1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine -- Performance Monitoring Unit support
4 *
5 * Copyright 2015 Red Hat, Inc. and/or its affiliates.
6 *
7 * Authors:
8 * Avi Kivity <avi@redhat.com>
9 * Gleb Natapov <gleb@redhat.com>
10 * Wei Huang <wei@redhat.com>
11 */
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/types.h>
15 #include <linux/kvm_host.h>
16 #include <linux/perf_event.h>
17 #include <linux/bsearch.h>
18 #include <linux/sort.h>
19 #include <asm/perf_event.h>
20 #include <asm/cpu_device_id.h>
21 #include "x86.h"
22 #include "cpuid.h"
23 #include "lapic.h"
24 #include "pmu.h"
25
26 /* This is enough to filter the vast majority of currently defined events. */
27 #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300
28
29 struct x86_pmu_capability __read_mostly kvm_pmu_cap;
30 EXPORT_SYMBOL_GPL(kvm_pmu_cap);
31
32 /* Precise Distribution of Instructions Retired (PDIR) */
33 static const struct x86_cpu_id vmx_pebs_pdir_cpu[] = {
34 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, NULL),
35 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, NULL),
36 /* Instruction-Accurate PDIR (PDIR++) */
37 X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL),
38 {}
39 };
40
41 /* Precise Distribution (PDist) */
42 static const struct x86_cpu_id vmx_pebs_pdist_cpu[] = {
43 X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL),
44 {}
45 };
46
47 /* NOTE:
48 * - Each perf counter is defined as "struct kvm_pmc";
49 * - There are two types of perf counters: general purpose (gp) and fixed.
50 * gp counters are stored in gp_counters[] and fixed counters are stored
51 * in fixed_counters[] respectively. Both of them are part of "struct
52 * kvm_pmu";
53 * - pmu.c understands the difference between gp counters and fixed counters.
54 * However AMD doesn't support fixed-counters;
55 * - There are three types of index to access perf counters (PMC):
56 * 1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD
57 * has MSR_K7_PERFCTRn and, for families 15H and later,
58 * MSR_F15H_PERF_CTRn, where MSR_F15H_PERF_CTR[0-3] are
59 * aliased to MSR_K7_PERFCTRn.
60 * 2. MSR Index (named idx): This normally is used by RDPMC instruction.
61 * For instance AMD RDPMC instruction uses 0000_0003h in ECX to access
62 * C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except
63 * that it also supports fixed counters. idx can be used to as index to
64 * gp and fixed counters.
65 * 3. Global PMC Index (named pmc): pmc is an index specific to PMU
66 * code. Each pmc, stored in kvm_pmc.idx field, is unique across
67 * all perf counters (both gp and fixed). The mapping relationship
68 * between pmc and perf counters is as the following:
69 * * Intel: [0 .. KVM_INTEL_PMC_MAX_GENERIC-1] <=> gp counters
70 * [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed
71 * * AMD: [0 .. AMD64_NUM_COUNTERS-1] and, for families 15H
72 * and later, [0 .. AMD64_NUM_COUNTERS_CORE-1] <=> gp counters
73 */
74
75 static struct kvm_pmu_ops kvm_pmu_ops __read_mostly;
76
77 #define KVM_X86_PMU_OP(func) \
78 DEFINE_STATIC_CALL_NULL(kvm_x86_pmu_##func, \
79 *(((struct kvm_pmu_ops *)0)->func));
80 #define KVM_X86_PMU_OP_OPTIONAL KVM_X86_PMU_OP
81 #include <asm/kvm-x86-pmu-ops.h>
82
kvm_pmu_ops_update(const struct kvm_pmu_ops * pmu_ops)83 void kvm_pmu_ops_update(const struct kvm_pmu_ops *pmu_ops)
84 {
85 memcpy(&kvm_pmu_ops, pmu_ops, sizeof(kvm_pmu_ops));
86
87 #define __KVM_X86_PMU_OP(func) \
88 static_call_update(kvm_x86_pmu_##func, kvm_pmu_ops.func);
89 #define KVM_X86_PMU_OP(func) \
90 WARN_ON(!kvm_pmu_ops.func); __KVM_X86_PMU_OP(func)
91 #define KVM_X86_PMU_OP_OPTIONAL __KVM_X86_PMU_OP
92 #include <asm/kvm-x86-pmu-ops.h>
93 #undef __KVM_X86_PMU_OP
94 }
95
__kvm_perf_overflow(struct kvm_pmc * pmc,bool in_pmi)96 static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi)
97 {
98 struct kvm_pmu *pmu = pmc_to_pmu(pmc);
99 bool skip_pmi = false;
100
101 if (pmc->perf_event && pmc->perf_event->attr.precise_ip) {
102 if (!in_pmi) {
103 /*
104 * TODO: KVM is currently _choosing_ to not generate records
105 * for emulated instructions, avoiding BUFFER_OVF PMI when
106 * there are no records. Strictly speaking, it should be done
107 * as well in the right context to improve sampling accuracy.
108 */
109 skip_pmi = true;
110 } else {
111 /* Indicate PEBS overflow PMI to guest. */
112 skip_pmi = __test_and_set_bit(GLOBAL_STATUS_BUFFER_OVF_BIT,
113 (unsigned long *)&pmu->global_status);
114 }
115 } else {
116 __set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
117 }
118
119 if (pmc->intr && !skip_pmi)
120 kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
121 }
122
kvm_perf_overflow(struct perf_event * perf_event,struct perf_sample_data * data,struct pt_regs * regs)123 static void kvm_perf_overflow(struct perf_event *perf_event,
124 struct perf_sample_data *data,
125 struct pt_regs *regs)
126 {
127 struct kvm_pmc *pmc = perf_event->overflow_handler_context;
128
129 /*
130 * Ignore overflow events for counters that are scheduled to be
131 * reprogrammed, e.g. if a PMI for the previous event races with KVM's
132 * handling of a related guest WRMSR.
133 */
134 if (test_and_set_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi))
135 return;
136
137 __kvm_perf_overflow(pmc, true);
138
139 kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
140 }
141
pmc_get_pebs_precise_level(struct kvm_pmc * pmc)142 static u64 pmc_get_pebs_precise_level(struct kvm_pmc *pmc)
143 {
144 /*
145 * For some model specific pebs counters with special capabilities
146 * (PDIR, PDIR++, PDIST), KVM needs to raise the event precise
147 * level to the maximum value (currently 3, backwards compatible)
148 * so that the perf subsystem would assign specific hardware counter
149 * with that capability for vPMC.
150 */
151 if ((pmc->idx == 0 && x86_match_cpu(vmx_pebs_pdist_cpu)) ||
152 (pmc->idx == 32 && x86_match_cpu(vmx_pebs_pdir_cpu)))
153 return 3;
154
155 /*
156 * The non-zero precision level of guest event makes the ordinary
157 * guest event becomes a guest PEBS event and triggers the host
158 * PEBS PMI handler to determine whether the PEBS overflow PMI
159 * comes from the host counters or the guest.
160 */
161 return 1;
162 }
163
pmc_reprogram_counter(struct kvm_pmc * pmc,u32 type,u64 config,bool exclude_user,bool exclude_kernel,bool intr)164 static int pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, u64 config,
165 bool exclude_user, bool exclude_kernel,
166 bool intr)
167 {
168 struct kvm_pmu *pmu = pmc_to_pmu(pmc);
169 struct perf_event *event;
170 struct perf_event_attr attr = {
171 .type = type,
172 .size = sizeof(attr),
173 .pinned = true,
174 .exclude_idle = true,
175 .exclude_host = 1,
176 .exclude_user = exclude_user,
177 .exclude_kernel = exclude_kernel,
178 .config = config,
179 };
180 bool pebs = test_bit(pmc->idx, (unsigned long *)&pmu->pebs_enable);
181
182 attr.sample_period = get_sample_period(pmc, pmc->counter);
183
184 if ((attr.config & HSW_IN_TX_CHECKPOINTED) &&
185 guest_cpuid_is_intel(pmc->vcpu)) {
186 /*
187 * HSW_IN_TX_CHECKPOINTED is not supported with nonzero
188 * period. Just clear the sample period so at least
189 * allocating the counter doesn't fail.
190 */
191 attr.sample_period = 0;
192 }
193 if (pebs) {
194 /*
195 * For most PEBS hardware events, the difference in the software
196 * precision levels of guest and host PEBS events will not affect
197 * the accuracy of the PEBS profiling result, because the "event IP"
198 * in the PEBS record is calibrated on the guest side.
199 */
200 attr.precise_ip = pmc_get_pebs_precise_level(pmc);
201 }
202
203 event = perf_event_create_kernel_counter(&attr, -1, current,
204 kvm_perf_overflow, pmc);
205 if (IS_ERR(event)) {
206 pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n",
207 PTR_ERR(event), pmc->idx);
208 return PTR_ERR(event);
209 }
210
211 pmc->perf_event = event;
212 pmc_to_pmu(pmc)->event_count++;
213 pmc->is_paused = false;
214 pmc->intr = intr || pebs;
215 return 0;
216 }
217
pmc_pause_counter(struct kvm_pmc * pmc)218 static void pmc_pause_counter(struct kvm_pmc *pmc)
219 {
220 u64 counter = pmc->counter;
221
222 if (!pmc->perf_event || pmc->is_paused)
223 return;
224
225 /* update counter, reset event value to avoid redundant accumulation */
226 counter += perf_event_pause(pmc->perf_event, true);
227 pmc->counter = counter & pmc_bitmask(pmc);
228 pmc->is_paused = true;
229 }
230
pmc_resume_counter(struct kvm_pmc * pmc)231 static bool pmc_resume_counter(struct kvm_pmc *pmc)
232 {
233 if (!pmc->perf_event)
234 return false;
235
236 /* recalibrate sample period and check if it's accepted by perf core */
237 if (is_sampling_event(pmc->perf_event) &&
238 perf_event_period(pmc->perf_event,
239 get_sample_period(pmc, pmc->counter)))
240 return false;
241
242 if (test_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->pebs_enable) !=
243 (!!pmc->perf_event->attr.precise_ip))
244 return false;
245
246 /* reuse perf_event to serve as pmc_reprogram_counter() does*/
247 perf_event_enable(pmc->perf_event);
248 pmc->is_paused = false;
249
250 return true;
251 }
252
pmc_release_perf_event(struct kvm_pmc * pmc)253 static void pmc_release_perf_event(struct kvm_pmc *pmc)
254 {
255 if (pmc->perf_event) {
256 perf_event_release_kernel(pmc->perf_event);
257 pmc->perf_event = NULL;
258 pmc->current_config = 0;
259 pmc_to_pmu(pmc)->event_count--;
260 }
261 }
262
pmc_stop_counter(struct kvm_pmc * pmc)263 static void pmc_stop_counter(struct kvm_pmc *pmc)
264 {
265 if (pmc->perf_event) {
266 pmc->counter = pmc_read_counter(pmc);
267 pmc_release_perf_event(pmc);
268 }
269 }
270
filter_cmp(const void * pa,const void * pb,u64 mask)271 static int filter_cmp(const void *pa, const void *pb, u64 mask)
272 {
273 u64 a = *(u64 *)pa & mask;
274 u64 b = *(u64 *)pb & mask;
275
276 return (a > b) - (a < b);
277 }
278
279
filter_sort_cmp(const void * pa,const void * pb)280 static int filter_sort_cmp(const void *pa, const void *pb)
281 {
282 return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT |
283 KVM_PMU_MASKED_ENTRY_EXCLUDE));
284 }
285
286 /*
287 * For the event filter, searching is done on the 'includes' list and
288 * 'excludes' list separately rather than on the 'events' list (which
289 * has both). As a result the exclude bit can be ignored.
290 */
filter_event_cmp(const void * pa,const void * pb)291 static int filter_event_cmp(const void *pa, const void *pb)
292 {
293 return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT));
294 }
295
find_filter_index(u64 * events,u64 nevents,u64 key)296 static int find_filter_index(u64 *events, u64 nevents, u64 key)
297 {
298 u64 *fe = bsearch(&key, events, nevents, sizeof(events[0]),
299 filter_event_cmp);
300
301 if (!fe)
302 return -1;
303
304 return fe - events;
305 }
306
is_filter_entry_match(u64 filter_event,u64 umask)307 static bool is_filter_entry_match(u64 filter_event, u64 umask)
308 {
309 u64 mask = filter_event >> (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8);
310 u64 match = filter_event & KVM_PMU_MASKED_ENTRY_UMASK_MATCH;
311
312 BUILD_BUG_ON((KVM_PMU_ENCODE_MASKED_ENTRY(0, 0xff, 0, false) >>
313 (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8)) !=
314 ARCH_PERFMON_EVENTSEL_UMASK);
315
316 return (umask & mask) == match;
317 }
318
filter_contains_match(u64 * events,u64 nevents,u64 eventsel)319 static bool filter_contains_match(u64 *events, u64 nevents, u64 eventsel)
320 {
321 u64 event_select = eventsel & kvm_pmu_ops.EVENTSEL_EVENT;
322 u64 umask = eventsel & ARCH_PERFMON_EVENTSEL_UMASK;
323 int i, index;
324
325 index = find_filter_index(events, nevents, event_select);
326 if (index < 0)
327 return false;
328
329 /*
330 * Entries are sorted by the event select. Walk the list in both
331 * directions to process all entries with the targeted event select.
332 */
333 for (i = index; i < nevents; i++) {
334 if (filter_event_cmp(&events[i], &event_select))
335 break;
336
337 if (is_filter_entry_match(events[i], umask))
338 return true;
339 }
340
341 for (i = index - 1; i >= 0; i--) {
342 if (filter_event_cmp(&events[i], &event_select))
343 break;
344
345 if (is_filter_entry_match(events[i], umask))
346 return true;
347 }
348
349 return false;
350 }
351
is_gp_event_allowed(struct kvm_x86_pmu_event_filter * f,u64 eventsel)352 static bool is_gp_event_allowed(struct kvm_x86_pmu_event_filter *f,
353 u64 eventsel)
354 {
355 if (filter_contains_match(f->includes, f->nr_includes, eventsel) &&
356 !filter_contains_match(f->excludes, f->nr_excludes, eventsel))
357 return f->action == KVM_PMU_EVENT_ALLOW;
358
359 return f->action == KVM_PMU_EVENT_DENY;
360 }
361
is_fixed_event_allowed(struct kvm_x86_pmu_event_filter * filter,int idx)362 static bool is_fixed_event_allowed(struct kvm_x86_pmu_event_filter *filter,
363 int idx)
364 {
365 int fixed_idx = idx - INTEL_PMC_IDX_FIXED;
366
367 if (filter->action == KVM_PMU_EVENT_DENY &&
368 test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
369 return false;
370 if (filter->action == KVM_PMU_EVENT_ALLOW &&
371 !test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
372 return false;
373
374 return true;
375 }
376
check_pmu_event_filter(struct kvm_pmc * pmc)377 static bool check_pmu_event_filter(struct kvm_pmc *pmc)
378 {
379 struct kvm_x86_pmu_event_filter *filter;
380 struct kvm *kvm = pmc->vcpu->kvm;
381
382 filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
383 if (!filter)
384 return true;
385
386 if (pmc_is_gp(pmc))
387 return is_gp_event_allowed(filter, pmc->eventsel);
388
389 return is_fixed_event_allowed(filter, pmc->idx);
390 }
391
pmc_event_is_allowed(struct kvm_pmc * pmc)392 static bool pmc_event_is_allowed(struct kvm_pmc *pmc)
393 {
394 return pmc_is_globally_enabled(pmc) && pmc_speculative_in_use(pmc) &&
395 static_call(kvm_x86_pmu_hw_event_available)(pmc) &&
396 check_pmu_event_filter(pmc);
397 }
398
reprogram_counter(struct kvm_pmc * pmc)399 static void reprogram_counter(struct kvm_pmc *pmc)
400 {
401 struct kvm_pmu *pmu = pmc_to_pmu(pmc);
402 u64 eventsel = pmc->eventsel;
403 u64 new_config = eventsel;
404 u8 fixed_ctr_ctrl;
405
406 pmc_pause_counter(pmc);
407
408 if (!pmc_event_is_allowed(pmc))
409 goto reprogram_complete;
410
411 if (pmc->counter < pmc->prev_counter)
412 __kvm_perf_overflow(pmc, false);
413
414 if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
415 printk_once("kvm pmu: pin control bit is ignored\n");
416
417 if (pmc_is_fixed(pmc)) {
418 fixed_ctr_ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl,
419 pmc->idx - INTEL_PMC_IDX_FIXED);
420 if (fixed_ctr_ctrl & 0x1)
421 eventsel |= ARCH_PERFMON_EVENTSEL_OS;
422 if (fixed_ctr_ctrl & 0x2)
423 eventsel |= ARCH_PERFMON_EVENTSEL_USR;
424 if (fixed_ctr_ctrl & 0x8)
425 eventsel |= ARCH_PERFMON_EVENTSEL_INT;
426 new_config = (u64)fixed_ctr_ctrl;
427 }
428
429 if (pmc->current_config == new_config && pmc_resume_counter(pmc))
430 goto reprogram_complete;
431
432 pmc_release_perf_event(pmc);
433
434 pmc->current_config = new_config;
435
436 /*
437 * If reprogramming fails, e.g. due to contention, leave the counter's
438 * regprogram bit set, i.e. opportunistically try again on the next PMU
439 * refresh. Don't make a new request as doing so can stall the guest
440 * if reprogramming repeatedly fails.
441 */
442 if (pmc_reprogram_counter(pmc, PERF_TYPE_RAW,
443 (eventsel & pmu->raw_event_mask),
444 !(eventsel & ARCH_PERFMON_EVENTSEL_USR),
445 !(eventsel & ARCH_PERFMON_EVENTSEL_OS),
446 eventsel & ARCH_PERFMON_EVENTSEL_INT))
447 return;
448
449 reprogram_complete:
450 clear_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->reprogram_pmi);
451 pmc->prev_counter = 0;
452 }
453
kvm_pmu_handle_event(struct kvm_vcpu * vcpu)454 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu)
455 {
456 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
457 int bit;
458
459 for_each_set_bit(bit, pmu->reprogram_pmi, X86_PMC_IDX_MAX) {
460 struct kvm_pmc *pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, bit);
461
462 if (unlikely(!pmc)) {
463 clear_bit(bit, pmu->reprogram_pmi);
464 continue;
465 }
466
467 reprogram_counter(pmc);
468 }
469
470 /*
471 * Unused perf_events are only released if the corresponding MSRs
472 * weren't accessed during the last vCPU time slice. kvm_arch_sched_in
473 * triggers KVM_REQ_PMU if cleanup is needed.
474 */
475 if (unlikely(pmu->need_cleanup))
476 kvm_pmu_cleanup(vcpu);
477 }
478
479 /* check if idx is a valid index to access PMU */
kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu * vcpu,unsigned int idx)480 bool kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx)
481 {
482 return static_call(kvm_x86_pmu_is_valid_rdpmc_ecx)(vcpu, idx);
483 }
484
is_vmware_backdoor_pmc(u32 pmc_idx)485 bool is_vmware_backdoor_pmc(u32 pmc_idx)
486 {
487 switch (pmc_idx) {
488 case VMWARE_BACKDOOR_PMC_HOST_TSC:
489 case VMWARE_BACKDOOR_PMC_REAL_TIME:
490 case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
491 return true;
492 }
493 return false;
494 }
495
kvm_pmu_rdpmc_vmware(struct kvm_vcpu * vcpu,unsigned idx,u64 * data)496 static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
497 {
498 u64 ctr_val;
499
500 switch (idx) {
501 case VMWARE_BACKDOOR_PMC_HOST_TSC:
502 ctr_val = rdtsc();
503 break;
504 case VMWARE_BACKDOOR_PMC_REAL_TIME:
505 ctr_val = ktime_get_boottime_ns();
506 break;
507 case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
508 ctr_val = ktime_get_boottime_ns() +
509 vcpu->kvm->arch.kvmclock_offset;
510 break;
511 default:
512 return 1;
513 }
514
515 *data = ctr_val;
516 return 0;
517 }
518
kvm_pmu_rdpmc(struct kvm_vcpu * vcpu,unsigned idx,u64 * data)519 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
520 {
521 bool fast_mode = idx & (1u << 31);
522 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
523 struct kvm_pmc *pmc;
524 u64 mask = fast_mode ? ~0u : ~0ull;
525
526 if (!pmu->version)
527 return 1;
528
529 if (is_vmware_backdoor_pmc(idx))
530 return kvm_pmu_rdpmc_vmware(vcpu, idx, data);
531
532 pmc = static_call(kvm_x86_pmu_rdpmc_ecx_to_pmc)(vcpu, idx, &mask);
533 if (!pmc)
534 return 1;
535
536 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCE) &&
537 (static_call(kvm_x86_get_cpl)(vcpu) != 0) &&
538 kvm_is_cr0_bit_set(vcpu, X86_CR0_PE))
539 return 1;
540
541 *data = pmc_read_counter(pmc) & mask;
542 return 0;
543 }
544
kvm_pmu_deliver_pmi(struct kvm_vcpu * vcpu)545 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
546 {
547 if (lapic_in_kernel(vcpu)) {
548 static_call_cond(kvm_x86_pmu_deliver_pmi)(vcpu);
549 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
550 }
551 }
552
kvm_pmu_is_valid_msr(struct kvm_vcpu * vcpu,u32 msr)553 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
554 {
555 switch (msr) {
556 case MSR_CORE_PERF_GLOBAL_STATUS:
557 case MSR_CORE_PERF_GLOBAL_CTRL:
558 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
559 return kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu));
560 default:
561 break;
562 }
563 return static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr) ||
564 static_call(kvm_x86_pmu_is_valid_msr)(vcpu, msr);
565 }
566
kvm_pmu_mark_pmc_in_use(struct kvm_vcpu * vcpu,u32 msr)567 static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr)
568 {
569 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
570 struct kvm_pmc *pmc = static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr);
571
572 if (pmc)
573 __set_bit(pmc->idx, pmu->pmc_in_use);
574 }
575
kvm_pmu_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)576 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
577 {
578 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
579 u32 msr = msr_info->index;
580
581 switch (msr) {
582 case MSR_CORE_PERF_GLOBAL_STATUS:
583 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
584 msr_info->data = pmu->global_status;
585 break;
586 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
587 case MSR_CORE_PERF_GLOBAL_CTRL:
588 msr_info->data = pmu->global_ctrl;
589 break;
590 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
591 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
592 msr_info->data = 0;
593 break;
594 default:
595 return static_call(kvm_x86_pmu_get_msr)(vcpu, msr_info);
596 }
597
598 return 0;
599 }
600
kvm_pmu_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)601 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
602 {
603 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
604 u32 msr = msr_info->index;
605 u64 data = msr_info->data;
606 u64 diff;
607
608 /*
609 * Note, AMD ignores writes to reserved bits and read-only PMU MSRs,
610 * whereas Intel generates #GP on attempts to write reserved/RO MSRs.
611 */
612 switch (msr) {
613 case MSR_CORE_PERF_GLOBAL_STATUS:
614 if (!msr_info->host_initiated)
615 return 1; /* RO MSR */
616 fallthrough;
617 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
618 /* Per PPR, Read-only MSR. Writes are ignored. */
619 if (!msr_info->host_initiated)
620 break;
621
622 if (data & pmu->global_status_mask)
623 return 1;
624
625 pmu->global_status = data;
626 break;
627 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
628 data &= ~pmu->global_ctrl_mask;
629 fallthrough;
630 case MSR_CORE_PERF_GLOBAL_CTRL:
631 if (!kvm_valid_perf_global_ctrl(pmu, data))
632 return 1;
633
634 if (pmu->global_ctrl != data) {
635 diff = pmu->global_ctrl ^ data;
636 pmu->global_ctrl = data;
637 reprogram_counters(pmu, diff);
638 }
639 break;
640 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
641 /*
642 * GLOBAL_OVF_CTRL, a.k.a. GLOBAL STATUS_RESET, clears bits in
643 * GLOBAL_STATUS, and so the set of reserved bits is the same.
644 */
645 if (data & pmu->global_status_mask)
646 return 1;
647 fallthrough;
648 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
649 if (!msr_info->host_initiated)
650 pmu->global_status &= ~data;
651 break;
652 default:
653 kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index);
654 return static_call(kvm_x86_pmu_set_msr)(vcpu, msr_info);
655 }
656
657 return 0;
658 }
659
kvm_pmu_reset(struct kvm_vcpu * vcpu)660 void kvm_pmu_reset(struct kvm_vcpu *vcpu)
661 {
662 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
663 struct kvm_pmc *pmc;
664 int i;
665
666 pmu->need_cleanup = false;
667
668 bitmap_zero(pmu->reprogram_pmi, X86_PMC_IDX_MAX);
669
670 for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) {
671 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
672 if (!pmc)
673 continue;
674
675 pmc_stop_counter(pmc);
676 pmc->counter = 0;
677
678 if (pmc_is_gp(pmc))
679 pmc->eventsel = 0;
680 }
681
682 pmu->fixed_ctr_ctrl = pmu->global_ctrl = pmu->global_status = 0;
683
684 static_call_cond(kvm_x86_pmu_reset)(vcpu);
685 }
686
687
688 /*
689 * Refresh the PMU configuration for the vCPU, e.g. if userspace changes CPUID
690 * and/or PERF_CAPABILITIES.
691 */
kvm_pmu_refresh(struct kvm_vcpu * vcpu)692 void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
693 {
694 if (KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm))
695 return;
696
697 /*
698 * Stop/release all existing counters/events before realizing the new
699 * vPMU model.
700 */
701 kvm_pmu_reset(vcpu);
702
703 bitmap_zero(vcpu_to_pmu(vcpu)->all_valid_pmc_idx, X86_PMC_IDX_MAX);
704 static_call(kvm_x86_pmu_refresh)(vcpu);
705 }
706
kvm_pmu_init(struct kvm_vcpu * vcpu)707 void kvm_pmu_init(struct kvm_vcpu *vcpu)
708 {
709 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
710
711 memset(pmu, 0, sizeof(*pmu));
712 static_call(kvm_x86_pmu_init)(vcpu);
713 pmu->event_count = 0;
714 pmu->need_cleanup = false;
715 kvm_pmu_refresh(vcpu);
716 }
717
718 /* Release perf_events for vPMCs that have been unused for a full time slice. */
kvm_pmu_cleanup(struct kvm_vcpu * vcpu)719 void kvm_pmu_cleanup(struct kvm_vcpu *vcpu)
720 {
721 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
722 struct kvm_pmc *pmc = NULL;
723 DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX);
724 int i;
725
726 pmu->need_cleanup = false;
727
728 bitmap_andnot(bitmask, pmu->all_valid_pmc_idx,
729 pmu->pmc_in_use, X86_PMC_IDX_MAX);
730
731 for_each_set_bit(i, bitmask, X86_PMC_IDX_MAX) {
732 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
733
734 if (pmc && pmc->perf_event && !pmc_speculative_in_use(pmc))
735 pmc_stop_counter(pmc);
736 }
737
738 static_call_cond(kvm_x86_pmu_cleanup)(vcpu);
739
740 bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX);
741 }
742
kvm_pmu_destroy(struct kvm_vcpu * vcpu)743 void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
744 {
745 kvm_pmu_reset(vcpu);
746 }
747
kvm_pmu_incr_counter(struct kvm_pmc * pmc)748 static void kvm_pmu_incr_counter(struct kvm_pmc *pmc)
749 {
750 pmc->prev_counter = pmc->counter;
751 pmc->counter = (pmc->counter + 1) & pmc_bitmask(pmc);
752 kvm_pmu_request_counter_reprogram(pmc);
753 }
754
eventsel_match_perf_hw_id(struct kvm_pmc * pmc,unsigned int perf_hw_id)755 static inline bool eventsel_match_perf_hw_id(struct kvm_pmc *pmc,
756 unsigned int perf_hw_id)
757 {
758 return !((pmc->eventsel ^ perf_get_hw_event_config(perf_hw_id)) &
759 AMD64_RAW_EVENT_MASK_NB);
760 }
761
cpl_is_matched(struct kvm_pmc * pmc)762 static inline bool cpl_is_matched(struct kvm_pmc *pmc)
763 {
764 bool select_os, select_user;
765 u64 config;
766
767 if (pmc_is_gp(pmc)) {
768 config = pmc->eventsel;
769 select_os = config & ARCH_PERFMON_EVENTSEL_OS;
770 select_user = config & ARCH_PERFMON_EVENTSEL_USR;
771 } else {
772 config = fixed_ctrl_field(pmc_to_pmu(pmc)->fixed_ctr_ctrl,
773 pmc->idx - INTEL_PMC_IDX_FIXED);
774 select_os = config & 0x1;
775 select_user = config & 0x2;
776 }
777
778 return (static_call(kvm_x86_get_cpl)(pmc->vcpu) == 0) ? select_os : select_user;
779 }
780
kvm_pmu_trigger_event(struct kvm_vcpu * vcpu,u64 perf_hw_id)781 void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu, u64 perf_hw_id)
782 {
783 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
784 struct kvm_pmc *pmc;
785 int i;
786
787 for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) {
788 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
789
790 if (!pmc || !pmc_event_is_allowed(pmc))
791 continue;
792
793 /* Ignore checks for edge detect, pin control, invert and CMASK bits */
794 if (eventsel_match_perf_hw_id(pmc, perf_hw_id) && cpl_is_matched(pmc))
795 kvm_pmu_incr_counter(pmc);
796 }
797 }
798 EXPORT_SYMBOL_GPL(kvm_pmu_trigger_event);
799
is_masked_filter_valid(const struct kvm_x86_pmu_event_filter * filter)800 static bool is_masked_filter_valid(const struct kvm_x86_pmu_event_filter *filter)
801 {
802 u64 mask = kvm_pmu_ops.EVENTSEL_EVENT |
803 KVM_PMU_MASKED_ENTRY_UMASK_MASK |
804 KVM_PMU_MASKED_ENTRY_UMASK_MATCH |
805 KVM_PMU_MASKED_ENTRY_EXCLUDE;
806 int i;
807
808 for (i = 0; i < filter->nevents; i++) {
809 if (filter->events[i] & ~mask)
810 return false;
811 }
812
813 return true;
814 }
815
convert_to_masked_filter(struct kvm_x86_pmu_event_filter * filter)816 static void convert_to_masked_filter(struct kvm_x86_pmu_event_filter *filter)
817 {
818 int i, j;
819
820 for (i = 0, j = 0; i < filter->nevents; i++) {
821 /*
822 * Skip events that are impossible to match against a guest
823 * event. When filtering, only the event select + unit mask
824 * of the guest event is used. To maintain backwards
825 * compatibility, impossible filters can't be rejected :-(
826 */
827 if (filter->events[i] & ~(kvm_pmu_ops.EVENTSEL_EVENT |
828 ARCH_PERFMON_EVENTSEL_UMASK))
829 continue;
830 /*
831 * Convert userspace events to a common in-kernel event so
832 * only one code path is needed to support both events. For
833 * the in-kernel events use masked events because they are
834 * flexible enough to handle both cases. To convert to masked
835 * events all that's needed is to add an "all ones" umask_mask,
836 * (unmasked filter events don't support EXCLUDE).
837 */
838 filter->events[j++] = filter->events[i] |
839 (0xFFULL << KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT);
840 }
841
842 filter->nevents = j;
843 }
844
prepare_filter_lists(struct kvm_x86_pmu_event_filter * filter)845 static int prepare_filter_lists(struct kvm_x86_pmu_event_filter *filter)
846 {
847 int i;
848
849 if (!(filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS))
850 convert_to_masked_filter(filter);
851 else if (!is_masked_filter_valid(filter))
852 return -EINVAL;
853
854 /*
855 * Sort entries by event select and includes vs. excludes so that all
856 * entries for a given event select can be processed efficiently during
857 * filtering. The EXCLUDE flag uses a more significant bit than the
858 * event select, and so the sorted list is also effectively split into
859 * includes and excludes sub-lists.
860 */
861 sort(&filter->events, filter->nevents, sizeof(filter->events[0]),
862 filter_sort_cmp, NULL);
863
864 i = filter->nevents;
865 /* Find the first EXCLUDE event (only supported for masked events). */
866 if (filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS) {
867 for (i = 0; i < filter->nevents; i++) {
868 if (filter->events[i] & KVM_PMU_MASKED_ENTRY_EXCLUDE)
869 break;
870 }
871 }
872
873 filter->nr_includes = i;
874 filter->nr_excludes = filter->nevents - filter->nr_includes;
875 filter->includes = filter->events;
876 filter->excludes = filter->events + filter->nr_includes;
877
878 return 0;
879 }
880
kvm_vm_ioctl_set_pmu_event_filter(struct kvm * kvm,void __user * argp)881 int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp)
882 {
883 struct kvm_pmu_event_filter __user *user_filter = argp;
884 struct kvm_x86_pmu_event_filter *filter;
885 struct kvm_pmu_event_filter tmp;
886 struct kvm_vcpu *vcpu;
887 unsigned long i;
888 size_t size;
889 int r;
890
891 if (copy_from_user(&tmp, user_filter, sizeof(tmp)))
892 return -EFAULT;
893
894 if (tmp.action != KVM_PMU_EVENT_ALLOW &&
895 tmp.action != KVM_PMU_EVENT_DENY)
896 return -EINVAL;
897
898 if (tmp.flags & ~KVM_PMU_EVENT_FLAGS_VALID_MASK)
899 return -EINVAL;
900
901 if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS)
902 return -E2BIG;
903
904 size = struct_size(filter, events, tmp.nevents);
905 filter = kzalloc(size, GFP_KERNEL_ACCOUNT);
906 if (!filter)
907 return -ENOMEM;
908
909 filter->action = tmp.action;
910 filter->nevents = tmp.nevents;
911 filter->fixed_counter_bitmap = tmp.fixed_counter_bitmap;
912 filter->flags = tmp.flags;
913
914 r = -EFAULT;
915 if (copy_from_user(filter->events, user_filter->events,
916 sizeof(filter->events[0]) * filter->nevents))
917 goto cleanup;
918
919 r = prepare_filter_lists(filter);
920 if (r)
921 goto cleanup;
922
923 mutex_lock(&kvm->lock);
924 filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter,
925 mutex_is_locked(&kvm->lock));
926 mutex_unlock(&kvm->lock);
927 synchronize_srcu_expedited(&kvm->srcu);
928
929 BUILD_BUG_ON(sizeof(((struct kvm_pmu *)0)->reprogram_pmi) >
930 sizeof(((struct kvm_pmu *)0)->__reprogram_pmi));
931
932 kvm_for_each_vcpu(i, vcpu, kvm)
933 atomic64_set(&vcpu_to_pmu(vcpu)->__reprogram_pmi, -1ull);
934
935 kvm_make_all_cpus_request(kvm, KVM_REQ_PMU);
936
937 r = 0;
938 cleanup:
939 kfree(filter);
940 return r;
941 }
942