1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Stand-alone page-table allocator for hyp stage-1 and guest stage-2.
4 * No bombay mix was harmed in the writing of this file.
5 *
6 * Copyright (C) 2020 Google LLC
7 * Author: Will Deacon <will@kernel.org>
8 */
9
10 #include <linux/bitfield.h>
11 #include <asm/kvm_pgtable.h>
12 #include <asm/stage2_pgtable.h>
13
14
15 #define KVM_PTE_TYPE BIT(1)
16 #define KVM_PTE_TYPE_BLOCK 0
17 #define KVM_PTE_TYPE_PAGE 1
18 #define KVM_PTE_TYPE_TABLE 1
19
20 #define KVM_PTE_LEAF_ATTR_LO GENMASK(11, 2)
21
22 #define KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX GENMASK(4, 2)
23 #define KVM_PTE_LEAF_ATTR_LO_S1_AP GENMASK(7, 6)
24 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RO 3
25 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RW 1
26 #define KVM_PTE_LEAF_ATTR_LO_S1_SH GENMASK(9, 8)
27 #define KVM_PTE_LEAF_ATTR_LO_S1_SH_IS 3
28 #define KVM_PTE_LEAF_ATTR_LO_S1_AF BIT(10)
29
30 #define KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR GENMASK(5, 2)
31 #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R BIT(6)
32 #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W BIT(7)
33 #define KVM_PTE_LEAF_ATTR_LO_S2_SH GENMASK(9, 8)
34 #define KVM_PTE_LEAF_ATTR_LO_S2_SH_IS 3
35 #define KVM_PTE_LEAF_ATTR_LO_S2_AF BIT(10)
36
37 #define KVM_PTE_LEAF_ATTR_HI GENMASK(63, 51)
38
39 #define KVM_PTE_LEAF_ATTR_HI_SW GENMASK(58, 55)
40
41 #define KVM_PTE_LEAF_ATTR_HI_S1_XN BIT(54)
42
43 #define KVM_PTE_LEAF_ATTR_HI_S2_XN BIT(54)
44
45 #define KVM_PTE_LEAF_ATTR_S2_PERMS (KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R | \
46 KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W | \
47 KVM_PTE_LEAF_ATTR_HI_S2_XN)
48
49 #define KVM_INVALID_PTE_OWNER_MASK GENMASK(9, 2)
50 #define KVM_MAX_OWNER_ID 1
51
52 struct kvm_pgtable_walk_data {
53 struct kvm_pgtable *pgt;
54 struct kvm_pgtable_walker *walker;
55
56 u64 addr;
57 u64 end;
58 };
59
60 #define KVM_PHYS_INVALID (-1ULL)
61
kvm_phys_is_valid(u64 phys)62 static bool kvm_phys_is_valid(u64 phys)
63 {
64 return phys < BIT(id_aa64mmfr0_parange_to_phys_shift(ID_AA64MMFR0_PARANGE_MAX));
65 }
66
kvm_block_mapping_supported(u64 addr,u64 end,u64 phys,u32 level)67 static bool kvm_block_mapping_supported(u64 addr, u64 end, u64 phys, u32 level)
68 {
69 u64 granule = kvm_granule_size(level);
70
71 if (!kvm_level_supports_block_mapping(level))
72 return false;
73
74 if (granule > (end - addr))
75 return false;
76
77 if (kvm_phys_is_valid(phys) && !IS_ALIGNED(phys, granule))
78 return false;
79
80 return IS_ALIGNED(addr, granule);
81 }
82
kvm_pgtable_idx(struct kvm_pgtable_walk_data * data,u32 level)83 static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, u32 level)
84 {
85 u64 shift = kvm_granule_shift(level);
86 u64 mask = BIT(PAGE_SHIFT - 3) - 1;
87
88 return (data->addr >> shift) & mask;
89 }
90
__kvm_pgd_page_idx(struct kvm_pgtable * pgt,u64 addr)91 static u32 __kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr)
92 {
93 u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */
94 u64 mask = BIT(pgt->ia_bits) - 1;
95
96 return (addr & mask) >> shift;
97 }
98
kvm_pgd_page_idx(struct kvm_pgtable_walk_data * data)99 static u32 kvm_pgd_page_idx(struct kvm_pgtable_walk_data *data)
100 {
101 return __kvm_pgd_page_idx(data->pgt, data->addr);
102 }
103
kvm_pgd_pages(u32 ia_bits,u32 start_level)104 static u32 kvm_pgd_pages(u32 ia_bits, u32 start_level)
105 {
106 struct kvm_pgtable pgt = {
107 .ia_bits = ia_bits,
108 .start_level = start_level,
109 };
110
111 return __kvm_pgd_page_idx(&pgt, -1ULL) + 1;
112 }
113
kvm_pte_table(kvm_pte_t pte,u32 level)114 static bool kvm_pte_table(kvm_pte_t pte, u32 level)
115 {
116 if (level == KVM_PGTABLE_MAX_LEVELS - 1)
117 return false;
118
119 if (!kvm_pte_valid(pte))
120 return false;
121
122 return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE;
123 }
124
kvm_phys_to_pte(u64 pa)125 static kvm_pte_t kvm_phys_to_pte(u64 pa)
126 {
127 kvm_pte_t pte = pa & KVM_PTE_ADDR_MASK;
128
129 if (PAGE_SHIFT == 16)
130 pte |= FIELD_PREP(KVM_PTE_ADDR_51_48, pa >> 48);
131
132 return pte;
133 }
134
kvm_pte_follow(kvm_pte_t pte,struct kvm_pgtable_mm_ops * mm_ops)135 static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte, struct kvm_pgtable_mm_ops *mm_ops)
136 {
137 return mm_ops->phys_to_virt(kvm_pte_to_phys(pte));
138 }
139
kvm_clear_pte(kvm_pte_t * ptep)140 static void kvm_clear_pte(kvm_pte_t *ptep)
141 {
142 WRITE_ONCE(*ptep, 0);
143 }
144
kvm_set_table_pte(kvm_pte_t * ptep,kvm_pte_t * childp,struct kvm_pgtable_mm_ops * mm_ops)145 static void kvm_set_table_pte(kvm_pte_t *ptep, kvm_pte_t *childp,
146 struct kvm_pgtable_mm_ops *mm_ops)
147 {
148 kvm_pte_t old = *ptep, pte = kvm_phys_to_pte(mm_ops->virt_to_phys(childp));
149
150 pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE);
151 pte |= KVM_PTE_VALID;
152
153 WARN_ON(kvm_pte_valid(old));
154 smp_store_release(ptep, pte);
155 }
156
kvm_init_valid_leaf_pte(u64 pa,kvm_pte_t attr,u32 level)157 static kvm_pte_t kvm_init_valid_leaf_pte(u64 pa, kvm_pte_t attr, u32 level)
158 {
159 kvm_pte_t pte = kvm_phys_to_pte(pa);
160 u64 type = (level == KVM_PGTABLE_MAX_LEVELS - 1) ? KVM_PTE_TYPE_PAGE :
161 KVM_PTE_TYPE_BLOCK;
162
163 pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI);
164 pte |= FIELD_PREP(KVM_PTE_TYPE, type);
165 pte |= KVM_PTE_VALID;
166
167 return pte;
168 }
169
kvm_init_invalid_leaf_owner(u8 owner_id)170 static kvm_pte_t kvm_init_invalid_leaf_owner(u8 owner_id)
171 {
172 return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id);
173 }
174
kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data * data,u64 addr,u32 level,kvm_pte_t * ptep,enum kvm_pgtable_walk_flags flag)175 static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data, u64 addr,
176 u32 level, kvm_pte_t *ptep,
177 enum kvm_pgtable_walk_flags flag)
178 {
179 struct kvm_pgtable_walker *walker = data->walker;
180 return walker->cb(addr, data->end, level, ptep, flag, walker->arg);
181 }
182
183 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
184 kvm_pte_t *pgtable, u32 level);
185
__kvm_pgtable_visit(struct kvm_pgtable_walk_data * data,kvm_pte_t * ptep,u32 level)186 static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data,
187 kvm_pte_t *ptep, u32 level)
188 {
189 int ret = 0;
190 u64 addr = data->addr;
191 kvm_pte_t *childp, pte = *ptep;
192 bool table = kvm_pte_table(pte, level);
193 enum kvm_pgtable_walk_flags flags = data->walker->flags;
194
195 if (table && (flags & KVM_PGTABLE_WALK_TABLE_PRE)) {
196 ret = kvm_pgtable_visitor_cb(data, addr, level, ptep,
197 KVM_PGTABLE_WALK_TABLE_PRE);
198 }
199
200 if (!table && (flags & KVM_PGTABLE_WALK_LEAF)) {
201 ret = kvm_pgtable_visitor_cb(data, addr, level, ptep,
202 KVM_PGTABLE_WALK_LEAF);
203 pte = *ptep;
204 table = kvm_pte_table(pte, level);
205 }
206
207 if (ret)
208 goto out;
209
210 if (!table) {
211 data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level));
212 data->addr += kvm_granule_size(level);
213 goto out;
214 }
215
216 childp = kvm_pte_follow(pte, data->pgt->mm_ops);
217 ret = __kvm_pgtable_walk(data, childp, level + 1);
218 if (ret)
219 goto out;
220
221 if (flags & KVM_PGTABLE_WALK_TABLE_POST) {
222 ret = kvm_pgtable_visitor_cb(data, addr, level, ptep,
223 KVM_PGTABLE_WALK_TABLE_POST);
224 }
225
226 out:
227 return ret;
228 }
229
__kvm_pgtable_walk(struct kvm_pgtable_walk_data * data,kvm_pte_t * pgtable,u32 level)230 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
231 kvm_pte_t *pgtable, u32 level)
232 {
233 u32 idx;
234 int ret = 0;
235
236 if (WARN_ON_ONCE(level >= KVM_PGTABLE_MAX_LEVELS))
237 return -EINVAL;
238
239 for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) {
240 kvm_pte_t *ptep = &pgtable[idx];
241
242 if (data->addr >= data->end)
243 break;
244
245 ret = __kvm_pgtable_visit(data, ptep, level);
246 if (ret)
247 break;
248 }
249
250 return ret;
251 }
252
_kvm_pgtable_walk(struct kvm_pgtable_walk_data * data)253 static int _kvm_pgtable_walk(struct kvm_pgtable_walk_data *data)
254 {
255 u32 idx;
256 int ret = 0;
257 struct kvm_pgtable *pgt = data->pgt;
258 u64 limit = BIT(pgt->ia_bits);
259
260 if (data->addr > limit || data->end > limit)
261 return -ERANGE;
262
263 if (!pgt->pgd)
264 return -EINVAL;
265
266 for (idx = kvm_pgd_page_idx(data); data->addr < data->end; ++idx) {
267 kvm_pte_t *ptep = &pgt->pgd[idx * PTRS_PER_PTE];
268
269 ret = __kvm_pgtable_walk(data, ptep, pgt->start_level);
270 if (ret)
271 break;
272 }
273
274 return ret;
275 }
276
kvm_pgtable_walk(struct kvm_pgtable * pgt,u64 addr,u64 size,struct kvm_pgtable_walker * walker)277 int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size,
278 struct kvm_pgtable_walker *walker)
279 {
280 struct kvm_pgtable_walk_data walk_data = {
281 .pgt = pgt,
282 .addr = ALIGN_DOWN(addr, PAGE_SIZE),
283 .end = PAGE_ALIGN(walk_data.addr + size),
284 .walker = walker,
285 };
286
287 return _kvm_pgtable_walk(&walk_data);
288 }
289
290 struct leaf_walk_data {
291 kvm_pte_t pte;
292 u32 level;
293 };
294
leaf_walker(u64 addr,u64 end,u32 level,kvm_pte_t * ptep,enum kvm_pgtable_walk_flags flag,void * const arg)295 static int leaf_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
296 enum kvm_pgtable_walk_flags flag, void * const arg)
297 {
298 struct leaf_walk_data *data = arg;
299
300 data->pte = *ptep;
301 data->level = level;
302
303 return 0;
304 }
305
kvm_pgtable_get_leaf(struct kvm_pgtable * pgt,u64 addr,kvm_pte_t * ptep,u32 * level)306 int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr,
307 kvm_pte_t *ptep, u32 *level)
308 {
309 struct leaf_walk_data data;
310 struct kvm_pgtable_walker walker = {
311 .cb = leaf_walker,
312 .flags = KVM_PGTABLE_WALK_LEAF,
313 .arg = &data,
314 };
315 int ret;
316
317 ret = kvm_pgtable_walk(pgt, ALIGN_DOWN(addr, PAGE_SIZE),
318 PAGE_SIZE, &walker);
319 if (!ret) {
320 if (ptep)
321 *ptep = data.pte;
322 if (level)
323 *level = data.level;
324 }
325
326 return ret;
327 }
328
329 struct hyp_map_data {
330 u64 phys;
331 kvm_pte_t attr;
332 struct kvm_pgtable_mm_ops *mm_ops;
333 };
334
hyp_set_prot_attr(enum kvm_pgtable_prot prot,kvm_pte_t * ptep)335 static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep)
336 {
337 bool device = prot & KVM_PGTABLE_PROT_DEVICE;
338 u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL;
339 kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype);
340 u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS;
341 u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW :
342 KVM_PTE_LEAF_ATTR_LO_S1_AP_RO;
343
344 if (!(prot & KVM_PGTABLE_PROT_R))
345 return -EINVAL;
346
347 if (prot & KVM_PGTABLE_PROT_X) {
348 if (prot & KVM_PGTABLE_PROT_W)
349 return -EINVAL;
350
351 if (device)
352 return -EINVAL;
353 } else {
354 attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN;
355 }
356
357 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap);
358 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh);
359 attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF;
360 attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
361 *ptep = attr;
362
363 return 0;
364 }
365
kvm_pgtable_hyp_pte_prot(kvm_pte_t pte)366 enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte)
367 {
368 enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
369 u32 ap;
370
371 if (!kvm_pte_valid(pte))
372 return prot;
373
374 if (!(pte & KVM_PTE_LEAF_ATTR_HI_S1_XN))
375 prot |= KVM_PGTABLE_PROT_X;
376
377 ap = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP, pte);
378 if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RO)
379 prot |= KVM_PGTABLE_PROT_R;
380 else if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RW)
381 prot |= KVM_PGTABLE_PROT_RW;
382
383 return prot;
384 }
385
hyp_map_walker_try_leaf(u64 addr,u64 end,u32 level,kvm_pte_t * ptep,struct hyp_map_data * data)386 static bool hyp_map_walker_try_leaf(u64 addr, u64 end, u32 level,
387 kvm_pte_t *ptep, struct hyp_map_data *data)
388 {
389 kvm_pte_t new, old = *ptep;
390 u64 granule = kvm_granule_size(level), phys = data->phys;
391
392 if (!kvm_block_mapping_supported(addr, end, phys, level))
393 return false;
394
395 data->phys += granule;
396 new = kvm_init_valid_leaf_pte(phys, data->attr, level);
397 if (old == new)
398 return true;
399 if (!kvm_pte_valid(old))
400 data->mm_ops->get_page(ptep);
401 else if (WARN_ON((old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW))
402 return false;
403
404 smp_store_release(ptep, new);
405 return true;
406 }
407
hyp_map_walker(u64 addr,u64 end,u32 level,kvm_pte_t * ptep,enum kvm_pgtable_walk_flags flag,void * const arg)408 static int hyp_map_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
409 enum kvm_pgtable_walk_flags flag, void * const arg)
410 {
411 kvm_pte_t *childp;
412 struct hyp_map_data *data = arg;
413 struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
414
415 if (hyp_map_walker_try_leaf(addr, end, level, ptep, arg))
416 return 0;
417
418 if (WARN_ON(level == KVM_PGTABLE_MAX_LEVELS - 1))
419 return -EINVAL;
420
421 childp = (kvm_pte_t *)mm_ops->zalloc_page(NULL);
422 if (!childp)
423 return -ENOMEM;
424
425 kvm_set_table_pte(ptep, childp, mm_ops);
426 mm_ops->get_page(ptep);
427 return 0;
428 }
429
kvm_pgtable_hyp_map(struct kvm_pgtable * pgt,u64 addr,u64 size,u64 phys,enum kvm_pgtable_prot prot)430 int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys,
431 enum kvm_pgtable_prot prot)
432 {
433 int ret;
434 struct hyp_map_data map_data = {
435 .phys = ALIGN_DOWN(phys, PAGE_SIZE),
436 .mm_ops = pgt->mm_ops,
437 };
438 struct kvm_pgtable_walker walker = {
439 .cb = hyp_map_walker,
440 .flags = KVM_PGTABLE_WALK_LEAF,
441 .arg = &map_data,
442 };
443
444 ret = hyp_set_prot_attr(prot, &map_data.attr);
445 if (ret)
446 return ret;
447
448 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
449 dsb(ishst);
450 isb();
451 return ret;
452 }
453
454 struct hyp_unmap_data {
455 u64 unmapped;
456 struct kvm_pgtable_mm_ops *mm_ops;
457 };
458
hyp_unmap_walker(u64 addr,u64 end,u32 level,kvm_pte_t * ptep,enum kvm_pgtable_walk_flags flag,void * const arg)459 static int hyp_unmap_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
460 enum kvm_pgtable_walk_flags flag, void * const arg)
461 {
462 kvm_pte_t pte = *ptep, *childp = NULL;
463 u64 granule = kvm_granule_size(level);
464 struct hyp_unmap_data *data = arg;
465 struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
466
467 if (!kvm_pte_valid(pte))
468 return -EINVAL;
469
470 if (kvm_pte_table(pte, level)) {
471 childp = kvm_pte_follow(pte, mm_ops);
472
473 if (mm_ops->page_count(childp) != 1)
474 return 0;
475
476 kvm_clear_pte(ptep);
477 dsb(ishst);
478 __tlbi_level(vae2is, __TLBI_VADDR(addr, 0), level);
479 } else {
480 if (end - addr < granule)
481 return -EINVAL;
482
483 kvm_clear_pte(ptep);
484 dsb(ishst);
485 __tlbi_level(vale2is, __TLBI_VADDR(addr, 0), level);
486 data->unmapped += granule;
487 }
488
489 dsb(ish);
490 isb();
491 mm_ops->put_page(ptep);
492
493 if (childp)
494 mm_ops->put_page(childp);
495
496 return 0;
497 }
498
kvm_pgtable_hyp_unmap(struct kvm_pgtable * pgt,u64 addr,u64 size)499 u64 kvm_pgtable_hyp_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
500 {
501 struct hyp_unmap_data unmap_data = {
502 .mm_ops = pgt->mm_ops,
503 };
504 struct kvm_pgtable_walker walker = {
505 .cb = hyp_unmap_walker,
506 .arg = &unmap_data,
507 .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
508 };
509
510 if (!pgt->mm_ops->page_count)
511 return 0;
512
513 kvm_pgtable_walk(pgt, addr, size, &walker);
514 return unmap_data.unmapped;
515 }
516
kvm_pgtable_hyp_init(struct kvm_pgtable * pgt,u32 va_bits,struct kvm_pgtable_mm_ops * mm_ops)517 int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits,
518 struct kvm_pgtable_mm_ops *mm_ops)
519 {
520 u64 levels = ARM64_HW_PGTABLE_LEVELS(va_bits);
521
522 pgt->pgd = (kvm_pte_t *)mm_ops->zalloc_page(NULL);
523 if (!pgt->pgd)
524 return -ENOMEM;
525
526 pgt->ia_bits = va_bits;
527 pgt->start_level = KVM_PGTABLE_MAX_LEVELS - levels;
528 pgt->mm_ops = mm_ops;
529 pgt->mmu = NULL;
530 pgt->force_pte_cb = NULL;
531
532 return 0;
533 }
534
hyp_free_walker(u64 addr,u64 end,u32 level,kvm_pte_t * ptep,enum kvm_pgtable_walk_flags flag,void * const arg)535 static int hyp_free_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
536 enum kvm_pgtable_walk_flags flag, void * const arg)
537 {
538 struct kvm_pgtable_mm_ops *mm_ops = arg;
539 kvm_pte_t pte = *ptep;
540
541 if (!kvm_pte_valid(pte))
542 return 0;
543
544 mm_ops->put_page(ptep);
545
546 if (kvm_pte_table(pte, level))
547 mm_ops->put_page(kvm_pte_follow(pte, mm_ops));
548
549 return 0;
550 }
551
kvm_pgtable_hyp_destroy(struct kvm_pgtable * pgt)552 void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt)
553 {
554 struct kvm_pgtable_walker walker = {
555 .cb = hyp_free_walker,
556 .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
557 .arg = pgt->mm_ops,
558 };
559
560 WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
561 pgt->mm_ops->put_page(pgt->pgd);
562 pgt->pgd = NULL;
563 }
564
565 struct stage2_map_data {
566 u64 phys;
567 kvm_pte_t attr;
568 u8 owner_id;
569
570 kvm_pte_t *anchor;
571 kvm_pte_t *childp;
572
573 struct kvm_s2_mmu *mmu;
574 void *memcache;
575
576 struct kvm_pgtable_mm_ops *mm_ops;
577
578 /* Force mappings to page granularity */
579 bool force_pte;
580 };
581
kvm_get_vtcr(u64 mmfr0,u64 mmfr1,u32 phys_shift)582 u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift)
583 {
584 u64 vtcr = VTCR_EL2_FLAGS;
585 u8 lvls;
586
587 vtcr |= kvm_get_parange(mmfr0) << VTCR_EL2_PS_SHIFT;
588 vtcr |= VTCR_EL2_T0SZ(phys_shift);
589 /*
590 * Use a minimum 2 level page table to prevent splitting
591 * host PMD huge pages at stage2.
592 */
593 lvls = stage2_pgtable_levels(phys_shift);
594 if (lvls < 2)
595 lvls = 2;
596 vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls);
597
598 /*
599 * Enable the Hardware Access Flag management, unconditionally
600 * on all CPUs. The features is RES0 on CPUs without the support
601 * and must be ignored by the CPUs.
602 */
603 vtcr |= VTCR_EL2_HA;
604
605 /* Set the vmid bits */
606 vtcr |= (get_vmid_bits(mmfr1) == 16) ?
607 VTCR_EL2_VS_16BIT :
608 VTCR_EL2_VS_8BIT;
609
610 return vtcr;
611 }
612
stage2_has_fwb(struct kvm_pgtable * pgt)613 static bool stage2_has_fwb(struct kvm_pgtable *pgt)
614 {
615 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
616 return false;
617
618 return !(pgt->flags & KVM_PGTABLE_S2_NOFWB);
619 }
620
621 #define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt))
622
stage2_set_prot_attr(struct kvm_pgtable * pgt,enum kvm_pgtable_prot prot,kvm_pte_t * ptep)623 static int stage2_set_prot_attr(struct kvm_pgtable *pgt, enum kvm_pgtable_prot prot,
624 kvm_pte_t *ptep)
625 {
626 bool device = prot & KVM_PGTABLE_PROT_DEVICE;
627 kvm_pte_t attr = device ? KVM_S2_MEMATTR(pgt, DEVICE_nGnRE) :
628 KVM_S2_MEMATTR(pgt, NORMAL);
629 u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS;
630
631 if (!(prot & KVM_PGTABLE_PROT_X))
632 attr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
633 else if (device)
634 return -EINVAL;
635
636 if (prot & KVM_PGTABLE_PROT_R)
637 attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
638
639 if (prot & KVM_PGTABLE_PROT_W)
640 attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
641
642 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh);
643 attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF;
644 attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
645 *ptep = attr;
646
647 return 0;
648 }
649
kvm_pgtable_stage2_pte_prot(kvm_pte_t pte)650 enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte)
651 {
652 enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
653
654 if (!kvm_pte_valid(pte))
655 return prot;
656
657 if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R)
658 prot |= KVM_PGTABLE_PROT_R;
659 if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W)
660 prot |= KVM_PGTABLE_PROT_W;
661 if (!(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN))
662 prot |= KVM_PGTABLE_PROT_X;
663
664 return prot;
665 }
666
stage2_pte_needs_update(kvm_pte_t old,kvm_pte_t new)667 static bool stage2_pte_needs_update(kvm_pte_t old, kvm_pte_t new)
668 {
669 if (!kvm_pte_valid(old) || !kvm_pte_valid(new))
670 return true;
671
672 return ((old ^ new) & (~KVM_PTE_LEAF_ATTR_S2_PERMS));
673 }
674
stage2_pte_is_counted(kvm_pte_t pte)675 static bool stage2_pte_is_counted(kvm_pte_t pte)
676 {
677 /*
678 * The refcount tracks valid entries as well as invalid entries if they
679 * encode ownership of a page to another entity than the page-table
680 * owner, whose id is 0.
681 */
682 return !!pte;
683 }
684
stage2_put_pte(kvm_pte_t * ptep,struct kvm_s2_mmu * mmu,u64 addr,u32 level,struct kvm_pgtable_mm_ops * mm_ops)685 static void stage2_put_pte(kvm_pte_t *ptep, struct kvm_s2_mmu *mmu, u64 addr,
686 u32 level, struct kvm_pgtable_mm_ops *mm_ops)
687 {
688 /*
689 * Clear the existing PTE, and perform break-before-make with
690 * TLB maintenance if it was valid.
691 */
692 if (kvm_pte_valid(*ptep)) {
693 kvm_clear_pte(ptep);
694 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, addr, level);
695 }
696
697 mm_ops->put_page(ptep);
698 }
699
stage2_pte_cacheable(struct kvm_pgtable * pgt,kvm_pte_t pte)700 static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte)
701 {
702 u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR;
703 return memattr == KVM_S2_MEMATTR(pgt, NORMAL);
704 }
705
stage2_pte_executable(kvm_pte_t pte)706 static bool stage2_pte_executable(kvm_pte_t pte)
707 {
708 return !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN);
709 }
710
stage2_leaf_mapping_allowed(u64 addr,u64 end,u32 level,struct stage2_map_data * data)711 static bool stage2_leaf_mapping_allowed(u64 addr, u64 end, u32 level,
712 struct stage2_map_data *data)
713 {
714 if (data->force_pte && (level < (KVM_PGTABLE_MAX_LEVELS - 1)))
715 return false;
716
717 return kvm_block_mapping_supported(addr, end, data->phys, level);
718 }
719
stage2_map_walker_try_leaf(u64 addr,u64 end,u32 level,kvm_pte_t * ptep,struct stage2_map_data * data)720 static int stage2_map_walker_try_leaf(u64 addr, u64 end, u32 level,
721 kvm_pte_t *ptep,
722 struct stage2_map_data *data)
723 {
724 kvm_pte_t new, old = *ptep;
725 u64 granule = kvm_granule_size(level), phys = data->phys;
726 struct kvm_pgtable *pgt = data->mmu->pgt;
727 struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
728
729 if (!stage2_leaf_mapping_allowed(addr, end, level, data))
730 return -E2BIG;
731
732 if (kvm_phys_is_valid(phys))
733 new = kvm_init_valid_leaf_pte(phys, data->attr, level);
734 else
735 new = kvm_init_invalid_leaf_owner(data->owner_id);
736
737 if (stage2_pte_is_counted(old)) {
738 /*
739 * Skip updating the PTE if we are trying to recreate the exact
740 * same mapping or only change the access permissions. Instead,
741 * the vCPU will exit one more time from guest if still needed
742 * and then go through the path of relaxing permissions.
743 */
744 if (!stage2_pte_needs_update(old, new))
745 return -EAGAIN;
746
747 stage2_put_pte(ptep, data->mmu, addr, level, mm_ops);
748 }
749
750 /* Perform CMOs before installation of the guest stage-2 PTE */
751 if (mm_ops->dcache_clean_inval_poc && stage2_pte_cacheable(pgt, new))
752 mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops),
753 granule);
754
755 if (mm_ops->icache_inval_pou && stage2_pte_executable(new))
756 mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule);
757
758 smp_store_release(ptep, new);
759 if (stage2_pte_is_counted(new))
760 mm_ops->get_page(ptep);
761 if (kvm_phys_is_valid(phys))
762 data->phys += granule;
763 return 0;
764 }
765
stage2_map_walk_table_pre(u64 addr,u64 end,u32 level,kvm_pte_t * ptep,struct stage2_map_data * data)766 static int stage2_map_walk_table_pre(u64 addr, u64 end, u32 level,
767 kvm_pte_t *ptep,
768 struct stage2_map_data *data)
769 {
770 if (data->anchor)
771 return 0;
772
773 if (!stage2_leaf_mapping_allowed(addr, end, level, data))
774 return 0;
775
776 data->childp = kvm_pte_follow(*ptep, data->mm_ops);
777 kvm_clear_pte(ptep);
778
779 /*
780 * Invalidate the whole stage-2, as we may have numerous leaf
781 * entries below us which would otherwise need invalidating
782 * individually.
783 */
784 kvm_call_hyp(__kvm_tlb_flush_vmid, data->mmu);
785 data->anchor = ptep;
786 return 0;
787 }
788
stage2_map_walk_leaf(u64 addr,u64 end,u32 level,kvm_pte_t * ptep,struct stage2_map_data * data)789 static int stage2_map_walk_leaf(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
790 struct stage2_map_data *data)
791 {
792 struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
793 kvm_pte_t *childp, pte = *ptep;
794 int ret;
795
796 if (data->anchor) {
797 if (stage2_pte_is_counted(pte))
798 mm_ops->put_page(ptep);
799
800 return 0;
801 }
802
803 ret = stage2_map_walker_try_leaf(addr, end, level, ptep, data);
804 if (ret != -E2BIG)
805 return ret;
806
807 if (WARN_ON(level == KVM_PGTABLE_MAX_LEVELS - 1))
808 return -EINVAL;
809
810 if (!data->memcache)
811 return -ENOMEM;
812
813 childp = mm_ops->zalloc_page(data->memcache);
814 if (!childp)
815 return -ENOMEM;
816
817 /*
818 * If we've run into an existing block mapping then replace it with
819 * a table. Accesses beyond 'end' that fall within the new table
820 * will be mapped lazily.
821 */
822 if (stage2_pte_is_counted(pte))
823 stage2_put_pte(ptep, data->mmu, addr, level, mm_ops);
824
825 kvm_set_table_pte(ptep, childp, mm_ops);
826 mm_ops->get_page(ptep);
827
828 return 0;
829 }
830
stage2_map_walk_table_post(u64 addr,u64 end,u32 level,kvm_pte_t * ptep,struct stage2_map_data * data)831 static int stage2_map_walk_table_post(u64 addr, u64 end, u32 level,
832 kvm_pte_t *ptep,
833 struct stage2_map_data *data)
834 {
835 struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
836 kvm_pte_t *childp;
837 int ret = 0;
838
839 if (!data->anchor)
840 return 0;
841
842 if (data->anchor == ptep) {
843 childp = data->childp;
844 data->anchor = NULL;
845 data->childp = NULL;
846 ret = stage2_map_walk_leaf(addr, end, level, ptep, data);
847 } else {
848 childp = kvm_pte_follow(*ptep, mm_ops);
849 }
850
851 mm_ops->put_page(childp);
852 mm_ops->put_page(ptep);
853
854 return ret;
855 }
856
857 /*
858 * This is a little fiddly, as we use all three of the walk flags. The idea
859 * is that the TABLE_PRE callback runs for table entries on the way down,
860 * looking for table entries which we could conceivably replace with a
861 * block entry for this mapping. If it finds one, then it sets the 'anchor'
862 * field in 'struct stage2_map_data' to point at the table entry, before
863 * clearing the entry to zero and descending into the now detached table.
864 *
865 * The behaviour of the LEAF callback then depends on whether or not the
866 * anchor has been set. If not, then we're not using a block mapping higher
867 * up the table and we perform the mapping at the existing leaves instead.
868 * If, on the other hand, the anchor _is_ set, then we drop references to
869 * all valid leaves so that the pages beneath the anchor can be freed.
870 *
871 * Finally, the TABLE_POST callback does nothing if the anchor has not
872 * been set, but otherwise frees the page-table pages while walking back up
873 * the page-table, installing the block entry when it revisits the anchor
874 * pointer and clearing the anchor to NULL.
875 */
stage2_map_walker(u64 addr,u64 end,u32 level,kvm_pte_t * ptep,enum kvm_pgtable_walk_flags flag,void * const arg)876 static int stage2_map_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
877 enum kvm_pgtable_walk_flags flag, void * const arg)
878 {
879 struct stage2_map_data *data = arg;
880
881 switch (flag) {
882 case KVM_PGTABLE_WALK_TABLE_PRE:
883 return stage2_map_walk_table_pre(addr, end, level, ptep, data);
884 case KVM_PGTABLE_WALK_LEAF:
885 return stage2_map_walk_leaf(addr, end, level, ptep, data);
886 case KVM_PGTABLE_WALK_TABLE_POST:
887 return stage2_map_walk_table_post(addr, end, level, ptep, data);
888 }
889
890 return -EINVAL;
891 }
892
kvm_pgtable_stage2_map(struct kvm_pgtable * pgt,u64 addr,u64 size,u64 phys,enum kvm_pgtable_prot prot,void * mc)893 int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size,
894 u64 phys, enum kvm_pgtable_prot prot,
895 void *mc)
896 {
897 int ret;
898 struct stage2_map_data map_data = {
899 .phys = ALIGN_DOWN(phys, PAGE_SIZE),
900 .mmu = pgt->mmu,
901 .memcache = mc,
902 .mm_ops = pgt->mm_ops,
903 .force_pte = pgt->force_pte_cb && pgt->force_pte_cb(addr, addr + size, prot),
904 };
905 struct kvm_pgtable_walker walker = {
906 .cb = stage2_map_walker,
907 .flags = KVM_PGTABLE_WALK_TABLE_PRE |
908 KVM_PGTABLE_WALK_LEAF |
909 KVM_PGTABLE_WALK_TABLE_POST,
910 .arg = &map_data,
911 };
912
913 if (WARN_ON((pgt->flags & KVM_PGTABLE_S2_IDMAP) && (addr != phys)))
914 return -EINVAL;
915
916 ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
917 if (ret)
918 return ret;
919
920 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
921 dsb(ishst);
922 return ret;
923 }
924
kvm_pgtable_stage2_set_owner(struct kvm_pgtable * pgt,u64 addr,u64 size,void * mc,u8 owner_id)925 int kvm_pgtable_stage2_set_owner(struct kvm_pgtable *pgt, u64 addr, u64 size,
926 void *mc, u8 owner_id)
927 {
928 int ret;
929 struct stage2_map_data map_data = {
930 .phys = KVM_PHYS_INVALID,
931 .mmu = pgt->mmu,
932 .memcache = mc,
933 .mm_ops = pgt->mm_ops,
934 .owner_id = owner_id,
935 .force_pte = true,
936 };
937 struct kvm_pgtable_walker walker = {
938 .cb = stage2_map_walker,
939 .flags = KVM_PGTABLE_WALK_TABLE_PRE |
940 KVM_PGTABLE_WALK_LEAF |
941 KVM_PGTABLE_WALK_TABLE_POST,
942 .arg = &map_data,
943 };
944
945 if (owner_id > KVM_MAX_OWNER_ID)
946 return -EINVAL;
947
948 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
949 return ret;
950 }
951
stage2_unmap_walker(u64 addr,u64 end,u32 level,kvm_pte_t * ptep,enum kvm_pgtable_walk_flags flag,void * const arg)952 static int stage2_unmap_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
953 enum kvm_pgtable_walk_flags flag,
954 void * const arg)
955 {
956 struct kvm_pgtable *pgt = arg;
957 struct kvm_s2_mmu *mmu = pgt->mmu;
958 struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
959 kvm_pte_t pte = *ptep, *childp = NULL;
960 bool need_flush = false;
961
962 if (!kvm_pte_valid(pte)) {
963 if (stage2_pte_is_counted(pte)) {
964 kvm_clear_pte(ptep);
965 mm_ops->put_page(ptep);
966 }
967 return 0;
968 }
969
970 if (kvm_pte_table(pte, level)) {
971 childp = kvm_pte_follow(pte, mm_ops);
972
973 if (mm_ops->page_count(childp) != 1)
974 return 0;
975 } else if (stage2_pte_cacheable(pgt, pte)) {
976 need_flush = !stage2_has_fwb(pgt);
977 }
978
979 /*
980 * This is similar to the map() path in that we unmap the entire
981 * block entry and rely on the remaining portions being faulted
982 * back lazily.
983 */
984 stage2_put_pte(ptep, mmu, addr, level, mm_ops);
985
986 if (need_flush && mm_ops->dcache_clean_inval_poc)
987 mm_ops->dcache_clean_inval_poc(kvm_pte_follow(pte, mm_ops),
988 kvm_granule_size(level));
989
990 if (childp)
991 mm_ops->put_page(childp);
992
993 return 0;
994 }
995
kvm_pgtable_stage2_unmap(struct kvm_pgtable * pgt,u64 addr,u64 size)996 int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
997 {
998 struct kvm_pgtable_walker walker = {
999 .cb = stage2_unmap_walker,
1000 .arg = pgt,
1001 .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
1002 };
1003
1004 return kvm_pgtable_walk(pgt, addr, size, &walker);
1005 }
1006
1007 struct stage2_attr_data {
1008 kvm_pte_t attr_set;
1009 kvm_pte_t attr_clr;
1010 kvm_pte_t pte;
1011 u32 level;
1012 struct kvm_pgtable_mm_ops *mm_ops;
1013 };
1014
stage2_attr_walker(u64 addr,u64 end,u32 level,kvm_pte_t * ptep,enum kvm_pgtable_walk_flags flag,void * const arg)1015 static int stage2_attr_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
1016 enum kvm_pgtable_walk_flags flag,
1017 void * const arg)
1018 {
1019 kvm_pte_t pte = *ptep;
1020 struct stage2_attr_data *data = arg;
1021 struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
1022
1023 if (!kvm_pte_valid(pte))
1024 return 0;
1025
1026 data->level = level;
1027 data->pte = pte;
1028 pte &= ~data->attr_clr;
1029 pte |= data->attr_set;
1030
1031 /*
1032 * We may race with the CPU trying to set the access flag here,
1033 * but worst-case the access flag update gets lost and will be
1034 * set on the next access instead.
1035 */
1036 if (data->pte != pte) {
1037 /*
1038 * Invalidate instruction cache before updating the guest
1039 * stage-2 PTE if we are going to add executable permission.
1040 */
1041 if (mm_ops->icache_inval_pou &&
1042 stage2_pte_executable(pte) && !stage2_pte_executable(*ptep))
1043 mm_ops->icache_inval_pou(kvm_pte_follow(pte, mm_ops),
1044 kvm_granule_size(level));
1045 WRITE_ONCE(*ptep, pte);
1046 }
1047
1048 return 0;
1049 }
1050
stage2_update_leaf_attrs(struct kvm_pgtable * pgt,u64 addr,u64 size,kvm_pte_t attr_set,kvm_pte_t attr_clr,kvm_pte_t * orig_pte,u32 * level)1051 static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr,
1052 u64 size, kvm_pte_t attr_set,
1053 kvm_pte_t attr_clr, kvm_pte_t *orig_pte,
1054 u32 *level)
1055 {
1056 int ret;
1057 kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI;
1058 struct stage2_attr_data data = {
1059 .attr_set = attr_set & attr_mask,
1060 .attr_clr = attr_clr & attr_mask,
1061 .mm_ops = pgt->mm_ops,
1062 };
1063 struct kvm_pgtable_walker walker = {
1064 .cb = stage2_attr_walker,
1065 .arg = &data,
1066 .flags = KVM_PGTABLE_WALK_LEAF,
1067 };
1068
1069 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1070 if (ret)
1071 return ret;
1072
1073 if (orig_pte)
1074 *orig_pte = data.pte;
1075
1076 if (level)
1077 *level = data.level;
1078 return 0;
1079 }
1080
kvm_pgtable_stage2_wrprotect(struct kvm_pgtable * pgt,u64 addr,u64 size)1081 int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size)
1082 {
1083 return stage2_update_leaf_attrs(pgt, addr, size, 0,
1084 KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W,
1085 NULL, NULL);
1086 }
1087
kvm_pgtable_stage2_mkyoung(struct kvm_pgtable * pgt,u64 addr)1088 kvm_pte_t kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr)
1089 {
1090 kvm_pte_t pte = 0;
1091 stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0,
1092 &pte, NULL);
1093 dsb(ishst);
1094 return pte;
1095 }
1096
kvm_pgtable_stage2_mkold(struct kvm_pgtable * pgt,u64 addr)1097 kvm_pte_t kvm_pgtable_stage2_mkold(struct kvm_pgtable *pgt, u64 addr)
1098 {
1099 kvm_pte_t pte = 0;
1100 stage2_update_leaf_attrs(pgt, addr, 1, 0, KVM_PTE_LEAF_ATTR_LO_S2_AF,
1101 &pte, NULL);
1102 /*
1103 * "But where's the TLBI?!", you scream.
1104 * "Over in the core code", I sigh.
1105 *
1106 * See the '->clear_flush_young()' callback on the KVM mmu notifier.
1107 */
1108 return pte;
1109 }
1110
kvm_pgtable_stage2_is_young(struct kvm_pgtable * pgt,u64 addr)1111 bool kvm_pgtable_stage2_is_young(struct kvm_pgtable *pgt, u64 addr)
1112 {
1113 kvm_pte_t pte = 0;
1114 stage2_update_leaf_attrs(pgt, addr, 1, 0, 0, &pte, NULL);
1115 return pte & KVM_PTE_LEAF_ATTR_LO_S2_AF;
1116 }
1117
kvm_pgtable_stage2_relax_perms(struct kvm_pgtable * pgt,u64 addr,enum kvm_pgtable_prot prot)1118 int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr,
1119 enum kvm_pgtable_prot prot)
1120 {
1121 int ret;
1122 u32 level;
1123 kvm_pte_t set = 0, clr = 0;
1124
1125 if (prot & KVM_PTE_LEAF_ATTR_HI_SW)
1126 return -EINVAL;
1127
1128 if (prot & KVM_PGTABLE_PROT_R)
1129 set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
1130
1131 if (prot & KVM_PGTABLE_PROT_W)
1132 set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
1133
1134 if (prot & KVM_PGTABLE_PROT_X)
1135 clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
1136
1137 ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level);
1138 if (!ret)
1139 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, pgt->mmu, addr, level);
1140 return ret;
1141 }
1142
stage2_flush_walker(u64 addr,u64 end,u32 level,kvm_pte_t * ptep,enum kvm_pgtable_walk_flags flag,void * const arg)1143 static int stage2_flush_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
1144 enum kvm_pgtable_walk_flags flag,
1145 void * const arg)
1146 {
1147 struct kvm_pgtable *pgt = arg;
1148 struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
1149 kvm_pte_t pte = *ptep;
1150
1151 if (!kvm_pte_valid(pte) || !stage2_pte_cacheable(pgt, pte))
1152 return 0;
1153
1154 if (mm_ops->dcache_clean_inval_poc)
1155 mm_ops->dcache_clean_inval_poc(kvm_pte_follow(pte, mm_ops),
1156 kvm_granule_size(level));
1157 return 0;
1158 }
1159
kvm_pgtable_stage2_flush(struct kvm_pgtable * pgt,u64 addr,u64 size)1160 int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size)
1161 {
1162 struct kvm_pgtable_walker walker = {
1163 .cb = stage2_flush_walker,
1164 .flags = KVM_PGTABLE_WALK_LEAF,
1165 .arg = pgt,
1166 };
1167
1168 if (stage2_has_fwb(pgt))
1169 return 0;
1170
1171 return kvm_pgtable_walk(pgt, addr, size, &walker);
1172 }
1173
1174
__kvm_pgtable_stage2_init(struct kvm_pgtable * pgt,struct kvm_s2_mmu * mmu,struct kvm_pgtable_mm_ops * mm_ops,enum kvm_pgtable_stage2_flags flags,kvm_pgtable_force_pte_cb_t force_pte_cb)1175 int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu,
1176 struct kvm_pgtable_mm_ops *mm_ops,
1177 enum kvm_pgtable_stage2_flags flags,
1178 kvm_pgtable_force_pte_cb_t force_pte_cb)
1179 {
1180 size_t pgd_sz;
1181 u64 vtcr = mmu->arch->vtcr;
1182 u32 ia_bits = VTCR_EL2_IPA(vtcr);
1183 u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1184 u32 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1185
1186 pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1187 pgt->pgd = mm_ops->zalloc_pages_exact(pgd_sz);
1188 if (!pgt->pgd)
1189 return -ENOMEM;
1190
1191 pgt->ia_bits = ia_bits;
1192 pgt->start_level = start_level;
1193 pgt->mm_ops = mm_ops;
1194 pgt->mmu = mmu;
1195 pgt->flags = flags;
1196 pgt->force_pte_cb = force_pte_cb;
1197
1198 /* Ensure zeroed PGD pages are visible to the hardware walker */
1199 dsb(ishst);
1200 return 0;
1201 }
1202
stage2_free_walker(u64 addr,u64 end,u32 level,kvm_pte_t * ptep,enum kvm_pgtable_walk_flags flag,void * const arg)1203 static int stage2_free_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
1204 enum kvm_pgtable_walk_flags flag,
1205 void * const arg)
1206 {
1207 struct kvm_pgtable_mm_ops *mm_ops = arg;
1208 kvm_pte_t pte = *ptep;
1209
1210 if (!stage2_pte_is_counted(pte))
1211 return 0;
1212
1213 mm_ops->put_page(ptep);
1214
1215 if (kvm_pte_table(pte, level))
1216 mm_ops->put_page(kvm_pte_follow(pte, mm_ops));
1217
1218 return 0;
1219 }
1220
kvm_pgtable_stage2_destroy(struct kvm_pgtable * pgt)1221 void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt)
1222 {
1223 size_t pgd_sz;
1224 struct kvm_pgtable_walker walker = {
1225 .cb = stage2_free_walker,
1226 .flags = KVM_PGTABLE_WALK_LEAF |
1227 KVM_PGTABLE_WALK_TABLE_POST,
1228 .arg = pgt->mm_ops,
1229 };
1230
1231 WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
1232 pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE;
1233 pgt->mm_ops->free_pages_exact(pgt->pgd, pgd_sz);
1234 pgt->pgd = NULL;
1235 }
1236