1 /*  KVM paravirtual clock driver. A clocksource implementation
2     Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
3 
4     This program is free software; you can redistribute it and/or modify
5     it under the terms of the GNU General Public License as published by
6     the Free Software Foundation; either version 2 of the License, or
7     (at your option) any later version.
8 
9     This program is distributed in the hope that it will be useful,
10     but WITHOUT ANY WARRANTY; without even the implied warranty of
11     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12     GNU General Public License for more details.
13 
14     You should have received a copy of the GNU General Public License
15     along with this program; if not, write to the Free Software
16     Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17 */
18 
19 #include <linux/clocksource.h>
20 #include <linux/kvm_para.h>
21 #include <asm/pvclock.h>
22 #include <asm/msr.h>
23 #include <asm/apic.h>
24 #include <linux/percpu.h>
25 
26 #include <asm/x86_init.h>
27 #include <asm/reboot.h>
28 
29 static int kvmclock = 1;
30 static int msr_kvm_system_time = MSR_KVM_SYSTEM_TIME;
31 static int msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK;
32 
parse_no_kvmclock(char * arg)33 static int parse_no_kvmclock(char *arg)
34 {
35 	kvmclock = 0;
36 	return 0;
37 }
38 early_param("no-kvmclock", parse_no_kvmclock);
39 
40 /* The hypervisor will put information about time periodically here */
41 static DEFINE_PER_CPU_SHARED_ALIGNED(struct pvclock_vcpu_time_info, hv_clock);
42 static struct pvclock_wall_clock wall_clock;
43 
44 /*
45  * The wallclock is the time of day when we booted. Since then, some time may
46  * have elapsed since the hypervisor wrote the data. So we try to account for
47  * that with system time
48  */
kvm_get_wallclock(void)49 static unsigned long kvm_get_wallclock(void)
50 {
51 	struct pvclock_vcpu_time_info *vcpu_time;
52 	struct timespec ts;
53 	int low, high;
54 
55 	low = (int)__pa_symbol(&wall_clock);
56 	high = ((u64)__pa_symbol(&wall_clock) >> 32);
57 
58 	native_write_msr(msr_kvm_wall_clock, low, high);
59 
60 	vcpu_time = &get_cpu_var(hv_clock);
61 	pvclock_read_wallclock(&wall_clock, vcpu_time, &ts);
62 	put_cpu_var(hv_clock);
63 
64 	return ts.tv_sec;
65 }
66 
kvm_set_wallclock(unsigned long now)67 static int kvm_set_wallclock(unsigned long now)
68 {
69 	return -1;
70 }
71 
kvm_clock_read(void)72 static cycle_t kvm_clock_read(void)
73 {
74 	struct pvclock_vcpu_time_info *src;
75 	cycle_t ret;
76 
77 	preempt_disable_notrace();
78 	src = &__get_cpu_var(hv_clock);
79 	ret = pvclock_clocksource_read(src);
80 	preempt_enable_notrace();
81 	return ret;
82 }
83 
kvm_clock_get_cycles(struct clocksource * cs)84 static cycle_t kvm_clock_get_cycles(struct clocksource *cs)
85 {
86 	return kvm_clock_read();
87 }
88 
89 /*
90  * If we don't do that, there is the possibility that the guest
91  * will calibrate under heavy load - thus, getting a lower lpj -
92  * and execute the delays themselves without load. This is wrong,
93  * because no delay loop can finish beforehand.
94  * Any heuristics is subject to fail, because ultimately, a large
95  * poll of guests can be running and trouble each other. So we preset
96  * lpj here
97  */
kvm_get_tsc_khz(void)98 static unsigned long kvm_get_tsc_khz(void)
99 {
100 	struct pvclock_vcpu_time_info *src;
101 	src = &per_cpu(hv_clock, 0);
102 	return pvclock_tsc_khz(src);
103 }
104 
kvm_get_preset_lpj(void)105 static void kvm_get_preset_lpj(void)
106 {
107 	unsigned long khz;
108 	u64 lpj;
109 
110 	khz = kvm_get_tsc_khz();
111 
112 	lpj = ((u64)khz * 1000);
113 	do_div(lpj, HZ);
114 	preset_lpj = lpj;
115 }
116 
117 static struct clocksource kvm_clock = {
118 	.name = "kvm-clock",
119 	.read = kvm_clock_get_cycles,
120 	.rating = 400,
121 	.mask = CLOCKSOURCE_MASK(64),
122 	.flags = CLOCK_SOURCE_IS_CONTINUOUS,
123 };
124 
kvm_register_clock(char * txt)125 int kvm_register_clock(char *txt)
126 {
127 	int cpu = smp_processor_id();
128 	int low, high, ret;
129 
130 	low = (int)__pa(&per_cpu(hv_clock, cpu)) | 1;
131 	high = ((u64)__pa(&per_cpu(hv_clock, cpu)) >> 32);
132 	ret = native_write_msr_safe(msr_kvm_system_time, low, high);
133 	printk(KERN_INFO "kvm-clock: cpu %d, msr %x:%x, %s\n",
134 	       cpu, high, low, txt);
135 
136 	return ret;
137 }
138 
kvm_save_sched_clock_state(void)139 static void kvm_save_sched_clock_state(void)
140 {
141 }
142 
kvm_restore_sched_clock_state(void)143 static void kvm_restore_sched_clock_state(void)
144 {
145 	kvm_register_clock("primary cpu clock, resume");
146 }
147 
148 #ifdef CONFIG_X86_LOCAL_APIC
kvm_setup_secondary_clock(void)149 static void __cpuinit kvm_setup_secondary_clock(void)
150 {
151 	/*
152 	 * Now that the first cpu already had this clocksource initialized,
153 	 * we shouldn't fail.
154 	 */
155 	WARN_ON(kvm_register_clock("secondary cpu clock"));
156 }
157 #endif
158 
159 /*
160  * After the clock is registered, the host will keep writing to the
161  * registered memory location. If the guest happens to shutdown, this memory
162  * won't be valid. In cases like kexec, in which you install a new kernel, this
163  * means a random memory location will be kept being written. So before any
164  * kind of shutdown from our side, we unregister the clock by writting anything
165  * that does not have the 'enable' bit set in the msr
166  */
167 #ifdef CONFIG_KEXEC
kvm_crash_shutdown(struct pt_regs * regs)168 static void kvm_crash_shutdown(struct pt_regs *regs)
169 {
170 	native_write_msr(msr_kvm_system_time, 0, 0);
171 	kvm_disable_steal_time();
172 	native_machine_crash_shutdown(regs);
173 }
174 #endif
175 
kvm_shutdown(void)176 static void kvm_shutdown(void)
177 {
178 	native_write_msr(msr_kvm_system_time, 0, 0);
179 	kvm_disable_steal_time();
180 	native_machine_shutdown();
181 }
182 
kvmclock_init(void)183 void __init kvmclock_init(void)
184 {
185 	if (!kvm_para_available())
186 		return;
187 
188 	if (kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
189 		msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
190 		msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
191 	} else if (!(kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)))
192 		return;
193 
194 	printk(KERN_INFO "kvm-clock: Using msrs %x and %x",
195 		msr_kvm_system_time, msr_kvm_wall_clock);
196 
197 	if (kvm_register_clock("boot clock"))
198 		return;
199 	pv_time_ops.sched_clock = kvm_clock_read;
200 	x86_platform.calibrate_tsc = kvm_get_tsc_khz;
201 	x86_platform.get_wallclock = kvm_get_wallclock;
202 	x86_platform.set_wallclock = kvm_set_wallclock;
203 #ifdef CONFIG_X86_LOCAL_APIC
204 	x86_cpuinit.early_percpu_clock_init =
205 		kvm_setup_secondary_clock;
206 #endif
207 	x86_platform.save_sched_clock_state = kvm_save_sched_clock_state;
208 	x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state;
209 	machine_ops.shutdown  = kvm_shutdown;
210 #ifdef CONFIG_KEXEC
211 	machine_ops.crash_shutdown  = kvm_crash_shutdown;
212 #endif
213 	kvm_get_preset_lpj();
214 	clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
215 	pv_info.paravirt_enabled = 1;
216 	pv_info.name = "KVM";
217 
218 	if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
219 		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
220 }
221