1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine -- Performance Monitoring Unit support
4 *
5 * Copyright 2015 Red Hat, Inc. and/or its affiliates.
6 *
7 * Authors:
8 * Avi Kivity <avi@redhat.com>
9 * Gleb Natapov <gleb@redhat.com>
10 * Wei Huang <wei@redhat.com>
11 */
12
13 #include <linux/types.h>
14 #include <linux/kvm_host.h>
15 #include <linux/perf_event.h>
16 #include <linux/bsearch.h>
17 #include <linux/sort.h>
18 #include <asm/perf_event.h>
19 #include "x86.h"
20 #include "cpuid.h"
21 #include "lapic.h"
22 #include "pmu.h"
23
24 /* This is enough to filter the vast majority of currently defined events. */
25 #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300
26
27 /* NOTE:
28 * - Each perf counter is defined as "struct kvm_pmc";
29 * - There are two types of perf counters: general purpose (gp) and fixed.
30 * gp counters are stored in gp_counters[] and fixed counters are stored
31 * in fixed_counters[] respectively. Both of them are part of "struct
32 * kvm_pmu";
33 * - pmu.c understands the difference between gp counters and fixed counters.
34 * However AMD doesn't support fixed-counters;
35 * - There are three types of index to access perf counters (PMC):
36 * 1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD
37 * has MSR_K7_PERFCTRn.
38 * 2. MSR Index (named idx): This normally is used by RDPMC instruction.
39 * For instance AMD RDPMC instruction uses 0000_0003h in ECX to access
40 * C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except
41 * that it also supports fixed counters. idx can be used to as index to
42 * gp and fixed counters.
43 * 3. Global PMC Index (named pmc): pmc is an index specific to PMU
44 * code. Each pmc, stored in kvm_pmc.idx field, is unique across
45 * all perf counters (both gp and fixed). The mapping relationship
46 * between pmc and perf counters is as the following:
47 * * Intel: [0 .. INTEL_PMC_MAX_GENERIC-1] <=> gp counters
48 * [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed
49 * * AMD: [0 .. AMD64_NUM_COUNTERS-1] <=> gp counters
50 */
51
52 static struct kvm_pmu_ops kvm_pmu_ops __read_mostly;
53
54 #define KVM_X86_PMU_OP(func) \
55 DEFINE_STATIC_CALL_NULL(kvm_x86_pmu_##func, \
56 *(((struct kvm_pmu_ops *)0)->func));
57 #define KVM_X86_PMU_OP_OPTIONAL KVM_X86_PMU_OP
58 #include <asm/kvm-x86-pmu-ops.h>
59
kvm_pmu_ops_update(const struct kvm_pmu_ops * pmu_ops)60 void kvm_pmu_ops_update(const struct kvm_pmu_ops *pmu_ops)
61 {
62 memcpy(&kvm_pmu_ops, pmu_ops, sizeof(kvm_pmu_ops));
63
64 #define __KVM_X86_PMU_OP(func) \
65 static_call_update(kvm_x86_pmu_##func, kvm_pmu_ops.func);
66 #define KVM_X86_PMU_OP(func) \
67 WARN_ON(!kvm_pmu_ops.func); __KVM_X86_PMU_OP(func)
68 #define KVM_X86_PMU_OP_OPTIONAL __KVM_X86_PMU_OP
69 #include <asm/kvm-x86-pmu-ops.h>
70 #undef __KVM_X86_PMU_OP
71 }
72
pmc_is_enabled(struct kvm_pmc * pmc)73 static inline bool pmc_is_enabled(struct kvm_pmc *pmc)
74 {
75 return static_call(kvm_x86_pmu_pmc_is_enabled)(pmc);
76 }
77
kvm_pmi_trigger_fn(struct irq_work * irq_work)78 static void kvm_pmi_trigger_fn(struct irq_work *irq_work)
79 {
80 struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu, irq_work);
81 struct kvm_vcpu *vcpu = pmu_to_vcpu(pmu);
82
83 kvm_pmu_deliver_pmi(vcpu);
84 }
85
__kvm_perf_overflow(struct kvm_pmc * pmc,bool in_pmi)86 static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi)
87 {
88 struct kvm_pmu *pmu = pmc_to_pmu(pmc);
89
90 /* Ignore counters that have been reprogrammed already. */
91 if (test_and_set_bit(pmc->idx, pmu->reprogram_pmi))
92 return;
93
94 __set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
95 kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
96
97 if (!pmc->intr)
98 return;
99
100 /*
101 * Inject PMI. If vcpu was in a guest mode during NMI PMI
102 * can be ejected on a guest mode re-entry. Otherwise we can't
103 * be sure that vcpu wasn't executing hlt instruction at the
104 * time of vmexit and is not going to re-enter guest mode until
105 * woken up. So we should wake it, but this is impossible from
106 * NMI context. Do it from irq work instead.
107 */
108 if (in_pmi && !kvm_handling_nmi_from_guest(pmc->vcpu))
109 irq_work_queue(&pmc_to_pmu(pmc)->irq_work);
110 else
111 kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
112 }
113
kvm_perf_overflow(struct perf_event * perf_event,struct perf_sample_data * data,struct pt_regs * regs)114 static void kvm_perf_overflow(struct perf_event *perf_event,
115 struct perf_sample_data *data,
116 struct pt_regs *regs)
117 {
118 struct kvm_pmc *pmc = perf_event->overflow_handler_context;
119
120 __kvm_perf_overflow(pmc, true);
121 }
122
pmc_reprogram_counter(struct kvm_pmc * pmc,u32 type,u64 config,bool exclude_user,bool exclude_kernel,bool intr)123 static void pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type,
124 u64 config, bool exclude_user,
125 bool exclude_kernel, bool intr)
126 {
127 struct perf_event *event;
128 struct perf_event_attr attr = {
129 .type = type,
130 .size = sizeof(attr),
131 .pinned = true,
132 .exclude_idle = true,
133 .exclude_host = 1,
134 .exclude_user = exclude_user,
135 .exclude_kernel = exclude_kernel,
136 .config = config,
137 };
138
139 if (type == PERF_TYPE_HARDWARE && config >= PERF_COUNT_HW_MAX)
140 return;
141
142 attr.sample_period = get_sample_period(pmc, pmc->counter);
143
144 if ((attr.config & HSW_IN_TX_CHECKPOINTED) &&
145 guest_cpuid_is_intel(pmc->vcpu)) {
146 /*
147 * HSW_IN_TX_CHECKPOINTED is not supported with nonzero
148 * period. Just clear the sample period so at least
149 * allocating the counter doesn't fail.
150 */
151 attr.sample_period = 0;
152 }
153
154 event = perf_event_create_kernel_counter(&attr, -1, current,
155 kvm_perf_overflow, pmc);
156 if (IS_ERR(event)) {
157 pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n",
158 PTR_ERR(event), pmc->idx);
159 return;
160 }
161
162 pmc->perf_event = event;
163 pmc_to_pmu(pmc)->event_count++;
164 clear_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi);
165 pmc->is_paused = false;
166 pmc->intr = intr;
167 }
168
pmc_pause_counter(struct kvm_pmc * pmc)169 static void pmc_pause_counter(struct kvm_pmc *pmc)
170 {
171 u64 counter = pmc->counter;
172
173 if (!pmc->perf_event || pmc->is_paused)
174 return;
175
176 /* update counter, reset event value to avoid redundant accumulation */
177 counter += perf_event_pause(pmc->perf_event, true);
178 pmc->counter = counter & pmc_bitmask(pmc);
179 pmc->is_paused = true;
180 }
181
pmc_resume_counter(struct kvm_pmc * pmc)182 static bool pmc_resume_counter(struct kvm_pmc *pmc)
183 {
184 if (!pmc->perf_event)
185 return false;
186
187 /* recalibrate sample period and check if it's accepted by perf core */
188 if (perf_event_period(pmc->perf_event,
189 get_sample_period(pmc, pmc->counter)))
190 return false;
191
192 /* reuse perf_event to serve as pmc_reprogram_counter() does*/
193 perf_event_enable(pmc->perf_event);
194 pmc->is_paused = false;
195
196 clear_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->reprogram_pmi);
197 return true;
198 }
199
cmp_u64(const void * pa,const void * pb)200 static int cmp_u64(const void *pa, const void *pb)
201 {
202 u64 a = *(u64 *)pa;
203 u64 b = *(u64 *)pb;
204
205 return (a > b) - (a < b);
206 }
207
reprogram_gp_counter(struct kvm_pmc * pmc,u64 eventsel)208 void reprogram_gp_counter(struct kvm_pmc *pmc, u64 eventsel)
209 {
210 u64 config;
211 u32 type = PERF_TYPE_RAW;
212 struct kvm *kvm = pmc->vcpu->kvm;
213 struct kvm_pmu_event_filter *filter;
214 struct kvm_pmu *pmu = vcpu_to_pmu(pmc->vcpu);
215 bool allow_event = true;
216
217 if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
218 printk_once("kvm pmu: pin control bit is ignored\n");
219
220 pmc->eventsel = eventsel;
221
222 pmc_pause_counter(pmc);
223
224 if (!(eventsel & ARCH_PERFMON_EVENTSEL_ENABLE) || !pmc_is_enabled(pmc))
225 return;
226
227 filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
228 if (filter) {
229 __u64 key = eventsel & AMD64_RAW_EVENT_MASK_NB;
230
231 if (bsearch(&key, filter->events, filter->nevents,
232 sizeof(__u64), cmp_u64))
233 allow_event = filter->action == KVM_PMU_EVENT_ALLOW;
234 else
235 allow_event = filter->action == KVM_PMU_EVENT_DENY;
236 }
237 if (!allow_event)
238 return;
239
240 if (!(eventsel & (ARCH_PERFMON_EVENTSEL_EDGE |
241 ARCH_PERFMON_EVENTSEL_INV |
242 ARCH_PERFMON_EVENTSEL_CMASK |
243 HSW_IN_TX |
244 HSW_IN_TX_CHECKPOINTED))) {
245 config = static_call(kvm_x86_pmu_pmc_perf_hw_id)(pmc);
246 if (config != PERF_COUNT_HW_MAX)
247 type = PERF_TYPE_HARDWARE;
248 }
249
250 if (type == PERF_TYPE_RAW)
251 config = eventsel & pmu->raw_event_mask;
252
253 if (pmc->current_config == eventsel && pmc_resume_counter(pmc))
254 return;
255
256 pmc_release_perf_event(pmc);
257
258 pmc->current_config = eventsel;
259 pmc_reprogram_counter(pmc, type, config,
260 !(eventsel & ARCH_PERFMON_EVENTSEL_USR),
261 !(eventsel & ARCH_PERFMON_EVENTSEL_OS),
262 eventsel & ARCH_PERFMON_EVENTSEL_INT);
263 }
264 EXPORT_SYMBOL_GPL(reprogram_gp_counter);
265
reprogram_fixed_counter(struct kvm_pmc * pmc,u8 ctrl,int idx)266 void reprogram_fixed_counter(struct kvm_pmc *pmc, u8 ctrl, int idx)
267 {
268 unsigned en_field = ctrl & 0x3;
269 bool pmi = ctrl & 0x8;
270 struct kvm_pmu_event_filter *filter;
271 struct kvm *kvm = pmc->vcpu->kvm;
272
273 pmc_pause_counter(pmc);
274
275 if (!en_field || !pmc_is_enabled(pmc))
276 return;
277
278 filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
279 if (filter) {
280 if (filter->action == KVM_PMU_EVENT_DENY &&
281 test_bit(idx, (ulong *)&filter->fixed_counter_bitmap))
282 return;
283 if (filter->action == KVM_PMU_EVENT_ALLOW &&
284 !test_bit(idx, (ulong *)&filter->fixed_counter_bitmap))
285 return;
286 }
287
288 if (pmc->current_config == (u64)ctrl && pmc_resume_counter(pmc))
289 return;
290
291 pmc_release_perf_event(pmc);
292
293 pmc->current_config = (u64)ctrl;
294 pmc_reprogram_counter(pmc, PERF_TYPE_HARDWARE,
295 static_call(kvm_x86_pmu_pmc_perf_hw_id)(pmc),
296 !(en_field & 0x2), /* exclude user */
297 !(en_field & 0x1), /* exclude kernel */
298 pmi);
299 }
300 EXPORT_SYMBOL_GPL(reprogram_fixed_counter);
301
reprogram_counter(struct kvm_pmu * pmu,int pmc_idx)302 void reprogram_counter(struct kvm_pmu *pmu, int pmc_idx)
303 {
304 struct kvm_pmc *pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, pmc_idx);
305
306 if (!pmc)
307 return;
308
309 if (pmc_is_gp(pmc))
310 reprogram_gp_counter(pmc, pmc->eventsel);
311 else {
312 int idx = pmc_idx - INTEL_PMC_IDX_FIXED;
313 u8 ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl, idx);
314
315 reprogram_fixed_counter(pmc, ctrl, idx);
316 }
317 }
318 EXPORT_SYMBOL_GPL(reprogram_counter);
319
kvm_pmu_handle_event(struct kvm_vcpu * vcpu)320 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu)
321 {
322 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
323 int bit;
324
325 for_each_set_bit(bit, pmu->reprogram_pmi, X86_PMC_IDX_MAX) {
326 struct kvm_pmc *pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, bit);
327
328 if (unlikely(!pmc || !pmc->perf_event)) {
329 clear_bit(bit, pmu->reprogram_pmi);
330 continue;
331 }
332
333 reprogram_counter(pmu, bit);
334 }
335
336 /*
337 * Unused perf_events are only released if the corresponding MSRs
338 * weren't accessed during the last vCPU time slice. kvm_arch_sched_in
339 * triggers KVM_REQ_PMU if cleanup is needed.
340 */
341 if (unlikely(pmu->need_cleanup))
342 kvm_pmu_cleanup(vcpu);
343 }
344
345 /* check if idx is a valid index to access PMU */
kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu * vcpu,unsigned int idx)346 bool kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx)
347 {
348 return static_call(kvm_x86_pmu_is_valid_rdpmc_ecx)(vcpu, idx);
349 }
350
is_vmware_backdoor_pmc(u32 pmc_idx)351 bool is_vmware_backdoor_pmc(u32 pmc_idx)
352 {
353 switch (pmc_idx) {
354 case VMWARE_BACKDOOR_PMC_HOST_TSC:
355 case VMWARE_BACKDOOR_PMC_REAL_TIME:
356 case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
357 return true;
358 }
359 return false;
360 }
361
kvm_pmu_rdpmc_vmware(struct kvm_vcpu * vcpu,unsigned idx,u64 * data)362 static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
363 {
364 u64 ctr_val;
365
366 switch (idx) {
367 case VMWARE_BACKDOOR_PMC_HOST_TSC:
368 ctr_val = rdtsc();
369 break;
370 case VMWARE_BACKDOOR_PMC_REAL_TIME:
371 ctr_val = ktime_get_boottime_ns();
372 break;
373 case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
374 ctr_val = ktime_get_boottime_ns() +
375 vcpu->kvm->arch.kvmclock_offset;
376 break;
377 default:
378 return 1;
379 }
380
381 *data = ctr_val;
382 return 0;
383 }
384
kvm_pmu_rdpmc(struct kvm_vcpu * vcpu,unsigned idx,u64 * data)385 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
386 {
387 bool fast_mode = idx & (1u << 31);
388 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
389 struct kvm_pmc *pmc;
390 u64 mask = fast_mode ? ~0u : ~0ull;
391
392 if (!pmu->version)
393 return 1;
394
395 if (is_vmware_backdoor_pmc(idx))
396 return kvm_pmu_rdpmc_vmware(vcpu, idx, data);
397
398 pmc = static_call(kvm_x86_pmu_rdpmc_ecx_to_pmc)(vcpu, idx, &mask);
399 if (!pmc)
400 return 1;
401
402 if (!(kvm_read_cr4(vcpu) & X86_CR4_PCE) &&
403 (static_call(kvm_x86_get_cpl)(vcpu) != 0) &&
404 (kvm_read_cr0(vcpu) & X86_CR0_PE))
405 return 1;
406
407 *data = pmc_read_counter(pmc) & mask;
408 return 0;
409 }
410
kvm_pmu_deliver_pmi(struct kvm_vcpu * vcpu)411 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
412 {
413 if (lapic_in_kernel(vcpu)) {
414 static_call_cond(kvm_x86_pmu_deliver_pmi)(vcpu);
415 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
416 }
417 }
418
kvm_pmu_is_valid_msr(struct kvm_vcpu * vcpu,u32 msr)419 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
420 {
421 return static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr) ||
422 static_call(kvm_x86_pmu_is_valid_msr)(vcpu, msr);
423 }
424
kvm_pmu_mark_pmc_in_use(struct kvm_vcpu * vcpu,u32 msr)425 static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr)
426 {
427 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
428 struct kvm_pmc *pmc = static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr);
429
430 if (pmc)
431 __set_bit(pmc->idx, pmu->pmc_in_use);
432 }
433
kvm_pmu_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)434 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
435 {
436 return static_call(kvm_x86_pmu_get_msr)(vcpu, msr_info);
437 }
438
kvm_pmu_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)439 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
440 {
441 kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index);
442 return static_call(kvm_x86_pmu_set_msr)(vcpu, msr_info);
443 }
444
445 /* refresh PMU settings. This function generally is called when underlying
446 * settings are changed (such as changes of PMU CPUID by guest VMs), which
447 * should rarely happen.
448 */
kvm_pmu_refresh(struct kvm_vcpu * vcpu)449 void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
450 {
451 static_call(kvm_x86_pmu_refresh)(vcpu);
452 }
453
kvm_pmu_reset(struct kvm_vcpu * vcpu)454 void kvm_pmu_reset(struct kvm_vcpu *vcpu)
455 {
456 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
457
458 irq_work_sync(&pmu->irq_work);
459 static_call(kvm_x86_pmu_reset)(vcpu);
460 }
461
kvm_pmu_init(struct kvm_vcpu * vcpu)462 void kvm_pmu_init(struct kvm_vcpu *vcpu)
463 {
464 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
465
466 memset(pmu, 0, sizeof(*pmu));
467 static_call(kvm_x86_pmu_init)(vcpu);
468 init_irq_work(&pmu->irq_work, kvm_pmi_trigger_fn);
469 pmu->event_count = 0;
470 pmu->need_cleanup = false;
471 kvm_pmu_refresh(vcpu);
472 }
473
pmc_speculative_in_use(struct kvm_pmc * pmc)474 static inline bool pmc_speculative_in_use(struct kvm_pmc *pmc)
475 {
476 struct kvm_pmu *pmu = pmc_to_pmu(pmc);
477
478 if (pmc_is_fixed(pmc))
479 return fixed_ctrl_field(pmu->fixed_ctr_ctrl,
480 pmc->idx - INTEL_PMC_IDX_FIXED) & 0x3;
481
482 return pmc->eventsel & ARCH_PERFMON_EVENTSEL_ENABLE;
483 }
484
485 /* Release perf_events for vPMCs that have been unused for a full time slice. */
kvm_pmu_cleanup(struct kvm_vcpu * vcpu)486 void kvm_pmu_cleanup(struct kvm_vcpu *vcpu)
487 {
488 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
489 struct kvm_pmc *pmc = NULL;
490 DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX);
491 int i;
492
493 pmu->need_cleanup = false;
494
495 bitmap_andnot(bitmask, pmu->all_valid_pmc_idx,
496 pmu->pmc_in_use, X86_PMC_IDX_MAX);
497
498 for_each_set_bit(i, bitmask, X86_PMC_IDX_MAX) {
499 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
500
501 if (pmc && pmc->perf_event && !pmc_speculative_in_use(pmc))
502 pmc_stop_counter(pmc);
503 }
504
505 static_call_cond(kvm_x86_pmu_cleanup)(vcpu);
506
507 bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX);
508 }
509
kvm_pmu_destroy(struct kvm_vcpu * vcpu)510 void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
511 {
512 kvm_pmu_reset(vcpu);
513 }
514
kvm_pmu_incr_counter(struct kvm_pmc * pmc)515 static void kvm_pmu_incr_counter(struct kvm_pmc *pmc)
516 {
517 struct kvm_pmu *pmu = pmc_to_pmu(pmc);
518 u64 prev_count;
519
520 prev_count = pmc->counter;
521 pmc->counter = (pmc->counter + 1) & pmc_bitmask(pmc);
522
523 reprogram_counter(pmu, pmc->idx);
524 if (pmc->counter < prev_count)
525 __kvm_perf_overflow(pmc, false);
526 }
527
eventsel_match_perf_hw_id(struct kvm_pmc * pmc,unsigned int perf_hw_id)528 static inline bool eventsel_match_perf_hw_id(struct kvm_pmc *pmc,
529 unsigned int perf_hw_id)
530 {
531 u64 old_eventsel = pmc->eventsel;
532 unsigned int config;
533
534 pmc->eventsel &= (ARCH_PERFMON_EVENTSEL_EVENT | ARCH_PERFMON_EVENTSEL_UMASK);
535 config = static_call(kvm_x86_pmu_pmc_perf_hw_id)(pmc);
536 pmc->eventsel = old_eventsel;
537 return config == perf_hw_id;
538 }
539
cpl_is_matched(struct kvm_pmc * pmc)540 static inline bool cpl_is_matched(struct kvm_pmc *pmc)
541 {
542 bool select_os, select_user;
543 u64 config = pmc->current_config;
544
545 if (pmc_is_gp(pmc)) {
546 select_os = config & ARCH_PERFMON_EVENTSEL_OS;
547 select_user = config & ARCH_PERFMON_EVENTSEL_USR;
548 } else {
549 select_os = config & 0x1;
550 select_user = config & 0x2;
551 }
552
553 return (static_call(kvm_x86_get_cpl)(pmc->vcpu) == 0) ? select_os : select_user;
554 }
555
kvm_pmu_trigger_event(struct kvm_vcpu * vcpu,u64 perf_hw_id)556 void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu, u64 perf_hw_id)
557 {
558 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
559 struct kvm_pmc *pmc;
560 int i;
561
562 for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) {
563 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
564
565 if (!pmc || !pmc_is_enabled(pmc) || !pmc_speculative_in_use(pmc))
566 continue;
567
568 /* Ignore checks for edge detect, pin control, invert and CMASK bits */
569 if (eventsel_match_perf_hw_id(pmc, perf_hw_id) && cpl_is_matched(pmc))
570 kvm_pmu_incr_counter(pmc);
571 }
572 }
573 EXPORT_SYMBOL_GPL(kvm_pmu_trigger_event);
574
kvm_vm_ioctl_set_pmu_event_filter(struct kvm * kvm,void __user * argp)575 int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp)
576 {
577 struct kvm_pmu_event_filter tmp, *filter;
578 size_t size;
579 int r;
580
581 if (copy_from_user(&tmp, argp, sizeof(tmp)))
582 return -EFAULT;
583
584 if (tmp.action != KVM_PMU_EVENT_ALLOW &&
585 tmp.action != KVM_PMU_EVENT_DENY)
586 return -EINVAL;
587
588 if (tmp.flags != 0)
589 return -EINVAL;
590
591 if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS)
592 return -E2BIG;
593
594 size = struct_size(filter, events, tmp.nevents);
595 filter = kmalloc(size, GFP_KERNEL_ACCOUNT);
596 if (!filter)
597 return -ENOMEM;
598
599 r = -EFAULT;
600 if (copy_from_user(filter, argp, size))
601 goto cleanup;
602
603 /* Ensure nevents can't be changed between the user copies. */
604 *filter = tmp;
605
606 /*
607 * Sort the in-kernel list so that we can search it with bsearch.
608 */
609 sort(&filter->events, filter->nevents, sizeof(__u64), cmp_u64, NULL);
610
611 mutex_lock(&kvm->lock);
612 filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter,
613 mutex_is_locked(&kvm->lock));
614 mutex_unlock(&kvm->lock);
615
616 synchronize_srcu_expedited(&kvm->srcu);
617 r = 0;
618 cleanup:
619 kfree(filter);
620 return r;
621 }
622