1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 */
6
7 #include <linux/mman.h>
8 #include <linux/kvm_host.h>
9 #include <linux/io.h>
10 #include <linux/hugetlb.h>
11 #include <linux/sched/signal.h>
12 #include <trace/events/kvm.h>
13 #include <asm/pgalloc.h>
14 #include <asm/cacheflush.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17 #include <asm/kvm_pgtable.h>
18 #include <asm/kvm_ras.h>
19 #include <asm/kvm_asm.h>
20 #include <asm/kvm_emulate.h>
21 #include <asm/virt.h>
22
23 #include "trace.h"
24
25 static struct kvm_pgtable *hyp_pgtable;
26 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
27
28 static unsigned long hyp_idmap_start;
29 static unsigned long hyp_idmap_end;
30 static phys_addr_t hyp_idmap_vector;
31
32 static unsigned long io_map_base;
33
stage2_range_addr_end(phys_addr_t addr,phys_addr_t end)34 static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end)
35 {
36 phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL);
37 phys_addr_t boundary = ALIGN_DOWN(addr + size, size);
38
39 return (boundary - 1 < end - 1) ? boundary : end;
40 }
41
42 /*
43 * Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
44 * we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
45 * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too
46 * long will also starve other vCPUs. We have to also make sure that the page
47 * tables are not freed while we released the lock.
48 */
stage2_apply_range(struct kvm * kvm,phys_addr_t addr,phys_addr_t end,int (* fn)(struct kvm_pgtable *,u64,u64),bool resched)49 static int stage2_apply_range(struct kvm *kvm, phys_addr_t addr,
50 phys_addr_t end,
51 int (*fn)(struct kvm_pgtable *, u64, u64),
52 bool resched)
53 {
54 int ret;
55 u64 next;
56
57 do {
58 struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
59 if (!pgt)
60 return -EINVAL;
61
62 next = stage2_range_addr_end(addr, end);
63 ret = fn(pgt, addr, next - addr);
64 if (ret)
65 break;
66
67 if (resched && next != end)
68 cond_resched_rwlock_write(&kvm->mmu_lock);
69 } while (addr = next, addr != end);
70
71 return ret;
72 }
73
74 #define stage2_apply_range_resched(kvm, addr, end, fn) \
75 stage2_apply_range(kvm, addr, end, fn, true)
76
memslot_is_logging(struct kvm_memory_slot * memslot)77 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
78 {
79 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
80 }
81
82 /**
83 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
84 * @kvm: pointer to kvm structure.
85 *
86 * Interface to HYP function to flush all VM TLB entries
87 */
kvm_flush_remote_tlbs(struct kvm * kvm)88 void kvm_flush_remote_tlbs(struct kvm *kvm)
89 {
90 ++kvm->stat.generic.remote_tlb_flush_requests;
91 kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
92 }
93
kvm_is_device_pfn(unsigned long pfn)94 static bool kvm_is_device_pfn(unsigned long pfn)
95 {
96 return !pfn_is_map_memory(pfn);
97 }
98
stage2_memcache_zalloc_page(void * arg)99 static void *stage2_memcache_zalloc_page(void *arg)
100 {
101 struct kvm_mmu_memory_cache *mc = arg;
102 void *virt;
103
104 /* Allocated with __GFP_ZERO, so no need to zero */
105 virt = kvm_mmu_memory_cache_alloc(mc);
106 if (virt)
107 kvm_account_pgtable_pages(virt, 1);
108 return virt;
109 }
110
kvm_host_zalloc_pages_exact(size_t size)111 static void *kvm_host_zalloc_pages_exact(size_t size)
112 {
113 return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
114 }
115
kvm_s2_zalloc_pages_exact(size_t size)116 static void *kvm_s2_zalloc_pages_exact(size_t size)
117 {
118 void *virt = kvm_host_zalloc_pages_exact(size);
119
120 if (virt)
121 kvm_account_pgtable_pages(virt, (size >> PAGE_SHIFT));
122 return virt;
123 }
124
kvm_s2_free_pages_exact(void * virt,size_t size)125 static void kvm_s2_free_pages_exact(void *virt, size_t size)
126 {
127 kvm_account_pgtable_pages(virt, -(size >> PAGE_SHIFT));
128 free_pages_exact(virt, size);
129 }
130
kvm_host_get_page(void * addr)131 static void kvm_host_get_page(void *addr)
132 {
133 get_page(virt_to_page(addr));
134 }
135
kvm_host_put_page(void * addr)136 static void kvm_host_put_page(void *addr)
137 {
138 put_page(virt_to_page(addr));
139 }
140
kvm_s2_put_page(void * addr)141 static void kvm_s2_put_page(void *addr)
142 {
143 struct page *p = virt_to_page(addr);
144 /* Dropping last refcount, the page will be freed */
145 if (page_count(p) == 1)
146 kvm_account_pgtable_pages(addr, -1);
147 put_page(p);
148 }
149
kvm_host_page_count(void * addr)150 static int kvm_host_page_count(void *addr)
151 {
152 return page_count(virt_to_page(addr));
153 }
154
kvm_host_pa(void * addr)155 static phys_addr_t kvm_host_pa(void *addr)
156 {
157 return __pa(addr);
158 }
159
kvm_host_va(phys_addr_t phys)160 static void *kvm_host_va(phys_addr_t phys)
161 {
162 return __va(phys);
163 }
164
clean_dcache_guest_page(void * va,size_t size)165 static void clean_dcache_guest_page(void *va, size_t size)
166 {
167 __clean_dcache_guest_page(va, size);
168 }
169
invalidate_icache_guest_page(void * va,size_t size)170 static void invalidate_icache_guest_page(void *va, size_t size)
171 {
172 __invalidate_icache_guest_page(va, size);
173 }
174
175 /*
176 * Unmapping vs dcache management:
177 *
178 * If a guest maps certain memory pages as uncached, all writes will
179 * bypass the data cache and go directly to RAM. However, the CPUs
180 * can still speculate reads (not writes) and fill cache lines with
181 * data.
182 *
183 * Those cache lines will be *clean* cache lines though, so a
184 * clean+invalidate operation is equivalent to an invalidate
185 * operation, because no cache lines are marked dirty.
186 *
187 * Those clean cache lines could be filled prior to an uncached write
188 * by the guest, and the cache coherent IO subsystem would therefore
189 * end up writing old data to disk.
190 *
191 * This is why right after unmapping a page/section and invalidating
192 * the corresponding TLBs, we flush to make sure the IO subsystem will
193 * never hit in the cache.
194 *
195 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
196 * we then fully enforce cacheability of RAM, no matter what the guest
197 * does.
198 */
199 /**
200 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
201 * @mmu: The KVM stage-2 MMU pointer
202 * @start: The intermediate physical base address of the range to unmap
203 * @size: The size of the area to unmap
204 * @may_block: Whether or not we are permitted to block
205 *
206 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
207 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
208 * destroying the VM), otherwise another faulting VCPU may come in and mess
209 * with things behind our backs.
210 */
__unmap_stage2_range(struct kvm_s2_mmu * mmu,phys_addr_t start,u64 size,bool may_block)211 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
212 bool may_block)
213 {
214 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
215 phys_addr_t end = start + size;
216
217 lockdep_assert_held_write(&kvm->mmu_lock);
218 WARN_ON(size & ~PAGE_MASK);
219 WARN_ON(stage2_apply_range(kvm, start, end, kvm_pgtable_stage2_unmap,
220 may_block));
221 }
222
unmap_stage2_range(struct kvm_s2_mmu * mmu,phys_addr_t start,u64 size)223 static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
224 {
225 __unmap_stage2_range(mmu, start, size, true);
226 }
227
stage2_flush_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)228 static void stage2_flush_memslot(struct kvm *kvm,
229 struct kvm_memory_slot *memslot)
230 {
231 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
232 phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
233
234 stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_flush);
235 }
236
237 /**
238 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
239 * @kvm: The struct kvm pointer
240 *
241 * Go through the stage 2 page tables and invalidate any cache lines
242 * backing memory already mapped to the VM.
243 */
stage2_flush_vm(struct kvm * kvm)244 static void stage2_flush_vm(struct kvm *kvm)
245 {
246 struct kvm_memslots *slots;
247 struct kvm_memory_slot *memslot;
248 int idx, bkt;
249
250 idx = srcu_read_lock(&kvm->srcu);
251 write_lock(&kvm->mmu_lock);
252
253 slots = kvm_memslots(kvm);
254 kvm_for_each_memslot(memslot, bkt, slots)
255 stage2_flush_memslot(kvm, memslot);
256
257 write_unlock(&kvm->mmu_lock);
258 srcu_read_unlock(&kvm->srcu, idx);
259 }
260
261 /**
262 * free_hyp_pgds - free Hyp-mode page tables
263 */
free_hyp_pgds(void)264 void free_hyp_pgds(void)
265 {
266 mutex_lock(&kvm_hyp_pgd_mutex);
267 if (hyp_pgtable) {
268 kvm_pgtable_hyp_destroy(hyp_pgtable);
269 kfree(hyp_pgtable);
270 hyp_pgtable = NULL;
271 }
272 mutex_unlock(&kvm_hyp_pgd_mutex);
273 }
274
kvm_host_owns_hyp_mappings(void)275 static bool kvm_host_owns_hyp_mappings(void)
276 {
277 if (is_kernel_in_hyp_mode())
278 return false;
279
280 if (static_branch_likely(&kvm_protected_mode_initialized))
281 return false;
282
283 /*
284 * This can happen at boot time when __create_hyp_mappings() is called
285 * after the hyp protection has been enabled, but the static key has
286 * not been flipped yet.
287 */
288 if (!hyp_pgtable && is_protected_kvm_enabled())
289 return false;
290
291 WARN_ON(!hyp_pgtable);
292
293 return true;
294 }
295
__create_hyp_mappings(unsigned long start,unsigned long size,unsigned long phys,enum kvm_pgtable_prot prot)296 int __create_hyp_mappings(unsigned long start, unsigned long size,
297 unsigned long phys, enum kvm_pgtable_prot prot)
298 {
299 int err;
300
301 if (WARN_ON(!kvm_host_owns_hyp_mappings()))
302 return -EINVAL;
303
304 mutex_lock(&kvm_hyp_pgd_mutex);
305 err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot);
306 mutex_unlock(&kvm_hyp_pgd_mutex);
307
308 return err;
309 }
310
kvm_kaddr_to_phys(void * kaddr)311 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
312 {
313 if (!is_vmalloc_addr(kaddr)) {
314 BUG_ON(!virt_addr_valid(kaddr));
315 return __pa(kaddr);
316 } else {
317 return page_to_phys(vmalloc_to_page(kaddr)) +
318 offset_in_page(kaddr);
319 }
320 }
321
322 struct hyp_shared_pfn {
323 u64 pfn;
324 int count;
325 struct rb_node node;
326 };
327
328 static DEFINE_MUTEX(hyp_shared_pfns_lock);
329 static struct rb_root hyp_shared_pfns = RB_ROOT;
330
find_shared_pfn(u64 pfn,struct rb_node *** node,struct rb_node ** parent)331 static struct hyp_shared_pfn *find_shared_pfn(u64 pfn, struct rb_node ***node,
332 struct rb_node **parent)
333 {
334 struct hyp_shared_pfn *this;
335
336 *node = &hyp_shared_pfns.rb_node;
337 *parent = NULL;
338 while (**node) {
339 this = container_of(**node, struct hyp_shared_pfn, node);
340 *parent = **node;
341 if (this->pfn < pfn)
342 *node = &((**node)->rb_left);
343 else if (this->pfn > pfn)
344 *node = &((**node)->rb_right);
345 else
346 return this;
347 }
348
349 return NULL;
350 }
351
share_pfn_hyp(u64 pfn)352 static int share_pfn_hyp(u64 pfn)
353 {
354 struct rb_node **node, *parent;
355 struct hyp_shared_pfn *this;
356 int ret = 0;
357
358 mutex_lock(&hyp_shared_pfns_lock);
359 this = find_shared_pfn(pfn, &node, &parent);
360 if (this) {
361 this->count++;
362 goto unlock;
363 }
364
365 this = kzalloc(sizeof(*this), GFP_KERNEL);
366 if (!this) {
367 ret = -ENOMEM;
368 goto unlock;
369 }
370
371 this->pfn = pfn;
372 this->count = 1;
373 rb_link_node(&this->node, parent, node);
374 rb_insert_color(&this->node, &hyp_shared_pfns);
375 ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp, pfn, 1);
376 unlock:
377 mutex_unlock(&hyp_shared_pfns_lock);
378
379 return ret;
380 }
381
unshare_pfn_hyp(u64 pfn)382 static int unshare_pfn_hyp(u64 pfn)
383 {
384 struct rb_node **node, *parent;
385 struct hyp_shared_pfn *this;
386 int ret = 0;
387
388 mutex_lock(&hyp_shared_pfns_lock);
389 this = find_shared_pfn(pfn, &node, &parent);
390 if (WARN_ON(!this)) {
391 ret = -ENOENT;
392 goto unlock;
393 }
394
395 this->count--;
396 if (this->count)
397 goto unlock;
398
399 rb_erase(&this->node, &hyp_shared_pfns);
400 kfree(this);
401 ret = kvm_call_hyp_nvhe(__pkvm_host_unshare_hyp, pfn, 1);
402 unlock:
403 mutex_unlock(&hyp_shared_pfns_lock);
404
405 return ret;
406 }
407
kvm_share_hyp(void * from,void * to)408 int kvm_share_hyp(void *from, void *to)
409 {
410 phys_addr_t start, end, cur;
411 u64 pfn;
412 int ret;
413
414 if (is_kernel_in_hyp_mode())
415 return 0;
416
417 /*
418 * The share hcall maps things in the 'fixed-offset' region of the hyp
419 * VA space, so we can only share physically contiguous data-structures
420 * for now.
421 */
422 if (is_vmalloc_or_module_addr(from) || is_vmalloc_or_module_addr(to))
423 return -EINVAL;
424
425 if (kvm_host_owns_hyp_mappings())
426 return create_hyp_mappings(from, to, PAGE_HYP);
427
428 start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
429 end = PAGE_ALIGN(__pa(to));
430 for (cur = start; cur < end; cur += PAGE_SIZE) {
431 pfn = __phys_to_pfn(cur);
432 ret = share_pfn_hyp(pfn);
433 if (ret)
434 return ret;
435 }
436
437 return 0;
438 }
439
kvm_unshare_hyp(void * from,void * to)440 void kvm_unshare_hyp(void *from, void *to)
441 {
442 phys_addr_t start, end, cur;
443 u64 pfn;
444
445 if (is_kernel_in_hyp_mode() || kvm_host_owns_hyp_mappings() || !from)
446 return;
447
448 start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
449 end = PAGE_ALIGN(__pa(to));
450 for (cur = start; cur < end; cur += PAGE_SIZE) {
451 pfn = __phys_to_pfn(cur);
452 WARN_ON(unshare_pfn_hyp(pfn));
453 }
454 }
455
456 /**
457 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
458 * @from: The virtual kernel start address of the range
459 * @to: The virtual kernel end address of the range (exclusive)
460 * @prot: The protection to be applied to this range
461 *
462 * The same virtual address as the kernel virtual address is also used
463 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
464 * physical pages.
465 */
create_hyp_mappings(void * from,void * to,enum kvm_pgtable_prot prot)466 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
467 {
468 phys_addr_t phys_addr;
469 unsigned long virt_addr;
470 unsigned long start = kern_hyp_va((unsigned long)from);
471 unsigned long end = kern_hyp_va((unsigned long)to);
472
473 if (is_kernel_in_hyp_mode())
474 return 0;
475
476 if (!kvm_host_owns_hyp_mappings())
477 return -EPERM;
478
479 start = start & PAGE_MASK;
480 end = PAGE_ALIGN(end);
481
482 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
483 int err;
484
485 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
486 err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr,
487 prot);
488 if (err)
489 return err;
490 }
491
492 return 0;
493 }
494
495
496 /**
497 * hyp_alloc_private_va_range - Allocates a private VA range.
498 * @size: The size of the VA range to reserve.
499 * @haddr: The hypervisor virtual start address of the allocation.
500 *
501 * The private virtual address (VA) range is allocated below io_map_base
502 * and aligned based on the order of @size.
503 *
504 * Return: 0 on success or negative error code on failure.
505 */
hyp_alloc_private_va_range(size_t size,unsigned long * haddr)506 int hyp_alloc_private_va_range(size_t size, unsigned long *haddr)
507 {
508 unsigned long base;
509 int ret = 0;
510
511 mutex_lock(&kvm_hyp_pgd_mutex);
512
513 /*
514 * This assumes that we have enough space below the idmap
515 * page to allocate our VAs. If not, the check below will
516 * kick. A potential alternative would be to detect that
517 * overflow and switch to an allocation above the idmap.
518 *
519 * The allocated size is always a multiple of PAGE_SIZE.
520 */
521 base = io_map_base - PAGE_ALIGN(size);
522
523 /* Align the allocation based on the order of its size */
524 base = ALIGN_DOWN(base, PAGE_SIZE << get_order(size));
525
526 /*
527 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
528 * allocating the new area, as it would indicate we've
529 * overflowed the idmap/IO address range.
530 */
531 if ((base ^ io_map_base) & BIT(VA_BITS - 1))
532 ret = -ENOMEM;
533 else
534 *haddr = io_map_base = base;
535
536 mutex_unlock(&kvm_hyp_pgd_mutex);
537
538 return ret;
539 }
540
__create_hyp_private_mapping(phys_addr_t phys_addr,size_t size,unsigned long * haddr,enum kvm_pgtable_prot prot)541 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
542 unsigned long *haddr,
543 enum kvm_pgtable_prot prot)
544 {
545 unsigned long addr;
546 int ret = 0;
547
548 if (!kvm_host_owns_hyp_mappings()) {
549 addr = kvm_call_hyp_nvhe(__pkvm_create_private_mapping,
550 phys_addr, size, prot);
551 if (IS_ERR_VALUE(addr))
552 return addr;
553 *haddr = addr;
554
555 return 0;
556 }
557
558 size = PAGE_ALIGN(size + offset_in_page(phys_addr));
559 ret = hyp_alloc_private_va_range(size, &addr);
560 if (ret)
561 return ret;
562
563 ret = __create_hyp_mappings(addr, size, phys_addr, prot);
564 if (ret)
565 return ret;
566
567 *haddr = addr + offset_in_page(phys_addr);
568 return ret;
569 }
570
571 /**
572 * create_hyp_io_mappings - Map IO into both kernel and HYP
573 * @phys_addr: The physical start address which gets mapped
574 * @size: Size of the region being mapped
575 * @kaddr: Kernel VA for this mapping
576 * @haddr: HYP VA for this mapping
577 */
create_hyp_io_mappings(phys_addr_t phys_addr,size_t size,void __iomem ** kaddr,void __iomem ** haddr)578 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
579 void __iomem **kaddr,
580 void __iomem **haddr)
581 {
582 unsigned long addr;
583 int ret;
584
585 if (is_protected_kvm_enabled())
586 return -EPERM;
587
588 *kaddr = ioremap(phys_addr, size);
589 if (!*kaddr)
590 return -ENOMEM;
591
592 if (is_kernel_in_hyp_mode()) {
593 *haddr = *kaddr;
594 return 0;
595 }
596
597 ret = __create_hyp_private_mapping(phys_addr, size,
598 &addr, PAGE_HYP_DEVICE);
599 if (ret) {
600 iounmap(*kaddr);
601 *kaddr = NULL;
602 *haddr = NULL;
603 return ret;
604 }
605
606 *haddr = (void __iomem *)addr;
607 return 0;
608 }
609
610 /**
611 * create_hyp_exec_mappings - Map an executable range into HYP
612 * @phys_addr: The physical start address which gets mapped
613 * @size: Size of the region being mapped
614 * @haddr: HYP VA for this mapping
615 */
create_hyp_exec_mappings(phys_addr_t phys_addr,size_t size,void ** haddr)616 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
617 void **haddr)
618 {
619 unsigned long addr;
620 int ret;
621
622 BUG_ON(is_kernel_in_hyp_mode());
623
624 ret = __create_hyp_private_mapping(phys_addr, size,
625 &addr, PAGE_HYP_EXEC);
626 if (ret) {
627 *haddr = NULL;
628 return ret;
629 }
630
631 *haddr = (void *)addr;
632 return 0;
633 }
634
635 static struct kvm_pgtable_mm_ops kvm_user_mm_ops = {
636 /* We shouldn't need any other callback to walk the PT */
637 .phys_to_virt = kvm_host_va,
638 };
639
get_user_mapping_size(struct kvm * kvm,u64 addr)640 static int get_user_mapping_size(struct kvm *kvm, u64 addr)
641 {
642 struct kvm_pgtable pgt = {
643 .pgd = (kvm_pte_t *)kvm->mm->pgd,
644 .ia_bits = VA_BITS,
645 .start_level = (KVM_PGTABLE_MAX_LEVELS -
646 CONFIG_PGTABLE_LEVELS),
647 .mm_ops = &kvm_user_mm_ops,
648 };
649 kvm_pte_t pte = 0; /* Keep GCC quiet... */
650 u32 level = ~0;
651 int ret;
652
653 ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level);
654 VM_BUG_ON(ret);
655 VM_BUG_ON(level >= KVM_PGTABLE_MAX_LEVELS);
656 VM_BUG_ON(!(pte & PTE_VALID));
657
658 return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level));
659 }
660
661 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = {
662 .zalloc_page = stage2_memcache_zalloc_page,
663 .zalloc_pages_exact = kvm_s2_zalloc_pages_exact,
664 .free_pages_exact = kvm_s2_free_pages_exact,
665 .get_page = kvm_host_get_page,
666 .put_page = kvm_s2_put_page,
667 .page_count = kvm_host_page_count,
668 .phys_to_virt = kvm_host_va,
669 .virt_to_phys = kvm_host_pa,
670 .dcache_clean_inval_poc = clean_dcache_guest_page,
671 .icache_inval_pou = invalidate_icache_guest_page,
672 };
673
674 /**
675 * kvm_init_stage2_mmu - Initialise a S2 MMU structure
676 * @kvm: The pointer to the KVM structure
677 * @mmu: The pointer to the s2 MMU structure
678 *
679 * Allocates only the stage-2 HW PGD level table(s).
680 * Note we don't need locking here as this is only called when the VM is
681 * created, which can only be done once.
682 */
kvm_init_stage2_mmu(struct kvm * kvm,struct kvm_s2_mmu * mmu)683 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
684 {
685 int cpu, err;
686 struct kvm_pgtable *pgt;
687
688 if (mmu->pgt != NULL) {
689 kvm_err("kvm_arch already initialized?\n");
690 return -EINVAL;
691 }
692
693 pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT);
694 if (!pgt)
695 return -ENOMEM;
696
697 mmu->arch = &kvm->arch;
698 err = kvm_pgtable_stage2_init(pgt, mmu, &kvm_s2_mm_ops);
699 if (err)
700 goto out_free_pgtable;
701
702 mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
703 if (!mmu->last_vcpu_ran) {
704 err = -ENOMEM;
705 goto out_destroy_pgtable;
706 }
707
708 for_each_possible_cpu(cpu)
709 *per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
710
711 mmu->pgt = pgt;
712 mmu->pgd_phys = __pa(pgt->pgd);
713 return 0;
714
715 out_destroy_pgtable:
716 kvm_pgtable_stage2_destroy(pgt);
717 out_free_pgtable:
718 kfree(pgt);
719 return err;
720 }
721
stage2_unmap_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)722 static void stage2_unmap_memslot(struct kvm *kvm,
723 struct kvm_memory_slot *memslot)
724 {
725 hva_t hva = memslot->userspace_addr;
726 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
727 phys_addr_t size = PAGE_SIZE * memslot->npages;
728 hva_t reg_end = hva + size;
729
730 /*
731 * A memory region could potentially cover multiple VMAs, and any holes
732 * between them, so iterate over all of them to find out if we should
733 * unmap any of them.
734 *
735 * +--------------------------------------------+
736 * +---------------+----------------+ +----------------+
737 * | : VMA 1 | VMA 2 | | VMA 3 : |
738 * +---------------+----------------+ +----------------+
739 * | memory region |
740 * +--------------------------------------------+
741 */
742 do {
743 struct vm_area_struct *vma;
744 hva_t vm_start, vm_end;
745
746 vma = find_vma_intersection(current->mm, hva, reg_end);
747 if (!vma)
748 break;
749
750 /*
751 * Take the intersection of this VMA with the memory region
752 */
753 vm_start = max(hva, vma->vm_start);
754 vm_end = min(reg_end, vma->vm_end);
755
756 if (!(vma->vm_flags & VM_PFNMAP)) {
757 gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
758 unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start);
759 }
760 hva = vm_end;
761 } while (hva < reg_end);
762 }
763
764 /**
765 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
766 * @kvm: The struct kvm pointer
767 *
768 * Go through the memregions and unmap any regular RAM
769 * backing memory already mapped to the VM.
770 */
stage2_unmap_vm(struct kvm * kvm)771 void stage2_unmap_vm(struct kvm *kvm)
772 {
773 struct kvm_memslots *slots;
774 struct kvm_memory_slot *memslot;
775 int idx, bkt;
776
777 idx = srcu_read_lock(&kvm->srcu);
778 mmap_read_lock(current->mm);
779 write_lock(&kvm->mmu_lock);
780
781 slots = kvm_memslots(kvm);
782 kvm_for_each_memslot(memslot, bkt, slots)
783 stage2_unmap_memslot(kvm, memslot);
784
785 write_unlock(&kvm->mmu_lock);
786 mmap_read_unlock(current->mm);
787 srcu_read_unlock(&kvm->srcu, idx);
788 }
789
kvm_free_stage2_pgd(struct kvm_s2_mmu * mmu)790 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
791 {
792 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
793 struct kvm_pgtable *pgt = NULL;
794
795 write_lock(&kvm->mmu_lock);
796 pgt = mmu->pgt;
797 if (pgt) {
798 mmu->pgd_phys = 0;
799 mmu->pgt = NULL;
800 free_percpu(mmu->last_vcpu_ran);
801 }
802 write_unlock(&kvm->mmu_lock);
803
804 if (pgt) {
805 kvm_pgtable_stage2_destroy(pgt);
806 kfree(pgt);
807 }
808 }
809
810 /**
811 * kvm_phys_addr_ioremap - map a device range to guest IPA
812 *
813 * @kvm: The KVM pointer
814 * @guest_ipa: The IPA at which to insert the mapping
815 * @pa: The physical address of the device
816 * @size: The size of the mapping
817 * @writable: Whether or not to create a writable mapping
818 */
kvm_phys_addr_ioremap(struct kvm * kvm,phys_addr_t guest_ipa,phys_addr_t pa,unsigned long size,bool writable)819 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
820 phys_addr_t pa, unsigned long size, bool writable)
821 {
822 phys_addr_t addr;
823 int ret = 0;
824 struct kvm_mmu_memory_cache cache = { .gfp_zero = __GFP_ZERO };
825 struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
826 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE |
827 KVM_PGTABLE_PROT_R |
828 (writable ? KVM_PGTABLE_PROT_W : 0);
829
830 if (is_protected_kvm_enabled())
831 return -EPERM;
832
833 size += offset_in_page(guest_ipa);
834 guest_ipa &= PAGE_MASK;
835
836 for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) {
837 ret = kvm_mmu_topup_memory_cache(&cache,
838 kvm_mmu_cache_min_pages(kvm));
839 if (ret)
840 break;
841
842 write_lock(&kvm->mmu_lock);
843 ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot,
844 &cache);
845 write_unlock(&kvm->mmu_lock);
846 if (ret)
847 break;
848
849 pa += PAGE_SIZE;
850 }
851
852 kvm_mmu_free_memory_cache(&cache);
853 return ret;
854 }
855
856 /**
857 * stage2_wp_range() - write protect stage2 memory region range
858 * @mmu: The KVM stage-2 MMU pointer
859 * @addr: Start address of range
860 * @end: End address of range
861 */
stage2_wp_range(struct kvm_s2_mmu * mmu,phys_addr_t addr,phys_addr_t end)862 static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
863 {
864 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
865 stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_wrprotect);
866 }
867
868 /**
869 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
870 * @kvm: The KVM pointer
871 * @slot: The memory slot to write protect
872 *
873 * Called to start logging dirty pages after memory region
874 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
875 * all present PUD, PMD and PTEs are write protected in the memory region.
876 * Afterwards read of dirty page log can be called.
877 *
878 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
879 * serializing operations for VM memory regions.
880 */
kvm_mmu_wp_memory_region(struct kvm * kvm,int slot)881 static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
882 {
883 struct kvm_memslots *slots = kvm_memslots(kvm);
884 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
885 phys_addr_t start, end;
886
887 if (WARN_ON_ONCE(!memslot))
888 return;
889
890 start = memslot->base_gfn << PAGE_SHIFT;
891 end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
892
893 write_lock(&kvm->mmu_lock);
894 stage2_wp_range(&kvm->arch.mmu, start, end);
895 write_unlock(&kvm->mmu_lock);
896 kvm_flush_remote_tlbs(kvm);
897 }
898
899 /**
900 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
901 * @kvm: The KVM pointer
902 * @slot: The memory slot associated with mask
903 * @gfn_offset: The gfn offset in memory slot
904 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
905 * slot to be write protected
906 *
907 * Walks bits set in mask write protects the associated pte's. Caller must
908 * acquire kvm_mmu_lock.
909 */
kvm_mmu_write_protect_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)910 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
911 struct kvm_memory_slot *slot,
912 gfn_t gfn_offset, unsigned long mask)
913 {
914 phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
915 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
916 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
917
918 stage2_wp_range(&kvm->arch.mmu, start, end);
919 }
920
921 /*
922 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
923 * dirty pages.
924 *
925 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
926 * enable dirty logging for them.
927 */
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)928 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
929 struct kvm_memory_slot *slot,
930 gfn_t gfn_offset, unsigned long mask)
931 {
932 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
933 }
934
kvm_send_hwpoison_signal(unsigned long address,short lsb)935 static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
936 {
937 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
938 }
939
fault_supports_stage2_huge_mapping(struct kvm_memory_slot * memslot,unsigned long hva,unsigned long map_size)940 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
941 unsigned long hva,
942 unsigned long map_size)
943 {
944 gpa_t gpa_start;
945 hva_t uaddr_start, uaddr_end;
946 size_t size;
947
948 /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
949 if (map_size == PAGE_SIZE)
950 return true;
951
952 size = memslot->npages * PAGE_SIZE;
953
954 gpa_start = memslot->base_gfn << PAGE_SHIFT;
955
956 uaddr_start = memslot->userspace_addr;
957 uaddr_end = uaddr_start + size;
958
959 /*
960 * Pages belonging to memslots that don't have the same alignment
961 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
962 * PMD/PUD entries, because we'll end up mapping the wrong pages.
963 *
964 * Consider a layout like the following:
965 *
966 * memslot->userspace_addr:
967 * +-----+--------------------+--------------------+---+
968 * |abcde|fgh Stage-1 block | Stage-1 block tv|xyz|
969 * +-----+--------------------+--------------------+---+
970 *
971 * memslot->base_gfn << PAGE_SHIFT:
972 * +---+--------------------+--------------------+-----+
973 * |abc|def Stage-2 block | Stage-2 block |tvxyz|
974 * +---+--------------------+--------------------+-----+
975 *
976 * If we create those stage-2 blocks, we'll end up with this incorrect
977 * mapping:
978 * d -> f
979 * e -> g
980 * f -> h
981 */
982 if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
983 return false;
984
985 /*
986 * Next, let's make sure we're not trying to map anything not covered
987 * by the memslot. This means we have to prohibit block size mappings
988 * for the beginning and end of a non-block aligned and non-block sized
989 * memory slot (illustrated by the head and tail parts of the
990 * userspace view above containing pages 'abcde' and 'xyz',
991 * respectively).
992 *
993 * Note that it doesn't matter if we do the check using the
994 * userspace_addr or the base_gfn, as both are equally aligned (per
995 * the check above) and equally sized.
996 */
997 return (hva & ~(map_size - 1)) >= uaddr_start &&
998 (hva & ~(map_size - 1)) + map_size <= uaddr_end;
999 }
1000
1001 /*
1002 * Check if the given hva is backed by a transparent huge page (THP) and
1003 * whether it can be mapped using block mapping in stage2. If so, adjust
1004 * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
1005 * supported. This will need to be updated to support other THP sizes.
1006 *
1007 * Returns the size of the mapping.
1008 */
1009 static unsigned long
transparent_hugepage_adjust(struct kvm * kvm,struct kvm_memory_slot * memslot,unsigned long hva,kvm_pfn_t * pfnp,phys_addr_t * ipap)1010 transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot,
1011 unsigned long hva, kvm_pfn_t *pfnp,
1012 phys_addr_t *ipap)
1013 {
1014 kvm_pfn_t pfn = *pfnp;
1015
1016 /*
1017 * Make sure the adjustment is done only for THP pages. Also make
1018 * sure that the HVA and IPA are sufficiently aligned and that the
1019 * block map is contained within the memslot.
1020 */
1021 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE) &&
1022 get_user_mapping_size(kvm, hva) >= PMD_SIZE) {
1023 /*
1024 * The address we faulted on is backed by a transparent huge
1025 * page. However, because we map the compound huge page and
1026 * not the individual tail page, we need to transfer the
1027 * refcount to the head page. We have to be careful that the
1028 * THP doesn't start to split while we are adjusting the
1029 * refcounts.
1030 *
1031 * We are sure this doesn't happen, because mmu_invalidate_retry
1032 * was successful and we are holding the mmu_lock, so if this
1033 * THP is trying to split, it will be blocked in the mmu
1034 * notifier before touching any of the pages, specifically
1035 * before being able to call __split_huge_page_refcount().
1036 *
1037 * We can therefore safely transfer the refcount from PG_tail
1038 * to PG_head and switch the pfn from a tail page to the head
1039 * page accordingly.
1040 */
1041 *ipap &= PMD_MASK;
1042 kvm_release_pfn_clean(pfn);
1043 pfn &= ~(PTRS_PER_PMD - 1);
1044 get_page(pfn_to_page(pfn));
1045 *pfnp = pfn;
1046
1047 return PMD_SIZE;
1048 }
1049
1050 /* Use page mapping if we cannot use block mapping. */
1051 return PAGE_SIZE;
1052 }
1053
get_vma_page_shift(struct vm_area_struct * vma,unsigned long hva)1054 static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva)
1055 {
1056 unsigned long pa;
1057
1058 if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP))
1059 return huge_page_shift(hstate_vma(vma));
1060
1061 if (!(vma->vm_flags & VM_PFNMAP))
1062 return PAGE_SHIFT;
1063
1064 VM_BUG_ON(is_vm_hugetlb_page(vma));
1065
1066 pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start);
1067
1068 #ifndef __PAGETABLE_PMD_FOLDED
1069 if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) &&
1070 ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start &&
1071 ALIGN(hva, PUD_SIZE) <= vma->vm_end)
1072 return PUD_SHIFT;
1073 #endif
1074
1075 if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) &&
1076 ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start &&
1077 ALIGN(hva, PMD_SIZE) <= vma->vm_end)
1078 return PMD_SHIFT;
1079
1080 return PAGE_SHIFT;
1081 }
1082
1083 /*
1084 * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be
1085 * able to see the page's tags and therefore they must be initialised first. If
1086 * PG_mte_tagged is set, tags have already been initialised.
1087 *
1088 * The race in the test/set of the PG_mte_tagged flag is handled by:
1089 * - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs
1090 * racing to santise the same page
1091 * - mmap_lock protects between a VM faulting a page in and the VMM performing
1092 * an mprotect() to add VM_MTE
1093 */
sanitise_mte_tags(struct kvm * kvm,kvm_pfn_t pfn,unsigned long size)1094 static int sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn,
1095 unsigned long size)
1096 {
1097 unsigned long i, nr_pages = size >> PAGE_SHIFT;
1098 struct page *page;
1099
1100 if (!kvm_has_mte(kvm))
1101 return 0;
1102
1103 /*
1104 * pfn_to_online_page() is used to reject ZONE_DEVICE pages
1105 * that may not support tags.
1106 */
1107 page = pfn_to_online_page(pfn);
1108
1109 if (!page)
1110 return -EFAULT;
1111
1112 for (i = 0; i < nr_pages; i++, page++) {
1113 if (!test_bit(PG_mte_tagged, &page->flags)) {
1114 mte_clear_page_tags(page_address(page));
1115 set_bit(PG_mte_tagged, &page->flags);
1116 }
1117 }
1118
1119 return 0;
1120 }
1121
user_mem_abort(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa,struct kvm_memory_slot * memslot,unsigned long hva,unsigned long fault_status)1122 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1123 struct kvm_memory_slot *memslot, unsigned long hva,
1124 unsigned long fault_status)
1125 {
1126 int ret = 0;
1127 bool write_fault, writable, force_pte = false;
1128 bool exec_fault;
1129 bool device = false;
1130 bool shared;
1131 unsigned long mmu_seq;
1132 struct kvm *kvm = vcpu->kvm;
1133 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1134 struct vm_area_struct *vma;
1135 short vma_shift;
1136 gfn_t gfn;
1137 kvm_pfn_t pfn;
1138 bool logging_active = memslot_is_logging(memslot);
1139 bool use_read_lock = false;
1140 unsigned long fault_level = kvm_vcpu_trap_get_fault_level(vcpu);
1141 unsigned long vma_pagesize, fault_granule;
1142 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
1143 struct kvm_pgtable *pgt;
1144
1145 fault_granule = 1UL << ARM64_HW_PGTABLE_LEVEL_SHIFT(fault_level);
1146 write_fault = kvm_is_write_fault(vcpu);
1147 exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
1148 VM_BUG_ON(write_fault && exec_fault);
1149
1150 if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
1151 kvm_err("Unexpected L2 read permission error\n");
1152 return -EFAULT;
1153 }
1154
1155 /*
1156 * Let's check if we will get back a huge page backed by hugetlbfs, or
1157 * get block mapping for device MMIO region.
1158 */
1159 mmap_read_lock(current->mm);
1160 vma = vma_lookup(current->mm, hva);
1161 if (unlikely(!vma)) {
1162 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1163 mmap_read_unlock(current->mm);
1164 return -EFAULT;
1165 }
1166
1167 /*
1168 * logging_active is guaranteed to never be true for VM_PFNMAP
1169 * memslots.
1170 */
1171 if (logging_active) {
1172 force_pte = true;
1173 vma_shift = PAGE_SHIFT;
1174 use_read_lock = (fault_status == FSC_PERM && write_fault &&
1175 fault_granule == PAGE_SIZE);
1176 } else {
1177 vma_shift = get_vma_page_shift(vma, hva);
1178 }
1179
1180 shared = (vma->vm_flags & VM_SHARED);
1181
1182 switch (vma_shift) {
1183 #ifndef __PAGETABLE_PMD_FOLDED
1184 case PUD_SHIFT:
1185 if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE))
1186 break;
1187 fallthrough;
1188 #endif
1189 case CONT_PMD_SHIFT:
1190 vma_shift = PMD_SHIFT;
1191 fallthrough;
1192 case PMD_SHIFT:
1193 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE))
1194 break;
1195 fallthrough;
1196 case CONT_PTE_SHIFT:
1197 vma_shift = PAGE_SHIFT;
1198 force_pte = true;
1199 fallthrough;
1200 case PAGE_SHIFT:
1201 break;
1202 default:
1203 WARN_ONCE(1, "Unknown vma_shift %d", vma_shift);
1204 }
1205
1206 vma_pagesize = 1UL << vma_shift;
1207 if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
1208 fault_ipa &= ~(vma_pagesize - 1);
1209
1210 gfn = fault_ipa >> PAGE_SHIFT;
1211 mmap_read_unlock(current->mm);
1212
1213 /*
1214 * Permission faults just need to update the existing leaf entry,
1215 * and so normally don't require allocations from the memcache. The
1216 * only exception to this is when dirty logging is enabled at runtime
1217 * and a write fault needs to collapse a block entry into a table.
1218 */
1219 if (fault_status != FSC_PERM || (logging_active && write_fault)) {
1220 ret = kvm_mmu_topup_memory_cache(memcache,
1221 kvm_mmu_cache_min_pages(kvm));
1222 if (ret)
1223 return ret;
1224 }
1225
1226 mmu_seq = vcpu->kvm->mmu_invalidate_seq;
1227 /*
1228 * Ensure the read of mmu_invalidate_seq happens before we call
1229 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1230 * the page we just got a reference to gets unmapped before we have a
1231 * chance to grab the mmu_lock, which ensure that if the page gets
1232 * unmapped afterwards, the call to kvm_unmap_gfn will take it away
1233 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1234 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1235 *
1236 * Besides, __gfn_to_pfn_memslot() instead of gfn_to_pfn_prot() is
1237 * used to avoid unnecessary overhead introduced to locate the memory
1238 * slot because it's always fixed even @gfn is adjusted for huge pages.
1239 */
1240 smp_rmb();
1241
1242 pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL,
1243 write_fault, &writable, NULL);
1244 if (pfn == KVM_PFN_ERR_HWPOISON) {
1245 kvm_send_hwpoison_signal(hva, vma_shift);
1246 return 0;
1247 }
1248 if (is_error_noslot_pfn(pfn))
1249 return -EFAULT;
1250
1251 if (kvm_is_device_pfn(pfn)) {
1252 /*
1253 * If the page was identified as device early by looking at
1254 * the VMA flags, vma_pagesize is already representing the
1255 * largest quantity we can map. If instead it was mapped
1256 * via gfn_to_pfn_prot(), vma_pagesize is set to PAGE_SIZE
1257 * and must not be upgraded.
1258 *
1259 * In both cases, we don't let transparent_hugepage_adjust()
1260 * change things at the last minute.
1261 */
1262 device = true;
1263 } else if (logging_active && !write_fault) {
1264 /*
1265 * Only actually map the page as writable if this was a write
1266 * fault.
1267 */
1268 writable = false;
1269 }
1270
1271 if (exec_fault && device)
1272 return -ENOEXEC;
1273
1274 /*
1275 * To reduce MMU contentions and enhance concurrency during dirty
1276 * logging dirty logging, only acquire read lock for permission
1277 * relaxation.
1278 */
1279 if (use_read_lock)
1280 read_lock(&kvm->mmu_lock);
1281 else
1282 write_lock(&kvm->mmu_lock);
1283 pgt = vcpu->arch.hw_mmu->pgt;
1284 if (mmu_invalidate_retry(kvm, mmu_seq))
1285 goto out_unlock;
1286
1287 /*
1288 * If we are not forced to use page mapping, check if we are
1289 * backed by a THP and thus use block mapping if possible.
1290 */
1291 if (vma_pagesize == PAGE_SIZE && !(force_pte || device)) {
1292 if (fault_status == FSC_PERM && fault_granule > PAGE_SIZE)
1293 vma_pagesize = fault_granule;
1294 else
1295 vma_pagesize = transparent_hugepage_adjust(kvm, memslot,
1296 hva, &pfn,
1297 &fault_ipa);
1298 }
1299
1300 if (fault_status != FSC_PERM && !device && kvm_has_mte(kvm)) {
1301 /* Check the VMM hasn't introduced a new VM_SHARED VMA */
1302 if (!shared)
1303 ret = sanitise_mte_tags(kvm, pfn, vma_pagesize);
1304 else
1305 ret = -EFAULT;
1306 if (ret)
1307 goto out_unlock;
1308 }
1309
1310 if (writable)
1311 prot |= KVM_PGTABLE_PROT_W;
1312
1313 if (exec_fault)
1314 prot |= KVM_PGTABLE_PROT_X;
1315
1316 if (device)
1317 prot |= KVM_PGTABLE_PROT_DEVICE;
1318 else if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC))
1319 prot |= KVM_PGTABLE_PROT_X;
1320
1321 /*
1322 * Under the premise of getting a FSC_PERM fault, we just need to relax
1323 * permissions only if vma_pagesize equals fault_granule. Otherwise,
1324 * kvm_pgtable_stage2_map() should be called to change block size.
1325 */
1326 if (fault_status == FSC_PERM && vma_pagesize == fault_granule) {
1327 ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot);
1328 } else {
1329 WARN_ONCE(use_read_lock, "Attempted stage-2 map outside of write lock\n");
1330
1331 ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize,
1332 __pfn_to_phys(pfn), prot,
1333 memcache);
1334 }
1335
1336 /* Mark the page dirty only if the fault is handled successfully */
1337 if (writable && !ret) {
1338 kvm_set_pfn_dirty(pfn);
1339 mark_page_dirty_in_slot(kvm, memslot, gfn);
1340 }
1341
1342 out_unlock:
1343 if (use_read_lock)
1344 read_unlock(&kvm->mmu_lock);
1345 else
1346 write_unlock(&kvm->mmu_lock);
1347 kvm_set_pfn_accessed(pfn);
1348 kvm_release_pfn_clean(pfn);
1349 return ret != -EAGAIN ? ret : 0;
1350 }
1351
1352 /* Resolve the access fault by making the page young again. */
handle_access_fault(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa)1353 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1354 {
1355 pte_t pte;
1356 kvm_pte_t kpte;
1357 struct kvm_s2_mmu *mmu;
1358
1359 trace_kvm_access_fault(fault_ipa);
1360
1361 write_lock(&vcpu->kvm->mmu_lock);
1362 mmu = vcpu->arch.hw_mmu;
1363 kpte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa);
1364 write_unlock(&vcpu->kvm->mmu_lock);
1365
1366 pte = __pte(kpte);
1367 if (pte_valid(pte))
1368 kvm_set_pfn_accessed(pte_pfn(pte));
1369 }
1370
1371 /**
1372 * kvm_handle_guest_abort - handles all 2nd stage aborts
1373 * @vcpu: the VCPU pointer
1374 *
1375 * Any abort that gets to the host is almost guaranteed to be caused by a
1376 * missing second stage translation table entry, which can mean that either the
1377 * guest simply needs more memory and we must allocate an appropriate page or it
1378 * can mean that the guest tried to access I/O memory, which is emulated by user
1379 * space. The distinction is based on the IPA causing the fault and whether this
1380 * memory region has been registered as standard RAM by user space.
1381 */
kvm_handle_guest_abort(struct kvm_vcpu * vcpu)1382 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
1383 {
1384 unsigned long fault_status;
1385 phys_addr_t fault_ipa;
1386 struct kvm_memory_slot *memslot;
1387 unsigned long hva;
1388 bool is_iabt, write_fault, writable;
1389 gfn_t gfn;
1390 int ret, idx;
1391
1392 fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1393
1394 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1395 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1396
1397 if (fault_status == FSC_FAULT) {
1398 /* Beyond sanitised PARange (which is the IPA limit) */
1399 if (fault_ipa >= BIT_ULL(get_kvm_ipa_limit())) {
1400 kvm_inject_size_fault(vcpu);
1401 return 1;
1402 }
1403
1404 /* Falls between the IPA range and the PARange? */
1405 if (fault_ipa >= BIT_ULL(vcpu->arch.hw_mmu->pgt->ia_bits)) {
1406 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0);
1407
1408 if (is_iabt)
1409 kvm_inject_pabt(vcpu, fault_ipa);
1410 else
1411 kvm_inject_dabt(vcpu, fault_ipa);
1412 return 1;
1413 }
1414 }
1415
1416 /* Synchronous External Abort? */
1417 if (kvm_vcpu_abt_issea(vcpu)) {
1418 /*
1419 * For RAS the host kernel may handle this abort.
1420 * There is no need to pass the error into the guest.
1421 */
1422 if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
1423 kvm_inject_vabt(vcpu);
1424
1425 return 1;
1426 }
1427
1428 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
1429 kvm_vcpu_get_hfar(vcpu), fault_ipa);
1430
1431 /* Check the stage-2 fault is trans. fault or write fault */
1432 if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1433 fault_status != FSC_ACCESS) {
1434 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1435 kvm_vcpu_trap_get_class(vcpu),
1436 (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1437 (unsigned long)kvm_vcpu_get_esr(vcpu));
1438 return -EFAULT;
1439 }
1440
1441 idx = srcu_read_lock(&vcpu->kvm->srcu);
1442
1443 gfn = fault_ipa >> PAGE_SHIFT;
1444 memslot = gfn_to_memslot(vcpu->kvm, gfn);
1445 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1446 write_fault = kvm_is_write_fault(vcpu);
1447 if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1448 /*
1449 * The guest has put either its instructions or its page-tables
1450 * somewhere it shouldn't have. Userspace won't be able to do
1451 * anything about this (there's no syndrome for a start), so
1452 * re-inject the abort back into the guest.
1453 */
1454 if (is_iabt) {
1455 ret = -ENOEXEC;
1456 goto out;
1457 }
1458
1459 if (kvm_vcpu_abt_iss1tw(vcpu)) {
1460 kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1461 ret = 1;
1462 goto out_unlock;
1463 }
1464
1465 /*
1466 * Check for a cache maintenance operation. Since we
1467 * ended-up here, we know it is outside of any memory
1468 * slot. But we can't find out if that is for a device,
1469 * or if the guest is just being stupid. The only thing
1470 * we know for sure is that this range cannot be cached.
1471 *
1472 * So let's assume that the guest is just being
1473 * cautious, and skip the instruction.
1474 */
1475 if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
1476 kvm_incr_pc(vcpu);
1477 ret = 1;
1478 goto out_unlock;
1479 }
1480
1481 /*
1482 * The IPA is reported as [MAX:12], so we need to
1483 * complement it with the bottom 12 bits from the
1484 * faulting VA. This is always 12 bits, irrespective
1485 * of the page size.
1486 */
1487 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1488 ret = io_mem_abort(vcpu, fault_ipa);
1489 goto out_unlock;
1490 }
1491
1492 /* Userspace should not be able to register out-of-bounds IPAs */
1493 VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
1494
1495 if (fault_status == FSC_ACCESS) {
1496 handle_access_fault(vcpu, fault_ipa);
1497 ret = 1;
1498 goto out_unlock;
1499 }
1500
1501 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1502 if (ret == 0)
1503 ret = 1;
1504 out:
1505 if (ret == -ENOEXEC) {
1506 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1507 ret = 1;
1508 }
1509 out_unlock:
1510 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1511 return ret;
1512 }
1513
kvm_unmap_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range)1514 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1515 {
1516 if (!kvm->arch.mmu.pgt)
1517 return false;
1518
1519 __unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT,
1520 (range->end - range->start) << PAGE_SHIFT,
1521 range->may_block);
1522
1523 return false;
1524 }
1525
kvm_set_spte_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1526 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1527 {
1528 kvm_pfn_t pfn = pte_pfn(range->pte);
1529 int ret;
1530
1531 if (!kvm->arch.mmu.pgt)
1532 return false;
1533
1534 WARN_ON(range->end - range->start != 1);
1535
1536 ret = sanitise_mte_tags(kvm, pfn, PAGE_SIZE);
1537 if (ret)
1538 return false;
1539
1540 /*
1541 * We've moved a page around, probably through CoW, so let's treat
1542 * it just like a translation fault and the map handler will clean
1543 * the cache to the PoC.
1544 *
1545 * The MMU notifiers will have unmapped a huge PMD before calling
1546 * ->change_pte() (which in turn calls kvm_set_spte_gfn()) and
1547 * therefore we never need to clear out a huge PMD through this
1548 * calling path and a memcache is not required.
1549 */
1550 kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, range->start << PAGE_SHIFT,
1551 PAGE_SIZE, __pfn_to_phys(pfn),
1552 KVM_PGTABLE_PROT_R, NULL);
1553
1554 return false;
1555 }
1556
kvm_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1557 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1558 {
1559 u64 size = (range->end - range->start) << PAGE_SHIFT;
1560 kvm_pte_t kpte;
1561 pte_t pte;
1562
1563 if (!kvm->arch.mmu.pgt)
1564 return false;
1565
1566 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
1567
1568 kpte = kvm_pgtable_stage2_mkold(kvm->arch.mmu.pgt,
1569 range->start << PAGE_SHIFT);
1570 pte = __pte(kpte);
1571 return pte_valid(pte) && pte_young(pte);
1572 }
1573
kvm_test_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1574 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1575 {
1576 if (!kvm->arch.mmu.pgt)
1577 return false;
1578
1579 return kvm_pgtable_stage2_is_young(kvm->arch.mmu.pgt,
1580 range->start << PAGE_SHIFT);
1581 }
1582
kvm_mmu_get_httbr(void)1583 phys_addr_t kvm_mmu_get_httbr(void)
1584 {
1585 return __pa(hyp_pgtable->pgd);
1586 }
1587
kvm_get_idmap_vector(void)1588 phys_addr_t kvm_get_idmap_vector(void)
1589 {
1590 return hyp_idmap_vector;
1591 }
1592
kvm_map_idmap_text(void)1593 static int kvm_map_idmap_text(void)
1594 {
1595 unsigned long size = hyp_idmap_end - hyp_idmap_start;
1596 int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start,
1597 PAGE_HYP_EXEC);
1598 if (err)
1599 kvm_err("Failed to idmap %lx-%lx\n",
1600 hyp_idmap_start, hyp_idmap_end);
1601
1602 return err;
1603 }
1604
kvm_hyp_zalloc_page(void * arg)1605 static void *kvm_hyp_zalloc_page(void *arg)
1606 {
1607 return (void *)get_zeroed_page(GFP_KERNEL);
1608 }
1609
1610 static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = {
1611 .zalloc_page = kvm_hyp_zalloc_page,
1612 .get_page = kvm_host_get_page,
1613 .put_page = kvm_host_put_page,
1614 .phys_to_virt = kvm_host_va,
1615 .virt_to_phys = kvm_host_pa,
1616 };
1617
kvm_mmu_init(u32 * hyp_va_bits)1618 int kvm_mmu_init(u32 *hyp_va_bits)
1619 {
1620 int err;
1621
1622 hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
1623 hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
1624 hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
1625 hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
1626 hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
1627
1628 /*
1629 * We rely on the linker script to ensure at build time that the HYP
1630 * init code does not cross a page boundary.
1631 */
1632 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1633
1634 *hyp_va_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET);
1635 kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits);
1636 kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
1637 kvm_debug("HYP VA range: %lx:%lx\n",
1638 kern_hyp_va(PAGE_OFFSET),
1639 kern_hyp_va((unsigned long)high_memory - 1));
1640
1641 if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1642 hyp_idmap_start < kern_hyp_va((unsigned long)high_memory - 1) &&
1643 hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1644 /*
1645 * The idmap page is intersecting with the VA space,
1646 * it is not safe to continue further.
1647 */
1648 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1649 err = -EINVAL;
1650 goto out;
1651 }
1652
1653 hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL);
1654 if (!hyp_pgtable) {
1655 kvm_err("Hyp mode page-table not allocated\n");
1656 err = -ENOMEM;
1657 goto out;
1658 }
1659
1660 err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops);
1661 if (err)
1662 goto out_free_pgtable;
1663
1664 err = kvm_map_idmap_text();
1665 if (err)
1666 goto out_destroy_pgtable;
1667
1668 io_map_base = hyp_idmap_start;
1669 return 0;
1670
1671 out_destroy_pgtable:
1672 kvm_pgtable_hyp_destroy(hyp_pgtable);
1673 out_free_pgtable:
1674 kfree(hyp_pgtable);
1675 hyp_pgtable = NULL;
1676 out:
1677 return err;
1678 }
1679
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)1680 void kvm_arch_commit_memory_region(struct kvm *kvm,
1681 struct kvm_memory_slot *old,
1682 const struct kvm_memory_slot *new,
1683 enum kvm_mr_change change)
1684 {
1685 /*
1686 * At this point memslot has been committed and there is an
1687 * allocated dirty_bitmap[], dirty pages will be tracked while the
1688 * memory slot is write protected.
1689 */
1690 if (change != KVM_MR_DELETE && new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1691 /*
1692 * If we're with initial-all-set, we don't need to write
1693 * protect any pages because they're all reported as dirty.
1694 * Huge pages and normal pages will be write protect gradually.
1695 */
1696 if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1697 kvm_mmu_wp_memory_region(kvm, new->id);
1698 }
1699 }
1700 }
1701
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)1702 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1703 const struct kvm_memory_slot *old,
1704 struct kvm_memory_slot *new,
1705 enum kvm_mr_change change)
1706 {
1707 hva_t hva, reg_end;
1708 int ret = 0;
1709
1710 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1711 change != KVM_MR_FLAGS_ONLY)
1712 return 0;
1713
1714 /*
1715 * Prevent userspace from creating a memory region outside of the IPA
1716 * space addressable by the KVM guest IPA space.
1717 */
1718 if ((new->base_gfn + new->npages) > (kvm_phys_size(kvm) >> PAGE_SHIFT))
1719 return -EFAULT;
1720
1721 hva = new->userspace_addr;
1722 reg_end = hva + (new->npages << PAGE_SHIFT);
1723
1724 mmap_read_lock(current->mm);
1725 /*
1726 * A memory region could potentially cover multiple VMAs, and any holes
1727 * between them, so iterate over all of them.
1728 *
1729 * +--------------------------------------------+
1730 * +---------------+----------------+ +----------------+
1731 * | : VMA 1 | VMA 2 | | VMA 3 : |
1732 * +---------------+----------------+ +----------------+
1733 * | memory region |
1734 * +--------------------------------------------+
1735 */
1736 do {
1737 struct vm_area_struct *vma;
1738
1739 vma = find_vma_intersection(current->mm, hva, reg_end);
1740 if (!vma)
1741 break;
1742
1743 /*
1744 * VM_SHARED mappings are not allowed with MTE to avoid races
1745 * when updating the PG_mte_tagged page flag, see
1746 * sanitise_mte_tags for more details.
1747 */
1748 if (kvm_has_mte(kvm) && vma->vm_flags & VM_SHARED) {
1749 ret = -EINVAL;
1750 break;
1751 }
1752
1753 if (vma->vm_flags & VM_PFNMAP) {
1754 /* IO region dirty page logging not allowed */
1755 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1756 ret = -EINVAL;
1757 break;
1758 }
1759 }
1760 hva = min(reg_end, vma->vm_end);
1761 } while (hva < reg_end);
1762
1763 mmap_read_unlock(current->mm);
1764 return ret;
1765 }
1766
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)1767 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
1768 {
1769 }
1770
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)1771 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
1772 {
1773 }
1774
kvm_arch_flush_shadow_all(struct kvm * kvm)1775 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1776 {
1777 kvm_free_stage2_pgd(&kvm->arch.mmu);
1778 }
1779
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)1780 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1781 struct kvm_memory_slot *slot)
1782 {
1783 gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1784 phys_addr_t size = slot->npages << PAGE_SHIFT;
1785
1786 write_lock(&kvm->mmu_lock);
1787 unmap_stage2_range(&kvm->arch.mmu, gpa, size);
1788 write_unlock(&kvm->mmu_lock);
1789 }
1790
1791 /*
1792 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1793 *
1794 * Main problems:
1795 * - S/W ops are local to a CPU (not broadcast)
1796 * - We have line migration behind our back (speculation)
1797 * - System caches don't support S/W at all (damn!)
1798 *
1799 * In the face of the above, the best we can do is to try and convert
1800 * S/W ops to VA ops. Because the guest is not allowed to infer the
1801 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1802 * which is a rather good thing for us.
1803 *
1804 * Also, it is only used when turning caches on/off ("The expected
1805 * usage of the cache maintenance instructions that operate by set/way
1806 * is associated with the cache maintenance instructions associated
1807 * with the powerdown and powerup of caches, if this is required by
1808 * the implementation.").
1809 *
1810 * We use the following policy:
1811 *
1812 * - If we trap a S/W operation, we enable VM trapping to detect
1813 * caches being turned on/off, and do a full clean.
1814 *
1815 * - We flush the caches on both caches being turned on and off.
1816 *
1817 * - Once the caches are enabled, we stop trapping VM ops.
1818 */
kvm_set_way_flush(struct kvm_vcpu * vcpu)1819 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1820 {
1821 unsigned long hcr = *vcpu_hcr(vcpu);
1822
1823 /*
1824 * If this is the first time we do a S/W operation
1825 * (i.e. HCR_TVM not set) flush the whole memory, and set the
1826 * VM trapping.
1827 *
1828 * Otherwise, rely on the VM trapping to wait for the MMU +
1829 * Caches to be turned off. At that point, we'll be able to
1830 * clean the caches again.
1831 */
1832 if (!(hcr & HCR_TVM)) {
1833 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1834 vcpu_has_cache_enabled(vcpu));
1835 stage2_flush_vm(vcpu->kvm);
1836 *vcpu_hcr(vcpu) = hcr | HCR_TVM;
1837 }
1838 }
1839
kvm_toggle_cache(struct kvm_vcpu * vcpu,bool was_enabled)1840 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
1841 {
1842 bool now_enabled = vcpu_has_cache_enabled(vcpu);
1843
1844 /*
1845 * If switching the MMU+caches on, need to invalidate the caches.
1846 * If switching it off, need to clean the caches.
1847 * Clean + invalidate does the trick always.
1848 */
1849 if (now_enabled != was_enabled)
1850 stage2_flush_vm(vcpu->kvm);
1851
1852 /* Caches are now on, stop trapping VM ops (until a S/W op) */
1853 if (now_enabled)
1854 *vcpu_hcr(vcpu) &= ~HCR_TVM;
1855
1856 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
1857 }
1858