb, copying parameters back to the real scb */
unshadow_scb(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)392 static void unshadow_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
393 {
394 struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
395 struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
396
397 /* interception */
398 scb_o->icptcode = scb_s->icptcode;
399 scb_o->icptstatus = scb_s->icptstatus;
400 scb_o->ipa = scb_s->ipa;
401 scb_o->ipb = scb_s->ipb;
402 scb_o->gbea = scb_s->gbea;
403
404 /* timer */
405 scb_o->cputm = scb_s->cputm;
406 scb_o->ckc = scb_s->ckc;
407 scb_o->todpr = scb_s->todpr;
408
409 /* guest state */
410 scb_o->gpsw = scb_s->gpsw;
411 scb_o->gg14 = scb_s->gg14;
412 scb_o->gg15 = scb_s->gg15;
413 memcpy(scb_o->gcr, scb_s->gcr, 128);
414 scb_o->pp = scb_s->pp;
415
416 /* branch prediction */
417 if (test_kvm_facility(vcpu->kvm, 82)) {
418 scb_o->fpf &= ~FPF_BPBC;
419 scb_o->fpf |= scb_s->fpf & FPF_BPBC;
420 }
421
422 /* interrupt intercept */
423 switch (scb_s->icptcode) {
424 case ICPT_PROGI:
425 case ICPT_INSTPROGI:
426 case ICPT_EXTINT:
427 memcpy((void *)((u64)scb_o + 0xc0),
428 (void *)((u64)scb_s + 0xc0), 0xf0 - 0xc0);
429 break;
430 }
431
432 if (scb_s->ihcpu != 0xffffU)
433 scb_o->ihcpu = scb_s->ihcpu;
434 }
435
436 /*
437 * Setup the shadow scb by copying and checking the relevant parts of the g2
438 * provided scb.
439 *
440 * Returns: - 0 if the scb has been shadowed
441 * - > 0 if control has to be given to guest 2
442 */
shadow_scb(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)443 static int shadow_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
444 {
445 struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
446 struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
447 /* READ_ONCE does not work on bitfields - use a temporary variable */
448 const uint32_t __new_prefix = scb_o->prefix;
449 const uint32_t new_prefix = READ_ONCE(__new_prefix);
450 const bool wants_tx = READ_ONCE(scb_o->ecb) & ECB_TE;
451 bool had_tx = scb_s->ecb & ECB_TE;
452 unsigned long new_mso = 0;
453 int rc;
454
455 /* make sure we don't have any leftovers when reusing the scb */
456 scb_s->icptcode = 0;
457 scb_s->eca = 0;
458 scb_s->ecb = 0;
459 scb_s->ecb2 = 0;
460 scb_s->ecb3 = 0;
461 scb_s->ecd = 0;
462 scb_s->fac = 0;
463 scb_s->fpf = 0;
464
465 rc = prepare_cpuflags(vcpu, vsie_page);
466 if (rc)
467 goto out;
468
469 /* timer */
470 scb_s->cputm = scb_o->cputm;
471 scb_s->ckc = scb_o->ckc;
472 scb_s->todpr = scb_o->todpr;
473 scb_s->epoch = scb_o->epoch;
474
475 /* guest state */
476 scb_s->gpsw = scb_o->gpsw;
477 scb_s->gg14 = scb_o->gg14;
478 scb_s->gg15 = scb_o->gg15;
479 memcpy(scb_s->gcr, scb_o->gcr, 128);
480 scb_s->pp = scb_o->pp;
481
482 /* interception / execution handling */
483 scb_s->gbea = scb_o->gbea;
484 scb_s->lctl = scb_o->lctl;
485 scb_s->svcc = scb_o->svcc;
486 scb_s->ictl = scb_o->ictl;
487 /*
488 * SKEY handling functions can't deal with false setting of PTE invalid
489 * bits. Therefore we cannot provide interpretation and would later
490 * have to provide own emulation handlers.
491 */
492 if (!(atomic_read(&scb_s->cpuflags) & CPUSTAT_KSS))
493 scb_s->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
494
495 scb_s->icpua = scb_o->icpua;
496
497 if (!(atomic_read(&scb_s->cpuflags) & CPUSTAT_SM))
498 new_mso = READ_ONCE(scb_o->mso) & 0xfffffffffff00000UL;
499 /* if the hva of the prefix changes, we have to remap the prefix */
500 if (scb_s->mso != new_mso || scb_s->prefix != new_prefix)
501 prefix_unmapped(vsie_page);
502 /* SIE will do mso/msl validity and exception checks for us */
503 scb_s->msl = scb_o->msl & 0xfffffffffff00000UL;
504 scb_s->mso = new_mso;
505 scb_s->prefix = new_prefix;
506
507 /* We have to definitely flush the tlb if this scb never ran */
508 if (scb_s->ihcpu != 0xffffU)
509 scb_s->ihcpu = scb_o->ihcpu;
510
511 /* MVPG and Protection Exception Interpretation are always available */
512 scb_s->eca |= scb_o->eca & (ECA_MVPGI | ECA_PROTEXCI);
513 /* Host-protection-interruption introduced with ESOP */
514 if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_ESOP))
515 scb_s->ecb |= scb_o->ecb & ECB_HOSTPROTINT;
516 /*
517 * CPU Topology
518 * This facility only uses the utility field of the SCA and none of
519 * the cpu entries that are problematic with the other interpretation
520 * facilities so we can pass it through
521 */
522 if (test_kvm_facility(vcpu->kvm, 11))
523 scb_s->ecb |= scb_o->ecb & ECB_PTF;
524 /* transactional execution */
525 if (test_kvm_facility(vcpu->kvm, 73) && wants_tx) {
526 /* remap the prefix is tx is toggled on */
527 if (!had_tx)
528 prefix_unmapped(vsie_page);
529 scb_s->ecb |= ECB_TE;
530 }
531 /* specification exception interpretation */
532 scb_s->ecb |= scb_o->ecb & ECB_SPECI;
533 /* branch prediction */
534 if (test_kvm_facility(vcpu->kvm, 82))
535 scb_s->fpf |= scb_o->fpf & FPF_BPBC;
536 /* SIMD */
537 if (test_kvm_facility(vcpu->kvm, 129)) {
538 scb_s->eca |= scb_o->eca & ECA_VX;
539 scb_s->ecd |= scb_o->ecd & ECD_HOSTREGMGMT;
540 }
541 /* Run-time-Instrumentation */
542 if (test_kvm_facility(vcpu->kvm, 64))
543 scb_s->ecb3 |= scb_o->ecb3 & ECB3_RI;
544 /* Instruction Execution Prevention */
545 if (test_kvm_facility(vcpu->kvm, 130))
546 scb_s->ecb2 |= scb_o->ecb2 & ECB2_IEP;
547 /* Guarded Storage */
548 if (test_kvm_facility(vcpu->kvm, 133)) {
549 scb_s->ecb |= scb_o->ecb & ECB_GS;
550 scb_s->ecd |= scb_o->ecd & ECD_HOSTREGMGMT;
551 }
552 if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_SIIF))
553 scb_s->eca |= scb_o->eca & ECA_SII;
554 if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_IB))
555 scb_s->eca |= scb_o->eca & ECA_IB;
556 if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_CEI))
557 scb_s->eca |= scb_o->eca & ECA_CEI;
558 /* Epoch Extension */
559 if (test_kvm_facility(vcpu->kvm, 139)) {
560 scb_s->ecd |= scb_o->ecd & ECD_MEF;
561 scb_s->epdx = scb_o->epdx;
562 }
563
564 /* etoken */
565 if (test_kvm_facility(vcpu->kvm, 156))
566 scb_s->ecd |= scb_o->ecd & ECD_ETOKENF;
567
568 scb_s->hpid = HPID_VSIE;
569 scb_s->cpnc = scb_o->cpnc;
570
571 prepare_ibc(vcpu, vsie_page);
572 rc = shadow_crycb(vcpu, vsie_page);
573 out:
574 if (rc)
575 unshadow_scb(vcpu, vsie_page);
576 return rc;
577 }
578
kvm_s390_vsie_gmap_notifier(struct gmap * gmap,unsigned long start,unsigned long end)579 void kvm_s390_vsie_gmap_notifier(struct gmap *gmap, unsigned long start,
580 unsigned long end)
581 {
582 struct kvm *kvm = gmap->private;
583 struct vsie_page *cur;
584 unsigned long prefix;
585 struct page *page;
586 int i;
587
588 if (!gmap_is_shadow(gmap))
589 return;
590 /*
591 * Only new shadow blocks are added to the list during runtime,
592 * therefore we can safely reference them all the time.
593 */
594 for (i = 0; i < kvm->arch.vsie.page_count; i++) {
595 page = READ_ONCE(kvm->arch.vsie.pages[i]);
596 if (!page)
597 continue;
598 cur = page_to_virt(page);
599 if (READ_ONCE(cur->gmap) != gmap)
600 continue;
601 prefix = cur->scb_s.prefix << GUEST_PREFIX_SHIFT;
602 /* with mso/msl, the prefix lies at an offset */
603 prefix += cur->scb_s.mso;
604 if (prefix <= end && start <= prefix + 2 * PAGE_SIZE - 1)
605 prefix_unmapped_sync(cur);
606 }
607 }
608
609 /*
610 * Map the first prefix page and if tx is enabled also the second prefix page.
611 *
612 * The prefix will be protected, a gmap notifier will inform about unmaps.
613 * The shadow scb must not be executed until the prefix is remapped, this is
614 * guaranteed by properly handling PROG_REQUEST.
615 *
616 * Returns: - 0 on if successfully mapped or already mapped
617 * - > 0 if control has to be given to guest 2
618 * - -EAGAIN if the caller can retry immediately
619 * - -ENOMEM if out of memory
620 */
map_prefix(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)621 static int map_prefix(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
622 {
623 struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
624 u64 prefix = scb_s->prefix << GUEST_PREFIX_SHIFT;
625 int rc;
626
627 if (prefix_is_mapped(vsie_page))
628 return 0;
629
630 /* mark it as mapped so we can catch any concurrent unmappers */
631 prefix_mapped(vsie_page);
632
633 /* with mso/msl, the prefix lies at offset *mso* */
634 prefix += scb_s->mso;
635
636 rc = kvm_s390_shadow_fault(vcpu, vsie_page->gmap, prefix, NULL);
637 if (!rc && (scb_s->ecb & ECB_TE))
638 rc = kvm_s390_shadow_fault(vcpu, vsie_page->gmap,
639 prefix + PAGE_SIZE, NULL);
640 /*
641 * We don't have to mprotect, we will be called for all unshadows.
642 * SIE will detect if protection applies and trigger a validity.
643 */
644 if (rc)
645 prefix_unmapped(vsie_page);
646 if (rc > 0 || rc == -EFAULT)
647 rc = set_validity_icpt(scb_s, 0x0037U);
648 return rc;
649 }
650
651 /*
652 * Pin the guest page given by gpa and set hpa to the pinned host address.
653 * Will always be pinned writable.
654 *
655 * Returns: - 0 on success
656 * - -EINVAL if the gpa is not valid guest storage
657 */
pin_guest_page(struct kvm * kvm,gpa_t gpa,hpa_t * hpa)658 static int pin_guest_page(struct kvm *kvm, gpa_t gpa, hpa_t *hpa)
659 {
660 struct page *page;
661
662 page = gfn_to_page(kvm, gpa_to_gfn(gpa));
663 if (is_error_page(page))
664 return -EINVAL;
665 *hpa = (hpa_t)page_to_phys(page) + (gpa & ~PAGE_MASK);
666 return 0;
667 }
668
669 /* Unpins a page previously pinned via pin_guest_page, marking it as dirty. */
unpin_guest_page(struct kvm * kvm,gpa_t gpa,hpa_t hpa)670 static void unpin_guest_page(struct kvm *kvm, gpa_t gpa, hpa_t hpa)
671 {
672 kvm_release_pfn_dirty(hpa >> PAGE_SHIFT);
673 /* mark the page always as dirty for migration */
674 mark_page_dirty(kvm, gpa_to_gfn(gpa));
675 }
676
677 /* unpin all blocks previously pinned by pin_blocks(), marking them dirty */
unpin_blocks(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)678 static void unpin_blocks(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
679 {
680 struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
681 hpa_t hpa;
682
683 hpa = (u64) scb_s->scaoh << 32 | scb_s->scaol;
684 if (hpa) {
685 unpin_guest_page(vcpu->kvm, vsie_page->sca_gpa, hpa);
686 vsie_page->sca_gpa = 0;
687 scb_s->scaol = 0;
688 scb_s->scaoh = 0;
689 }
690
691 hpa = scb_s->itdba;
692 if (hpa) {
693 unpin_guest_page(vcpu->kvm, vsie_page->itdba_gpa, hpa);
694 vsie_page->itdba_gpa = 0;
695 scb_s->itdba = 0;
696 }
697
698 hpa = scb_s->gvrd;
699 if (hpa) {
700 unpin_guest_page(vcpu->kvm, vsie_page->gvrd_gpa, hpa);
701 vsie_page->gvrd_gpa = 0;
702 scb_s->gvrd = 0;
703 }
704
705 hpa = scb_s->riccbd;
706 if (hpa) {
707 unpin_guest_page(vcpu->kvm, vsie_page->riccbd_gpa, hpa);
708 vsie_page->riccbd_gpa = 0;
709 scb_s->riccbd = 0;
710 }
711
712 hpa = scb_s->sdnxo;
713 if (hpa) {
714 unpin_guest_page(vcpu->kvm, vsie_page->sdnx_gpa, hpa);
715 vsie_page->sdnx_gpa = 0;
716 scb_s->sdnxo = 0;
717 }
718 }
719
720 /*
721 * Instead of shadowing some blocks, we can simply forward them because the
722 * addresses in the scb are 64 bit long.
723 *
724 * This works as long as the data lies in one page. If blocks ever exceed one
725 * page, we have to fall back to shadowing.
726 *
727 * As we reuse the sca, the vcpu pointers contained in it are invalid. We must
728 * therefore not enable any facilities that access these pointers (e.g. SIGPIF).
729 *
730 * Returns: - 0 if all blocks were pinned.
731 * - > 0 if control has to be given to guest 2
732 * - -ENOMEM if out of memory
733 */
pin_blocks(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)734 static int pin_blocks(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
735 {
736 struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
737 struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
738 hpa_t hpa;
739 gpa_t gpa;
740 int rc = 0;
741
742 gpa = READ_ONCE(scb_o->scaol) & ~0xfUL;
743 if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_64BSCAO))
744 gpa |= (u64) READ_ONCE(scb_o->scaoh) << 32;
745 if (gpa) {
746 if (gpa < 2 * PAGE_SIZE)
747 rc = set_validity_icpt(scb_s, 0x0038U);
748 else if ((gpa & ~0x1fffUL) == kvm_s390_get_prefix(vcpu))
749 rc = set_validity_icpt(scb_s, 0x0011U);
750 else if ((gpa & PAGE_MASK) !=
751 ((gpa + sizeof(struct bsca_block) - 1) & PAGE_MASK))
752 rc = set_validity_icpt(scb_s, 0x003bU);
753 if (!rc) {
754 rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
755 if (rc)
756 rc = set_validity_icpt(scb_s, 0x0034U);
757 }
758 if (rc)
759 goto unpin;
760 vsie_page->sca_gpa = gpa;
761 scb_s->scaoh = (u32)((u64)hpa >> 32);
762 scb_s->scaol = (u32)(u64)hpa;
763 }
764
765 gpa = READ_ONCE(scb_o->itdba) & ~0xffUL;
766 if (gpa && (scb_s->ecb & ECB_TE)) {
767 if (gpa < 2 * PAGE_SIZE) {
768 rc = set_validity_icpt(scb_s, 0x0080U);
769 goto unpin;
770 }
771 /* 256 bytes cannot cross page boundaries */
772 rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
773 if (rc) {
774 rc = set_validity_icpt(scb_s, 0x0080U);
775 goto unpin;
776 }
777 vsie_page->itdba_gpa = gpa;
778 scb_s->itdba = hpa;
779 }
780
781 gpa = READ_ONCE(scb_o->gvrd) & ~0x1ffUL;
782 if (gpa && (scb_s->eca & ECA_VX) && !(scb_s->ecd & ECD_HOSTREGMGMT)) {
783 if (gpa < 2 * PAGE_SIZE) {
784 rc = set_validity_icpt(scb_s, 0x1310U);
785 goto unpin;
786 }
787 /*
788 * 512 bytes vector registers cannot cross page boundaries
789 * if this block gets bigger, we have to shadow it.
790 */
791 rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
792 if (rc) {
793 rc = set_validity_icpt(scb_s, 0x1310U);
794 goto unpin;
795 }
796 vsie_page->gvrd_gpa = gpa;
797 scb_s->gvrd = hpa;
798 }
799
800 gpa = READ_ONCE(scb_o->riccbd) & ~0x3fUL;
801 if (gpa && (scb_s->ecb3 & ECB3_RI)) {
802 if (gpa < 2 * PAGE_SIZE) {
803 rc = set_validity_icpt(scb_s, 0x0043U);
804 goto unpin;
805 }
806 /* 64 bytes cannot cross page boundaries */
807 rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
808 if (rc) {
809 rc = set_validity_icpt(scb_s, 0x0043U);
810 goto unpin;
811 }
812 /* Validity 0x0044 will be checked by SIE */
813 vsie_page->riccbd_gpa = gpa;
814 scb_s->riccbd = hpa;
815 }
816 if (((scb_s->ecb & ECB_GS) && !(scb_s->ecd & ECD_HOSTREGMGMT)) ||
817 (scb_s->ecd & ECD_ETOKENF)) {
818 unsigned long sdnxc;
819
820 gpa = READ_ONCE(scb_o->sdnxo) & ~0xfUL;
821 sdnxc = READ_ONCE(scb_o->sdnxo) & 0xfUL;
822 if (!gpa || gpa < 2 * PAGE_SIZE) {
823 rc = set_validity_icpt(scb_s, 0x10b0U);
824 goto unpin;
825 }
826 if (sdnxc < 6 || sdnxc > 12) {
827 rc = set_validity_icpt(scb_s, 0x10b1U);
828 goto unpin;
829 }
830 if (gpa & ((1 << sdnxc) - 1)) {
831 rc = set_validity_icpt(scb_s, 0x10b2U);
832 goto unpin;
833 }
834 /* Due to alignment rules (checked above) this cannot
835 * cross page boundaries
836 */
837 rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
838 if (rc) {
839 rc = set_validity_icpt(scb_s, 0x10b0U);
840 goto unpin;
841 }
842 vsie_page->sdnx_gpa = gpa;
843 scb_s->sdnxo = hpa | sdnxc;
844 }
845 return 0;
846 unpin:
847 unpin_blocks(vcpu, vsie_page);
848 return rc;
849 }
850
851 /* unpin the scb provided by guest 2, marking it as dirty */
unpin_scb(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page,gpa_t gpa)852 static void unpin_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page,
853 gpa_t gpa)
854 {
855 hpa_t hpa = (hpa_t) vsie_page->scb_o;
856
857 if (hpa)
858 unpin_guest_page(vcpu->kvm, gpa, hpa);
859 vsie_page->scb_o = NULL;
860 }
861
862 /*
863 * Pin the scb at gpa provided by guest 2 at vsie_page->scb_o.
864 *
865 * Returns: - 0 if the scb was pinned.
866 * - > 0 if control has to be given to guest 2
867 */
pin_scb(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page,gpa_t gpa)868 static int pin_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page,
869 gpa_t gpa)
870 {
871 hpa_t hpa;
872 int rc;
873
874 rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
875 if (rc) {
876 rc = kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
877 WARN_ON_ONCE(rc);
878 return 1;
879 }
880 vsie_page->scb_o = phys_to_virt(hpa);
881 return 0;
882 }
883
884 /*
885 * Inject a fault into guest 2.
886 *
887 * Returns: - > 0 if control has to be given to guest 2
888 * < 0 if an error occurred during injection.
889 */
inject_fault(struct kvm_vcpu * vcpu,__u16 code,__u64 vaddr,bool write_flag)890 static int inject_fault(struct kvm_vcpu *vcpu, __u16 code, __u64 vaddr,
891 bool write_flag)
892 {
893 struct kvm_s390_pgm_info pgm = {
894 .code = code,
895 .trans_exc_code =
896 /* 0-51: virtual address */
897 (vaddr & 0xfffffffffffff000UL) |
898 /* 52-53: store / fetch */
899 (((unsigned int) !write_flag) + 1) << 10,
900 /* 62-63: asce id (always primary == 0) */
901 .exc_access_id = 0, /* always primary */
902 .op_access_id = 0, /* not MVPG */
903 };
904 int rc;
905
906 if (code == PGM_PROTECTION)
907 pgm.trans_exc_code |= 0x4UL;
908
909 rc = kvm_s390_inject_prog_irq(vcpu, &pgm);
910 return rc ? rc : 1;
911 }
912
913 /*
914 * Handle a fault during vsie execution on a gmap shadow.
915 *
916 * Returns: - 0 if the fault was resolved
917 * - > 0 if control has to be given to guest 2
918 * - < 0 if an error occurred
919 */
handle_fault(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)920 static int handle_fault(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
921 {
922 int rc;
923
924 if (current->thread.gmap_int_code == PGM_PROTECTION)
925 /* we can directly forward all protection exceptions */
926 return inject_fault(vcpu, PGM_PROTECTION,
927 current->thread.gmap_addr, 1);
928
929 rc = kvm_s390_shadow_fault(vcpu, vsie_page->gmap,
930 current->thread.gmap_addr, NULL);
931 if (rc > 0) {
932 rc = inject_fault(vcpu, rc,
933 current->thread.gmap_addr,
934 current->thread.gmap_write_flag);
935 if (rc >= 0)
936 vsie_page->fault_addr = current->thread.gmap_addr;
937 }
938 return rc;
939 }
940
941 /*
942 * Retry the previous fault that required guest 2 intervention. This avoids
943 * one superfluous SIE re-entry and direct exit.
944 *
945 * Will ignore any errors. The next SIE fault will do proper fault handling.
946 */
handle_last_fault(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)947 static void handle_last_fault(struct kvm_vcpu *vcpu,
948 struct vsie_page *vsie_page)
949 {
950 if (vsie_page->fault_addr)
951 kvm_s390_shadow_fault(vcpu, vsie_page->gmap,
952 vsie_page->fault_addr, NULL);
953 vsie_page->fault_addr = 0;
954 }
955
clear_vsie_icpt(struct vsie_page * vsie_page)956 static inline void clear_vsie_icpt(struct vsie_page *vsie_page)
957 {
958 vsie_page->scb_s.icptcode = 0;
959 }
960
961 /* rewind the psw and clear the vsie icpt, so we can retry execution */
retry_vsie_icpt(struct vsie_page * vsie_page)962 static void retry_vsie_icpt(struct vsie_page *vsie_page)
963 {
964 struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
965 int ilen = insn_length(scb_s->ipa >> 8);
966
967 /* take care of EXECUTE instructions */
968 if (scb_s->icptstatus & 1) {
969 ilen = (scb_s->icptstatus >> 4) & 0x6;
970 if (!ilen)
971 ilen = 4;
972 }
973 scb_s->gpsw.addr = __rewind_psw(scb_s->gpsw, ilen);
974 clear_vsie_icpt(vsie_page);
975 }
976
977 /*
978 * Try to shadow + enable the guest 2 provided facility list.
979 * Retry instruction execution if enabled for and provided by guest 2.
980 *
981 * Returns: - 0 if handled (retry or guest 2 icpt)
982 * - > 0 if control has to be given to guest 2
983 */
handle_stfle(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)984 static int handle_stfle(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
985 {
986 struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
987 __u32 fac = READ_ONCE(vsie_page->scb_o->fac) & 0x7ffffff8U;
988
989 if (fac && test_kvm_facility(vcpu->kvm, 7)) {
990 retry_vsie_icpt(vsie_page);
991 if (read_guest_real(vcpu, fac, &vsie_page->fac,
992 sizeof(vsie_page->fac)))
993 return set_validity_icpt(scb_s, 0x1090U);
994 scb_s->fac = (__u32)(__u64) &vsie_page->fac;
995 }
996 return 0;
997 }
998
999 /*
1000 * Get a register for a nested guest.
1001 * @vcpu the vcpu of the guest
1002 * @vsie_page the vsie_page for the nested guest
1003 * @reg the register number, the upper 4 bits are ignored.
1004 * returns: the value of the register.
1005 */
vsie_get_register(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page,u8 reg)1006 static u64 vsie_get_register(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page, u8 reg)
1007 {
1008 /* no need to validate the parameter and/or perform error handling */
1009 reg &= 0xf;
1010 switch (reg) {
1011 case 15:
1012 return vsie_page->scb_s.gg15;
1013 case 14:
1014 return vsie_page->scb_s.gg14;
1015 default:
1016 return vcpu->run->s.regs.gprs[reg];
1017 }
1018 }
1019
vsie_handle_mvpg(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)1020 static int vsie_handle_mvpg(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
1021 {
1022 struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
1023 unsigned long pei_dest, pei_src, src, dest, mask, prefix;
1024 u64 *pei_block = &vsie_page->scb_o->mcic;
1025 int edat, rc_dest, rc_src;
1026 union ctlreg0 cr0;
1027
1028 cr0.val = vcpu->arch.sie_block->gcr[0];
1029 edat = cr0.edat && test_kvm_facility(vcpu->kvm, 8);
1030 mask = _kvm_s390_logical_to_effective(&scb_s->gpsw, PAGE_MASK);
1031 prefix = scb_s->prefix << GUEST_PREFIX_SHIFT;
1032
1033 dest = vsie_get_register(vcpu, vsie_page, scb_s->ipb >> 20) & mask;
1034 dest = _kvm_s390_real_to_abs(prefix, dest) + scb_s->mso;
1035 src = vsie_get_register(vcpu, vsie_page, scb_s->ipb >> 16) & mask;
1036 src = _kvm_s390_real_to_abs(prefix, src) + scb_s->mso;
1037
1038 rc_dest = kvm_s390_shadow_fault(vcpu, vsie_page->gmap, dest, &pei_dest);
1039 rc_src = kvm_s390_shadow_fault(vcpu, vsie_page->gmap, src, &pei_src);
1040 /*
1041 * Either everything went well, or something non-critical went wrong
1042 * e.g. because of a race. In either case, simply retry.
1043 */
1044 if (rc_dest == -EAGAIN || rc_src == -EAGAIN || (!rc_dest && !rc_src)) {
1045 retry_vsie_icpt(vsie_page);
1046 return -EAGAIN;
1047 }
1048 /* Something more serious went wrong, propagate the error */
1049 if (rc_dest < 0)
1050 return rc_dest;
1051 if (rc_src < 0)
1052 return rc_src;
1053
1054 /* The only possible suppressing exception: just deliver it */
1055 if (rc_dest == PGM_TRANSLATION_SPEC || rc_src == PGM_TRANSLATION_SPEC) {
1056 clear_vsie_icpt(vsie_page);
1057 rc_dest = kvm_s390_inject_program_int(vcpu, PGM_TRANSLATION_SPEC);
1058 WARN_ON_ONCE(rc_dest);
1059 return 1;
1060 }
1061
1062 /*
1063 * Forward the PEI intercept to the guest if it was a page fault, or
1064 * also for segment and region table faults if EDAT applies.
1065 */
1066 if (edat) {
1067 rc_dest = rc_dest == PGM_ASCE_TYPE ? rc_dest : 0;
1068 rc_src = rc_src == PGM_ASCE_TYPE ? rc_src : 0;
1069 } else {
1070 rc_dest = rc_dest != PGM_PAGE_TRANSLATION ? rc_dest : 0;
1071 rc_src = rc_src != PGM_PAGE_TRANSLATION ? rc_src : 0;
1072 }
1073 if (!rc_dest && !rc_src) {
1074 pei_block[0] = pei_dest;
1075 pei_block[1] = pei_src;
1076 return 1;
1077 }
1078
1079 retry_vsie_icpt(vsie_page);
1080
1081 /*
1082 * The host has edat, and the guest does not, or it was an ASCE type
1083 * exception. The host needs to inject the appropriate DAT interrupts
1084 * into the guest.
1085 */
1086 if (rc_dest)
1087 return inject_fault(vcpu, rc_dest, dest, 1);
1088 return inject_fault(vcpu, rc_src, src, 0);
1089 }
1090
1091 /*
1092 * Run the vsie on a shadow scb and a shadow gmap, without any further
1093 * sanity checks, handling SIE faults.
1094 *
1095 * Returns: - 0 everything went fine
1096 * - > 0 if control has to be given to guest 2
1097 * - < 0 if an error occurred
1098 */
do_vsie_run(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)1099 static int do_vsie_run(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
1100 __releases(vcpu->kvm->srcu)
1101 __acquires(vcpu->kvm->srcu)
1102 {
1103 struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
1104 struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
1105 int guest_bp_isolation;
1106 int rc = 0;
1107
1108 handle_last_fault(vcpu, vsie_page);
1109
1110 kvm_vcpu_srcu_read_unlock(vcpu);
1111
1112 /* save current guest state of bp isolation override */
1113 guest_bp_isolation = test_thread_flag(TIF_ISOLATE_BP_GUEST);
1114
1115 /*
1116 * The guest is running with BPBC, so we have to force it on for our
1117 * nested guest. This is done by enabling BPBC globally, so the BPBC
1118 * control in the SCB (which the nested guest can modify) is simply
1119 * ignored.
1120 */
1121 if (test_kvm_facility(vcpu->kvm, 82) &&
1122 vcpu->arch.sie_block->fpf & FPF_BPBC)
1123 set_thread_flag(TIF_ISOLATE_BP_GUEST);
1124
1125 local_irq_disable();
1126 guest_enter_irqoff();
1127 local_irq_enable();
1128
1129 /*
1130 * Simulate a SIE entry of the VCPU (see sie64a), so VCPU blocking
1131 * and VCPU requests also hinder the vSIE from running and lead
1132 * to an immediate exit. kvm_s390_vsie_kick() has to be used to
1133 * also kick the vSIE.
1134 */
1135 vcpu->arch.sie_block->prog0c |= PROG_IN_SIE;
1136 barrier();
1137 if (test_cpu_flag(CIF_FPU))
1138 load_fpu_regs();
1139 if (!kvm_s390_vcpu_sie_inhibited(vcpu))
1140 rc = sie64a(scb_s, vcpu->run->s.regs.gprs);
1141 barrier();
1142 vcpu->arch.sie_block->prog0c &= ~PROG_IN_SIE;
1143
1144 local_irq_disable();
1145 guest_exit_irqoff();
1146 local_irq_enable();
1147
1148 /* restore guest state for bp isolation override */
1149 if (!guest_bp_isolation)
1150 clear_thread_flag(TIF_ISOLATE_BP_GUEST);
1151
1152 kvm_vcpu_srcu_read_lock(vcpu);
1153
1154 if (rc == -EINTR) {
1155 VCPU_EVENT(vcpu, 3, "%s", "machine check");
1156 kvm_s390_reinject_machine_check(vcpu, &vsie_page->mcck_info);
1157 return 0;
1158 }
1159
1160 if (rc > 0)
1161 rc = 0; /* we could still have an icpt */
1162 else if (rc == -EFAULT)
1163 return handle_fault(vcpu, vsie_page);
1164
1165 switch (scb_s->icptcode) {
1166 case ICPT_INST:
1167 if (scb_s->ipa == 0xb2b0)
1168 rc = handle_stfle(vcpu, vsie_page);
1169 break;
1170 case ICPT_STOP:
1171 /* stop not requested by g2 - must have been a kick */
1172 if (!(atomic_read(&scb_o->cpuflags) & CPUSTAT_STOP_INT))
1173 clear_vsie_icpt(vsie_page);
1174 break;
1175 case ICPT_VALIDITY:
1176 if ((scb_s->ipa & 0xf000) != 0xf000)
1177 scb_s->ipa += 0x1000;
1178 break;
1179 case ICPT_PARTEXEC:
1180 if (scb_s->ipa == 0xb254)
1181 rc = vsie_handle_mvpg(vcpu, vsie_page);
1182 break;
1183 }
1184 return rc;
1185 }
1186
release_gmap_shadow(struct vsie_page * vsie_page)1187 static void release_gmap_shadow(struct vsie_page *vsie_page)
1188 {
1189 if (vsie_page->gmap)
1190 gmap_put(vsie_page->gmap);
1191 WRITE_ONCE(vsie_page->gmap, NULL);
1192 prefix_unmapped(vsie_page);
1193 }
1194
acquire_gmap_shadow(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)1195 static int acquire_gmap_shadow(struct kvm_vcpu *vcpu,
1196 struct vsie_page *vsie_page)
1197 {
1198 unsigned long asce;
1199 union ctlreg0 cr0;
1200 struct gmap *gmap;
1201 int edat;
1202
1203 asce = vcpu->arch.sie_block->gcr[1];
1204 cr0.val = vcpu->arch.sie_block->gcr[0];
1205 edat = cr0.edat && test_kvm_facility(vcpu->kvm, 8);
1206 edat += edat && test_kvm_facility(vcpu->kvm, 78);
1207
1208 /*
1209 * ASCE or EDAT could have changed since last icpt, or the gmap
1210 * we're holding has been unshadowed. If the gmap is still valid,
1211 * we can safely reuse it.
1212 */
1213 if (vsie_page->gmap && gmap_shadow_valid(vsie_page->gmap, asce, edat))
1214 return 0;
1215
1216 /* release the old shadow - if any, and mark the prefix as unmapped */
1217 release_gmap_shadow(vsie_page);
1218 gmap = gmap_shadow(vcpu->arch.gmap, asce, edat);
1219 if (IS_ERR(gmap))
1220 return PTR_ERR(gmap);
1221 gmap->private = vcpu->kvm;
1222 WRITE_ONCE(vsie_page->gmap, gmap);
1223 return 0;
1224 }
1225
1226 /*
1227 * Register the shadow scb at the VCPU, e.g. for kicking out of vsie.
1228 */
register_shadow_scb(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)1229 static void register_shadow_scb(struct kvm_vcpu *vcpu,
1230 struct vsie_page *vsie_page)
1231 {
1232 struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
1233
1234 WRITE_ONCE(vcpu->arch.vsie_block, &vsie_page->scb_s);
1235 /*
1236 * External calls have to lead to a kick of the vcpu and
1237 * therefore the vsie -> Simulate Wait state.
1238 */
1239 kvm_s390_set_cpuflags(vcpu, CPUSTAT_WAIT);
1240 /*
1241 * We have to adjust the g3 epoch by the g2 epoch. The epoch will
1242 * automatically be adjusted on tod clock changes via kvm_sync_clock.
1243 */
1244 preempt_disable();
1245 scb_s->epoch += vcpu->kvm->arch.epoch;
1246
1247 if (scb_s->ecd & ECD_MEF) {
1248 scb_s->epdx += vcpu->kvm->arch.epdx;
1249 if (scb_s->epoch < vcpu->kvm->arch.epoch)
1250 scb_s->epdx += 1;
1251 }
1252
1253 preempt_enable();
1254 }
1255
1256 /*
1257 * Unregister a shadow scb from a VCPU.
1258 */
unregister_shadow_scb(struct kvm_vcpu * vcpu)1259 static void unregister_shadow_scb(struct kvm_vcpu *vcpu)
1260 {
1261 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_WAIT);
1262 WRITE_ONCE(vcpu->arch.vsie_block, NULL);
1263 }
1264
1265 /*
1266 * Run the vsie on a shadowed scb, managing the gmap shadow, handling
1267 * prefix pages and faults.
1268 *
1269 * Returns: - 0 if no errors occurred
1270 * - > 0 if control has to be given to guest 2
1271 * - -ENOMEM if out of memory
1272 */
vsie_run(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)1273 static int vsie_run(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
1274 {
1275 struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
1276 int rc = 0;
1277
1278 while (1) {
1279 rc = acquire_gmap_shadow(vcpu, vsie_page);
1280 if (!rc)
1281 rc = map_prefix(vcpu, vsie_page);
1282 if (!rc) {
1283 gmap_enable(vsie_page->gmap);
1284 update_intervention_requests(vsie_page);
1285 rc = do_vsie_run(vcpu, vsie_page);
1286 gmap_enable(vcpu->arch.gmap);
1287 }
1288 atomic_andnot(PROG_BLOCK_SIE, &scb_s->prog20);
1289
1290 if (rc == -EAGAIN)
1291 rc = 0;
1292 if (rc || scb_s->icptcode || signal_pending(current) ||
1293 kvm_s390_vcpu_has_irq(vcpu, 0) ||
1294 kvm_s390_vcpu_sie_inhibited(vcpu))
1295 break;
1296 cond_resched();
1297 }
1298
1299 if (rc == -EFAULT) {
1300 /*
1301 * Addressing exceptions are always presentes as intercepts.
1302 * As addressing exceptions are suppressing and our guest 3 PSW
1303 * points at the responsible instruction, we have to
1304 * forward the PSW and set the ilc. If we can't read guest 3
1305 * instruction, we can use an arbitrary ilc. Let's always use
1306 * ilen = 4 for now, so we can avoid reading in guest 3 virtual
1307 * memory. (we could also fake the shadow so the hardware
1308 * handles it).
1309 */
1310 scb_s->icptcode = ICPT_PROGI;
1311 scb_s->iprcc = PGM_ADDRESSING;
1312 scb_s->pgmilc = 4;
1313 scb_s->gpsw.addr = __rewind_psw(scb_s->gpsw, 4);
1314 rc = 1;
1315 }
1316 return rc;
1317 }
1318
1319 /*
1320 * Get or create a vsie page for a scb address.
1321 *
1322 * Returns: - address of a vsie page (cached or new one)
1323 * - NULL if the same scb address is already used by another VCPU
1324 * - ERR_PTR(-ENOMEM) if out of memory
1325 */
get_vsie_page(struct kvm * kvm,unsigned long addr)1326 static struct vsie_page *get_vsie_page(struct kvm *kvm, unsigned long addr)
1327 {
1328 struct vsie_page *vsie_page;
1329 struct page *page;
1330 int nr_vcpus;
1331
1332 rcu_read_lock();
1333 page = radix_tree_lookup(&kvm->arch.vsie.addr_to_page, addr >> 9);
1334 rcu_read_unlock();
1335 if (page) {
1336 if (page_ref_inc_return(page) == 2)
1337 return page_to_virt(page);
1338 page_ref_dec(page);
1339 }
1340
1341 /*
1342 * We want at least #online_vcpus shadows, so every VCPU can execute
1343 * the VSIE in parallel.
1344 */
1345 nr_vcpus = atomic_read(&kvm->online_vcpus);
1346
1347 mutex_lock(&kvm->arch.vsie.mutex);
1348 if (kvm->arch.vsie.page_count < nr_vcpus) {
1349 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO | GFP_DMA);
1350 if (!page) {
1351 mutex_unlock(&kvm->arch.vsie.mutex);
1352 return ERR_PTR(-ENOMEM);
1353 }
1354 page_ref_inc(page);
1355 kvm->arch.vsie.pages[kvm->arch.vsie.page_count] = page;
1356 kvm->arch.vsie.page_count++;
1357 } else {
1358 /* reuse an existing entry that belongs to nobody */
1359 while (true) {
1360 page = kvm->arch.vsie.pages[kvm->arch.vsie.next];
1361 if (page_ref_inc_return(page) == 2)
1362 break;
1363 page_ref_dec(page);
1364 kvm->arch.vsie.next++;
1365 kvm->arch.vsie.next %= nr_vcpus;
1366 }
1367 radix_tree_delete(&kvm->arch.vsie.addr_to_page, page->index >> 9);
1368 }
1369 page->index = addr;
1370 /* double use of the same address */
1371 if (radix_tree_insert(&kvm->arch.vsie.addr_to_page, addr >> 9, page)) {
1372 page_ref_dec(page);
1373 mutex_unlock(&kvm->arch.vsie.mutex);
1374 return NULL;
1375 }
1376 mutex_unlock(&kvm->arch.vsie.mutex);
1377
1378 vsie_page = page_to_virt(page);
1379 memset(&vsie_page->scb_s, 0, sizeof(struct kvm_s390_sie_block));
1380 release_gmap_shadow(vsie_page);
1381 vsie_page->fault_addr = 0;
1382 vsie_page->scb_s.ihcpu = 0xffffU;
1383 return vsie_page;
1384 }
1385
1386 /* put a vsie page acquired via get_vsie_page */
put_vsie_page(struct kvm * kvm,struct vsie_page * vsie_page)1387 static void put_vsie_page(struct kvm *kvm, struct vsie_page *vsie_page)
1388 {
1389 struct page *page = pfn_to_page(__pa(vsie_page) >> PAGE_SHIFT);
1390
1391 page_ref_dec(page);
1392 }
1393
kvm_s390_handle_vsie(struct kvm_vcpu * vcpu)1394 int kvm_s390_handle_vsie(struct kvm_vcpu *vcpu)
1395 {
1396 struct vsie_page *vsie_page;
1397 unsigned long scb_addr;
1398 int rc;
1399
1400 vcpu->stat.instruction_sie++;
1401 if (!test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_SIEF2))
1402 return -EOPNOTSUPP;
1403 if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
1404 return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
1405
1406 BUILD_BUG_ON(sizeof(struct vsie_page) != PAGE_SIZE);
1407 scb_addr = kvm_s390_get_base_disp_s(vcpu, NULL);
1408
1409 /* 512 byte alignment */
1410 if (unlikely(scb_addr & 0x1ffUL))
1411 return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
1412
1413 if (signal_pending(current) || kvm_s390_vcpu_has_irq(vcpu, 0) ||
1414 kvm_s390_vcpu_sie_inhibited(vcpu))
1415 return 0;
1416
1417 vsie_page = get_vsie_page(vcpu->kvm, scb_addr);
1418 if (IS_ERR(vsie_page))
1419 return PTR_ERR(vsie_page);
1420 else if (!vsie_page)
1421 /* double use of sie control block - simply do nothing */
1422 return 0;
1423
1424 rc = pin_scb(vcpu, vsie_page, scb_addr);
1425 if (rc)
1426 goto out_put;
1427 rc = shadow_scb(vcpu, vsie_page);
1428 if (rc)
1429 goto out_unpin_scb;
1430 rc = pin_blocks(vcpu, vsie_page);
1431 if (rc)
1432 goto out_unshadow;
1433 register_shadow_scb(vcpu, vsie_page);
1434 rc = vsie_run(vcpu, vsie_page);
1435 unregister_shadow_scb(vcpu);
1436 unpin_blocks(vcpu, vsie_page);
1437 out_unshadow:
1438 unshadow_scb(vcpu, vsie_page);
1439 out_unpin_scb:
1440 unpin_scb(vcpu, vsie_page, scb_addr);
1441 out_put:
1442 put_vsie_page(vcpu->kvm, vsie_page);
1443
1444 return rc < 0 ? rc : 0;
1445 }
1446
1447 /* Init the vsie data structures. To be called when a vm is initialized. */
kvm_s390_vsie_init(struct kvm * kvm)1448 void kvm_s390_vsie_init(struct kvm *kvm)
1449 {
1450 mutex_init(&kvm->arch.vsie.mutex);
1451 INIT_RADIX_TREE(&kvm->arch.vsie.addr_to_page, GFP_KERNEL_ACCOUNT);
1452 }
1453
1454 /* Destroy the vsie data structures. To be called when a vm is destroyed. */
kvm_s390_vsie_destroy(struct kvm * kvm)1455 void kvm_s390_vsie_destroy(struct kvm *kvm)
1456 {
1457 struct vsie_page *vsie_page;
1458 struct page *page;
1459 int i;
1460
1461 mutex_lock(&kvm->arch.vsie.mutex);
1462 for (i = 0; i < kvm->arch.vsie.page_count; i++) {
1463 page = kvm->arch.vsie.pages[i];
1464 kvm->arch.vsie.pages[i] = NULL;
1465 vsie_page = page_to_virt(page);
1466 release_gmap_shadow(vsie_page);
1467 /* free the radix tree entry */
1468 radix_tree_delete(&kvm->arch.vsie.addr_to_page, page->index >> 9);
1469 __free_page(page);
1470 }
1471 kvm->arch.vsie.page_count = 0;
1472 mutex_unlock(&kvm->arch.vsie.mutex);
1473 }
1474
kvm_s390_vsie_kick(struct kvm_vcpu * vcpu)1475 void kvm_s390_vsie_kick(struct kvm_vcpu *vcpu)
1476 {
1477 struct kvm_s390_sie_block *scb = READ_ONCE(vcpu->arch.vsie_block);
1478
1479 /*
1480 * Even if the VCPU lets go of the shadow sie block reference, it is
1481 * still valid in the cache. So we can safely kick it.
1482 */
1483 if (scb) {
1484 atomic_or(PROG_BLOCK_SIE, &scb->prog20);
1485 if (scb->prog0c & PROG_IN_SIE)
1486 atomic_or(CPUSTAT_STOP_INT, &scb->cpuflags);
1487 }
1488 }
1489