1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
16 */
17
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/set_memory.h>
52 #include <asm/vmx.h>
53 #include <asm/kvm_page_track.h>
54 #include "trace.h"
55
56 #include "paging.h"
57
58 extern bool itlb_multihit_kvm_mitigation;
59
60 int __read_mostly nx_huge_pages = -1;
61 static uint __read_mostly nx_huge_pages_recovery_period_ms;
62 #ifdef CONFIG_PREEMPT_RT
63 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
64 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
65 #else
66 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
67 #endif
68
69 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
70 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp);
71
72 static const struct kernel_param_ops nx_huge_pages_ops = {
73 .set = set_nx_huge_pages,
74 .get = param_get_bool,
75 };
76
77 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = {
78 .set = set_nx_huge_pages_recovery_param,
79 .get = param_get_uint,
80 };
81
82 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
83 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
84 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops,
85 &nx_huge_pages_recovery_ratio, 0644);
86 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
87 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops,
88 &nx_huge_pages_recovery_period_ms, 0644);
89 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint");
90
91 static bool __read_mostly force_flush_and_sync_on_reuse;
92 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
93
94 /*
95 * When setting this variable to true it enables Two-Dimensional-Paging
96 * where the hardware walks 2 page tables:
97 * 1. the guest-virtual to guest-physical
98 * 2. while doing 1. it walks guest-physical to host-physical
99 * If the hardware supports that we don't need to do shadow paging.
100 */
101 bool tdp_enabled = false;
102
103 static int max_huge_page_level __read_mostly;
104 static int tdp_root_level __read_mostly;
105 static int max_tdp_level __read_mostly;
106
107 #ifdef MMU_DEBUG
108 bool dbg = 0;
109 module_param(dbg, bool, 0644);
110 #endif
111
112 #define PTE_PREFETCH_NUM 8
113
114 #define PT32_LEVEL_BITS 10
115
116 #define PT32_LEVEL_SHIFT(level) \
117 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
118
119 #define PT32_LVL_OFFSET_MASK(level) \
120 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
121 * PT32_LEVEL_BITS))) - 1))
122
123 #define PT32_INDEX(address, level)\
124 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
125
126
127 #define PT32_BASE_ADDR_MASK PAGE_MASK
128 #define PT32_DIR_BASE_ADDR_MASK \
129 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
130 #define PT32_LVL_ADDR_MASK(level) \
131 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
132 * PT32_LEVEL_BITS))) - 1))
133
134 #include <trace/events/kvm.h>
135
136 /* make pte_list_desc fit well in cache lines */
137 #define PTE_LIST_EXT 14
138
139 /*
140 * Slight optimization of cacheline layout, by putting `more' and `spte_count'
141 * at the start; then accessing it will only use one single cacheline for
142 * either full (entries==PTE_LIST_EXT) case or entries<=6.
143 */
144 struct pte_list_desc {
145 struct pte_list_desc *more;
146 /*
147 * Stores number of entries stored in the pte_list_desc. No need to be
148 * u64 but just for easier alignment. When PTE_LIST_EXT, means full.
149 */
150 u64 spte_count;
151 u64 *sptes[PTE_LIST_EXT];
152 };
153
154 struct kvm_shadow_walk_iterator {
155 u64 addr;
156 hpa_t shadow_addr;
157 u64 *sptep;
158 int level;
159 unsigned index;
160 };
161
162 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
163 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
164 (_root), (_addr)); \
165 shadow_walk_okay(&(_walker)); \
166 shadow_walk_next(&(_walker)))
167
168 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
169 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
170 shadow_walk_okay(&(_walker)); \
171 shadow_walk_next(&(_walker)))
172
173 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
174 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
175 shadow_walk_okay(&(_walker)) && \
176 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
177 __shadow_walk_next(&(_walker), spte))
178
179 static struct kmem_cache *pte_list_desc_cache;
180 struct kmem_cache *mmu_page_header_cache;
181 static struct percpu_counter kvm_total_used_mmu_pages;
182
183 static void mmu_spte_set(u64 *sptep, u64 spte);
184
185 struct kvm_mmu_role_regs {
186 const unsigned long cr0;
187 const unsigned long cr4;
188 const u64 efer;
189 };
190
191 #define CREATE_TRACE_POINTS
192 #include "mmutrace.h"
193
194 /*
195 * Yes, lot's of underscores. They're a hint that you probably shouldn't be
196 * reading from the role_regs. Once the root_role is constructed, it becomes
197 * the single source of truth for the MMU's state.
198 */
199 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \
200 static inline bool __maybe_unused \
201 ____is_##reg##_##name(const struct kvm_mmu_role_regs *regs) \
202 { \
203 return !!(regs->reg & flag); \
204 }
205 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
206 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
207 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
208 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
209 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
210 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
212 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
213 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
214 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);
215
216 /*
217 * The MMU itself (with a valid role) is the single source of truth for the
218 * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The
219 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
220 * and the vCPU may be incorrect/irrelevant.
221 */
222 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \
223 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \
224 { \
225 return !!(mmu->cpu_role. base_or_ext . reg##_##name); \
226 }
227 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
228 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse);
229 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep);
230 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap);
231 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke);
232 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57);
233 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
234 BUILD_MMU_ROLE_ACCESSOR(ext, efer, lma);
235
is_cr0_pg(struct kvm_mmu * mmu)236 static inline bool is_cr0_pg(struct kvm_mmu *mmu)
237 {
238 return mmu->cpu_role.base.level > 0;
239 }
240
is_cr4_pae(struct kvm_mmu * mmu)241 static inline bool is_cr4_pae(struct kvm_mmu *mmu)
242 {
243 return !mmu->cpu_role.base.has_4_byte_gpte;
244 }
245
vcpu_to_role_regs(struct kvm_vcpu * vcpu)246 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
247 {
248 struct kvm_mmu_role_regs regs = {
249 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
250 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
251 .efer = vcpu->arch.efer,
252 };
253
254 return regs;
255 }
256
kvm_available_flush_tlb_with_range(void)257 static inline bool kvm_available_flush_tlb_with_range(void)
258 {
259 return kvm_x86_ops.tlb_remote_flush_with_range;
260 }
261
kvm_flush_remote_tlbs_with_range(struct kvm * kvm,struct kvm_tlb_range * range)262 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
263 struct kvm_tlb_range *range)
264 {
265 int ret = -ENOTSUPP;
266
267 if (range && kvm_x86_ops.tlb_remote_flush_with_range)
268 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
269
270 if (ret)
271 kvm_flush_remote_tlbs(kvm);
272 }
273
kvm_flush_remote_tlbs_with_address(struct kvm * kvm,u64 start_gfn,u64 pages)274 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
275 u64 start_gfn, u64 pages)
276 {
277 struct kvm_tlb_range range;
278
279 range.start_gfn = start_gfn;
280 range.pages = pages;
281
282 kvm_flush_remote_tlbs_with_range(kvm, &range);
283 }
284
mark_mmio_spte(struct kvm_vcpu * vcpu,u64 * sptep,u64 gfn,unsigned int access)285 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
286 unsigned int access)
287 {
288 u64 spte = make_mmio_spte(vcpu, gfn, access);
289
290 trace_mark_mmio_spte(sptep, gfn, spte);
291 mmu_spte_set(sptep, spte);
292 }
293
get_mmio_spte_gfn(u64 spte)294 static gfn_t get_mmio_spte_gfn(u64 spte)
295 {
296 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
297
298 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
299 & shadow_nonpresent_or_rsvd_mask;
300
301 return gpa >> PAGE_SHIFT;
302 }
303
get_mmio_spte_access(u64 spte)304 static unsigned get_mmio_spte_access(u64 spte)
305 {
306 return spte & shadow_mmio_access_mask;
307 }
308
check_mmio_spte(struct kvm_vcpu * vcpu,u64 spte)309 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
310 {
311 u64 kvm_gen, spte_gen, gen;
312
313 gen = kvm_vcpu_memslots(vcpu)->generation;
314 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
315 return false;
316
317 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
318 spte_gen = get_mmio_spte_generation(spte);
319
320 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
321 return likely(kvm_gen == spte_gen);
322 }
323
is_cpuid_PSE36(void)324 static int is_cpuid_PSE36(void)
325 {
326 return 1;
327 }
328
pse36_gfn_delta(u32 gpte)329 static gfn_t pse36_gfn_delta(u32 gpte)
330 {
331 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
332
333 return (gpte & PT32_DIR_PSE36_MASK) << shift;
334 }
335
336 #ifdef CONFIG_X86_64
__set_spte(u64 * sptep,u64 spte)337 static void __set_spte(u64 *sptep, u64 spte)
338 {
339 WRITE_ONCE(*sptep, spte);
340 }
341
__update_clear_spte_fast(u64 * sptep,u64 spte)342 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
343 {
344 WRITE_ONCE(*sptep, spte);
345 }
346
__update_clear_spte_slow(u64 * sptep,u64 spte)347 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
348 {
349 return xchg(sptep, spte);
350 }
351
__get_spte_lockless(u64 * sptep)352 static u64 __get_spte_lockless(u64 *sptep)
353 {
354 return READ_ONCE(*sptep);
355 }
356 #else
357 union split_spte {
358 struct {
359 u32 spte_low;
360 u32 spte_high;
361 };
362 u64 spte;
363 };
364
count_spte_clear(u64 * sptep,u64 spte)365 static void count_spte_clear(u64 *sptep, u64 spte)
366 {
367 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
368
369 if (is_shadow_present_pte(spte))
370 return;
371
372 /* Ensure the spte is completely set before we increase the count */
373 smp_wmb();
374 sp->clear_spte_count++;
375 }
376
__set_spte(u64 * sptep,u64 spte)377 static void __set_spte(u64 *sptep, u64 spte)
378 {
379 union split_spte *ssptep, sspte;
380
381 ssptep = (union split_spte *)sptep;
382 sspte = (union split_spte)spte;
383
384 ssptep->spte_high = sspte.spte_high;
385
386 /*
387 * If we map the spte from nonpresent to present, We should store
388 * the high bits firstly, then set present bit, so cpu can not
389 * fetch this spte while we are setting the spte.
390 */
391 smp_wmb();
392
393 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
394 }
395
__update_clear_spte_fast(u64 * sptep,u64 spte)396 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
397 {
398 union split_spte *ssptep, sspte;
399
400 ssptep = (union split_spte *)sptep;
401 sspte = (union split_spte)spte;
402
403 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
404
405 /*
406 * If we map the spte from present to nonpresent, we should clear
407 * present bit firstly to avoid vcpu fetch the old high bits.
408 */
409 smp_wmb();
410
411 ssptep->spte_high = sspte.spte_high;
412 count_spte_clear(sptep, spte);
413 }
414
__update_clear_spte_slow(u64 * sptep,u64 spte)415 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
416 {
417 union split_spte *ssptep, sspte, orig;
418
419 ssptep = (union split_spte *)sptep;
420 sspte = (union split_spte)spte;
421
422 /* xchg acts as a barrier before the setting of the high bits */
423 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
424 orig.spte_high = ssptep->spte_high;
425 ssptep->spte_high = sspte.spte_high;
426 count_spte_clear(sptep, spte);
427
428 return orig.spte;
429 }
430
431 /*
432 * The idea using the light way get the spte on x86_32 guest is from
433 * gup_get_pte (mm/gup.c).
434 *
435 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
436 * coalesces them and we are running out of the MMU lock. Therefore
437 * we need to protect against in-progress updates of the spte.
438 *
439 * Reading the spte while an update is in progress may get the old value
440 * for the high part of the spte. The race is fine for a present->non-present
441 * change (because the high part of the spte is ignored for non-present spte),
442 * but for a present->present change we must reread the spte.
443 *
444 * All such changes are done in two steps (present->non-present and
445 * non-present->present), hence it is enough to count the number of
446 * present->non-present updates: if it changed while reading the spte,
447 * we might have hit the race. This is done using clear_spte_count.
448 */
__get_spte_lockless(u64 * sptep)449 static u64 __get_spte_lockless(u64 *sptep)
450 {
451 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
452 union split_spte spte, *orig = (union split_spte *)sptep;
453 int count;
454
455 retry:
456 count = sp->clear_spte_count;
457 smp_rmb();
458
459 spte.spte_low = orig->spte_low;
460 smp_rmb();
461
462 spte.spte_high = orig->spte_high;
463 smp_rmb();
464
465 if (unlikely(spte.spte_low != orig->spte_low ||
466 count != sp->clear_spte_count))
467 goto retry;
468
469 return spte.spte;
470 }
471 #endif
472
473 /* Rules for using mmu_spte_set:
474 * Set the sptep from nonpresent to present.
475 * Note: the sptep being assigned *must* be either not present
476 * or in a state where the hardware will not attempt to update
477 * the spte.
478 */
mmu_spte_set(u64 * sptep,u64 new_spte)479 static void mmu_spte_set(u64 *sptep, u64 new_spte)
480 {
481 WARN_ON(is_shadow_present_pte(*sptep));
482 __set_spte(sptep, new_spte);
483 }
484
485 /*
486 * Update the SPTE (excluding the PFN), but do not track changes in its
487 * accessed/dirty status.
488 */
mmu_spte_update_no_track(u64 * sptep,u64 new_spte)489 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
490 {
491 u64 old_spte = *sptep;
492
493 WARN_ON(!is_shadow_present_pte(new_spte));
494 check_spte_writable_invariants(new_spte);
495
496 if (!is_shadow_present_pte(old_spte)) {
497 mmu_spte_set(sptep, new_spte);
498 return old_spte;
499 }
500
501 if (!spte_has_volatile_bits(old_spte))
502 __update_clear_spte_fast(sptep, new_spte);
503 else
504 old_spte = __update_clear_spte_slow(sptep, new_spte);
505
506 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
507
508 return old_spte;
509 }
510
511 /* Rules for using mmu_spte_update:
512 * Update the state bits, it means the mapped pfn is not changed.
513 *
514 * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote
515 * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only
516 * spte, even though the writable spte might be cached on a CPU's TLB.
517 *
518 * Returns true if the TLB needs to be flushed
519 */
mmu_spte_update(u64 * sptep,u64 new_spte)520 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
521 {
522 bool flush = false;
523 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
524
525 if (!is_shadow_present_pte(old_spte))
526 return false;
527
528 /*
529 * For the spte updated out of mmu-lock is safe, since
530 * we always atomically update it, see the comments in
531 * spte_has_volatile_bits().
532 */
533 if (is_mmu_writable_spte(old_spte) &&
534 !is_writable_pte(new_spte))
535 flush = true;
536
537 /*
538 * Flush TLB when accessed/dirty states are changed in the page tables,
539 * to guarantee consistency between TLB and page tables.
540 */
541
542 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
543 flush = true;
544 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
545 }
546
547 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
548 flush = true;
549 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
550 }
551
552 return flush;
553 }
554
555 /*
556 * Rules for using mmu_spte_clear_track_bits:
557 * It sets the sptep from present to nonpresent, and track the
558 * state bits, it is used to clear the last level sptep.
559 * Returns the old PTE.
560 */
mmu_spte_clear_track_bits(struct kvm * kvm,u64 * sptep)561 static int mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
562 {
563 kvm_pfn_t pfn;
564 u64 old_spte = *sptep;
565 int level = sptep_to_sp(sptep)->role.level;
566
567 if (!is_shadow_present_pte(old_spte) ||
568 !spte_has_volatile_bits(old_spte))
569 __update_clear_spte_fast(sptep, 0ull);
570 else
571 old_spte = __update_clear_spte_slow(sptep, 0ull);
572
573 if (!is_shadow_present_pte(old_spte))
574 return old_spte;
575
576 kvm_update_page_stats(kvm, level, -1);
577
578 pfn = spte_to_pfn(old_spte);
579
580 /*
581 * KVM does not hold the refcount of the page used by
582 * kvm mmu, before reclaiming the page, we should
583 * unmap it from mmu first.
584 */
585 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
586
587 if (is_accessed_spte(old_spte))
588 kvm_set_pfn_accessed(pfn);
589
590 if (is_dirty_spte(old_spte))
591 kvm_set_pfn_dirty(pfn);
592
593 return old_spte;
594 }
595
596 /*
597 * Rules for using mmu_spte_clear_no_track:
598 * Directly clear spte without caring the state bits of sptep,
599 * it is used to set the upper level spte.
600 */
mmu_spte_clear_no_track(u64 * sptep)601 static void mmu_spte_clear_no_track(u64 *sptep)
602 {
603 __update_clear_spte_fast(sptep, 0ull);
604 }
605
mmu_spte_get_lockless(u64 * sptep)606 static u64 mmu_spte_get_lockless(u64 *sptep)
607 {
608 return __get_spte_lockless(sptep);
609 }
610
611 /* Returns the Accessed status of the PTE and resets it at the same time. */
mmu_spte_age(u64 * sptep)612 static bool mmu_spte_age(u64 *sptep)
613 {
614 u64 spte = mmu_spte_get_lockless(sptep);
615
616 if (!is_accessed_spte(spte))
617 return false;
618
619 if (spte_ad_enabled(spte)) {
620 clear_bit((ffs(shadow_accessed_mask) - 1),
621 (unsigned long *)sptep);
622 } else {
623 /*
624 * Capture the dirty status of the page, so that it doesn't get
625 * lost when the SPTE is marked for access tracking.
626 */
627 if (is_writable_pte(spte))
628 kvm_set_pfn_dirty(spte_to_pfn(spte));
629
630 spte = mark_spte_for_access_track(spte);
631 mmu_spte_update_no_track(sptep, spte);
632 }
633
634 return true;
635 }
636
walk_shadow_page_lockless_begin(struct kvm_vcpu * vcpu)637 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
638 {
639 if (is_tdp_mmu(vcpu->arch.mmu)) {
640 kvm_tdp_mmu_walk_lockless_begin();
641 } else {
642 /*
643 * Prevent page table teardown by making any free-er wait during
644 * kvm_flush_remote_tlbs() IPI to all active vcpus.
645 */
646 local_irq_disable();
647
648 /*
649 * Make sure a following spte read is not reordered ahead of the write
650 * to vcpu->mode.
651 */
652 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
653 }
654 }
655
walk_shadow_page_lockless_end(struct kvm_vcpu * vcpu)656 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
657 {
658 if (is_tdp_mmu(vcpu->arch.mmu)) {
659 kvm_tdp_mmu_walk_lockless_end();
660 } else {
661 /*
662 * Make sure the write to vcpu->mode is not reordered in front of
663 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
664 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
665 */
666 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
667 local_irq_enable();
668 }
669 }
670
mmu_topup_memory_caches(struct kvm_vcpu * vcpu,bool maybe_indirect)671 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
672 {
673 int r;
674
675 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
676 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
677 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
678 if (r)
679 return r;
680 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
681 PT64_ROOT_MAX_LEVEL);
682 if (r)
683 return r;
684 if (maybe_indirect) {
685 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
686 PT64_ROOT_MAX_LEVEL);
687 if (r)
688 return r;
689 }
690 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
691 PT64_ROOT_MAX_LEVEL);
692 }
693
mmu_free_memory_caches(struct kvm_vcpu * vcpu)694 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
695 {
696 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
697 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
698 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
699 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
700 }
701
mmu_alloc_pte_list_desc(struct kvm_vcpu * vcpu)702 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
703 {
704 return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
705 }
706
mmu_free_pte_list_desc(struct pte_list_desc * pte_list_desc)707 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
708 {
709 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
710 }
711
kvm_mmu_page_get_gfn(struct kvm_mmu_page * sp,int index)712 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
713 {
714 if (sp->role.passthrough)
715 return sp->gfn;
716
717 if (!sp->role.direct)
718 return sp->gfns[index];
719
720 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
721 }
722
kvm_mmu_page_set_gfn(struct kvm_mmu_page * sp,int index,gfn_t gfn)723 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
724 {
725 if (sp->role.passthrough) {
726 WARN_ON_ONCE(gfn != sp->gfn);
727 return;
728 }
729
730 if (!sp->role.direct) {
731 sp->gfns[index] = gfn;
732 return;
733 }
734
735 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
736 pr_err_ratelimited("gfn mismatch under direct page %llx "
737 "(expected %llx, got %llx)\n",
738 sp->gfn,
739 kvm_mmu_page_get_gfn(sp, index), gfn);
740 }
741
742 /*
743 * Return the pointer to the large page information for a given gfn,
744 * handling slots that are not large page aligned.
745 */
lpage_info_slot(gfn_t gfn,const struct kvm_memory_slot * slot,int level)746 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
747 const struct kvm_memory_slot *slot, int level)
748 {
749 unsigned long idx;
750
751 idx = gfn_to_index(gfn, slot->base_gfn, level);
752 return &slot->arch.lpage_info[level - 2][idx];
753 }
754
update_gfn_disallow_lpage_count(const struct kvm_memory_slot * slot,gfn_t gfn,int count)755 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
756 gfn_t gfn, int count)
757 {
758 struct kvm_lpage_info *linfo;
759 int i;
760
761 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
762 linfo = lpage_info_slot(gfn, slot, i);
763 linfo->disallow_lpage += count;
764 WARN_ON(linfo->disallow_lpage < 0);
765 }
766 }
767
kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot * slot,gfn_t gfn)768 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
769 {
770 update_gfn_disallow_lpage_count(slot, gfn, 1);
771 }
772
kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot * slot,gfn_t gfn)773 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
774 {
775 update_gfn_disallow_lpage_count(slot, gfn, -1);
776 }
777
account_shadowed(struct kvm * kvm,struct kvm_mmu_page * sp)778 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
779 {
780 struct kvm_memslots *slots;
781 struct kvm_memory_slot *slot;
782 gfn_t gfn;
783
784 kvm->arch.indirect_shadow_pages++;
785 gfn = sp->gfn;
786 slots = kvm_memslots_for_spte_role(kvm, sp->role);
787 slot = __gfn_to_memslot(slots, gfn);
788
789 /* the non-leaf shadow pages are keeping readonly. */
790 if (sp->role.level > PG_LEVEL_4K)
791 return kvm_slot_page_track_add_page(kvm, slot, gfn,
792 KVM_PAGE_TRACK_WRITE);
793
794 kvm_mmu_gfn_disallow_lpage(slot, gfn);
795 }
796
account_huge_nx_page(struct kvm * kvm,struct kvm_mmu_page * sp)797 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
798 {
799 if (sp->lpage_disallowed)
800 return;
801
802 ++kvm->stat.nx_lpage_splits;
803 list_add_tail(&sp->lpage_disallowed_link,
804 &kvm->arch.lpage_disallowed_mmu_pages);
805 sp->lpage_disallowed = true;
806 }
807
unaccount_shadowed(struct kvm * kvm,struct kvm_mmu_page * sp)808 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
809 {
810 struct kvm_memslots *slots;
811 struct kvm_memory_slot *slot;
812 gfn_t gfn;
813
814 kvm->arch.indirect_shadow_pages--;
815 gfn = sp->gfn;
816 slots = kvm_memslots_for_spte_role(kvm, sp->role);
817 slot = __gfn_to_memslot(slots, gfn);
818 if (sp->role.level > PG_LEVEL_4K)
819 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
820 KVM_PAGE_TRACK_WRITE);
821
822 kvm_mmu_gfn_allow_lpage(slot, gfn);
823 }
824
unaccount_huge_nx_page(struct kvm * kvm,struct kvm_mmu_page * sp)825 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
826 {
827 --kvm->stat.nx_lpage_splits;
828 sp->lpage_disallowed = false;
829 list_del(&sp->lpage_disallowed_link);
830 }
831
832 static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu * vcpu,gfn_t gfn,bool no_dirty_log)833 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
834 bool no_dirty_log)
835 {
836 struct kvm_memory_slot *slot;
837
838 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
839 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
840 return NULL;
841 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
842 return NULL;
843
844 return slot;
845 }
846
847 /*
848 * About rmap_head encoding:
849 *
850 * If the bit zero of rmap_head->val is clear, then it points to the only spte
851 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
852 * pte_list_desc containing more mappings.
853 */
854
855 /*
856 * Returns the number of pointers in the rmap chain, not counting the new one.
857 */
pte_list_add(struct kvm_vcpu * vcpu,u64 * spte,struct kvm_rmap_head * rmap_head)858 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
859 struct kvm_rmap_head *rmap_head)
860 {
861 struct pte_list_desc *desc;
862 int count = 0;
863
864 if (!rmap_head->val) {
865 rmap_printk("%p %llx 0->1\n", spte, *spte);
866 rmap_head->val = (unsigned long)spte;
867 } else if (!(rmap_head->val & 1)) {
868 rmap_printk("%p %llx 1->many\n", spte, *spte);
869 desc = mmu_alloc_pte_list_desc(vcpu);
870 desc->sptes[0] = (u64 *)rmap_head->val;
871 desc->sptes[1] = spte;
872 desc->spte_count = 2;
873 rmap_head->val = (unsigned long)desc | 1;
874 ++count;
875 } else {
876 rmap_printk("%p %llx many->many\n", spte, *spte);
877 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
878 while (desc->spte_count == PTE_LIST_EXT) {
879 count += PTE_LIST_EXT;
880 if (!desc->more) {
881 desc->more = mmu_alloc_pte_list_desc(vcpu);
882 desc = desc->more;
883 desc->spte_count = 0;
884 break;
885 }
886 desc = desc->more;
887 }
888 count += desc->spte_count;
889 desc->sptes[desc->spte_count++] = spte;
890 }
891 return count;
892 }
893
894 static void
pte_list_desc_remove_entry(struct kvm_rmap_head * rmap_head,struct pte_list_desc * desc,int i,struct pte_list_desc * prev_desc)895 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
896 struct pte_list_desc *desc, int i,
897 struct pte_list_desc *prev_desc)
898 {
899 int j = desc->spte_count - 1;
900
901 desc->sptes[i] = desc->sptes[j];
902 desc->sptes[j] = NULL;
903 desc->spte_count--;
904 if (desc->spte_count)
905 return;
906 if (!prev_desc && !desc->more)
907 rmap_head->val = 0;
908 else
909 if (prev_desc)
910 prev_desc->more = desc->more;
911 else
912 rmap_head->val = (unsigned long)desc->more | 1;
913 mmu_free_pte_list_desc(desc);
914 }
915
__pte_list_remove(u64 * spte,struct kvm_rmap_head * rmap_head)916 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
917 {
918 struct pte_list_desc *desc;
919 struct pte_list_desc *prev_desc;
920 int i;
921
922 if (!rmap_head->val) {
923 pr_err("%s: %p 0->BUG\n", __func__, spte);
924 BUG();
925 } else if (!(rmap_head->val & 1)) {
926 rmap_printk("%p 1->0\n", spte);
927 if ((u64 *)rmap_head->val != spte) {
928 pr_err("%s: %p 1->BUG\n", __func__, spte);
929 BUG();
930 }
931 rmap_head->val = 0;
932 } else {
933 rmap_printk("%p many->many\n", spte);
934 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
935 prev_desc = NULL;
936 while (desc) {
937 for (i = 0; i < desc->spte_count; ++i) {
938 if (desc->sptes[i] == spte) {
939 pte_list_desc_remove_entry(rmap_head,
940 desc, i, prev_desc);
941 return;
942 }
943 }
944 prev_desc = desc;
945 desc = desc->more;
946 }
947 pr_err("%s: %p many->many\n", __func__, spte);
948 BUG();
949 }
950 }
951
pte_list_remove(struct kvm * kvm,struct kvm_rmap_head * rmap_head,u64 * sptep)952 static void pte_list_remove(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
953 u64 *sptep)
954 {
955 mmu_spte_clear_track_bits(kvm, sptep);
956 __pte_list_remove(sptep, rmap_head);
957 }
958
959 /* Return true if rmap existed, false otherwise */
pte_list_destroy(struct kvm * kvm,struct kvm_rmap_head * rmap_head)960 static bool pte_list_destroy(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
961 {
962 struct pte_list_desc *desc, *next;
963 int i;
964
965 if (!rmap_head->val)
966 return false;
967
968 if (!(rmap_head->val & 1)) {
969 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val);
970 goto out;
971 }
972
973 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
974
975 for (; desc; desc = next) {
976 for (i = 0; i < desc->spte_count; i++)
977 mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
978 next = desc->more;
979 mmu_free_pte_list_desc(desc);
980 }
981 out:
982 /* rmap_head is meaningless now, remember to reset it */
983 rmap_head->val = 0;
984 return true;
985 }
986
pte_list_count(struct kvm_rmap_head * rmap_head)987 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
988 {
989 struct pte_list_desc *desc;
990 unsigned int count = 0;
991
992 if (!rmap_head->val)
993 return 0;
994 else if (!(rmap_head->val & 1))
995 return 1;
996
997 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
998
999 while (desc) {
1000 count += desc->spte_count;
1001 desc = desc->more;
1002 }
1003
1004 return count;
1005 }
1006
gfn_to_rmap(gfn_t gfn,int level,const struct kvm_memory_slot * slot)1007 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
1008 const struct kvm_memory_slot *slot)
1009 {
1010 unsigned long idx;
1011
1012 idx = gfn_to_index(gfn, slot->base_gfn, level);
1013 return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1014 }
1015
rmap_can_add(struct kvm_vcpu * vcpu)1016 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1017 {
1018 struct kvm_mmu_memory_cache *mc;
1019
1020 mc = &vcpu->arch.mmu_pte_list_desc_cache;
1021 return kvm_mmu_memory_cache_nr_free_objects(mc);
1022 }
1023
rmap_remove(struct kvm * kvm,u64 * spte)1024 static void rmap_remove(struct kvm *kvm, u64 *spte)
1025 {
1026 struct kvm_memslots *slots;
1027 struct kvm_memory_slot *slot;
1028 struct kvm_mmu_page *sp;
1029 gfn_t gfn;
1030 struct kvm_rmap_head *rmap_head;
1031
1032 sp = sptep_to_sp(spte);
1033 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1034
1035 /*
1036 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU
1037 * so we have to determine which memslots to use based on context
1038 * information in sp->role.
1039 */
1040 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1041
1042 slot = __gfn_to_memslot(slots, gfn);
1043 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1044
1045 __pte_list_remove(spte, rmap_head);
1046 }
1047
1048 /*
1049 * Used by the following functions to iterate through the sptes linked by a
1050 * rmap. All fields are private and not assumed to be used outside.
1051 */
1052 struct rmap_iterator {
1053 /* private fields */
1054 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1055 int pos; /* index of the sptep */
1056 };
1057
1058 /*
1059 * Iteration must be started by this function. This should also be used after
1060 * removing/dropping sptes from the rmap link because in such cases the
1061 * information in the iterator may not be valid.
1062 *
1063 * Returns sptep if found, NULL otherwise.
1064 */
rmap_get_first(struct kvm_rmap_head * rmap_head,struct rmap_iterator * iter)1065 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1066 struct rmap_iterator *iter)
1067 {
1068 u64 *sptep;
1069
1070 if (!rmap_head->val)
1071 return NULL;
1072
1073 if (!(rmap_head->val & 1)) {
1074 iter->desc = NULL;
1075 sptep = (u64 *)rmap_head->val;
1076 goto out;
1077 }
1078
1079 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1080 iter->pos = 0;
1081 sptep = iter->desc->sptes[iter->pos];
1082 out:
1083 BUG_ON(!is_shadow_present_pte(*sptep));
1084 return sptep;
1085 }
1086
1087 /*
1088 * Must be used with a valid iterator: e.g. after rmap_get_first().
1089 *
1090 * Returns sptep if found, NULL otherwise.
1091 */
rmap_get_next(struct rmap_iterator * iter)1092 static u64 *rmap_get_next(struct rmap_iterator *iter)
1093 {
1094 u64 *sptep;
1095
1096 if (iter->desc) {
1097 if (iter->pos < PTE_LIST_EXT - 1) {
1098 ++iter->pos;
1099 sptep = iter->desc->sptes[iter->pos];
1100 if (sptep)
1101 goto out;
1102 }
1103
1104 iter->desc = iter->desc->more;
1105
1106 if (iter->desc) {
1107 iter->pos = 0;
1108 /* desc->sptes[0] cannot be NULL */
1109 sptep = iter->desc->sptes[iter->pos];
1110 goto out;
1111 }
1112 }
1113
1114 return NULL;
1115 out:
1116 BUG_ON(!is_shadow_present_pte(*sptep));
1117 return sptep;
1118 }
1119
1120 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1121 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
1122 _spte_; _spte_ = rmap_get_next(_iter_))
1123
drop_spte(struct kvm * kvm,u64 * sptep)1124 static void drop_spte(struct kvm *kvm, u64 *sptep)
1125 {
1126 u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
1127
1128 if (is_shadow_present_pte(old_spte))
1129 rmap_remove(kvm, sptep);
1130 }
1131
1132
__drop_large_spte(struct kvm * kvm,u64 * sptep)1133 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1134 {
1135 if (is_large_pte(*sptep)) {
1136 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1137 drop_spte(kvm, sptep);
1138 return true;
1139 }
1140
1141 return false;
1142 }
1143
drop_large_spte(struct kvm_vcpu * vcpu,u64 * sptep)1144 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1145 {
1146 if (__drop_large_spte(vcpu->kvm, sptep)) {
1147 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1148
1149 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1150 KVM_PAGES_PER_HPAGE(sp->role.level));
1151 }
1152 }
1153
1154 /*
1155 * Write-protect on the specified @sptep, @pt_protect indicates whether
1156 * spte write-protection is caused by protecting shadow page table.
1157 *
1158 * Note: write protection is difference between dirty logging and spte
1159 * protection:
1160 * - for dirty logging, the spte can be set to writable at anytime if
1161 * its dirty bitmap is properly set.
1162 * - for spte protection, the spte can be writable only after unsync-ing
1163 * shadow page.
1164 *
1165 * Return true if tlb need be flushed.
1166 */
spte_write_protect(u64 * sptep,bool pt_protect)1167 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1168 {
1169 u64 spte = *sptep;
1170
1171 if (!is_writable_pte(spte) &&
1172 !(pt_protect && is_mmu_writable_spte(spte)))
1173 return false;
1174
1175 rmap_printk("spte %p %llx\n", sptep, *sptep);
1176
1177 if (pt_protect)
1178 spte &= ~shadow_mmu_writable_mask;
1179 spte = spte & ~PT_WRITABLE_MASK;
1180
1181 return mmu_spte_update(sptep, spte);
1182 }
1183
rmap_write_protect(struct kvm_rmap_head * rmap_head,bool pt_protect)1184 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head,
1185 bool pt_protect)
1186 {
1187 u64 *sptep;
1188 struct rmap_iterator iter;
1189 bool flush = false;
1190
1191 for_each_rmap_spte(rmap_head, &iter, sptep)
1192 flush |= spte_write_protect(sptep, pt_protect);
1193
1194 return flush;
1195 }
1196
spte_clear_dirty(u64 * sptep)1197 static bool spte_clear_dirty(u64 *sptep)
1198 {
1199 u64 spte = *sptep;
1200
1201 rmap_printk("spte %p %llx\n", sptep, *sptep);
1202
1203 MMU_WARN_ON(!spte_ad_enabled(spte));
1204 spte &= ~shadow_dirty_mask;
1205 return mmu_spte_update(sptep, spte);
1206 }
1207
spte_wrprot_for_clear_dirty(u64 * sptep)1208 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1209 {
1210 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1211 (unsigned long *)sptep);
1212 if (was_writable && !spte_ad_enabled(*sptep))
1213 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1214
1215 return was_writable;
1216 }
1217
1218 /*
1219 * Gets the GFN ready for another round of dirty logging by clearing the
1220 * - D bit on ad-enabled SPTEs, and
1221 * - W bit on ad-disabled SPTEs.
1222 * Returns true iff any D or W bits were cleared.
1223 */
__rmap_clear_dirty(struct kvm * kvm,struct kvm_rmap_head * rmap_head,const struct kvm_memory_slot * slot)1224 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1225 const struct kvm_memory_slot *slot)
1226 {
1227 u64 *sptep;
1228 struct rmap_iterator iter;
1229 bool flush = false;
1230
1231 for_each_rmap_spte(rmap_head, &iter, sptep)
1232 if (spte_ad_need_write_protect(*sptep))
1233 flush |= spte_wrprot_for_clear_dirty(sptep);
1234 else
1235 flush |= spte_clear_dirty(sptep);
1236
1237 return flush;
1238 }
1239
1240 /**
1241 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1242 * @kvm: kvm instance
1243 * @slot: slot to protect
1244 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1245 * @mask: indicates which pages we should protect
1246 *
1247 * Used when we do not need to care about huge page mappings.
1248 */
kvm_mmu_write_protect_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1249 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1250 struct kvm_memory_slot *slot,
1251 gfn_t gfn_offset, unsigned long mask)
1252 {
1253 struct kvm_rmap_head *rmap_head;
1254
1255 if (is_tdp_mmu_enabled(kvm))
1256 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1257 slot->base_gfn + gfn_offset, mask, true);
1258
1259 if (!kvm_memslots_have_rmaps(kvm))
1260 return;
1261
1262 while (mask) {
1263 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1264 PG_LEVEL_4K, slot);
1265 rmap_write_protect(rmap_head, false);
1266
1267 /* clear the first set bit */
1268 mask &= mask - 1;
1269 }
1270 }
1271
1272 /**
1273 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1274 * protect the page if the D-bit isn't supported.
1275 * @kvm: kvm instance
1276 * @slot: slot to clear D-bit
1277 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1278 * @mask: indicates which pages we should clear D-bit
1279 *
1280 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1281 */
kvm_mmu_clear_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1282 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1283 struct kvm_memory_slot *slot,
1284 gfn_t gfn_offset, unsigned long mask)
1285 {
1286 struct kvm_rmap_head *rmap_head;
1287
1288 if (is_tdp_mmu_enabled(kvm))
1289 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1290 slot->base_gfn + gfn_offset, mask, false);
1291
1292 if (!kvm_memslots_have_rmaps(kvm))
1293 return;
1294
1295 while (mask) {
1296 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1297 PG_LEVEL_4K, slot);
1298 __rmap_clear_dirty(kvm, rmap_head, slot);
1299
1300 /* clear the first set bit */
1301 mask &= mask - 1;
1302 }
1303 }
1304
1305 /**
1306 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1307 * PT level pages.
1308 *
1309 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1310 * enable dirty logging for them.
1311 *
1312 * We need to care about huge page mappings: e.g. during dirty logging we may
1313 * have such mappings.
1314 */
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1315 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1316 struct kvm_memory_slot *slot,
1317 gfn_t gfn_offset, unsigned long mask)
1318 {
1319 /*
1320 * Huge pages are NOT write protected when we start dirty logging in
1321 * initially-all-set mode; must write protect them here so that they
1322 * are split to 4K on the first write.
1323 *
1324 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
1325 * of memslot has no such restriction, so the range can cross two large
1326 * pages.
1327 */
1328 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1329 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
1330 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);
1331
1332 if (READ_ONCE(eager_page_split))
1333 kvm_mmu_try_split_huge_pages(kvm, slot, start, end, PG_LEVEL_4K);
1334
1335 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);
1336
1337 /* Cross two large pages? */
1338 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
1339 ALIGN(end << PAGE_SHIFT, PMD_SIZE))
1340 kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
1341 PG_LEVEL_2M);
1342 }
1343
1344 /* Now handle 4K PTEs. */
1345 if (kvm_x86_ops.cpu_dirty_log_size)
1346 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1347 else
1348 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1349 }
1350
kvm_cpu_dirty_log_size(void)1351 int kvm_cpu_dirty_log_size(void)
1352 {
1353 return kvm_x86_ops.cpu_dirty_log_size;
1354 }
1355
kvm_mmu_slot_gfn_write_protect(struct kvm * kvm,struct kvm_memory_slot * slot,u64 gfn,int min_level)1356 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1357 struct kvm_memory_slot *slot, u64 gfn,
1358 int min_level)
1359 {
1360 struct kvm_rmap_head *rmap_head;
1361 int i;
1362 bool write_protected = false;
1363
1364 if (kvm_memslots_have_rmaps(kvm)) {
1365 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1366 rmap_head = gfn_to_rmap(gfn, i, slot);
1367 write_protected |= rmap_write_protect(rmap_head, true);
1368 }
1369 }
1370
1371 if (is_tdp_mmu_enabled(kvm))
1372 write_protected |=
1373 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1374
1375 return write_protected;
1376 }
1377
kvm_vcpu_write_protect_gfn(struct kvm_vcpu * vcpu,u64 gfn)1378 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn)
1379 {
1380 struct kvm_memory_slot *slot;
1381
1382 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1383 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1384 }
1385
kvm_zap_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,const struct kvm_memory_slot * slot)1386 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1387 const struct kvm_memory_slot *slot)
1388 {
1389 return pte_list_destroy(kvm, rmap_head);
1390 }
1391
kvm_unmap_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,pte_t unused)1392 static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1393 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1394 pte_t unused)
1395 {
1396 return kvm_zap_rmapp(kvm, rmap_head, slot);
1397 }
1398
kvm_set_pte_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,pte_t pte)1399 static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1400 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1401 pte_t pte)
1402 {
1403 u64 *sptep;
1404 struct rmap_iterator iter;
1405 bool need_flush = false;
1406 u64 new_spte;
1407 kvm_pfn_t new_pfn;
1408
1409 WARN_ON(pte_huge(pte));
1410 new_pfn = pte_pfn(pte);
1411
1412 restart:
1413 for_each_rmap_spte(rmap_head, &iter, sptep) {
1414 rmap_printk("spte %p %llx gfn %llx (%d)\n",
1415 sptep, *sptep, gfn, level);
1416
1417 need_flush = true;
1418
1419 if (pte_write(pte)) {
1420 pte_list_remove(kvm, rmap_head, sptep);
1421 goto restart;
1422 } else {
1423 new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1424 *sptep, new_pfn);
1425
1426 mmu_spte_clear_track_bits(kvm, sptep);
1427 mmu_spte_set(sptep, new_spte);
1428 }
1429 }
1430
1431 if (need_flush && kvm_available_flush_tlb_with_range()) {
1432 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1433 return false;
1434 }
1435
1436 return need_flush;
1437 }
1438
1439 struct slot_rmap_walk_iterator {
1440 /* input fields. */
1441 const struct kvm_memory_slot *slot;
1442 gfn_t start_gfn;
1443 gfn_t end_gfn;
1444 int start_level;
1445 int end_level;
1446
1447 /* output fields. */
1448 gfn_t gfn;
1449 struct kvm_rmap_head *rmap;
1450 int level;
1451
1452 /* private field. */
1453 struct kvm_rmap_head *end_rmap;
1454 };
1455
1456 static void
rmap_walk_init_level(struct slot_rmap_walk_iterator * iterator,int level)1457 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1458 {
1459 iterator->level = level;
1460 iterator->gfn = iterator->start_gfn;
1461 iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
1462 iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
1463 }
1464
1465 static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator * iterator,const struct kvm_memory_slot * slot,int start_level,int end_level,gfn_t start_gfn,gfn_t end_gfn)1466 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1467 const struct kvm_memory_slot *slot, int start_level,
1468 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1469 {
1470 iterator->slot = slot;
1471 iterator->start_level = start_level;
1472 iterator->end_level = end_level;
1473 iterator->start_gfn = start_gfn;
1474 iterator->end_gfn = end_gfn;
1475
1476 rmap_walk_init_level(iterator, iterator->start_level);
1477 }
1478
slot_rmap_walk_okay(struct slot_rmap_walk_iterator * iterator)1479 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1480 {
1481 return !!iterator->rmap;
1482 }
1483
slot_rmap_walk_next(struct slot_rmap_walk_iterator * iterator)1484 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1485 {
1486 while (++iterator->rmap <= iterator->end_rmap) {
1487 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1488
1489 if (iterator->rmap->val)
1490 return;
1491 }
1492
1493 if (++iterator->level > iterator->end_level) {
1494 iterator->rmap = NULL;
1495 return;
1496 }
1497
1498 rmap_walk_init_level(iterator, iterator->level);
1499 }
1500
1501 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1502 _start_gfn, _end_gfn, _iter_) \
1503 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1504 _end_level_, _start_gfn, _end_gfn); \
1505 slot_rmap_walk_okay(_iter_); \
1506 slot_rmap_walk_next(_iter_))
1507
1508 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1509 struct kvm_memory_slot *slot, gfn_t gfn,
1510 int level, pte_t pte);
1511
kvm_handle_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range,rmap_handler_t handler)1512 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
1513 struct kvm_gfn_range *range,
1514 rmap_handler_t handler)
1515 {
1516 struct slot_rmap_walk_iterator iterator;
1517 bool ret = false;
1518
1519 for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1520 range->start, range->end - 1, &iterator)
1521 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
1522 iterator.level, range->pte);
1523
1524 return ret;
1525 }
1526
kvm_unmap_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range)1527 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1528 {
1529 bool flush = false;
1530
1531 if (kvm_memslots_have_rmaps(kvm))
1532 flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
1533
1534 if (is_tdp_mmu_enabled(kvm))
1535 flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1536
1537 return flush;
1538 }
1539
kvm_set_spte_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1540 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1541 {
1542 bool flush = false;
1543
1544 if (kvm_memslots_have_rmaps(kvm))
1545 flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1546
1547 if (is_tdp_mmu_enabled(kvm))
1548 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1549
1550 return flush;
1551 }
1552
kvm_age_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,pte_t unused)1553 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1554 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1555 pte_t unused)
1556 {
1557 u64 *sptep;
1558 struct rmap_iterator iter;
1559 int young = 0;
1560
1561 for_each_rmap_spte(rmap_head, &iter, sptep)
1562 young |= mmu_spte_age(sptep);
1563
1564 return young;
1565 }
1566
kvm_test_age_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,pte_t unused)1567 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1568 struct kvm_memory_slot *slot, gfn_t gfn,
1569 int level, pte_t unused)
1570 {
1571 u64 *sptep;
1572 struct rmap_iterator iter;
1573
1574 for_each_rmap_spte(rmap_head, &iter, sptep)
1575 if (is_accessed_spte(*sptep))
1576 return true;
1577 return false;
1578 }
1579
1580 #define RMAP_RECYCLE_THRESHOLD 1000
1581
rmap_add(struct kvm_vcpu * vcpu,struct kvm_memory_slot * slot,u64 * spte,gfn_t gfn)1582 static void rmap_add(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
1583 u64 *spte, gfn_t gfn)
1584 {
1585 struct kvm_mmu_page *sp;
1586 struct kvm_rmap_head *rmap_head;
1587 int rmap_count;
1588
1589 sp = sptep_to_sp(spte);
1590 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1591 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1592 rmap_count = pte_list_add(vcpu, spte, rmap_head);
1593
1594 if (rmap_count > RMAP_RECYCLE_THRESHOLD) {
1595 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
1596 kvm_flush_remote_tlbs_with_address(
1597 vcpu->kvm, sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
1598 }
1599 }
1600
kvm_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1601 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1602 {
1603 bool young = false;
1604
1605 if (kvm_memslots_have_rmaps(kvm))
1606 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
1607
1608 if (is_tdp_mmu_enabled(kvm))
1609 young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1610
1611 return young;
1612 }
1613
kvm_test_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1614 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1615 {
1616 bool young = false;
1617
1618 if (kvm_memslots_have_rmaps(kvm))
1619 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
1620
1621 if (is_tdp_mmu_enabled(kvm))
1622 young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1623
1624 return young;
1625 }
1626
1627 #ifdef MMU_DEBUG
is_empty_shadow_page(u64 * spt)1628 static int is_empty_shadow_page(u64 *spt)
1629 {
1630 u64 *pos;
1631 u64 *end;
1632
1633 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1634 if (is_shadow_present_pte(*pos)) {
1635 printk(KERN_ERR "%s: %p %llx\n", __func__,
1636 pos, *pos);
1637 return 0;
1638 }
1639 return 1;
1640 }
1641 #endif
1642
1643 /*
1644 * This value is the sum of all of the kvm instances's
1645 * kvm->arch.n_used_mmu_pages values. We need a global,
1646 * aggregate version in order to make the slab shrinker
1647 * faster
1648 */
kvm_mod_used_mmu_pages(struct kvm * kvm,long nr)1649 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
1650 {
1651 kvm->arch.n_used_mmu_pages += nr;
1652 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1653 }
1654
kvm_mmu_free_page(struct kvm_mmu_page * sp)1655 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1656 {
1657 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1658 hlist_del(&sp->hash_link);
1659 list_del(&sp->link);
1660 free_page((unsigned long)sp->spt);
1661 if (!sp->role.direct)
1662 free_page((unsigned long)sp->gfns);
1663 kmem_cache_free(mmu_page_header_cache, sp);
1664 }
1665
kvm_page_table_hashfn(gfn_t gfn)1666 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1667 {
1668 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1669 }
1670
mmu_page_add_parent_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * parent_pte)1671 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1672 struct kvm_mmu_page *sp, u64 *parent_pte)
1673 {
1674 if (!parent_pte)
1675 return;
1676
1677 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1678 }
1679
mmu_page_remove_parent_pte(struct kvm_mmu_page * sp,u64 * parent_pte)1680 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1681 u64 *parent_pte)
1682 {
1683 __pte_list_remove(parent_pte, &sp->parent_ptes);
1684 }
1685
drop_parent_pte(struct kvm_mmu_page * sp,u64 * parent_pte)1686 static void drop_parent_pte(struct kvm_mmu_page *sp,
1687 u64 *parent_pte)
1688 {
1689 mmu_page_remove_parent_pte(sp, parent_pte);
1690 mmu_spte_clear_no_track(parent_pte);
1691 }
1692
kvm_mmu_alloc_page(struct kvm_vcpu * vcpu,int direct)1693 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1694 {
1695 struct kvm_mmu_page *sp;
1696
1697 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1698 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1699 if (!direct)
1700 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1701 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1702
1703 /*
1704 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1705 * depends on valid pages being added to the head of the list. See
1706 * comments in kvm_zap_obsolete_pages().
1707 */
1708 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1709 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1710 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1711 return sp;
1712 }
1713
1714 static void mark_unsync(u64 *spte);
kvm_mmu_mark_parents_unsync(struct kvm_mmu_page * sp)1715 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1716 {
1717 u64 *sptep;
1718 struct rmap_iterator iter;
1719
1720 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1721 mark_unsync(sptep);
1722 }
1723 }
1724
mark_unsync(u64 * spte)1725 static void mark_unsync(u64 *spte)
1726 {
1727 struct kvm_mmu_page *sp;
1728 unsigned int index;
1729
1730 sp = sptep_to_sp(spte);
1731 index = spte - sp->spt;
1732 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1733 return;
1734 if (sp->unsync_children++)
1735 return;
1736 kvm_mmu_mark_parents_unsync(sp);
1737 }
1738
nonpaging_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)1739 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1740 struct kvm_mmu_page *sp)
1741 {
1742 return -1;
1743 }
1744
1745 #define KVM_PAGE_ARRAY_NR 16
1746
1747 struct kvm_mmu_pages {
1748 struct mmu_page_and_offset {
1749 struct kvm_mmu_page *sp;
1750 unsigned int idx;
1751 } page[KVM_PAGE_ARRAY_NR];
1752 unsigned int nr;
1753 };
1754
mmu_pages_add(struct kvm_mmu_pages * pvec,struct kvm_mmu_page * sp,int idx)1755 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1756 int idx)
1757 {
1758 int i;
1759
1760 if (sp->unsync)
1761 for (i=0; i < pvec->nr; i++)
1762 if (pvec->page[i].sp == sp)
1763 return 0;
1764
1765 pvec->page[pvec->nr].sp = sp;
1766 pvec->page[pvec->nr].idx = idx;
1767 pvec->nr++;
1768 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1769 }
1770
clear_unsync_child_bit(struct kvm_mmu_page * sp,int idx)1771 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1772 {
1773 --sp->unsync_children;
1774 WARN_ON((int)sp->unsync_children < 0);
1775 __clear_bit(idx, sp->unsync_child_bitmap);
1776 }
1777
__mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)1778 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1779 struct kvm_mmu_pages *pvec)
1780 {
1781 int i, ret, nr_unsync_leaf = 0;
1782
1783 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1784 struct kvm_mmu_page *child;
1785 u64 ent = sp->spt[i];
1786
1787 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1788 clear_unsync_child_bit(sp, i);
1789 continue;
1790 }
1791
1792 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1793
1794 if (child->unsync_children) {
1795 if (mmu_pages_add(pvec, child, i))
1796 return -ENOSPC;
1797
1798 ret = __mmu_unsync_walk(child, pvec);
1799 if (!ret) {
1800 clear_unsync_child_bit(sp, i);
1801 continue;
1802 } else if (ret > 0) {
1803 nr_unsync_leaf += ret;
1804 } else
1805 return ret;
1806 } else if (child->unsync) {
1807 nr_unsync_leaf++;
1808 if (mmu_pages_add(pvec, child, i))
1809 return -ENOSPC;
1810 } else
1811 clear_unsync_child_bit(sp, i);
1812 }
1813
1814 return nr_unsync_leaf;
1815 }
1816
1817 #define INVALID_INDEX (-1)
1818
mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)1819 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1820 struct kvm_mmu_pages *pvec)
1821 {
1822 pvec->nr = 0;
1823 if (!sp->unsync_children)
1824 return 0;
1825
1826 mmu_pages_add(pvec, sp, INVALID_INDEX);
1827 return __mmu_unsync_walk(sp, pvec);
1828 }
1829
kvm_unlink_unsync_page(struct kvm * kvm,struct kvm_mmu_page * sp)1830 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1831 {
1832 WARN_ON(!sp->unsync);
1833 trace_kvm_mmu_sync_page(sp);
1834 sp->unsync = 0;
1835 --kvm->stat.mmu_unsync;
1836 }
1837
1838 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1839 struct list_head *invalid_list);
1840 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1841 struct list_head *invalid_list);
1842
sp_has_gptes(struct kvm_mmu_page * sp)1843 static bool sp_has_gptes(struct kvm_mmu_page *sp)
1844 {
1845 if (sp->role.direct)
1846 return false;
1847
1848 if (sp->role.passthrough)
1849 return false;
1850
1851 return true;
1852 }
1853
1854 #define for_each_valid_sp(_kvm, _sp, _list) \
1855 hlist_for_each_entry(_sp, _list, hash_link) \
1856 if (is_obsolete_sp((_kvm), (_sp))) { \
1857 } else
1858
1859 #define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn) \
1860 for_each_valid_sp(_kvm, _sp, \
1861 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \
1862 if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else
1863
kvm_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,struct list_head * invalid_list)1864 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1865 struct list_head *invalid_list)
1866 {
1867 int ret = vcpu->arch.mmu->sync_page(vcpu, sp);
1868
1869 if (ret < 0)
1870 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1871 return ret;
1872 }
1873
kvm_mmu_remote_flush_or_zap(struct kvm * kvm,struct list_head * invalid_list,bool remote_flush)1874 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1875 struct list_head *invalid_list,
1876 bool remote_flush)
1877 {
1878 if (!remote_flush && list_empty(invalid_list))
1879 return false;
1880
1881 if (!list_empty(invalid_list))
1882 kvm_mmu_commit_zap_page(kvm, invalid_list);
1883 else
1884 kvm_flush_remote_tlbs(kvm);
1885 return true;
1886 }
1887
is_obsolete_sp(struct kvm * kvm,struct kvm_mmu_page * sp)1888 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1889 {
1890 if (sp->role.invalid)
1891 return true;
1892
1893 /* TDP MMU pages due not use the MMU generation. */
1894 return !sp->tdp_mmu_page &&
1895 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1896 }
1897
1898 struct mmu_page_path {
1899 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1900 unsigned int idx[PT64_ROOT_MAX_LEVEL];
1901 };
1902
1903 #define for_each_sp(pvec, sp, parents, i) \
1904 for (i = mmu_pages_first(&pvec, &parents); \
1905 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1906 i = mmu_pages_next(&pvec, &parents, i))
1907
mmu_pages_next(struct kvm_mmu_pages * pvec,struct mmu_page_path * parents,int i)1908 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1909 struct mmu_page_path *parents,
1910 int i)
1911 {
1912 int n;
1913
1914 for (n = i+1; n < pvec->nr; n++) {
1915 struct kvm_mmu_page *sp = pvec->page[n].sp;
1916 unsigned idx = pvec->page[n].idx;
1917 int level = sp->role.level;
1918
1919 parents->idx[level-1] = idx;
1920 if (level == PG_LEVEL_4K)
1921 break;
1922
1923 parents->parent[level-2] = sp;
1924 }
1925
1926 return n;
1927 }
1928
mmu_pages_first(struct kvm_mmu_pages * pvec,struct mmu_page_path * parents)1929 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1930 struct mmu_page_path *parents)
1931 {
1932 struct kvm_mmu_page *sp;
1933 int level;
1934
1935 if (pvec->nr == 0)
1936 return 0;
1937
1938 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1939
1940 sp = pvec->page[0].sp;
1941 level = sp->role.level;
1942 WARN_ON(level == PG_LEVEL_4K);
1943
1944 parents->parent[level-2] = sp;
1945
1946 /* Also set up a sentinel. Further entries in pvec are all
1947 * children of sp, so this element is never overwritten.
1948 */
1949 parents->parent[level-1] = NULL;
1950 return mmu_pages_next(pvec, parents, 0);
1951 }
1952
mmu_pages_clear_parents(struct mmu_page_path * parents)1953 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1954 {
1955 struct kvm_mmu_page *sp;
1956 unsigned int level = 0;
1957
1958 do {
1959 unsigned int idx = parents->idx[level];
1960 sp = parents->parent[level];
1961 if (!sp)
1962 return;
1963
1964 WARN_ON(idx == INVALID_INDEX);
1965 clear_unsync_child_bit(sp, idx);
1966 level++;
1967 } while (!sp->unsync_children);
1968 }
1969
mmu_sync_children(struct kvm_vcpu * vcpu,struct kvm_mmu_page * parent,bool can_yield)1970 static int mmu_sync_children(struct kvm_vcpu *vcpu,
1971 struct kvm_mmu_page *parent, bool can_yield)
1972 {
1973 int i;
1974 struct kvm_mmu_page *sp;
1975 struct mmu_page_path parents;
1976 struct kvm_mmu_pages pages;
1977 LIST_HEAD(invalid_list);
1978 bool flush = false;
1979
1980 while (mmu_unsync_walk(parent, &pages)) {
1981 bool protected = false;
1982
1983 for_each_sp(pages, sp, parents, i)
1984 protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn);
1985
1986 if (protected) {
1987 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true);
1988 flush = false;
1989 }
1990
1991 for_each_sp(pages, sp, parents, i) {
1992 kvm_unlink_unsync_page(vcpu->kvm, sp);
1993 flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0;
1994 mmu_pages_clear_parents(&parents);
1995 }
1996 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
1997 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
1998 if (!can_yield) {
1999 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2000 return -EINTR;
2001 }
2002
2003 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2004 flush = false;
2005 }
2006 }
2007
2008 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2009 return 0;
2010 }
2011
__clear_sp_write_flooding_count(struct kvm_mmu_page * sp)2012 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2013 {
2014 atomic_set(&sp->write_flooding_count, 0);
2015 }
2016
clear_sp_write_flooding_count(u64 * spte)2017 static void clear_sp_write_flooding_count(u64 *spte)
2018 {
2019 __clear_sp_write_flooding_count(sptep_to_sp(spte));
2020 }
2021
kvm_mmu_get_page(struct kvm_vcpu * vcpu,gfn_t gfn,gva_t gaddr,unsigned level,int direct,unsigned int access)2022 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2023 gfn_t gfn,
2024 gva_t gaddr,
2025 unsigned level,
2026 int direct,
2027 unsigned int access)
2028 {
2029 bool direct_mmu = vcpu->arch.mmu->root_role.direct;
2030 union kvm_mmu_page_role role;
2031 struct hlist_head *sp_list;
2032 unsigned quadrant;
2033 struct kvm_mmu_page *sp;
2034 int ret;
2035 int collisions = 0;
2036 LIST_HEAD(invalid_list);
2037
2038 role = vcpu->arch.mmu->root_role;
2039 role.level = level;
2040 role.direct = direct;
2041 role.access = access;
2042 if (role.has_4_byte_gpte) {
2043 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2044 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2045 role.quadrant = quadrant;
2046 }
2047 if (level <= vcpu->arch.mmu->cpu_role.base.level)
2048 role.passthrough = 0;
2049
2050 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2051 for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2052 if (sp->gfn != gfn) {
2053 collisions++;
2054 continue;
2055 }
2056
2057 if (sp->role.word != role.word) {
2058 /*
2059 * If the guest is creating an upper-level page, zap
2060 * unsync pages for the same gfn. While it's possible
2061 * the guest is using recursive page tables, in all
2062 * likelihood the guest has stopped using the unsync
2063 * page and is installing a completely unrelated page.
2064 * Unsync pages must not be left as is, because the new
2065 * upper-level page will be write-protected.
2066 */
2067 if (level > PG_LEVEL_4K && sp->unsync)
2068 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2069 &invalid_list);
2070 continue;
2071 }
2072
2073 if (direct_mmu)
2074 goto trace_get_page;
2075
2076 if (sp->unsync) {
2077 /*
2078 * The page is good, but is stale. kvm_sync_page does
2079 * get the latest guest state, but (unlike mmu_unsync_children)
2080 * it doesn't write-protect the page or mark it synchronized!
2081 * This way the validity of the mapping is ensured, but the
2082 * overhead of write protection is not incurred until the
2083 * guest invalidates the TLB mapping. This allows multiple
2084 * SPs for a single gfn to be unsync.
2085 *
2086 * If the sync fails, the page is zapped. If so, break
2087 * in order to rebuild it.
2088 */
2089 ret = kvm_sync_page(vcpu, sp, &invalid_list);
2090 if (ret < 0)
2091 break;
2092
2093 WARN_ON(!list_empty(&invalid_list));
2094 if (ret > 0)
2095 kvm_flush_remote_tlbs(vcpu->kvm);
2096 }
2097
2098 __clear_sp_write_flooding_count(sp);
2099
2100 trace_get_page:
2101 trace_kvm_mmu_get_page(sp, false);
2102 goto out;
2103 }
2104
2105 ++vcpu->kvm->stat.mmu_cache_miss;
2106
2107 sp = kvm_mmu_alloc_page(vcpu, direct);
2108
2109 sp->gfn = gfn;
2110 sp->role = role;
2111 hlist_add_head(&sp->hash_link, sp_list);
2112 if (sp_has_gptes(sp)) {
2113 account_shadowed(vcpu->kvm, sp);
2114 if (level == PG_LEVEL_4K && kvm_vcpu_write_protect_gfn(vcpu, gfn))
2115 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2116 }
2117 trace_kvm_mmu_get_page(sp, true);
2118 out:
2119 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2120
2121 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2122 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2123 return sp;
2124 }
2125
shadow_walk_init_using_root(struct kvm_shadow_walk_iterator * iterator,struct kvm_vcpu * vcpu,hpa_t root,u64 addr)2126 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2127 struct kvm_vcpu *vcpu, hpa_t root,
2128 u64 addr)
2129 {
2130 iterator->addr = addr;
2131 iterator->shadow_addr = root;
2132 iterator->level = vcpu->arch.mmu->root_role.level;
2133
2134 if (iterator->level >= PT64_ROOT_4LEVEL &&
2135 vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL &&
2136 !vcpu->arch.mmu->root_role.direct)
2137 iterator->level = PT32E_ROOT_LEVEL;
2138
2139 if (iterator->level == PT32E_ROOT_LEVEL) {
2140 /*
2141 * prev_root is currently only used for 64-bit hosts. So only
2142 * the active root_hpa is valid here.
2143 */
2144 BUG_ON(root != vcpu->arch.mmu->root.hpa);
2145
2146 iterator->shadow_addr
2147 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2148 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2149 --iterator->level;
2150 if (!iterator->shadow_addr)
2151 iterator->level = 0;
2152 }
2153 }
2154
shadow_walk_init(struct kvm_shadow_walk_iterator * iterator,struct kvm_vcpu * vcpu,u64 addr)2155 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2156 struct kvm_vcpu *vcpu, u64 addr)
2157 {
2158 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa,
2159 addr);
2160 }
2161
shadow_walk_okay(struct kvm_shadow_walk_iterator * iterator)2162 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2163 {
2164 if (iterator->level < PG_LEVEL_4K)
2165 return false;
2166
2167 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2168 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2169 return true;
2170 }
2171
__shadow_walk_next(struct kvm_shadow_walk_iterator * iterator,u64 spte)2172 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2173 u64 spte)
2174 {
2175 if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) {
2176 iterator->level = 0;
2177 return;
2178 }
2179
2180 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2181 --iterator->level;
2182 }
2183
shadow_walk_next(struct kvm_shadow_walk_iterator * iterator)2184 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2185 {
2186 __shadow_walk_next(iterator, *iterator->sptep);
2187 }
2188
link_shadow_page(struct kvm_vcpu * vcpu,u64 * sptep,struct kvm_mmu_page * sp)2189 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2190 struct kvm_mmu_page *sp)
2191 {
2192 u64 spte;
2193
2194 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2195
2196 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2197
2198 mmu_spte_set(sptep, spte);
2199
2200 mmu_page_add_parent_pte(vcpu, sp, sptep);
2201
2202 if (sp->unsync_children || sp->unsync)
2203 mark_unsync(sptep);
2204 }
2205
validate_direct_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned direct_access)2206 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2207 unsigned direct_access)
2208 {
2209 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2210 struct kvm_mmu_page *child;
2211
2212 /*
2213 * For the direct sp, if the guest pte's dirty bit
2214 * changed form clean to dirty, it will corrupt the
2215 * sp's access: allow writable in the read-only sp,
2216 * so we should update the spte at this point to get
2217 * a new sp with the correct access.
2218 */
2219 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2220 if (child->role.access == direct_access)
2221 return;
2222
2223 drop_parent_pte(child, sptep);
2224 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2225 }
2226 }
2227
2228 /* Returns the number of zapped non-leaf child shadow pages. */
mmu_page_zap_pte(struct kvm * kvm,struct kvm_mmu_page * sp,u64 * spte,struct list_head * invalid_list)2229 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2230 u64 *spte, struct list_head *invalid_list)
2231 {
2232 u64 pte;
2233 struct kvm_mmu_page *child;
2234
2235 pte = *spte;
2236 if (is_shadow_present_pte(pte)) {
2237 if (is_last_spte(pte, sp->role.level)) {
2238 drop_spte(kvm, spte);
2239 } else {
2240 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2241 drop_parent_pte(child, spte);
2242
2243 /*
2244 * Recursively zap nested TDP SPs, parentless SPs are
2245 * unlikely to be used again in the near future. This
2246 * avoids retaining a large number of stale nested SPs.
2247 */
2248 if (tdp_enabled && invalid_list &&
2249 child->role.guest_mode && !child->parent_ptes.val)
2250 return kvm_mmu_prepare_zap_page(kvm, child,
2251 invalid_list);
2252 }
2253 } else if (is_mmio_spte(pte)) {
2254 mmu_spte_clear_no_track(spte);
2255 }
2256 return 0;
2257 }
2258
kvm_mmu_page_unlink_children(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list)2259 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2260 struct kvm_mmu_page *sp,
2261 struct list_head *invalid_list)
2262 {
2263 int zapped = 0;
2264 unsigned i;
2265
2266 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2267 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2268
2269 return zapped;
2270 }
2271
kvm_mmu_unlink_parents(struct kvm_mmu_page * sp)2272 static void kvm_mmu_unlink_parents(struct kvm_mmu_page *sp)
2273 {
2274 u64 *sptep;
2275 struct rmap_iterator iter;
2276
2277 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2278 drop_parent_pte(sp, sptep);
2279 }
2280
mmu_zap_unsync_children(struct kvm * kvm,struct kvm_mmu_page * parent,struct list_head * invalid_list)2281 static int mmu_zap_unsync_children(struct kvm *kvm,
2282 struct kvm_mmu_page *parent,
2283 struct list_head *invalid_list)
2284 {
2285 int i, zapped = 0;
2286 struct mmu_page_path parents;
2287 struct kvm_mmu_pages pages;
2288
2289 if (parent->role.level == PG_LEVEL_4K)
2290 return 0;
2291
2292 while (mmu_unsync_walk(parent, &pages)) {
2293 struct kvm_mmu_page *sp;
2294
2295 for_each_sp(pages, sp, parents, i) {
2296 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2297 mmu_pages_clear_parents(&parents);
2298 zapped++;
2299 }
2300 }
2301
2302 return zapped;
2303 }
2304
__kvm_mmu_prepare_zap_page(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list,int * nr_zapped)2305 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2306 struct kvm_mmu_page *sp,
2307 struct list_head *invalid_list,
2308 int *nr_zapped)
2309 {
2310 bool list_unstable, zapped_root = false;
2311
2312 trace_kvm_mmu_prepare_zap_page(sp);
2313 ++kvm->stat.mmu_shadow_zapped;
2314 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2315 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2316 kvm_mmu_unlink_parents(sp);
2317
2318 /* Zapping children means active_mmu_pages has become unstable. */
2319 list_unstable = *nr_zapped;
2320
2321 if (!sp->role.invalid && sp_has_gptes(sp))
2322 unaccount_shadowed(kvm, sp);
2323
2324 if (sp->unsync)
2325 kvm_unlink_unsync_page(kvm, sp);
2326 if (!sp->root_count) {
2327 /* Count self */
2328 (*nr_zapped)++;
2329
2330 /*
2331 * Already invalid pages (previously active roots) are not on
2332 * the active page list. See list_del() in the "else" case of
2333 * !sp->root_count.
2334 */
2335 if (sp->role.invalid)
2336 list_add(&sp->link, invalid_list);
2337 else
2338 list_move(&sp->link, invalid_list);
2339 kvm_mod_used_mmu_pages(kvm, -1);
2340 } else {
2341 /*
2342 * Remove the active root from the active page list, the root
2343 * will be explicitly freed when the root_count hits zero.
2344 */
2345 list_del(&sp->link);
2346
2347 /*
2348 * Obsolete pages cannot be used on any vCPUs, see the comment
2349 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
2350 * treats invalid shadow pages as being obsolete.
2351 */
2352 zapped_root = !is_obsolete_sp(kvm, sp);
2353 }
2354
2355 if (sp->lpage_disallowed)
2356 unaccount_huge_nx_page(kvm, sp);
2357
2358 sp->role.invalid = 1;
2359
2360 /*
2361 * Make the request to free obsolete roots after marking the root
2362 * invalid, otherwise other vCPUs may not see it as invalid.
2363 */
2364 if (zapped_root)
2365 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
2366 return list_unstable;
2367 }
2368
kvm_mmu_prepare_zap_page(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list)2369 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2370 struct list_head *invalid_list)
2371 {
2372 int nr_zapped;
2373
2374 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2375 return nr_zapped;
2376 }
2377
kvm_mmu_commit_zap_page(struct kvm * kvm,struct list_head * invalid_list)2378 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2379 struct list_head *invalid_list)
2380 {
2381 struct kvm_mmu_page *sp, *nsp;
2382
2383 if (list_empty(invalid_list))
2384 return;
2385
2386 /*
2387 * We need to make sure everyone sees our modifications to
2388 * the page tables and see changes to vcpu->mode here. The barrier
2389 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2390 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2391 *
2392 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2393 * guest mode and/or lockless shadow page table walks.
2394 */
2395 kvm_flush_remote_tlbs(kvm);
2396
2397 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2398 WARN_ON(!sp->role.invalid || sp->root_count);
2399 kvm_mmu_free_page(sp);
2400 }
2401 }
2402
kvm_mmu_zap_oldest_mmu_pages(struct kvm * kvm,unsigned long nr_to_zap)2403 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2404 unsigned long nr_to_zap)
2405 {
2406 unsigned long total_zapped = 0;
2407 struct kvm_mmu_page *sp, *tmp;
2408 LIST_HEAD(invalid_list);
2409 bool unstable;
2410 int nr_zapped;
2411
2412 if (list_empty(&kvm->arch.active_mmu_pages))
2413 return 0;
2414
2415 restart:
2416 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2417 /*
2418 * Don't zap active root pages, the page itself can't be freed
2419 * and zapping it will just force vCPUs to realloc and reload.
2420 */
2421 if (sp->root_count)
2422 continue;
2423
2424 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2425 &nr_zapped);
2426 total_zapped += nr_zapped;
2427 if (total_zapped >= nr_to_zap)
2428 break;
2429
2430 if (unstable)
2431 goto restart;
2432 }
2433
2434 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2435
2436 kvm->stat.mmu_recycled += total_zapped;
2437 return total_zapped;
2438 }
2439
kvm_mmu_available_pages(struct kvm * kvm)2440 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2441 {
2442 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2443 return kvm->arch.n_max_mmu_pages -
2444 kvm->arch.n_used_mmu_pages;
2445
2446 return 0;
2447 }
2448
make_mmu_pages_available(struct kvm_vcpu * vcpu)2449 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2450 {
2451 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2452
2453 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2454 return 0;
2455
2456 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2457
2458 /*
2459 * Note, this check is intentionally soft, it only guarantees that one
2460 * page is available, while the caller may end up allocating as many as
2461 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily
2462 * exceeding the (arbitrary by default) limit will not harm the host,
2463 * being too aggressive may unnecessarily kill the guest, and getting an
2464 * exact count is far more trouble than it's worth, especially in the
2465 * page fault paths.
2466 */
2467 if (!kvm_mmu_available_pages(vcpu->kvm))
2468 return -ENOSPC;
2469 return 0;
2470 }
2471
2472 /*
2473 * Changing the number of mmu pages allocated to the vm
2474 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2475 */
kvm_mmu_change_mmu_pages(struct kvm * kvm,unsigned long goal_nr_mmu_pages)2476 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2477 {
2478 write_lock(&kvm->mmu_lock);
2479
2480 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2481 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2482 goal_nr_mmu_pages);
2483
2484 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2485 }
2486
2487 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2488
2489 write_unlock(&kvm->mmu_lock);
2490 }
2491
kvm_mmu_unprotect_page(struct kvm * kvm,gfn_t gfn)2492 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2493 {
2494 struct kvm_mmu_page *sp;
2495 LIST_HEAD(invalid_list);
2496 int r;
2497
2498 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2499 r = 0;
2500 write_lock(&kvm->mmu_lock);
2501 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) {
2502 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2503 sp->role.word);
2504 r = 1;
2505 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2506 }
2507 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2508 write_unlock(&kvm->mmu_lock);
2509
2510 return r;
2511 }
2512
kvm_mmu_unprotect_page_virt(struct kvm_vcpu * vcpu,gva_t gva)2513 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2514 {
2515 gpa_t gpa;
2516 int r;
2517
2518 if (vcpu->arch.mmu->root_role.direct)
2519 return 0;
2520
2521 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2522
2523 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2524
2525 return r;
2526 }
2527
kvm_unsync_page(struct kvm * kvm,struct kvm_mmu_page * sp)2528 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2529 {
2530 trace_kvm_mmu_unsync_page(sp);
2531 ++kvm->stat.mmu_unsync;
2532 sp->unsync = 1;
2533
2534 kvm_mmu_mark_parents_unsync(sp);
2535 }
2536
2537 /*
2538 * Attempt to unsync any shadow pages that can be reached by the specified gfn,
2539 * KVM is creating a writable mapping for said gfn. Returns 0 if all pages
2540 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
2541 * be write-protected.
2542 */
mmu_try_to_unsync_pages(struct kvm * kvm,const struct kvm_memory_slot * slot,gfn_t gfn,bool can_unsync,bool prefetch)2543 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
2544 gfn_t gfn, bool can_unsync, bool prefetch)
2545 {
2546 struct kvm_mmu_page *sp;
2547 bool locked = false;
2548
2549 /*
2550 * Force write-protection if the page is being tracked. Note, the page
2551 * track machinery is used to write-protect upper-level shadow pages,
2552 * i.e. this guards the role.level == 4K assertion below!
2553 */
2554 if (kvm_slot_page_track_is_active(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE))
2555 return -EPERM;
2556
2557 /*
2558 * The page is not write-tracked, mark existing shadow pages unsync
2559 * unless KVM is synchronizing an unsync SP (can_unsync = false). In
2560 * that case, KVM must complete emulation of the guest TLB flush before
2561 * allowing shadow pages to become unsync (writable by the guest).
2562 */
2563 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) {
2564 if (!can_unsync)
2565 return -EPERM;
2566
2567 if (sp->unsync)
2568 continue;
2569
2570 if (prefetch)
2571 return -EEXIST;
2572
2573 /*
2574 * TDP MMU page faults require an additional spinlock as they
2575 * run with mmu_lock held for read, not write, and the unsync
2576 * logic is not thread safe. Take the spinklock regardless of
2577 * the MMU type to avoid extra conditionals/parameters, there's
2578 * no meaningful penalty if mmu_lock is held for write.
2579 */
2580 if (!locked) {
2581 locked = true;
2582 spin_lock(&kvm->arch.mmu_unsync_pages_lock);
2583
2584 /*
2585 * Recheck after taking the spinlock, a different vCPU
2586 * may have since marked the page unsync. A false
2587 * positive on the unprotected check above is not
2588 * possible as clearing sp->unsync _must_ hold mmu_lock
2589 * for write, i.e. unsync cannot transition from 0->1
2590 * while this CPU holds mmu_lock for read (or write).
2591 */
2592 if (READ_ONCE(sp->unsync))
2593 continue;
2594 }
2595
2596 WARN_ON(sp->role.level != PG_LEVEL_4K);
2597 kvm_unsync_page(kvm, sp);
2598 }
2599 if (locked)
2600 spin_unlock(&kvm->arch.mmu_unsync_pages_lock);
2601
2602 /*
2603 * We need to ensure that the marking of unsync pages is visible
2604 * before the SPTE is updated to allow writes because
2605 * kvm_mmu_sync_roots() checks the unsync flags without holding
2606 * the MMU lock and so can race with this. If the SPTE was updated
2607 * before the page had been marked as unsync-ed, something like the
2608 * following could happen:
2609 *
2610 * CPU 1 CPU 2
2611 * ---------------------------------------------------------------------
2612 * 1.2 Host updates SPTE
2613 * to be writable
2614 * 2.1 Guest writes a GPTE for GVA X.
2615 * (GPTE being in the guest page table shadowed
2616 * by the SP from CPU 1.)
2617 * This reads SPTE during the page table walk.
2618 * Since SPTE.W is read as 1, there is no
2619 * fault.
2620 *
2621 * 2.2 Guest issues TLB flush.
2622 * That causes a VM Exit.
2623 *
2624 * 2.3 Walking of unsync pages sees sp->unsync is
2625 * false and skips the page.
2626 *
2627 * 2.4 Guest accesses GVA X.
2628 * Since the mapping in the SP was not updated,
2629 * so the old mapping for GVA X incorrectly
2630 * gets used.
2631 * 1.1 Host marks SP
2632 * as unsync
2633 * (sp->unsync = true)
2634 *
2635 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2636 * the situation in 2.4 does not arise. It pairs with the read barrier
2637 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3.
2638 */
2639 smp_wmb();
2640
2641 return 0;
2642 }
2643
mmu_set_spte(struct kvm_vcpu * vcpu,struct kvm_memory_slot * slot,u64 * sptep,unsigned int pte_access,gfn_t gfn,kvm_pfn_t pfn,struct kvm_page_fault * fault)2644 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
2645 u64 *sptep, unsigned int pte_access, gfn_t gfn,
2646 kvm_pfn_t pfn, struct kvm_page_fault *fault)
2647 {
2648 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
2649 int level = sp->role.level;
2650 int was_rmapped = 0;
2651 int ret = RET_PF_FIXED;
2652 bool flush = false;
2653 bool wrprot;
2654 u64 spte;
2655
2656 /* Prefetching always gets a writable pfn. */
2657 bool host_writable = !fault || fault->map_writable;
2658 bool prefetch = !fault || fault->prefetch;
2659 bool write_fault = fault && fault->write;
2660
2661 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2662 *sptep, write_fault, gfn);
2663
2664 if (unlikely(is_noslot_pfn(pfn))) {
2665 vcpu->stat.pf_mmio_spte_created++;
2666 mark_mmio_spte(vcpu, sptep, gfn, pte_access);
2667 return RET_PF_EMULATE;
2668 }
2669
2670 if (is_shadow_present_pte(*sptep)) {
2671 /*
2672 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2673 * the parent of the now unreachable PTE.
2674 */
2675 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2676 struct kvm_mmu_page *child;
2677 u64 pte = *sptep;
2678
2679 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2680 drop_parent_pte(child, sptep);
2681 flush = true;
2682 } else if (pfn != spte_to_pfn(*sptep)) {
2683 pgprintk("hfn old %llx new %llx\n",
2684 spte_to_pfn(*sptep), pfn);
2685 drop_spte(vcpu->kvm, sptep);
2686 flush = true;
2687 } else
2688 was_rmapped = 1;
2689 }
2690
2691 wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch,
2692 true, host_writable, &spte);
2693
2694 if (*sptep == spte) {
2695 ret = RET_PF_SPURIOUS;
2696 } else {
2697 flush |= mmu_spte_update(sptep, spte);
2698 trace_kvm_mmu_set_spte(level, gfn, sptep);
2699 }
2700
2701 if (wrprot) {
2702 if (write_fault)
2703 ret = RET_PF_EMULATE;
2704 }
2705
2706 if (flush)
2707 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2708 KVM_PAGES_PER_HPAGE(level));
2709
2710 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2711
2712 if (!was_rmapped) {
2713 WARN_ON_ONCE(ret == RET_PF_SPURIOUS);
2714 kvm_update_page_stats(vcpu->kvm, level, 1);
2715 rmap_add(vcpu, slot, sptep, gfn);
2716 }
2717
2718 return ret;
2719 }
2720
direct_pte_prefetch_many(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * start,u64 * end)2721 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2722 struct kvm_mmu_page *sp,
2723 u64 *start, u64 *end)
2724 {
2725 struct page *pages[PTE_PREFETCH_NUM];
2726 struct kvm_memory_slot *slot;
2727 unsigned int access = sp->role.access;
2728 int i, ret;
2729 gfn_t gfn;
2730
2731 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2732 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2733 if (!slot)
2734 return -1;
2735
2736 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2737 if (ret <= 0)
2738 return -1;
2739
2740 for (i = 0; i < ret; i++, gfn++, start++) {
2741 mmu_set_spte(vcpu, slot, start, access, gfn,
2742 page_to_pfn(pages[i]), NULL);
2743 put_page(pages[i]);
2744 }
2745
2746 return 0;
2747 }
2748
__direct_pte_prefetch(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * sptep)2749 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2750 struct kvm_mmu_page *sp, u64 *sptep)
2751 {
2752 u64 *spte, *start = NULL;
2753 int i;
2754
2755 WARN_ON(!sp->role.direct);
2756
2757 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2758 spte = sp->spt + i;
2759
2760 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2761 if (is_shadow_present_pte(*spte) || spte == sptep) {
2762 if (!start)
2763 continue;
2764 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2765 return;
2766 start = NULL;
2767 } else if (!start)
2768 start = spte;
2769 }
2770 if (start)
2771 direct_pte_prefetch_many(vcpu, sp, start, spte);
2772 }
2773
direct_pte_prefetch(struct kvm_vcpu * vcpu,u64 * sptep)2774 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2775 {
2776 struct kvm_mmu_page *sp;
2777
2778 sp = sptep_to_sp(sptep);
2779
2780 /*
2781 * Without accessed bits, there's no way to distinguish between
2782 * actually accessed translations and prefetched, so disable pte
2783 * prefetch if accessed bits aren't available.
2784 */
2785 if (sp_ad_disabled(sp))
2786 return;
2787
2788 if (sp->role.level > PG_LEVEL_4K)
2789 return;
2790
2791 /*
2792 * If addresses are being invalidated, skip prefetching to avoid
2793 * accidentally prefetching those addresses.
2794 */
2795 if (unlikely(vcpu->kvm->mmu_notifier_count))
2796 return;
2797
2798 __direct_pte_prefetch(vcpu, sp, sptep);
2799 }
2800
host_pfn_mapping_level(struct kvm * kvm,gfn_t gfn,kvm_pfn_t pfn,const struct kvm_memory_slot * slot)2801 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2802 const struct kvm_memory_slot *slot)
2803 {
2804 unsigned long hva;
2805 unsigned long flags;
2806 int level = PG_LEVEL_4K;
2807 pgd_t pgd;
2808 p4d_t p4d;
2809 pud_t pud;
2810 pmd_t pmd;
2811
2812 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2813 return PG_LEVEL_4K;
2814
2815 /*
2816 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2817 * is not solely for performance, it's also necessary to avoid the
2818 * "writable" check in __gfn_to_hva_many(), which will always fail on
2819 * read-only memslots due to gfn_to_hva() assuming writes. Earlier
2820 * page fault steps have already verified the guest isn't writing a
2821 * read-only memslot.
2822 */
2823 hva = __gfn_to_hva_memslot(slot, gfn);
2824
2825 /*
2826 * Lookup the mapping level in the current mm. The information
2827 * may become stale soon, but it is safe to use as long as
2828 * 1) mmu_notifier_retry was checked after taking mmu_lock, and
2829 * 2) mmu_lock is taken now.
2830 *
2831 * We still need to disable IRQs to prevent concurrent tear down
2832 * of page tables.
2833 */
2834 local_irq_save(flags);
2835
2836 pgd = READ_ONCE(*pgd_offset(kvm->mm, hva));
2837 if (pgd_none(pgd))
2838 goto out;
2839
2840 p4d = READ_ONCE(*p4d_offset(&pgd, hva));
2841 if (p4d_none(p4d) || !p4d_present(p4d))
2842 goto out;
2843
2844 pud = READ_ONCE(*pud_offset(&p4d, hva));
2845 if (pud_none(pud) || !pud_present(pud))
2846 goto out;
2847
2848 if (pud_large(pud)) {
2849 level = PG_LEVEL_1G;
2850 goto out;
2851 }
2852
2853 pmd = READ_ONCE(*pmd_offset(&pud, hva));
2854 if (pmd_none(pmd) || !pmd_present(pmd))
2855 goto out;
2856
2857 if (pmd_large(pmd))
2858 level = PG_LEVEL_2M;
2859
2860 out:
2861 local_irq_restore(flags);
2862 return level;
2863 }
2864
kvm_mmu_max_mapping_level(struct kvm * kvm,const struct kvm_memory_slot * slot,gfn_t gfn,kvm_pfn_t pfn,int max_level)2865 int kvm_mmu_max_mapping_level(struct kvm *kvm,
2866 const struct kvm_memory_slot *slot, gfn_t gfn,
2867 kvm_pfn_t pfn, int max_level)
2868 {
2869 struct kvm_lpage_info *linfo;
2870 int host_level;
2871
2872 max_level = min(max_level, max_huge_page_level);
2873 for ( ; max_level > PG_LEVEL_4K; max_level--) {
2874 linfo = lpage_info_slot(gfn, slot, max_level);
2875 if (!linfo->disallow_lpage)
2876 break;
2877 }
2878
2879 if (max_level == PG_LEVEL_4K)
2880 return PG_LEVEL_4K;
2881
2882 host_level = host_pfn_mapping_level(kvm, gfn, pfn, slot);
2883 return min(host_level, max_level);
2884 }
2885
kvm_mmu_hugepage_adjust(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)2886 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
2887 {
2888 struct kvm_memory_slot *slot = fault->slot;
2889 kvm_pfn_t mask;
2890
2891 fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled;
2892
2893 if (unlikely(fault->max_level == PG_LEVEL_4K))
2894 return;
2895
2896 if (is_error_noslot_pfn(fault->pfn) || kvm_is_reserved_pfn(fault->pfn))
2897 return;
2898
2899 if (kvm_slot_dirty_track_enabled(slot))
2900 return;
2901
2902 /*
2903 * Enforce the iTLB multihit workaround after capturing the requested
2904 * level, which will be used to do precise, accurate accounting.
2905 */
2906 fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot,
2907 fault->gfn, fault->pfn,
2908 fault->max_level);
2909 if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed)
2910 return;
2911
2912 /*
2913 * mmu_notifier_retry() was successful and mmu_lock is held, so
2914 * the pmd can't be split from under us.
2915 */
2916 fault->goal_level = fault->req_level;
2917 mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1;
2918 VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask));
2919 fault->pfn &= ~mask;
2920 }
2921
disallowed_hugepage_adjust(struct kvm_page_fault * fault,u64 spte,int cur_level)2922 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level)
2923 {
2924 if (cur_level > PG_LEVEL_4K &&
2925 cur_level == fault->goal_level &&
2926 is_shadow_present_pte(spte) &&
2927 !is_large_pte(spte)) {
2928 /*
2929 * A small SPTE exists for this pfn, but FNAME(fetch)
2930 * and __direct_map would like to create a large PTE
2931 * instead: just force them to go down another level,
2932 * patching back for them into pfn the next 9 bits of
2933 * the address.
2934 */
2935 u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) -
2936 KVM_PAGES_PER_HPAGE(cur_level - 1);
2937 fault->pfn |= fault->gfn & page_mask;
2938 fault->goal_level--;
2939 }
2940 }
2941
__direct_map(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)2942 static int __direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
2943 {
2944 struct kvm_shadow_walk_iterator it;
2945 struct kvm_mmu_page *sp;
2946 int ret;
2947 gfn_t base_gfn = fault->gfn;
2948
2949 kvm_mmu_hugepage_adjust(vcpu, fault);
2950
2951 trace_kvm_mmu_spte_requested(fault);
2952 for_each_shadow_entry(vcpu, fault->addr, it) {
2953 /*
2954 * We cannot overwrite existing page tables with an NX
2955 * large page, as the leaf could be executable.
2956 */
2957 if (fault->nx_huge_page_workaround_enabled)
2958 disallowed_hugepage_adjust(fault, *it.sptep, it.level);
2959
2960 base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2961 if (it.level == fault->goal_level)
2962 break;
2963
2964 drop_large_spte(vcpu, it.sptep);
2965 if (is_shadow_present_pte(*it.sptep))
2966 continue;
2967
2968 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2969 it.level - 1, true, ACC_ALL);
2970
2971 link_shadow_page(vcpu, it.sptep, sp);
2972 if (fault->is_tdp && fault->huge_page_disallowed &&
2973 fault->req_level >= it.level)
2974 account_huge_nx_page(vcpu->kvm, sp);
2975 }
2976
2977 if (WARN_ON_ONCE(it.level != fault->goal_level))
2978 return -EFAULT;
2979
2980 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL,
2981 base_gfn, fault->pfn, fault);
2982 if (ret == RET_PF_SPURIOUS)
2983 return ret;
2984
2985 direct_pte_prefetch(vcpu, it.sptep);
2986 return ret;
2987 }
2988
kvm_send_hwpoison_signal(unsigned long address,struct task_struct * tsk)2989 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2990 {
2991 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2992 }
2993
kvm_handle_bad_page(struct kvm_vcpu * vcpu,gfn_t gfn,kvm_pfn_t pfn)2994 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2995 {
2996 /*
2997 * Do not cache the mmio info caused by writing the readonly gfn
2998 * into the spte otherwise read access on readonly gfn also can
2999 * caused mmio page fault and treat it as mmio access.
3000 */
3001 if (pfn == KVM_PFN_ERR_RO_FAULT)
3002 return RET_PF_EMULATE;
3003
3004 if (pfn == KVM_PFN_ERR_HWPOISON) {
3005 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3006 return RET_PF_RETRY;
3007 }
3008
3009 return -EFAULT;
3010 }
3011
handle_abnormal_pfn(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault,unsigned int access)3012 static int handle_abnormal_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
3013 unsigned int access)
3014 {
3015 /* The pfn is invalid, report the error! */
3016 if (unlikely(is_error_pfn(fault->pfn)))
3017 return kvm_handle_bad_page(vcpu, fault->gfn, fault->pfn);
3018
3019 if (unlikely(!fault->slot)) {
3020 gva_t gva = fault->is_tdp ? 0 : fault->addr;
3021
3022 vcpu_cache_mmio_info(vcpu, gva, fault->gfn,
3023 access & shadow_mmio_access_mask);
3024 /*
3025 * If MMIO caching is disabled, emulate immediately without
3026 * touching the shadow page tables as attempting to install an
3027 * MMIO SPTE will just be an expensive nop. Do not cache MMIO
3028 * whose gfn is greater than host.MAXPHYADDR, any guest that
3029 * generates such gfns is running nested and is being tricked
3030 * by L0 userspace (you can observe gfn > L1.MAXPHYADDR if
3031 * and only if L1's MAXPHYADDR is inaccurate with respect to
3032 * the hardware's).
3033 */
3034 if (unlikely(!enable_mmio_caching) ||
3035 unlikely(fault->gfn > kvm_mmu_max_gfn()))
3036 return RET_PF_EMULATE;
3037 }
3038
3039 return RET_PF_CONTINUE;
3040 }
3041
page_fault_can_be_fast(struct kvm_page_fault * fault)3042 static bool page_fault_can_be_fast(struct kvm_page_fault *fault)
3043 {
3044 /*
3045 * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only
3046 * reach the common page fault handler if the SPTE has an invalid MMIO
3047 * generation number. Refreshing the MMIO generation needs to go down
3048 * the slow path. Note, EPT Misconfigs do NOT set the PRESENT flag!
3049 */
3050 if (fault->rsvd)
3051 return false;
3052
3053 /*
3054 * #PF can be fast if:
3055 *
3056 * 1. The shadow page table entry is not present and A/D bits are
3057 * disabled _by KVM_, which could mean that the fault is potentially
3058 * caused by access tracking (if enabled). If A/D bits are enabled
3059 * by KVM, but disabled by L1 for L2, KVM is forced to disable A/D
3060 * bits for L2 and employ access tracking, but the fast page fault
3061 * mechanism only supports direct MMUs.
3062 * 2. The shadow page table entry is present, the access is a write,
3063 * and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e.
3064 * the fault was caused by a write-protection violation. If the
3065 * SPTE is MMU-writable (determined later), the fault can be fixed
3066 * by setting the Writable bit, which can be done out of mmu_lock.
3067 */
3068 if (!fault->present)
3069 return !kvm_ad_enabled();
3070
3071 /*
3072 * Note, instruction fetches and writes are mutually exclusive, ignore
3073 * the "exec" flag.
3074 */
3075 return fault->write;
3076 }
3077
3078 /*
3079 * Returns true if the SPTE was fixed successfully. Otherwise,
3080 * someone else modified the SPTE from its original value.
3081 */
3082 static bool
fast_pf_fix_direct_spte(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault,u64 * sptep,u64 old_spte,u64 new_spte)3083 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
3084 u64 *sptep, u64 old_spte, u64 new_spte)
3085 {
3086 /*
3087 * Theoretically we could also set dirty bit (and flush TLB) here in
3088 * order to eliminate unnecessary PML logging. See comments in
3089 * set_spte. But fast_page_fault is very unlikely to happen with PML
3090 * enabled, so we do not do this. This might result in the same GPA
3091 * to be logged in PML buffer again when the write really happens, and
3092 * eventually to be called by mark_page_dirty twice. But it's also no
3093 * harm. This also avoids the TLB flush needed after setting dirty bit
3094 * so non-PML cases won't be impacted.
3095 *
3096 * Compare with set_spte where instead shadow_dirty_mask is set.
3097 */
3098 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3099 return false;
3100
3101 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte))
3102 mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn);
3103
3104 return true;
3105 }
3106
is_access_allowed(struct kvm_page_fault * fault,u64 spte)3107 static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte)
3108 {
3109 if (fault->exec)
3110 return is_executable_pte(spte);
3111
3112 if (fault->write)
3113 return is_writable_pte(spte);
3114
3115 /* Fault was on Read access */
3116 return spte & PT_PRESENT_MASK;
3117 }
3118
3119 /*
3120 * Returns the last level spte pointer of the shadow page walk for the given
3121 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
3122 * walk could be performed, returns NULL and *spte does not contain valid data.
3123 *
3124 * Contract:
3125 * - Must be called between walk_shadow_page_lockless_{begin,end}.
3126 * - The returned sptep must not be used after walk_shadow_page_lockless_end.
3127 */
fast_pf_get_last_sptep(struct kvm_vcpu * vcpu,gpa_t gpa,u64 * spte)3128 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
3129 {
3130 struct kvm_shadow_walk_iterator iterator;
3131 u64 old_spte;
3132 u64 *sptep = NULL;
3133
3134 for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
3135 sptep = iterator.sptep;
3136 *spte = old_spte;
3137 }
3138
3139 return sptep;
3140 }
3141
3142 /*
3143 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3144 */
fast_page_fault(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)3145 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3146 {
3147 struct kvm_mmu_page *sp;
3148 int ret = RET_PF_INVALID;
3149 u64 spte = 0ull;
3150 u64 *sptep = NULL;
3151 uint retry_count = 0;
3152
3153 if (!page_fault_can_be_fast(fault))
3154 return ret;
3155
3156 walk_shadow_page_lockless_begin(vcpu);
3157
3158 do {
3159 u64 new_spte;
3160
3161 if (is_tdp_mmu(vcpu->arch.mmu))
3162 sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3163 else
3164 sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3165
3166 if (!is_shadow_present_pte(spte))
3167 break;
3168
3169 sp = sptep_to_sp(sptep);
3170 if (!is_last_spte(spte, sp->role.level))
3171 break;
3172
3173 /*
3174 * Check whether the memory access that caused the fault would
3175 * still cause it if it were to be performed right now. If not,
3176 * then this is a spurious fault caused by TLB lazily flushed,
3177 * or some other CPU has already fixed the PTE after the
3178 * current CPU took the fault.
3179 *
3180 * Need not check the access of upper level table entries since
3181 * they are always ACC_ALL.
3182 */
3183 if (is_access_allowed(fault, spte)) {
3184 ret = RET_PF_SPURIOUS;
3185 break;
3186 }
3187
3188 new_spte = spte;
3189
3190 /*
3191 * KVM only supports fixing page faults outside of MMU lock for
3192 * direct MMUs, nested MMUs are always indirect, and KVM always
3193 * uses A/D bits for non-nested MMUs. Thus, if A/D bits are
3194 * enabled, the SPTE can't be an access-tracked SPTE.
3195 */
3196 if (unlikely(!kvm_ad_enabled()) && is_access_track_spte(spte))
3197 new_spte = restore_acc_track_spte(new_spte);
3198
3199 /*
3200 * To keep things simple, only SPTEs that are MMU-writable can
3201 * be made fully writable outside of mmu_lock, e.g. only SPTEs
3202 * that were write-protected for dirty-logging or access
3203 * tracking are handled here. Don't bother checking if the
3204 * SPTE is writable to prioritize running with A/D bits enabled.
3205 * The is_access_allowed() check above handles the common case
3206 * of the fault being spurious, and the SPTE is known to be
3207 * shadow-present, i.e. except for access tracking restoration
3208 * making the new SPTE writable, the check is wasteful.
3209 */
3210 if (fault->write && is_mmu_writable_spte(spte)) {
3211 new_spte |= PT_WRITABLE_MASK;
3212
3213 /*
3214 * Do not fix write-permission on the large spte when
3215 * dirty logging is enabled. Since we only dirty the
3216 * first page into the dirty-bitmap in
3217 * fast_pf_fix_direct_spte(), other pages are missed
3218 * if its slot has dirty logging enabled.
3219 *
3220 * Instead, we let the slow page fault path create a
3221 * normal spte to fix the access.
3222 */
3223 if (sp->role.level > PG_LEVEL_4K &&
3224 kvm_slot_dirty_track_enabled(fault->slot))
3225 break;
3226 }
3227
3228 /* Verify that the fault can be handled in the fast path */
3229 if (new_spte == spte ||
3230 !is_access_allowed(fault, new_spte))
3231 break;
3232
3233 /*
3234 * Currently, fast page fault only works for direct mapping
3235 * since the gfn is not stable for indirect shadow page. See
3236 * Documentation/virt/kvm/locking.rst to get more detail.
3237 */
3238 if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) {
3239 ret = RET_PF_FIXED;
3240 break;
3241 }
3242
3243 if (++retry_count > 4) {
3244 printk_once(KERN_WARNING
3245 "kvm: Fast #PF retrying more than 4 times.\n");
3246 break;
3247 }
3248
3249 } while (true);
3250
3251 trace_fast_page_fault(vcpu, fault, sptep, spte, ret);
3252 walk_shadow_page_lockless_end(vcpu);
3253
3254 if (ret != RET_PF_INVALID)
3255 vcpu->stat.pf_fast++;
3256
3257 return ret;
3258 }
3259
mmu_free_root_page(struct kvm * kvm,hpa_t * root_hpa,struct list_head * invalid_list)3260 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3261 struct list_head *invalid_list)
3262 {
3263 struct kvm_mmu_page *sp;
3264
3265 if (!VALID_PAGE(*root_hpa))
3266 return;
3267
3268 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3269 if (WARN_ON(!sp))
3270 return;
3271
3272 if (is_tdp_mmu_page(sp))
3273 kvm_tdp_mmu_put_root(kvm, sp, false);
3274 else if (!--sp->root_count && sp->role.invalid)
3275 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3276
3277 *root_hpa = INVALID_PAGE;
3278 }
3279
3280 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
kvm_mmu_free_roots(struct kvm * kvm,struct kvm_mmu * mmu,ulong roots_to_free)3281 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
3282 ulong roots_to_free)
3283 {
3284 int i;
3285 LIST_HEAD(invalid_list);
3286 bool free_active_root;
3287
3288 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3289
3290 /* Before acquiring the MMU lock, see if we need to do any real work. */
3291 free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT)
3292 && VALID_PAGE(mmu->root.hpa);
3293
3294 if (!free_active_root) {
3295 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3296 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3297 VALID_PAGE(mmu->prev_roots[i].hpa))
3298 break;
3299
3300 if (i == KVM_MMU_NUM_PREV_ROOTS)
3301 return;
3302 }
3303
3304 write_lock(&kvm->mmu_lock);
3305
3306 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3307 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3308 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3309 &invalid_list);
3310
3311 if (free_active_root) {
3312 if (to_shadow_page(mmu->root.hpa)) {
3313 mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list);
3314 } else if (mmu->pae_root) {
3315 for (i = 0; i < 4; ++i) {
3316 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3317 continue;
3318
3319 mmu_free_root_page(kvm, &mmu->pae_root[i],
3320 &invalid_list);
3321 mmu->pae_root[i] = INVALID_PAE_ROOT;
3322 }
3323 }
3324 mmu->root.hpa = INVALID_PAGE;
3325 mmu->root.pgd = 0;
3326 }
3327
3328 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3329 write_unlock(&kvm->mmu_lock);
3330 }
3331 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3332
kvm_mmu_free_guest_mode_roots(struct kvm * kvm,struct kvm_mmu * mmu)3333 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu)
3334 {
3335 unsigned long roots_to_free = 0;
3336 hpa_t root_hpa;
3337 int i;
3338
3339 /*
3340 * This should not be called while L2 is active, L2 can't invalidate
3341 * _only_ its own roots, e.g. INVVPID unconditionally exits.
3342 */
3343 WARN_ON_ONCE(mmu->root_role.guest_mode);
3344
3345 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3346 root_hpa = mmu->prev_roots[i].hpa;
3347 if (!VALID_PAGE(root_hpa))
3348 continue;
3349
3350 if (!to_shadow_page(root_hpa) ||
3351 to_shadow_page(root_hpa)->role.guest_mode)
3352 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3353 }
3354
3355 kvm_mmu_free_roots(kvm, mmu, roots_to_free);
3356 }
3357 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);
3358
3359
mmu_check_root(struct kvm_vcpu * vcpu,gfn_t root_gfn)3360 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3361 {
3362 int ret = 0;
3363
3364 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3365 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3366 ret = 1;
3367 }
3368
3369 return ret;
3370 }
3371
mmu_alloc_root(struct kvm_vcpu * vcpu,gfn_t gfn,gva_t gva,u8 level,bool direct)3372 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3373 u8 level, bool direct)
3374 {
3375 struct kvm_mmu_page *sp;
3376
3377 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3378 ++sp->root_count;
3379
3380 return __pa(sp->spt);
3381 }
3382
mmu_alloc_direct_roots(struct kvm_vcpu * vcpu)3383 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3384 {
3385 struct kvm_mmu *mmu = vcpu->arch.mmu;
3386 u8 shadow_root_level = mmu->root_role.level;
3387 hpa_t root;
3388 unsigned i;
3389 int r;
3390
3391 write_lock(&vcpu->kvm->mmu_lock);
3392 r = make_mmu_pages_available(vcpu);
3393 if (r < 0)
3394 goto out_unlock;
3395
3396 if (is_tdp_mmu_enabled(vcpu->kvm)) {
3397 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3398 mmu->root.hpa = root;
3399 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3400 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3401 mmu->root.hpa = root;
3402 } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3403 if (WARN_ON_ONCE(!mmu->pae_root)) {
3404 r = -EIO;
3405 goto out_unlock;
3406 }
3407
3408 for (i = 0; i < 4; ++i) {
3409 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3410
3411 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3412 i << 30, PT32_ROOT_LEVEL, true);
3413 mmu->pae_root[i] = root | PT_PRESENT_MASK |
3414 shadow_me_value;
3415 }
3416 mmu->root.hpa = __pa(mmu->pae_root);
3417 } else {
3418 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3419 r = -EIO;
3420 goto out_unlock;
3421 }
3422
3423 /* root.pgd is ignored for direct MMUs. */
3424 mmu->root.pgd = 0;
3425 out_unlock:
3426 write_unlock(&vcpu->kvm->mmu_lock);
3427 return r;
3428 }
3429
mmu_first_shadow_root_alloc(struct kvm * kvm)3430 static int mmu_first_shadow_root_alloc(struct kvm *kvm)
3431 {
3432 struct kvm_memslots *slots;
3433 struct kvm_memory_slot *slot;
3434 int r = 0, i, bkt;
3435
3436 /*
3437 * Check if this is the first shadow root being allocated before
3438 * taking the lock.
3439 */
3440 if (kvm_shadow_root_allocated(kvm))
3441 return 0;
3442
3443 mutex_lock(&kvm->slots_arch_lock);
3444
3445 /* Recheck, under the lock, whether this is the first shadow root. */
3446 if (kvm_shadow_root_allocated(kvm))
3447 goto out_unlock;
3448
3449 /*
3450 * Check if anything actually needs to be allocated, e.g. all metadata
3451 * will be allocated upfront if TDP is disabled.
3452 */
3453 if (kvm_memslots_have_rmaps(kvm) &&
3454 kvm_page_track_write_tracking_enabled(kvm))
3455 goto out_success;
3456
3457 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
3458 slots = __kvm_memslots(kvm, i);
3459 kvm_for_each_memslot(slot, bkt, slots) {
3460 /*
3461 * Both of these functions are no-ops if the target is
3462 * already allocated, so unconditionally calling both
3463 * is safe. Intentionally do NOT free allocations on
3464 * failure to avoid having to track which allocations
3465 * were made now versus when the memslot was created.
3466 * The metadata is guaranteed to be freed when the slot
3467 * is freed, and will be kept/used if userspace retries
3468 * KVM_RUN instead of killing the VM.
3469 */
3470 r = memslot_rmap_alloc(slot, slot->npages);
3471 if (r)
3472 goto out_unlock;
3473 r = kvm_page_track_write_tracking_alloc(slot);
3474 if (r)
3475 goto out_unlock;
3476 }
3477 }
3478
3479 /*
3480 * Ensure that shadow_root_allocated becomes true strictly after
3481 * all the related pointers are set.
3482 */
3483 out_success:
3484 smp_store_release(&kvm->arch.shadow_root_allocated, true);
3485
3486 out_unlock:
3487 mutex_unlock(&kvm->slots_arch_lock);
3488 return r;
3489 }
3490
mmu_alloc_shadow_roots(struct kvm_vcpu * vcpu)3491 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3492 {
3493 struct kvm_mmu *mmu = vcpu->arch.mmu;
3494 u64 pdptrs[4], pm_mask;
3495 gfn_t root_gfn, root_pgd;
3496 hpa_t root;
3497 unsigned i;
3498 int r;
3499
3500 root_pgd = mmu->get_guest_pgd(vcpu);
3501 root_gfn = root_pgd >> PAGE_SHIFT;
3502
3503 if (mmu_check_root(vcpu, root_gfn))
3504 return 1;
3505
3506 /*
3507 * On SVM, reading PDPTRs might access guest memory, which might fault
3508 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock.
3509 */
3510 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
3511 for (i = 0; i < 4; ++i) {
3512 pdptrs[i] = mmu->get_pdptr(vcpu, i);
3513 if (!(pdptrs[i] & PT_PRESENT_MASK))
3514 continue;
3515
3516 if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
3517 return 1;
3518 }
3519 }
3520
3521 r = mmu_first_shadow_root_alloc(vcpu->kvm);
3522 if (r)
3523 return r;
3524
3525 write_lock(&vcpu->kvm->mmu_lock);
3526 r = make_mmu_pages_available(vcpu);
3527 if (r < 0)
3528 goto out_unlock;
3529
3530 /*
3531 * Do we shadow a long mode page table? If so we need to
3532 * write-protect the guests page table root.
3533 */
3534 if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
3535 root = mmu_alloc_root(vcpu, root_gfn, 0,
3536 mmu->root_role.level, false);
3537 mmu->root.hpa = root;
3538 goto set_root_pgd;
3539 }
3540
3541 if (WARN_ON_ONCE(!mmu->pae_root)) {
3542 r = -EIO;
3543 goto out_unlock;
3544 }
3545
3546 /*
3547 * We shadow a 32 bit page table. This may be a legacy 2-level
3548 * or a PAE 3-level page table. In either case we need to be aware that
3549 * the shadow page table may be a PAE or a long mode page table.
3550 */
3551 pm_mask = PT_PRESENT_MASK | shadow_me_value;
3552 if (mmu->root_role.level >= PT64_ROOT_4LEVEL) {
3553 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3554
3555 if (WARN_ON_ONCE(!mmu->pml4_root)) {
3556 r = -EIO;
3557 goto out_unlock;
3558 }
3559 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3560
3561 if (mmu->root_role.level == PT64_ROOT_5LEVEL) {
3562 if (WARN_ON_ONCE(!mmu->pml5_root)) {
3563 r = -EIO;
3564 goto out_unlock;
3565 }
3566 mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
3567 }
3568 }
3569
3570 for (i = 0; i < 4; ++i) {
3571 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3572
3573 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
3574 if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3575 mmu->pae_root[i] = INVALID_PAE_ROOT;
3576 continue;
3577 }
3578 root_gfn = pdptrs[i] >> PAGE_SHIFT;
3579 }
3580
3581 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3582 PT32_ROOT_LEVEL, false);
3583 mmu->pae_root[i] = root | pm_mask;
3584 }
3585
3586 if (mmu->root_role.level == PT64_ROOT_5LEVEL)
3587 mmu->root.hpa = __pa(mmu->pml5_root);
3588 else if (mmu->root_role.level == PT64_ROOT_4LEVEL)
3589 mmu->root.hpa = __pa(mmu->pml4_root);
3590 else
3591 mmu->root.hpa = __pa(mmu->pae_root);
3592
3593 set_root_pgd:
3594 mmu->root.pgd = root_pgd;
3595 out_unlock:
3596 write_unlock(&vcpu->kvm->mmu_lock);
3597
3598 return r;
3599 }
3600
mmu_alloc_special_roots(struct kvm_vcpu * vcpu)3601 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
3602 {
3603 struct kvm_mmu *mmu = vcpu->arch.mmu;
3604 bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL;
3605 u64 *pml5_root = NULL;
3606 u64 *pml4_root = NULL;
3607 u64 *pae_root;
3608
3609 /*
3610 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3611 * tables are allocated and initialized at root creation as there is no
3612 * equivalent level in the guest's NPT to shadow. Allocate the tables
3613 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3614 */
3615 if (mmu->root_role.direct ||
3616 mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL ||
3617 mmu->root_role.level < PT64_ROOT_4LEVEL)
3618 return 0;
3619
3620 /*
3621 * NPT, the only paging mode that uses this horror, uses a fixed number
3622 * of levels for the shadow page tables, e.g. all MMUs are 4-level or
3623 * all MMus are 5-level. Thus, this can safely require that pml5_root
3624 * is allocated if the other roots are valid and pml5 is needed, as any
3625 * prior MMU would also have required pml5.
3626 */
3627 if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
3628 return 0;
3629
3630 /*
3631 * The special roots should always be allocated in concert. Yell and
3632 * bail if KVM ends up in a state where only one of the roots is valid.
3633 */
3634 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
3635 (need_pml5 && mmu->pml5_root)))
3636 return -EIO;
3637
3638 /*
3639 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
3640 * doesn't need to be decrypted.
3641 */
3642 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3643 if (!pae_root)
3644 return -ENOMEM;
3645
3646 #ifdef CONFIG_X86_64
3647 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3648 if (!pml4_root)
3649 goto err_pml4;
3650
3651 if (need_pml5) {
3652 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3653 if (!pml5_root)
3654 goto err_pml5;
3655 }
3656 #endif
3657
3658 mmu->pae_root = pae_root;
3659 mmu->pml4_root = pml4_root;
3660 mmu->pml5_root = pml5_root;
3661
3662 return 0;
3663
3664 #ifdef CONFIG_X86_64
3665 err_pml5:
3666 free_page((unsigned long)pml4_root);
3667 err_pml4:
3668 free_page((unsigned long)pae_root);
3669 return -ENOMEM;
3670 #endif
3671 }
3672
is_unsync_root(hpa_t root)3673 static bool is_unsync_root(hpa_t root)
3674 {
3675 struct kvm_mmu_page *sp;
3676
3677 if (!VALID_PAGE(root))
3678 return false;
3679
3680 /*
3681 * The read barrier orders the CPU's read of SPTE.W during the page table
3682 * walk before the reads of sp->unsync/sp->unsync_children here.
3683 *
3684 * Even if another CPU was marking the SP as unsync-ed simultaneously,
3685 * any guest page table changes are not guaranteed to be visible anyway
3686 * until this VCPU issues a TLB flush strictly after those changes are
3687 * made. We only need to ensure that the other CPU sets these flags
3688 * before any actual changes to the page tables are made. The comments
3689 * in mmu_try_to_unsync_pages() describe what could go wrong if this
3690 * requirement isn't satisfied.
3691 */
3692 smp_rmb();
3693 sp = to_shadow_page(root);
3694
3695 /*
3696 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the
3697 * PDPTEs for a given PAE root need to be synchronized individually.
3698 */
3699 if (WARN_ON_ONCE(!sp))
3700 return false;
3701
3702 if (sp->unsync || sp->unsync_children)
3703 return true;
3704
3705 return false;
3706 }
3707
kvm_mmu_sync_roots(struct kvm_vcpu * vcpu)3708 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3709 {
3710 int i;
3711 struct kvm_mmu_page *sp;
3712
3713 if (vcpu->arch.mmu->root_role.direct)
3714 return;
3715
3716 if (!VALID_PAGE(vcpu->arch.mmu->root.hpa))
3717 return;
3718
3719 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3720
3721 if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
3722 hpa_t root = vcpu->arch.mmu->root.hpa;
3723 sp = to_shadow_page(root);
3724
3725 if (!is_unsync_root(root))
3726 return;
3727
3728 write_lock(&vcpu->kvm->mmu_lock);
3729 mmu_sync_children(vcpu, sp, true);
3730 write_unlock(&vcpu->kvm->mmu_lock);
3731 return;
3732 }
3733
3734 write_lock(&vcpu->kvm->mmu_lock);
3735
3736 for (i = 0; i < 4; ++i) {
3737 hpa_t root = vcpu->arch.mmu->pae_root[i];
3738
3739 if (IS_VALID_PAE_ROOT(root)) {
3740 root &= PT64_BASE_ADDR_MASK;
3741 sp = to_shadow_page(root);
3742 mmu_sync_children(vcpu, sp, true);
3743 }
3744 }
3745
3746 write_unlock(&vcpu->kvm->mmu_lock);
3747 }
3748
kvm_mmu_sync_prev_roots(struct kvm_vcpu * vcpu)3749 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu)
3750 {
3751 unsigned long roots_to_free = 0;
3752 int i;
3753
3754 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3755 if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa))
3756 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3757
3758 /* sync prev_roots by simply freeing them */
3759 kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free);
3760 }
3761
nonpaging_gva_to_gpa(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,gpa_t vaddr,u64 access,struct x86_exception * exception)3762 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3763 gpa_t vaddr, u64 access,
3764 struct x86_exception *exception)
3765 {
3766 if (exception)
3767 exception->error_code = 0;
3768 return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception);
3769 }
3770
mmio_info_in_cache(struct kvm_vcpu * vcpu,u64 addr,bool direct)3771 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3772 {
3773 /*
3774 * A nested guest cannot use the MMIO cache if it is using nested
3775 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3776 */
3777 if (mmu_is_nested(vcpu))
3778 return false;
3779
3780 if (direct)
3781 return vcpu_match_mmio_gpa(vcpu, addr);
3782
3783 return vcpu_match_mmio_gva(vcpu, addr);
3784 }
3785
3786 /*
3787 * Return the level of the lowest level SPTE added to sptes.
3788 * That SPTE may be non-present.
3789 *
3790 * Must be called between walk_shadow_page_lockless_{begin,end}.
3791 */
get_walk(struct kvm_vcpu * vcpu,u64 addr,u64 * sptes,int * root_level)3792 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3793 {
3794 struct kvm_shadow_walk_iterator iterator;
3795 int leaf = -1;
3796 u64 spte;
3797
3798 for (shadow_walk_init(&iterator, vcpu, addr),
3799 *root_level = iterator.level;
3800 shadow_walk_okay(&iterator);
3801 __shadow_walk_next(&iterator, spte)) {
3802 leaf = iterator.level;
3803 spte = mmu_spte_get_lockless(iterator.sptep);
3804
3805 sptes[leaf] = spte;
3806 }
3807
3808 return leaf;
3809 }
3810
3811 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
get_mmio_spte(struct kvm_vcpu * vcpu,u64 addr,u64 * sptep)3812 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3813 {
3814 u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3815 struct rsvd_bits_validate *rsvd_check;
3816 int root, leaf, level;
3817 bool reserved = false;
3818
3819 walk_shadow_page_lockless_begin(vcpu);
3820
3821 if (is_tdp_mmu(vcpu->arch.mmu))
3822 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3823 else
3824 leaf = get_walk(vcpu, addr, sptes, &root);
3825
3826 walk_shadow_page_lockless_end(vcpu);
3827
3828 if (unlikely(leaf < 0)) {
3829 *sptep = 0ull;
3830 return reserved;
3831 }
3832
3833 *sptep = sptes[leaf];
3834
3835 /*
3836 * Skip reserved bits checks on the terminal leaf if it's not a valid
3837 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by
3838 * design, always have reserved bits set. The purpose of the checks is
3839 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
3840 */
3841 if (!is_shadow_present_pte(sptes[leaf]))
3842 leaf++;
3843
3844 rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3845
3846 for (level = root; level >= leaf; level--)
3847 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
3848
3849 if (reserved) {
3850 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3851 __func__, addr);
3852 for (level = root; level >= leaf; level--)
3853 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
3854 sptes[level], level,
3855 get_rsvd_bits(rsvd_check, sptes[level], level));
3856 }
3857
3858 return reserved;
3859 }
3860
handle_mmio_page_fault(struct kvm_vcpu * vcpu,u64 addr,bool direct)3861 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3862 {
3863 u64 spte;
3864 bool reserved;
3865
3866 if (mmio_info_in_cache(vcpu, addr, direct))
3867 return RET_PF_EMULATE;
3868
3869 reserved = get_mmio_spte(vcpu, addr, &spte);
3870 if (WARN_ON(reserved))
3871 return -EINVAL;
3872
3873 if (is_mmio_spte(spte)) {
3874 gfn_t gfn = get_mmio_spte_gfn(spte);
3875 unsigned int access = get_mmio_spte_access(spte);
3876
3877 if (!check_mmio_spte(vcpu, spte))
3878 return RET_PF_INVALID;
3879
3880 if (direct)
3881 addr = 0;
3882
3883 trace_handle_mmio_page_fault(addr, gfn, access);
3884 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3885 return RET_PF_EMULATE;
3886 }
3887
3888 /*
3889 * If the page table is zapped by other cpus, let CPU fault again on
3890 * the address.
3891 */
3892 return RET_PF_RETRY;
3893 }
3894
page_fault_handle_page_track(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)3895 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3896 struct kvm_page_fault *fault)
3897 {
3898 if (unlikely(fault->rsvd))
3899 return false;
3900
3901 if (!fault->present || !fault->write)
3902 return false;
3903
3904 /*
3905 * guest is writing the page which is write tracked which can
3906 * not be fixed by page fault handler.
3907 */
3908 if (kvm_slot_page_track_is_active(vcpu->kvm, fault->slot, fault->gfn, KVM_PAGE_TRACK_WRITE))
3909 return true;
3910
3911 return false;
3912 }
3913
shadow_page_table_clear_flood(struct kvm_vcpu * vcpu,gva_t addr)3914 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3915 {
3916 struct kvm_shadow_walk_iterator iterator;
3917 u64 spte;
3918
3919 walk_shadow_page_lockless_begin(vcpu);
3920 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3921 clear_sp_write_flooding_count(iterator.sptep);
3922 walk_shadow_page_lockless_end(vcpu);
3923 }
3924
alloc_apf_token(struct kvm_vcpu * vcpu)3925 static u32 alloc_apf_token(struct kvm_vcpu *vcpu)
3926 {
3927 /* make sure the token value is not 0 */
3928 u32 id = vcpu->arch.apf.id;
3929
3930 if (id << 12 == 0)
3931 vcpu->arch.apf.id = 1;
3932
3933 return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3934 }
3935
kvm_arch_setup_async_pf(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,gfn_t gfn)3936 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3937 gfn_t gfn)
3938 {
3939 struct kvm_arch_async_pf arch;
3940
3941 arch.token = alloc_apf_token(vcpu);
3942 arch.gfn = gfn;
3943 arch.direct_map = vcpu->arch.mmu->root_role.direct;
3944 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3945
3946 return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3947 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3948 }
3949
kvm_arch_async_page_ready(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)3950 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
3951 {
3952 int r;
3953
3954 if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) ||
3955 work->wakeup_all)
3956 return;
3957
3958 r = kvm_mmu_reload(vcpu);
3959 if (unlikely(r))
3960 return;
3961
3962 if (!vcpu->arch.mmu->root_role.direct &&
3963 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
3964 return;
3965
3966 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
3967 }
3968
kvm_faultin_pfn(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)3969 static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3970 {
3971 struct kvm_memory_slot *slot = fault->slot;
3972 bool async;
3973
3974 /*
3975 * Retry the page fault if the gfn hit a memslot that is being deleted
3976 * or moved. This ensures any existing SPTEs for the old memslot will
3977 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
3978 */
3979 if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3980 return RET_PF_RETRY;
3981
3982 if (!kvm_is_visible_memslot(slot)) {
3983 /* Don't expose private memslots to L2. */
3984 if (is_guest_mode(vcpu)) {
3985 fault->slot = NULL;
3986 fault->pfn = KVM_PFN_NOSLOT;
3987 fault->map_writable = false;
3988 return RET_PF_CONTINUE;
3989 }
3990 /*
3991 * If the APIC access page exists but is disabled, go directly
3992 * to emulation without caching the MMIO access or creating a
3993 * MMIO SPTE. That way the cache doesn't need to be purged
3994 * when the AVIC is re-enabled.
3995 */
3996 if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT &&
3997 !kvm_apicv_activated(vcpu->kvm))
3998 return RET_PF_EMULATE;
3999 }
4000
4001 async = false;
4002 fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, &async,
4003 fault->write, &fault->map_writable,
4004 &fault->hva);
4005 if (!async)
4006 return RET_PF_CONTINUE; /* *pfn has correct page already */
4007
4008 if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) {
4009 trace_kvm_try_async_get_page(fault->addr, fault->gfn);
4010 if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) {
4011 trace_kvm_async_pf_doublefault(fault->addr, fault->gfn);
4012 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4013 return RET_PF_RETRY;
4014 } else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn)) {
4015 return RET_PF_RETRY;
4016 }
4017 }
4018
4019 fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, NULL,
4020 fault->write, &fault->map_writable,
4021 &fault->hva);
4022 return RET_PF_CONTINUE;
4023 }
4024
4025 /*
4026 * Returns true if the page fault is stale and needs to be retried, i.e. if the
4027 * root was invalidated by a memslot update or a relevant mmu_notifier fired.
4028 */
is_page_fault_stale(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault,int mmu_seq)4029 static bool is_page_fault_stale(struct kvm_vcpu *vcpu,
4030 struct kvm_page_fault *fault, int mmu_seq)
4031 {
4032 struct kvm_mmu_page *sp = to_shadow_page(vcpu->arch.mmu->root.hpa);
4033
4034 /* Special roots, e.g. pae_root, are not backed by shadow pages. */
4035 if (sp && is_obsolete_sp(vcpu->kvm, sp))
4036 return true;
4037
4038 /*
4039 * Roots without an associated shadow page are considered invalid if
4040 * there is a pending request to free obsolete roots. The request is
4041 * only a hint that the current root _may_ be obsolete and needs to be
4042 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a
4043 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs
4044 * to reload even if no vCPU is actively using the root.
4045 */
4046 if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
4047 return true;
4048
4049 return fault->slot &&
4050 mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, fault->hva);
4051 }
4052
direct_page_fault(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4053 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4054 {
4055 bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
4056
4057 unsigned long mmu_seq;
4058 int r;
4059
4060 fault->gfn = fault->addr >> PAGE_SHIFT;
4061 fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn);
4062
4063 if (page_fault_handle_page_track(vcpu, fault))
4064 return RET_PF_EMULATE;
4065
4066 r = fast_page_fault(vcpu, fault);
4067 if (r != RET_PF_INVALID)
4068 return r;
4069
4070 r = mmu_topup_memory_caches(vcpu, false);
4071 if (r)
4072 return r;
4073
4074 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4075 smp_rmb();
4076
4077 r = kvm_faultin_pfn(vcpu, fault);
4078 if (r != RET_PF_CONTINUE)
4079 return r;
4080
4081 r = handle_abnormal_pfn(vcpu, fault, ACC_ALL);
4082 if (r != RET_PF_CONTINUE)
4083 return r;
4084
4085 r = RET_PF_RETRY;
4086
4087 if (is_tdp_mmu_fault)
4088 read_lock(&vcpu->kvm->mmu_lock);
4089 else
4090 write_lock(&vcpu->kvm->mmu_lock);
4091
4092 if (is_page_fault_stale(vcpu, fault, mmu_seq))
4093 goto out_unlock;
4094
4095 r = make_mmu_pages_available(vcpu);
4096 if (r)
4097 goto out_unlock;
4098
4099 if (is_tdp_mmu_fault)
4100 r = kvm_tdp_mmu_map(vcpu, fault);
4101 else
4102 r = __direct_map(vcpu, fault);
4103
4104 out_unlock:
4105 if (is_tdp_mmu_fault)
4106 read_unlock(&vcpu->kvm->mmu_lock);
4107 else
4108 write_unlock(&vcpu->kvm->mmu_lock);
4109 kvm_release_pfn_clean(fault->pfn);
4110 return r;
4111 }
4112
nonpaging_page_fault(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4113 static int nonpaging_page_fault(struct kvm_vcpu *vcpu,
4114 struct kvm_page_fault *fault)
4115 {
4116 pgprintk("%s: gva %lx error %x\n", __func__, fault->addr, fault->error_code);
4117
4118 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4119 fault->max_level = PG_LEVEL_2M;
4120 return direct_page_fault(vcpu, fault);
4121 }
4122
kvm_handle_page_fault(struct kvm_vcpu * vcpu,u64 error_code,u64 fault_address,char * insn,int insn_len)4123 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4124 u64 fault_address, char *insn, int insn_len)
4125 {
4126 int r = 1;
4127 u32 flags = vcpu->arch.apf.host_apf_flags;
4128
4129 #ifndef CONFIG_X86_64
4130 /* A 64-bit CR2 should be impossible on 32-bit KVM. */
4131 if (WARN_ON_ONCE(fault_address >> 32))
4132 return -EFAULT;
4133 #endif
4134
4135 vcpu->arch.l1tf_flush_l1d = true;
4136 if (!flags) {
4137 trace_kvm_page_fault(fault_address, error_code);
4138
4139 if (kvm_event_needs_reinjection(vcpu))
4140 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4141 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4142 insn_len);
4143 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4144 vcpu->arch.apf.host_apf_flags = 0;
4145 local_irq_disable();
4146 kvm_async_pf_task_wait_schedule(fault_address);
4147 local_irq_enable();
4148 } else {
4149 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4150 }
4151
4152 return r;
4153 }
4154 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4155
kvm_tdp_page_fault(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)4156 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4157 {
4158 while (fault->max_level > PG_LEVEL_4K) {
4159 int page_num = KVM_PAGES_PER_HPAGE(fault->max_level);
4160 gfn_t base = (fault->addr >> PAGE_SHIFT) & ~(page_num - 1);
4161
4162 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
4163 break;
4164
4165 --fault->max_level;
4166 }
4167
4168 return direct_page_fault(vcpu, fault);
4169 }
4170
nonpaging_init_context(struct kvm_mmu * context)4171 static void nonpaging_init_context(struct kvm_mmu *context)
4172 {
4173 context->page_fault = nonpaging_page_fault;
4174 context->gva_to_gpa = nonpaging_gva_to_gpa;
4175 context->sync_page = nonpaging_sync_page;
4176 context->invlpg = NULL;
4177 }
4178
is_root_usable(struct kvm_mmu_root_info * root,gpa_t pgd,union kvm_mmu_page_role role)4179 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4180 union kvm_mmu_page_role role)
4181 {
4182 return (role.direct || pgd == root->pgd) &&
4183 VALID_PAGE(root->hpa) &&
4184 role.word == to_shadow_page(root->hpa)->role.word;
4185 }
4186
4187 /*
4188 * Find out if a previously cached root matching the new pgd/role is available,
4189 * and insert the current root as the MRU in the cache.
4190 * If a matching root is found, it is assigned to kvm_mmu->root and
4191 * true is returned.
4192 * If no match is found, kvm_mmu->root is left invalid, the LRU root is
4193 * evicted to make room for the current root, and false is returned.
4194 */
cached_root_find_and_keep_current(struct kvm * kvm,struct kvm_mmu * mmu,gpa_t new_pgd,union kvm_mmu_page_role new_role)4195 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu,
4196 gpa_t new_pgd,
4197 union kvm_mmu_page_role new_role)
4198 {
4199 uint i;
4200
4201 if (is_root_usable(&mmu->root, new_pgd, new_role))
4202 return true;
4203
4204 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4205 /*
4206 * The swaps end up rotating the cache like this:
4207 * C 0 1 2 3 (on entry to the function)
4208 * 0 C 1 2 3
4209 * 1 C 0 2 3
4210 * 2 C 0 1 3
4211 * 3 C 0 1 2 (on exit from the loop)
4212 */
4213 swap(mmu->root, mmu->prev_roots[i]);
4214 if (is_root_usable(&mmu->root, new_pgd, new_role))
4215 return true;
4216 }
4217
4218 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
4219 return false;
4220 }
4221
4222 /*
4223 * Find out if a previously cached root matching the new pgd/role is available.
4224 * On entry, mmu->root is invalid.
4225 * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry
4226 * of the cache becomes invalid, and true is returned.
4227 * If no match is found, kvm_mmu->root is left invalid and false is returned.
4228 */
cached_root_find_without_current(struct kvm * kvm,struct kvm_mmu * mmu,gpa_t new_pgd,union kvm_mmu_page_role new_role)4229 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu,
4230 gpa_t new_pgd,
4231 union kvm_mmu_page_role new_role)
4232 {
4233 uint i;
4234
4235 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4236 if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role))
4237 goto hit;
4238
4239 return false;
4240
4241 hit:
4242 swap(mmu->root, mmu->prev_roots[i]);
4243 /* Bubble up the remaining roots. */
4244 for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++)
4245 mmu->prev_roots[i] = mmu->prev_roots[i + 1];
4246 mmu->prev_roots[i].hpa = INVALID_PAGE;
4247 return true;
4248 }
4249
fast_pgd_switch(struct kvm * kvm,struct kvm_mmu * mmu,gpa_t new_pgd,union kvm_mmu_page_role new_role)4250 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu,
4251 gpa_t new_pgd, union kvm_mmu_page_role new_role)
4252 {
4253 /*
4254 * For now, limit the caching to 64-bit hosts+VMs in order to avoid
4255 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4256 * later if necessary.
4257 */
4258 if (VALID_PAGE(mmu->root.hpa) && !to_shadow_page(mmu->root.hpa))
4259 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
4260
4261 if (VALID_PAGE(mmu->root.hpa))
4262 return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role);
4263 else
4264 return cached_root_find_without_current(kvm, mmu, new_pgd, new_role);
4265 }
4266
kvm_mmu_new_pgd(struct kvm_vcpu * vcpu,gpa_t new_pgd)4267 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4268 {
4269 struct kvm_mmu *mmu = vcpu->arch.mmu;
4270 union kvm_mmu_page_role new_role = mmu->root_role;
4271
4272 if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) {
4273 /* kvm_mmu_ensure_valid_pgd will set up a new root. */
4274 return;
4275 }
4276
4277 /*
4278 * It's possible that the cached previous root page is obsolete because
4279 * of a change in the MMU generation number. However, changing the
4280 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS,
4281 * which will free the root set here and allocate a new one.
4282 */
4283 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4284
4285 if (force_flush_and_sync_on_reuse) {
4286 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4287 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4288 }
4289
4290 /*
4291 * The last MMIO access's GVA and GPA are cached in the VCPU. When
4292 * switching to a new CR3, that GVA->GPA mapping may no longer be
4293 * valid. So clear any cached MMIO info even when we don't need to sync
4294 * the shadow page tables.
4295 */
4296 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4297
4298 /*
4299 * If this is a direct root page, it doesn't have a write flooding
4300 * count. Otherwise, clear the write flooding count.
4301 */
4302 if (!new_role.direct)
4303 __clear_sp_write_flooding_count(
4304 to_shadow_page(vcpu->arch.mmu->root.hpa));
4305 }
4306 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4307
get_cr3(struct kvm_vcpu * vcpu)4308 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4309 {
4310 return kvm_read_cr3(vcpu);
4311 }
4312
sync_mmio_spte(struct kvm_vcpu * vcpu,u64 * sptep,gfn_t gfn,unsigned int access)4313 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4314 unsigned int access)
4315 {
4316 if (unlikely(is_mmio_spte(*sptep))) {
4317 if (gfn != get_mmio_spte_gfn(*sptep)) {
4318 mmu_spte_clear_no_track(sptep);
4319 return true;
4320 }
4321
4322 mark_mmio_spte(vcpu, sptep, gfn, access);
4323 return true;
4324 }
4325
4326 return false;
4327 }
4328
4329 #define PTTYPE_EPT 18 /* arbitrary */
4330 #define PTTYPE PTTYPE_EPT
4331 #include "paging_tmpl.h"
4332 #undef PTTYPE
4333
4334 #define PTTYPE 64
4335 #include "paging_tmpl.h"
4336 #undef PTTYPE
4337
4338 #define PTTYPE 32
4339 #include "paging_tmpl.h"
4340 #undef PTTYPE
4341
4342 static void
__reset_rsvds_bits_mask(struct rsvd_bits_validate * rsvd_check,u64 pa_bits_rsvd,int level,bool nx,bool gbpages,bool pse,bool amd)4343 __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4344 u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4345 bool pse, bool amd)
4346 {
4347 u64 gbpages_bit_rsvd = 0;
4348 u64 nonleaf_bit8_rsvd = 0;
4349 u64 high_bits_rsvd;
4350
4351 rsvd_check->bad_mt_xwr = 0;
4352
4353 if (!gbpages)
4354 gbpages_bit_rsvd = rsvd_bits(7, 7);
4355
4356 if (level == PT32E_ROOT_LEVEL)
4357 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4358 else
4359 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4360
4361 /* Note, NX doesn't exist in PDPTEs, this is handled below. */
4362 if (!nx)
4363 high_bits_rsvd |= rsvd_bits(63, 63);
4364
4365 /*
4366 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4367 * leaf entries) on AMD CPUs only.
4368 */
4369 if (amd)
4370 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4371
4372 switch (level) {
4373 case PT32_ROOT_LEVEL:
4374 /* no rsvd bits for 2 level 4K page table entries */
4375 rsvd_check->rsvd_bits_mask[0][1] = 0;
4376 rsvd_check->rsvd_bits_mask[0][0] = 0;
4377 rsvd_check->rsvd_bits_mask[1][0] =
4378 rsvd_check->rsvd_bits_mask[0][0];
4379
4380 if (!pse) {
4381 rsvd_check->rsvd_bits_mask[1][1] = 0;
4382 break;
4383 }
4384
4385 if (is_cpuid_PSE36())
4386 /* 36bits PSE 4MB page */
4387 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4388 else
4389 /* 32 bits PSE 4MB page */
4390 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4391 break;
4392 case PT32E_ROOT_LEVEL:
4393 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4394 high_bits_rsvd |
4395 rsvd_bits(5, 8) |
4396 rsvd_bits(1, 2); /* PDPTE */
4397 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */
4398 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */
4399 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4400 rsvd_bits(13, 20); /* large page */
4401 rsvd_check->rsvd_bits_mask[1][0] =
4402 rsvd_check->rsvd_bits_mask[0][0];
4403 break;
4404 case PT64_ROOT_5LEVEL:
4405 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4406 nonleaf_bit8_rsvd |
4407 rsvd_bits(7, 7);
4408 rsvd_check->rsvd_bits_mask[1][4] =
4409 rsvd_check->rsvd_bits_mask[0][4];
4410 fallthrough;
4411 case PT64_ROOT_4LEVEL:
4412 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4413 nonleaf_bit8_rsvd |
4414 rsvd_bits(7, 7);
4415 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4416 gbpages_bit_rsvd;
4417 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4418 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4419 rsvd_check->rsvd_bits_mask[1][3] =
4420 rsvd_check->rsvd_bits_mask[0][3];
4421 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4422 gbpages_bit_rsvd |
4423 rsvd_bits(13, 29);
4424 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4425 rsvd_bits(13, 20); /* large page */
4426 rsvd_check->rsvd_bits_mask[1][0] =
4427 rsvd_check->rsvd_bits_mask[0][0];
4428 break;
4429 }
4430 }
4431
guest_can_use_gbpages(struct kvm_vcpu * vcpu)4432 static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu)
4433 {
4434 /*
4435 * If TDP is enabled, let the guest use GBPAGES if they're supported in
4436 * hardware. The hardware page walker doesn't let KVM disable GBPAGES,
4437 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
4438 * walk for performance and complexity reasons. Not to mention KVM
4439 * _can't_ solve the problem because GVA->GPA walks aren't visible to
4440 * KVM once a TDP translation is installed. Mimic hardware behavior so
4441 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
4442 */
4443 return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
4444 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
4445 }
4446
reset_guest_rsvds_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4447 static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4448 struct kvm_mmu *context)
4449 {
4450 __reset_rsvds_bits_mask(&context->guest_rsvd_check,
4451 vcpu->arch.reserved_gpa_bits,
4452 context->cpu_role.base.level, is_efer_nx(context),
4453 guest_can_use_gbpages(vcpu),
4454 is_cr4_pse(context),
4455 guest_cpuid_is_amd_or_hygon(vcpu));
4456 }
4457
4458 static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate * rsvd_check,u64 pa_bits_rsvd,bool execonly,int huge_page_level)4459 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4460 u64 pa_bits_rsvd, bool execonly, int huge_page_level)
4461 {
4462 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4463 u64 large_1g_rsvd = 0, large_2m_rsvd = 0;
4464 u64 bad_mt_xwr;
4465
4466 if (huge_page_level < PG_LEVEL_1G)
4467 large_1g_rsvd = rsvd_bits(7, 7);
4468 if (huge_page_level < PG_LEVEL_2M)
4469 large_2m_rsvd = rsvd_bits(7, 7);
4470
4471 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4472 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4473 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd;
4474 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd;
4475 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4476
4477 /* large page */
4478 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4479 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4480 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd;
4481 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd;
4482 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4483
4484 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4485 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4486 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4487 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4488 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4489 if (!execonly) {
4490 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4491 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4492 }
4493 rsvd_check->bad_mt_xwr = bad_mt_xwr;
4494 }
4495
reset_rsvds_bits_mask_ept(struct kvm_vcpu * vcpu,struct kvm_mmu * context,bool execonly,int huge_page_level)4496 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4497 struct kvm_mmu *context, bool execonly, int huge_page_level)
4498 {
4499 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4500 vcpu->arch.reserved_gpa_bits, execonly,
4501 huge_page_level);
4502 }
4503
reserved_hpa_bits(void)4504 static inline u64 reserved_hpa_bits(void)
4505 {
4506 return rsvd_bits(shadow_phys_bits, 63);
4507 }
4508
4509 /*
4510 * the page table on host is the shadow page table for the page
4511 * table in guest or amd nested guest, its mmu features completely
4512 * follow the features in guest.
4513 */
reset_shadow_zero_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4514 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4515 struct kvm_mmu *context)
4516 {
4517 /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
4518 bool is_amd = true;
4519 /* KVM doesn't use 2-level page tables for the shadow MMU. */
4520 bool is_pse = false;
4521 struct rsvd_bits_validate *shadow_zero_check;
4522 int i;
4523
4524 WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL);
4525
4526 shadow_zero_check = &context->shadow_zero_check;
4527 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4528 context->root_role.level,
4529 context->root_role.efer_nx,
4530 guest_can_use_gbpages(vcpu), is_pse, is_amd);
4531
4532 if (!shadow_me_mask)
4533 return;
4534
4535 for (i = context->root_role.level; --i >= 0;) {
4536 /*
4537 * So far shadow_me_value is a constant during KVM's life
4538 * time. Bits in shadow_me_value are allowed to be set.
4539 * Bits in shadow_me_mask but not in shadow_me_value are
4540 * not allowed to be set.
4541 */
4542 shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask;
4543 shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask;
4544 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value;
4545 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value;
4546 }
4547
4548 }
4549
boot_cpu_is_amd(void)4550 static inline bool boot_cpu_is_amd(void)
4551 {
4552 WARN_ON_ONCE(!tdp_enabled);
4553 return shadow_x_mask == 0;
4554 }
4555
4556 /*
4557 * the direct page table on host, use as much mmu features as
4558 * possible, however, kvm currently does not do execution-protection.
4559 */
4560 static void
reset_tdp_shadow_zero_bits_mask(struct kvm_mmu * context)4561 reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context)
4562 {
4563 struct rsvd_bits_validate *shadow_zero_check;
4564 int i;
4565
4566 shadow_zero_check = &context->shadow_zero_check;
4567
4568 if (boot_cpu_is_amd())
4569 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4570 context->root_role.level, true,
4571 boot_cpu_has(X86_FEATURE_GBPAGES),
4572 false, true);
4573 else
4574 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4575 reserved_hpa_bits(), false,
4576 max_huge_page_level);
4577
4578 if (!shadow_me_mask)
4579 return;
4580
4581 for (i = context->root_role.level; --i >= 0;) {
4582 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4583 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4584 }
4585 }
4586
4587 /*
4588 * as the comments in reset_shadow_zero_bits_mask() except it
4589 * is the shadow page table for intel nested guest.
4590 */
4591 static void
reset_ept_shadow_zero_bits_mask(struct kvm_mmu * context,bool execonly)4592 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly)
4593 {
4594 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4595 reserved_hpa_bits(), execonly,
4596 max_huge_page_level);
4597 }
4598
4599 #define BYTE_MASK(access) \
4600 ((1 & (access) ? 2 : 0) | \
4601 (2 & (access) ? 4 : 0) | \
4602 (3 & (access) ? 8 : 0) | \
4603 (4 & (access) ? 16 : 0) | \
4604 (5 & (access) ? 32 : 0) | \
4605 (6 & (access) ? 64 : 0) | \
4606 (7 & (access) ? 128 : 0))
4607
4608
update_permission_bitmask(struct kvm_mmu * mmu,bool ept)4609 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
4610 {
4611 unsigned byte;
4612
4613 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4614 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4615 const u8 u = BYTE_MASK(ACC_USER_MASK);
4616
4617 bool cr4_smep = is_cr4_smep(mmu);
4618 bool cr4_smap = is_cr4_smap(mmu);
4619 bool cr0_wp = is_cr0_wp(mmu);
4620 bool efer_nx = is_efer_nx(mmu);
4621
4622 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4623 unsigned pfec = byte << 1;
4624
4625 /*
4626 * Each "*f" variable has a 1 bit for each UWX value
4627 * that causes a fault with the given PFEC.
4628 */
4629
4630 /* Faults from writes to non-writable pages */
4631 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4632 /* Faults from user mode accesses to supervisor pages */
4633 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4634 /* Faults from fetches of non-executable pages*/
4635 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4636 /* Faults from kernel mode fetches of user pages */
4637 u8 smepf = 0;
4638 /* Faults from kernel mode accesses of user pages */
4639 u8 smapf = 0;
4640
4641 if (!ept) {
4642 /* Faults from kernel mode accesses to user pages */
4643 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4644
4645 /* Not really needed: !nx will cause pte.nx to fault */
4646 if (!efer_nx)
4647 ff = 0;
4648
4649 /* Allow supervisor writes if !cr0.wp */
4650 if (!cr0_wp)
4651 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4652
4653 /* Disallow supervisor fetches of user code if cr4.smep */
4654 if (cr4_smep)
4655 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4656
4657 /*
4658 * SMAP:kernel-mode data accesses from user-mode
4659 * mappings should fault. A fault is considered
4660 * as a SMAP violation if all of the following
4661 * conditions are true:
4662 * - X86_CR4_SMAP is set in CR4
4663 * - A user page is accessed
4664 * - The access is not a fetch
4665 * - The access is supervisor mode
4666 * - If implicit supervisor access or X86_EFLAGS_AC is clear
4667 *
4668 * Here, we cover the first four conditions.
4669 * The fifth is computed dynamically in permission_fault();
4670 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4671 * *not* subject to SMAP restrictions.
4672 */
4673 if (cr4_smap)
4674 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4675 }
4676
4677 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4678 }
4679 }
4680
4681 /*
4682 * PKU is an additional mechanism by which the paging controls access to
4683 * user-mode addresses based on the value in the PKRU register. Protection
4684 * key violations are reported through a bit in the page fault error code.
4685 * Unlike other bits of the error code, the PK bit is not known at the
4686 * call site of e.g. gva_to_gpa; it must be computed directly in
4687 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4688 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4689 *
4690 * In particular the following conditions come from the error code, the
4691 * page tables and the machine state:
4692 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4693 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4694 * - PK is always zero if U=0 in the page tables
4695 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4696 *
4697 * The PKRU bitmask caches the result of these four conditions. The error
4698 * code (minus the P bit) and the page table's U bit form an index into the
4699 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4700 * with the two bits of the PKRU register corresponding to the protection key.
4701 * For the first three conditions above the bits will be 00, thus masking
4702 * away both AD and WD. For all reads or if the last condition holds, WD
4703 * only will be masked away.
4704 */
update_pkru_bitmask(struct kvm_mmu * mmu)4705 static void update_pkru_bitmask(struct kvm_mmu *mmu)
4706 {
4707 unsigned bit;
4708 bool wp;
4709
4710 mmu->pkru_mask = 0;
4711
4712 if (!is_cr4_pke(mmu))
4713 return;
4714
4715 wp = is_cr0_wp(mmu);
4716
4717 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4718 unsigned pfec, pkey_bits;
4719 bool check_pkey, check_write, ff, uf, wf, pte_user;
4720
4721 pfec = bit << 1;
4722 ff = pfec & PFERR_FETCH_MASK;
4723 uf = pfec & PFERR_USER_MASK;
4724 wf = pfec & PFERR_WRITE_MASK;
4725
4726 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4727 pte_user = pfec & PFERR_RSVD_MASK;
4728
4729 /*
4730 * Only need to check the access which is not an
4731 * instruction fetch and is to a user page.
4732 */
4733 check_pkey = (!ff && pte_user);
4734 /*
4735 * write access is controlled by PKRU if it is a
4736 * user access or CR0.WP = 1.
4737 */
4738 check_write = check_pkey && wf && (uf || wp);
4739
4740 /* PKRU.AD stops both read and write access. */
4741 pkey_bits = !!check_pkey;
4742 /* PKRU.WD stops write access. */
4743 pkey_bits |= (!!check_write) << 1;
4744
4745 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4746 }
4747 }
4748
reset_guest_paging_metadata(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)4749 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
4750 struct kvm_mmu *mmu)
4751 {
4752 if (!is_cr0_pg(mmu))
4753 return;
4754
4755 reset_guest_rsvds_bits_mask(vcpu, mmu);
4756 update_permission_bitmask(mmu, false);
4757 update_pkru_bitmask(mmu);
4758 }
4759
paging64_init_context(struct kvm_mmu * context)4760 static void paging64_init_context(struct kvm_mmu *context)
4761 {
4762 context->page_fault = paging64_page_fault;
4763 context->gva_to_gpa = paging64_gva_to_gpa;
4764 context->sync_page = paging64_sync_page;
4765 context->invlpg = paging64_invlpg;
4766 }
4767
paging32_init_context(struct kvm_mmu * context)4768 static void paging32_init_context(struct kvm_mmu *context)
4769 {
4770 context->page_fault = paging32_page_fault;
4771 context->gva_to_gpa = paging32_gva_to_gpa;
4772 context->sync_page = paging32_sync_page;
4773 context->invlpg = paging32_invlpg;
4774 }
4775
4776 static union kvm_cpu_role
kvm_calc_cpu_role(struct kvm_vcpu * vcpu,const struct kvm_mmu_role_regs * regs)4777 kvm_calc_cpu_role(struct kvm_vcpu *vcpu, const struct kvm_mmu_role_regs *regs)
4778 {
4779 union kvm_cpu_role role = {0};
4780
4781 role.base.access = ACC_ALL;
4782 role.base.smm = is_smm(vcpu);
4783 role.base.guest_mode = is_guest_mode(vcpu);
4784 role.ext.valid = 1;
4785
4786 if (!____is_cr0_pg(regs)) {
4787 role.base.direct = 1;
4788 return role;
4789 }
4790
4791 role.base.efer_nx = ____is_efer_nx(regs);
4792 role.base.cr0_wp = ____is_cr0_wp(regs);
4793 role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs);
4794 role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs);
4795 role.base.has_4_byte_gpte = !____is_cr4_pae(regs);
4796
4797 if (____is_efer_lma(regs))
4798 role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL
4799 : PT64_ROOT_4LEVEL;
4800 else if (____is_cr4_pae(regs))
4801 role.base.level = PT32E_ROOT_LEVEL;
4802 else
4803 role.base.level = PT32_ROOT_LEVEL;
4804
4805 role.ext.cr4_smep = ____is_cr4_smep(regs);
4806 role.ext.cr4_smap = ____is_cr4_smap(regs);
4807 role.ext.cr4_pse = ____is_cr4_pse(regs);
4808
4809 /* PKEY and LA57 are active iff long mode is active. */
4810 role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
4811 role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
4812 role.ext.efer_lma = ____is_efer_lma(regs);
4813 return role;
4814 }
4815
kvm_mmu_get_tdp_level(struct kvm_vcpu * vcpu)4816 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4817 {
4818 /* tdp_root_level is architecture forced level, use it if nonzero */
4819 if (tdp_root_level)
4820 return tdp_root_level;
4821
4822 /* Use 5-level TDP if and only if it's useful/necessary. */
4823 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4824 return 4;
4825
4826 return max_tdp_level;
4827 }
4828
4829 static union kvm_mmu_page_role
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu * vcpu,union kvm_cpu_role cpu_role)4830 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
4831 union kvm_cpu_role cpu_role)
4832 {
4833 union kvm_mmu_page_role role = {0};
4834
4835 role.access = ACC_ALL;
4836 role.cr0_wp = true;
4837 role.efer_nx = true;
4838 role.smm = cpu_role.base.smm;
4839 role.guest_mode = cpu_role.base.guest_mode;
4840 role.ad_disabled = !kvm_ad_enabled();
4841 role.level = kvm_mmu_get_tdp_level(vcpu);
4842 role.direct = true;
4843 role.has_4_byte_gpte = false;
4844
4845 return role;
4846 }
4847
init_kvm_tdp_mmu(struct kvm_vcpu * vcpu,union kvm_cpu_role cpu_role)4848 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu,
4849 union kvm_cpu_role cpu_role)
4850 {
4851 struct kvm_mmu *context = &vcpu->arch.root_mmu;
4852 union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role);
4853
4854 if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
4855 root_role.word == context->root_role.word)
4856 return;
4857
4858 context->cpu_role.as_u64 = cpu_role.as_u64;
4859 context->root_role.word = root_role.word;
4860 context->page_fault = kvm_tdp_page_fault;
4861 context->sync_page = nonpaging_sync_page;
4862 context->invlpg = NULL;
4863 context->get_guest_pgd = get_cr3;
4864 context->get_pdptr = kvm_pdptr_read;
4865 context->inject_page_fault = kvm_inject_page_fault;
4866
4867 if (!is_cr0_pg(context))
4868 context->gva_to_gpa = nonpaging_gva_to_gpa;
4869 else if (is_cr4_pae(context))
4870 context->gva_to_gpa = paging64_gva_to_gpa;
4871 else
4872 context->gva_to_gpa = paging32_gva_to_gpa;
4873
4874 reset_guest_paging_metadata(vcpu, context);
4875 reset_tdp_shadow_zero_bits_mask(context);
4876 }
4877
shadow_mmu_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context,union kvm_cpu_role cpu_role,union kvm_mmu_page_role root_role)4878 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4879 union kvm_cpu_role cpu_role,
4880 union kvm_mmu_page_role root_role)
4881 {
4882 if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
4883 root_role.word == context->root_role.word)
4884 return;
4885
4886 context->cpu_role.as_u64 = cpu_role.as_u64;
4887 context->root_role.word = root_role.word;
4888
4889 if (!is_cr0_pg(context))
4890 nonpaging_init_context(context);
4891 else if (is_cr4_pae(context))
4892 paging64_init_context(context);
4893 else
4894 paging32_init_context(context);
4895
4896 reset_guest_paging_metadata(vcpu, context);
4897 reset_shadow_zero_bits_mask(vcpu, context);
4898 }
4899
kvm_init_shadow_mmu(struct kvm_vcpu * vcpu,union kvm_cpu_role cpu_role)4900 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
4901 union kvm_cpu_role cpu_role)
4902 {
4903 struct kvm_mmu *context = &vcpu->arch.root_mmu;
4904 union kvm_mmu_page_role root_role;
4905
4906 root_role = cpu_role.base;
4907
4908 /* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */
4909 root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL);
4910
4911 /*
4912 * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role.
4913 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
4914 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
4915 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
4916 * The iTLB multi-hit workaround can be toggled at any time, so assume
4917 * NX can be used by any non-nested shadow MMU to avoid having to reset
4918 * MMU contexts.
4919 */
4920 root_role.efer_nx = true;
4921
4922 shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
4923 }
4924
kvm_init_shadow_npt_mmu(struct kvm_vcpu * vcpu,unsigned long cr0,unsigned long cr4,u64 efer,gpa_t nested_cr3)4925 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
4926 unsigned long cr4, u64 efer, gpa_t nested_cr3)
4927 {
4928 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4929 struct kvm_mmu_role_regs regs = {
4930 .cr0 = cr0,
4931 .cr4 = cr4 & ~X86_CR4_PKE,
4932 .efer = efer,
4933 };
4934 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s);
4935 union kvm_mmu_page_role root_role;
4936
4937 /* NPT requires CR0.PG=1. */
4938 WARN_ON_ONCE(cpu_role.base.direct);
4939
4940 root_role = cpu_role.base;
4941 root_role.level = kvm_mmu_get_tdp_level(vcpu);
4942 if (root_role.level == PT64_ROOT_5LEVEL &&
4943 cpu_role.base.level == PT64_ROOT_4LEVEL)
4944 root_role.passthrough = 1;
4945
4946 shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
4947 kvm_mmu_new_pgd(vcpu, nested_cr3);
4948 }
4949 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4950
4951 static union kvm_cpu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu * vcpu,bool accessed_dirty,bool execonly,u8 level)4952 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4953 bool execonly, u8 level)
4954 {
4955 union kvm_cpu_role role = {0};
4956
4957 /*
4958 * KVM does not support SMM transfer monitors, and consequently does not
4959 * support the "entry to SMM" control either. role.base.smm is always 0.
4960 */
4961 WARN_ON_ONCE(is_smm(vcpu));
4962 role.base.level = level;
4963 role.base.has_4_byte_gpte = false;
4964 role.base.direct = false;
4965 role.base.ad_disabled = !accessed_dirty;
4966 role.base.guest_mode = true;
4967 role.base.access = ACC_ALL;
4968
4969 role.ext.word = 0;
4970 role.ext.execonly = execonly;
4971 role.ext.valid = 1;
4972
4973 return role;
4974 }
4975
kvm_init_shadow_ept_mmu(struct kvm_vcpu * vcpu,bool execonly,int huge_page_level,bool accessed_dirty,gpa_t new_eptp)4976 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4977 int huge_page_level, bool accessed_dirty,
4978 gpa_t new_eptp)
4979 {
4980 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4981 u8 level = vmx_eptp_page_walk_level(new_eptp);
4982 union kvm_cpu_role new_mode =
4983 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4984 execonly, level);
4985
4986 if (new_mode.as_u64 != context->cpu_role.as_u64) {
4987 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
4988 context->cpu_role.as_u64 = new_mode.as_u64;
4989 context->root_role.word = new_mode.base.word;
4990
4991 context->page_fault = ept_page_fault;
4992 context->gva_to_gpa = ept_gva_to_gpa;
4993 context->sync_page = ept_sync_page;
4994 context->invlpg = ept_invlpg;
4995
4996 update_permission_bitmask(context, true);
4997 context->pkru_mask = 0;
4998 reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level);
4999 reset_ept_shadow_zero_bits_mask(context, execonly);
5000 }
5001
5002 kvm_mmu_new_pgd(vcpu, new_eptp);
5003 }
5004 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5005
init_kvm_softmmu(struct kvm_vcpu * vcpu,union kvm_cpu_role cpu_role)5006 static void init_kvm_softmmu(struct kvm_vcpu *vcpu,
5007 union kvm_cpu_role cpu_role)
5008 {
5009 struct kvm_mmu *context = &vcpu->arch.root_mmu;
5010
5011 kvm_init_shadow_mmu(vcpu, cpu_role);
5012
5013 context->get_guest_pgd = get_cr3;
5014 context->get_pdptr = kvm_pdptr_read;
5015 context->inject_page_fault = kvm_inject_page_fault;
5016 }
5017
init_kvm_nested_mmu(struct kvm_vcpu * vcpu,union kvm_cpu_role new_mode)5018 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu,
5019 union kvm_cpu_role new_mode)
5020 {
5021 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5022
5023 if (new_mode.as_u64 == g_context->cpu_role.as_u64)
5024 return;
5025
5026 g_context->cpu_role.as_u64 = new_mode.as_u64;
5027 g_context->get_guest_pgd = get_cr3;
5028 g_context->get_pdptr = kvm_pdptr_read;
5029 g_context->inject_page_fault = kvm_inject_page_fault;
5030
5031 /*
5032 * L2 page tables are never shadowed, so there is no need to sync
5033 * SPTEs.
5034 */
5035 g_context->invlpg = NULL;
5036
5037 /*
5038 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5039 * L1's nested page tables (e.g. EPT12). The nested translation
5040 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5041 * L2's page tables as the first level of translation and L1's
5042 * nested page tables as the second level of translation. Basically
5043 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5044 */
5045 if (!is_paging(vcpu))
5046 g_context->gva_to_gpa = nonpaging_gva_to_gpa;
5047 else if (is_long_mode(vcpu))
5048 g_context->gva_to_gpa = paging64_gva_to_gpa;
5049 else if (is_pae(vcpu))
5050 g_context->gva_to_gpa = paging64_gva_to_gpa;
5051 else
5052 g_context->gva_to_gpa = paging32_gva_to_gpa;
5053
5054 reset_guest_paging_metadata(vcpu, g_context);
5055 }
5056
kvm_init_mmu(struct kvm_vcpu * vcpu)5057 void kvm_init_mmu(struct kvm_vcpu *vcpu)
5058 {
5059 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
5060 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s);
5061
5062 if (mmu_is_nested(vcpu))
5063 init_kvm_nested_mmu(vcpu, cpu_role);
5064 else if (tdp_enabled)
5065 init_kvm_tdp_mmu(vcpu, cpu_role);
5066 else
5067 init_kvm_softmmu(vcpu, cpu_role);
5068 }
5069 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5070
kvm_mmu_after_set_cpuid(struct kvm_vcpu * vcpu)5071 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
5072 {
5073 /*
5074 * Invalidate all MMU roles to force them to reinitialize as CPUID
5075 * information is factored into reserved bit calculations.
5076 *
5077 * Correctly handling multiple vCPU models with respect to paging and
5078 * physical address properties) in a single VM would require tracking
5079 * all relevant CPUID information in kvm_mmu_page_role. That is very
5080 * undesirable as it would increase the memory requirements for
5081 * gfn_track (see struct kvm_mmu_page_role comments). For now that
5082 * problem is swept under the rug; KVM's CPUID API is horrific and
5083 * it's all but impossible to solve it without introducing a new API.
5084 */
5085 vcpu->arch.root_mmu.root_role.word = 0;
5086 vcpu->arch.guest_mmu.root_role.word = 0;
5087 vcpu->arch.nested_mmu.root_role.word = 0;
5088 vcpu->arch.root_mmu.cpu_role.ext.valid = 0;
5089 vcpu->arch.guest_mmu.cpu_role.ext.valid = 0;
5090 vcpu->arch.nested_mmu.cpu_role.ext.valid = 0;
5091 kvm_mmu_reset_context(vcpu);
5092
5093 /*
5094 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in
5095 * kvm_arch_vcpu_ioctl().
5096 */
5097 KVM_BUG_ON(vcpu->arch.last_vmentry_cpu != -1, vcpu->kvm);
5098 }
5099
kvm_mmu_reset_context(struct kvm_vcpu * vcpu)5100 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5101 {
5102 kvm_mmu_unload(vcpu);
5103 kvm_init_mmu(vcpu);
5104 }
5105 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5106
kvm_mmu_load(struct kvm_vcpu * vcpu)5107 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5108 {
5109 int r;
5110
5111 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct);
5112 if (r)
5113 goto out;
5114 r = mmu_alloc_special_roots(vcpu);
5115 if (r)
5116 goto out;
5117 if (vcpu->arch.mmu->root_role.direct)
5118 r = mmu_alloc_direct_roots(vcpu);
5119 else
5120 r = mmu_alloc_shadow_roots(vcpu);
5121 if (r)
5122 goto out;
5123
5124 kvm_mmu_sync_roots(vcpu);
5125
5126 kvm_mmu_load_pgd(vcpu);
5127
5128 /*
5129 * Flush any TLB entries for the new root, the provenance of the root
5130 * is unknown. Even if KVM ensures there are no stale TLB entries
5131 * for a freed root, in theory another hypervisor could have left
5132 * stale entries. Flushing on alloc also allows KVM to skip the TLB
5133 * flush when freeing a root (see kvm_tdp_mmu_put_root()).
5134 */
5135 static_call(kvm_x86_flush_tlb_current)(vcpu);
5136 out:
5137 return r;
5138 }
5139
kvm_mmu_unload(struct kvm_vcpu * vcpu)5140 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5141 {
5142 struct kvm *kvm = vcpu->kvm;
5143
5144 kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5145 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root.hpa));
5146 kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5147 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa));
5148 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
5149 }
5150
is_obsolete_root(struct kvm * kvm,hpa_t root_hpa)5151 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa)
5152 {
5153 struct kvm_mmu_page *sp;
5154
5155 if (!VALID_PAGE(root_hpa))
5156 return false;
5157
5158 /*
5159 * When freeing obsolete roots, treat roots as obsolete if they don't
5160 * have an associated shadow page. This does mean KVM will get false
5161 * positives and free roots that don't strictly need to be freed, but
5162 * such false positives are relatively rare:
5163 *
5164 * (a) only PAE paging and nested NPT has roots without shadow pages
5165 * (b) remote reloads due to a memslot update obsoletes _all_ roots
5166 * (c) KVM doesn't track previous roots for PAE paging, and the guest
5167 * is unlikely to zap an in-use PGD.
5168 */
5169 sp = to_shadow_page(root_hpa);
5170 return !sp || is_obsolete_sp(kvm, sp);
5171 }
5172
__kvm_mmu_free_obsolete_roots(struct kvm * kvm,struct kvm_mmu * mmu)5173 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu)
5174 {
5175 unsigned long roots_to_free = 0;
5176 int i;
5177
5178 if (is_obsolete_root(kvm, mmu->root.hpa))
5179 roots_to_free |= KVM_MMU_ROOT_CURRENT;
5180
5181 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5182 if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa))
5183 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5184 }
5185
5186 if (roots_to_free)
5187 kvm_mmu_free_roots(kvm, mmu, roots_to_free);
5188 }
5189
kvm_mmu_free_obsolete_roots(struct kvm_vcpu * vcpu)5190 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu)
5191 {
5192 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu);
5193 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu);
5194 }
5195
need_remote_flush(u64 old,u64 new)5196 static bool need_remote_flush(u64 old, u64 new)
5197 {
5198 if (!is_shadow_present_pte(old))
5199 return false;
5200 if (!is_shadow_present_pte(new))
5201 return true;
5202 if ((old ^ new) & PT64_BASE_ADDR_MASK)
5203 return true;
5204 old ^= shadow_nx_mask;
5205 new ^= shadow_nx_mask;
5206 return (old & ~new & PT64_PERM_MASK) != 0;
5207 }
5208
mmu_pte_write_fetch_gpte(struct kvm_vcpu * vcpu,gpa_t * gpa,int * bytes)5209 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5210 int *bytes)
5211 {
5212 u64 gentry = 0;
5213 int r;
5214
5215 /*
5216 * Assume that the pte write on a page table of the same type
5217 * as the current vcpu paging mode since we update the sptes only
5218 * when they have the same mode.
5219 */
5220 if (is_pae(vcpu) && *bytes == 4) {
5221 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5222 *gpa &= ~(gpa_t)7;
5223 *bytes = 8;
5224 }
5225
5226 if (*bytes == 4 || *bytes == 8) {
5227 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5228 if (r)
5229 gentry = 0;
5230 }
5231
5232 return gentry;
5233 }
5234
5235 /*
5236 * If we're seeing too many writes to a page, it may no longer be a page table,
5237 * or we may be forking, in which case it is better to unmap the page.
5238 */
detect_write_flooding(struct kvm_mmu_page * sp)5239 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5240 {
5241 /*
5242 * Skip write-flooding detected for the sp whose level is 1, because
5243 * it can become unsync, then the guest page is not write-protected.
5244 */
5245 if (sp->role.level == PG_LEVEL_4K)
5246 return false;
5247
5248 atomic_inc(&sp->write_flooding_count);
5249 return atomic_read(&sp->write_flooding_count) >= 3;
5250 }
5251
5252 /*
5253 * Misaligned accesses are too much trouble to fix up; also, they usually
5254 * indicate a page is not used as a page table.
5255 */
detect_write_misaligned(struct kvm_mmu_page * sp,gpa_t gpa,int bytes)5256 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5257 int bytes)
5258 {
5259 unsigned offset, pte_size, misaligned;
5260
5261 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5262 gpa, bytes, sp->role.word);
5263
5264 offset = offset_in_page(gpa);
5265 pte_size = sp->role.has_4_byte_gpte ? 4 : 8;
5266
5267 /*
5268 * Sometimes, the OS only writes the last one bytes to update status
5269 * bits, for example, in linux, andb instruction is used in clear_bit().
5270 */
5271 if (!(offset & (pte_size - 1)) && bytes == 1)
5272 return false;
5273
5274 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5275 misaligned |= bytes < 4;
5276
5277 return misaligned;
5278 }
5279
get_written_sptes(struct kvm_mmu_page * sp,gpa_t gpa,int * nspte)5280 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5281 {
5282 unsigned page_offset, quadrant;
5283 u64 *spte;
5284 int level;
5285
5286 page_offset = offset_in_page(gpa);
5287 level = sp->role.level;
5288 *nspte = 1;
5289 if (sp->role.has_4_byte_gpte) {
5290 page_offset <<= 1; /* 32->64 */
5291 /*
5292 * A 32-bit pde maps 4MB while the shadow pdes map
5293 * only 2MB. So we need to double the offset again
5294 * and zap two pdes instead of one.
5295 */
5296 if (level == PT32_ROOT_LEVEL) {
5297 page_offset &= ~7; /* kill rounding error */
5298 page_offset <<= 1;
5299 *nspte = 2;
5300 }
5301 quadrant = page_offset >> PAGE_SHIFT;
5302 page_offset &= ~PAGE_MASK;
5303 if (quadrant != sp->role.quadrant)
5304 return NULL;
5305 }
5306
5307 spte = &sp->spt[page_offset / sizeof(*spte)];
5308 return spte;
5309 }
5310
kvm_mmu_pte_write(struct kvm_vcpu * vcpu,gpa_t gpa,const u8 * new,int bytes,struct kvm_page_track_notifier_node * node)5311 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5312 const u8 *new, int bytes,
5313 struct kvm_page_track_notifier_node *node)
5314 {
5315 gfn_t gfn = gpa >> PAGE_SHIFT;
5316 struct kvm_mmu_page *sp;
5317 LIST_HEAD(invalid_list);
5318 u64 entry, gentry, *spte;
5319 int npte;
5320 bool flush = false;
5321
5322 /*
5323 * If we don't have indirect shadow pages, it means no page is
5324 * write-protected, so we can exit simply.
5325 */
5326 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5327 return;
5328
5329 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5330
5331 /*
5332 * No need to care whether allocation memory is successful
5333 * or not since pte prefetch is skipped if it does not have
5334 * enough objects in the cache.
5335 */
5336 mmu_topup_memory_caches(vcpu, true);
5337
5338 write_lock(&vcpu->kvm->mmu_lock);
5339
5340 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5341
5342 ++vcpu->kvm->stat.mmu_pte_write;
5343
5344 for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) {
5345 if (detect_write_misaligned(sp, gpa, bytes) ||
5346 detect_write_flooding(sp)) {
5347 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5348 ++vcpu->kvm->stat.mmu_flooded;
5349 continue;
5350 }
5351
5352 spte = get_written_sptes(sp, gpa, &npte);
5353 if (!spte)
5354 continue;
5355
5356 while (npte--) {
5357 entry = *spte;
5358 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5359 if (gentry && sp->role.level != PG_LEVEL_4K)
5360 ++vcpu->kvm->stat.mmu_pde_zapped;
5361 if (need_remote_flush(entry, *spte))
5362 flush = true;
5363 ++spte;
5364 }
5365 }
5366 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
5367 write_unlock(&vcpu->kvm->mmu_lock);
5368 }
5369
kvm_mmu_page_fault(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,u64 error_code,void * insn,int insn_len)5370 int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5371 void *insn, int insn_len)
5372 {
5373 int r, emulation_type = EMULTYPE_PF;
5374 bool direct = vcpu->arch.mmu->root_role.direct;
5375
5376 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root.hpa)))
5377 return RET_PF_RETRY;
5378
5379 r = RET_PF_INVALID;
5380 if (unlikely(error_code & PFERR_RSVD_MASK)) {
5381 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5382 if (r == RET_PF_EMULATE)
5383 goto emulate;
5384 }
5385
5386 if (r == RET_PF_INVALID) {
5387 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5388 lower_32_bits(error_code), false);
5389 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
5390 return -EIO;
5391 }
5392
5393 if (r < 0)
5394 return r;
5395 if (r != RET_PF_EMULATE)
5396 return 1;
5397
5398 /*
5399 * Before emulating the instruction, check if the error code
5400 * was due to a RO violation while translating the guest page.
5401 * This can occur when using nested virtualization with nested
5402 * paging in both guests. If true, we simply unprotect the page
5403 * and resume the guest.
5404 */
5405 if (vcpu->arch.mmu->root_role.direct &&
5406 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5407 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5408 return 1;
5409 }
5410
5411 /*
5412 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5413 * optimistically try to just unprotect the page and let the processor
5414 * re-execute the instruction that caused the page fault. Do not allow
5415 * retrying MMIO emulation, as it's not only pointless but could also
5416 * cause us to enter an infinite loop because the processor will keep
5417 * faulting on the non-existent MMIO address. Retrying an instruction
5418 * from a nested guest is also pointless and dangerous as we are only
5419 * explicitly shadowing L1's page tables, i.e. unprotecting something
5420 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5421 */
5422 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5423 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5424 emulate:
5425 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5426 insn_len);
5427 }
5428 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5429
kvm_mmu_invalidate_gva(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,gva_t gva,hpa_t root_hpa)5430 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5431 gva_t gva, hpa_t root_hpa)
5432 {
5433 int i;
5434
5435 /* It's actually a GPA for vcpu->arch.guest_mmu. */
5436 if (mmu != &vcpu->arch.guest_mmu) {
5437 /* INVLPG on a non-canonical address is a NOP according to the SDM. */
5438 if (is_noncanonical_address(gva, vcpu))
5439 return;
5440
5441 static_call(kvm_x86_flush_tlb_gva)(vcpu, gva);
5442 }
5443
5444 if (!mmu->invlpg)
5445 return;
5446
5447 if (root_hpa == INVALID_PAGE) {
5448 mmu->invlpg(vcpu, gva, mmu->root.hpa);
5449
5450 /*
5451 * INVLPG is required to invalidate any global mappings for the VA,
5452 * irrespective of PCID. Since it would take us roughly similar amount
5453 * of work to determine whether any of the prev_root mappings of the VA
5454 * is marked global, or to just sync it blindly, so we might as well
5455 * just always sync it.
5456 *
5457 * Mappings not reachable via the current cr3 or the prev_roots will be
5458 * synced when switching to that cr3, so nothing needs to be done here
5459 * for them.
5460 */
5461 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5462 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5463 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5464 } else {
5465 mmu->invlpg(vcpu, gva, root_hpa);
5466 }
5467 }
5468
kvm_mmu_invlpg(struct kvm_vcpu * vcpu,gva_t gva)5469 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5470 {
5471 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.walk_mmu, gva, INVALID_PAGE);
5472 ++vcpu->stat.invlpg;
5473 }
5474 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5475
5476
kvm_mmu_invpcid_gva(struct kvm_vcpu * vcpu,gva_t gva,unsigned long pcid)5477 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5478 {
5479 struct kvm_mmu *mmu = vcpu->arch.mmu;
5480 bool tlb_flush = false;
5481 uint i;
5482
5483 if (pcid == kvm_get_active_pcid(vcpu)) {
5484 if (mmu->invlpg)
5485 mmu->invlpg(vcpu, gva, mmu->root.hpa);
5486 tlb_flush = true;
5487 }
5488
5489 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5490 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5491 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5492 if (mmu->invlpg)
5493 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5494 tlb_flush = true;
5495 }
5496 }
5497
5498 if (tlb_flush)
5499 static_call(kvm_x86_flush_tlb_gva)(vcpu, gva);
5500
5501 ++vcpu->stat.invlpg;
5502
5503 /*
5504 * Mappings not reachable via the current cr3 or the prev_roots will be
5505 * synced when switching to that cr3, so nothing needs to be done here
5506 * for them.
5507 */
5508 }
5509
kvm_configure_mmu(bool enable_tdp,int tdp_forced_root_level,int tdp_max_root_level,int tdp_huge_page_level)5510 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
5511 int tdp_max_root_level, int tdp_huge_page_level)
5512 {
5513 tdp_enabled = enable_tdp;
5514 tdp_root_level = tdp_forced_root_level;
5515 max_tdp_level = tdp_max_root_level;
5516
5517 /*
5518 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5519 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5520 * the kernel is not. But, KVM never creates a page size greater than
5521 * what is used by the kernel for any given HVA, i.e. the kernel's
5522 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5523 */
5524 if (tdp_enabled)
5525 max_huge_page_level = tdp_huge_page_level;
5526 else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5527 max_huge_page_level = PG_LEVEL_1G;
5528 else
5529 max_huge_page_level = PG_LEVEL_2M;
5530 }
5531 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5532
5533 /* The return value indicates if tlb flush on all vcpus is needed. */
5534 typedef bool (*slot_level_handler) (struct kvm *kvm,
5535 struct kvm_rmap_head *rmap_head,
5536 const struct kvm_memory_slot *slot);
5537
5538 /* The caller should hold mmu-lock before calling this function. */
5539 static __always_inline bool
slot_handle_level_range(struct kvm * kvm,const struct kvm_memory_slot * memslot,slot_level_handler fn,int start_level,int end_level,gfn_t start_gfn,gfn_t end_gfn,bool flush_on_yield,bool flush)5540 slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5541 slot_level_handler fn, int start_level, int end_level,
5542 gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
5543 bool flush)
5544 {
5545 struct slot_rmap_walk_iterator iterator;
5546
5547 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5548 end_gfn, &iterator) {
5549 if (iterator.rmap)
5550 flush |= fn(kvm, iterator.rmap, memslot);
5551
5552 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5553 if (flush && flush_on_yield) {
5554 kvm_flush_remote_tlbs_with_address(kvm,
5555 start_gfn,
5556 iterator.gfn - start_gfn + 1);
5557 flush = false;
5558 }
5559 cond_resched_rwlock_write(&kvm->mmu_lock);
5560 }
5561 }
5562
5563 return flush;
5564 }
5565
5566 static __always_inline bool
slot_handle_level(struct kvm * kvm,const struct kvm_memory_slot * memslot,slot_level_handler fn,int start_level,int end_level,bool flush_on_yield)5567 slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5568 slot_level_handler fn, int start_level, int end_level,
5569 bool flush_on_yield)
5570 {
5571 return slot_handle_level_range(kvm, memslot, fn, start_level,
5572 end_level, memslot->base_gfn,
5573 memslot->base_gfn + memslot->npages - 1,
5574 flush_on_yield, false);
5575 }
5576
5577 static __always_inline bool
slot_handle_level_4k(struct kvm * kvm,const struct kvm_memory_slot * memslot,slot_level_handler fn,bool flush_on_yield)5578 slot_handle_level_4k(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5579 slot_level_handler fn, bool flush_on_yield)
5580 {
5581 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5582 PG_LEVEL_4K, flush_on_yield);
5583 }
5584
free_mmu_pages(struct kvm_mmu * mmu)5585 static void free_mmu_pages(struct kvm_mmu *mmu)
5586 {
5587 if (!tdp_enabled && mmu->pae_root)
5588 set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5589 free_page((unsigned long)mmu->pae_root);
5590 free_page((unsigned long)mmu->pml4_root);
5591 free_page((unsigned long)mmu->pml5_root);
5592 }
5593
__kvm_mmu_create(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)5594 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5595 {
5596 struct page *page;
5597 int i;
5598
5599 mmu->root.hpa = INVALID_PAGE;
5600 mmu->root.pgd = 0;
5601 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5602 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5603
5604 /* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */
5605 if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu)
5606 return 0;
5607
5608 /*
5609 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5610 * while the PDP table is a per-vCPU construct that's allocated at MMU
5611 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
5612 * x86_64. Therefore we need to allocate the PDP table in the first
5613 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging
5614 * generally doesn't use PAE paging and can skip allocating the PDP
5615 * table. The main exception, handled here, is SVM's 32-bit NPT. The
5616 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5617 * KVM; that horror is handled on-demand by mmu_alloc_special_roots().
5618 */
5619 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5620 return 0;
5621
5622 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5623 if (!page)
5624 return -ENOMEM;
5625
5626 mmu->pae_root = page_address(page);
5627
5628 /*
5629 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
5630 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so
5631 * that KVM's writes and the CPU's reads get along. Note, this is
5632 * only necessary when using shadow paging, as 64-bit NPT can get at
5633 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
5634 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
5635 */
5636 if (!tdp_enabled)
5637 set_memory_decrypted((unsigned long)mmu->pae_root, 1);
5638 else
5639 WARN_ON_ONCE(shadow_me_value);
5640
5641 for (i = 0; i < 4; ++i)
5642 mmu->pae_root[i] = INVALID_PAE_ROOT;
5643
5644 return 0;
5645 }
5646
kvm_mmu_create(struct kvm_vcpu * vcpu)5647 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5648 {
5649 int ret;
5650
5651 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5652 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5653
5654 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5655 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5656
5657 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5658
5659 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5660 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5661
5662 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5663 if (ret)
5664 return ret;
5665
5666 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5667 if (ret)
5668 goto fail_allocate_root;
5669
5670 return ret;
5671 fail_allocate_root:
5672 free_mmu_pages(&vcpu->arch.guest_mmu);
5673 return ret;
5674 }
5675
5676 #define BATCH_ZAP_PAGES 10
kvm_zap_obsolete_pages(struct kvm * kvm)5677 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5678 {
5679 struct kvm_mmu_page *sp, *node;
5680 int nr_zapped, batch = 0;
5681 bool unstable;
5682
5683 restart:
5684 list_for_each_entry_safe_reverse(sp, node,
5685 &kvm->arch.active_mmu_pages, link) {
5686 /*
5687 * No obsolete valid page exists before a newly created page
5688 * since active_mmu_pages is a FIFO list.
5689 */
5690 if (!is_obsolete_sp(kvm, sp))
5691 break;
5692
5693 /*
5694 * Invalid pages should never land back on the list of active
5695 * pages. Skip the bogus page, otherwise we'll get stuck in an
5696 * infinite loop if the page gets put back on the list (again).
5697 */
5698 if (WARN_ON(sp->role.invalid))
5699 continue;
5700
5701 /*
5702 * No need to flush the TLB since we're only zapping shadow
5703 * pages with an obsolete generation number and all vCPUS have
5704 * loaded a new root, i.e. the shadow pages being zapped cannot
5705 * be in active use by the guest.
5706 */
5707 if (batch >= BATCH_ZAP_PAGES &&
5708 cond_resched_rwlock_write(&kvm->mmu_lock)) {
5709 batch = 0;
5710 goto restart;
5711 }
5712
5713 unstable = __kvm_mmu_prepare_zap_page(kvm, sp,
5714 &kvm->arch.zapped_obsolete_pages, &nr_zapped);
5715 batch += nr_zapped;
5716
5717 if (unstable)
5718 goto restart;
5719 }
5720
5721 /*
5722 * Kick all vCPUs (via remote TLB flush) before freeing the page tables
5723 * to ensure KVM is not in the middle of a lockless shadow page table
5724 * walk, which may reference the pages. The remote TLB flush itself is
5725 * not required and is simply a convenient way to kick vCPUs as needed.
5726 * KVM performs a local TLB flush when allocating a new root (see
5727 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are
5728 * running with an obsolete MMU.
5729 */
5730 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5731 }
5732
5733 /*
5734 * Fast invalidate all shadow pages and use lock-break technique
5735 * to zap obsolete pages.
5736 *
5737 * It's required when memslot is being deleted or VM is being
5738 * destroyed, in these cases, we should ensure that KVM MMU does
5739 * not use any resource of the being-deleted slot or all slots
5740 * after calling the function.
5741 */
kvm_mmu_zap_all_fast(struct kvm * kvm)5742 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5743 {
5744 lockdep_assert_held(&kvm->slots_lock);
5745
5746 write_lock(&kvm->mmu_lock);
5747 trace_kvm_mmu_zap_all_fast(kvm);
5748
5749 /*
5750 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
5751 * held for the entire duration of zapping obsolete pages, it's
5752 * impossible for there to be multiple invalid generations associated
5753 * with *valid* shadow pages at any given time, i.e. there is exactly
5754 * one valid generation and (at most) one invalid generation.
5755 */
5756 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5757
5758 /*
5759 * In order to ensure all vCPUs drop their soon-to-be invalid roots,
5760 * invalidating TDP MMU roots must be done while holding mmu_lock for
5761 * write and in the same critical section as making the reload request,
5762 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield.
5763 */
5764 if (is_tdp_mmu_enabled(kvm))
5765 kvm_tdp_mmu_invalidate_all_roots(kvm);
5766
5767 /*
5768 * Notify all vcpus to reload its shadow page table and flush TLB.
5769 * Then all vcpus will switch to new shadow page table with the new
5770 * mmu_valid_gen.
5771 *
5772 * Note: we need to do this under the protection of mmu_lock,
5773 * otherwise, vcpu would purge shadow page but miss tlb flush.
5774 */
5775 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
5776
5777 kvm_zap_obsolete_pages(kvm);
5778
5779 write_unlock(&kvm->mmu_lock);
5780
5781 /*
5782 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before
5783 * returning to the caller, e.g. if the zap is in response to a memslot
5784 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs
5785 * associated with the deleted memslot once the update completes, and
5786 * Deferring the zap until the final reference to the root is put would
5787 * lead to use-after-free.
5788 */
5789 if (is_tdp_mmu_enabled(kvm))
5790 kvm_tdp_mmu_zap_invalidated_roots(kvm);
5791 }
5792
kvm_has_zapped_obsolete_pages(struct kvm * kvm)5793 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5794 {
5795 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5796 }
5797
kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm * kvm,struct kvm_memory_slot * slot,struct kvm_page_track_notifier_node * node)5798 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5799 struct kvm_memory_slot *slot,
5800 struct kvm_page_track_notifier_node *node)
5801 {
5802 kvm_mmu_zap_all_fast(kvm);
5803 }
5804
kvm_mmu_init_vm(struct kvm * kvm)5805 int kvm_mmu_init_vm(struct kvm *kvm)
5806 {
5807 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5808 int r;
5809
5810 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5811 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
5812 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
5813 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);
5814
5815 r = kvm_mmu_init_tdp_mmu(kvm);
5816 if (r < 0)
5817 return r;
5818
5819 node->track_write = kvm_mmu_pte_write;
5820 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5821 kvm_page_track_register_notifier(kvm, node);
5822 return 0;
5823 }
5824
kvm_mmu_uninit_vm(struct kvm * kvm)5825 void kvm_mmu_uninit_vm(struct kvm *kvm)
5826 {
5827 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5828
5829 kvm_page_track_unregister_notifier(kvm, node);
5830
5831 kvm_mmu_uninit_tdp_mmu(kvm);
5832 }
5833
__kvm_zap_rmaps(struct kvm * kvm,gfn_t gfn_start,gfn_t gfn_end)5834 static bool __kvm_zap_rmaps(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5835 {
5836 const struct kvm_memory_slot *memslot;
5837 struct kvm_memslots *slots;
5838 struct kvm_memslot_iter iter;
5839 bool flush = false;
5840 gfn_t start, end;
5841 int i;
5842
5843 if (!kvm_memslots_have_rmaps(kvm))
5844 return flush;
5845
5846 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5847 slots = __kvm_memslots(kvm, i);
5848
5849 kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) {
5850 memslot = iter.slot;
5851 start = max(gfn_start, memslot->base_gfn);
5852 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5853 if (WARN_ON_ONCE(start >= end))
5854 continue;
5855
5856 flush = slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5857
5858 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
5859 start, end - 1, true, flush);
5860 }
5861 }
5862
5863 return flush;
5864 }
5865
5866 /*
5867 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
5868 * (not including it)
5869 */
kvm_zap_gfn_range(struct kvm * kvm,gfn_t gfn_start,gfn_t gfn_end)5870 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5871 {
5872 bool flush;
5873 int i;
5874
5875 if (WARN_ON_ONCE(gfn_end <= gfn_start))
5876 return;
5877
5878 write_lock(&kvm->mmu_lock);
5879
5880 kvm_inc_notifier_count(kvm, gfn_start, gfn_end);
5881
5882 flush = __kvm_zap_rmaps(kvm, gfn_start, gfn_end);
5883
5884 if (is_tdp_mmu_enabled(kvm)) {
5885 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
5886 flush = kvm_tdp_mmu_zap_leafs(kvm, i, gfn_start,
5887 gfn_end, true, flush);
5888 }
5889
5890 if (flush)
5891 kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
5892 gfn_end - gfn_start);
5893
5894 kvm_dec_notifier_count(kvm, gfn_start, gfn_end);
5895
5896 write_unlock(&kvm->mmu_lock);
5897 }
5898
slot_rmap_write_protect(struct kvm * kvm,struct kvm_rmap_head * rmap_head,const struct kvm_memory_slot * slot)5899 static bool slot_rmap_write_protect(struct kvm *kvm,
5900 struct kvm_rmap_head *rmap_head,
5901 const struct kvm_memory_slot *slot)
5902 {
5903 return rmap_write_protect(rmap_head, false);
5904 }
5905
kvm_mmu_slot_remove_write_access(struct kvm * kvm,const struct kvm_memory_slot * memslot,int start_level)5906 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5907 const struct kvm_memory_slot *memslot,
5908 int start_level)
5909 {
5910 if (kvm_memslots_have_rmaps(kvm)) {
5911 write_lock(&kvm->mmu_lock);
5912 slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5913 start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5914 write_unlock(&kvm->mmu_lock);
5915 }
5916
5917 if (is_tdp_mmu_enabled(kvm)) {
5918 read_lock(&kvm->mmu_lock);
5919 kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
5920 read_unlock(&kvm->mmu_lock);
5921 }
5922 }
5923
5924 /* Must be called with the mmu_lock held in write-mode. */
kvm_mmu_try_split_huge_pages(struct kvm * kvm,const struct kvm_memory_slot * memslot,u64 start,u64 end,int target_level)5925 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
5926 const struct kvm_memory_slot *memslot,
5927 u64 start, u64 end,
5928 int target_level)
5929 {
5930 if (is_tdp_mmu_enabled(kvm))
5931 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end,
5932 target_level, false);
5933
5934 /*
5935 * A TLB flush is unnecessary at this point for the same resons as in
5936 * kvm_mmu_slot_try_split_huge_pages().
5937 */
5938 }
5939
kvm_mmu_slot_try_split_huge_pages(struct kvm * kvm,const struct kvm_memory_slot * memslot,int target_level)5940 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
5941 const struct kvm_memory_slot *memslot,
5942 int target_level)
5943 {
5944 u64 start = memslot->base_gfn;
5945 u64 end = start + memslot->npages;
5946
5947 if (is_tdp_mmu_enabled(kvm)) {
5948 read_lock(&kvm->mmu_lock);
5949 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true);
5950 read_unlock(&kvm->mmu_lock);
5951 }
5952
5953 /*
5954 * No TLB flush is necessary here. KVM will flush TLBs after
5955 * write-protecting and/or clearing dirty on the newly split SPTEs to
5956 * ensure that guest writes are reflected in the dirty log before the
5957 * ioctl to enable dirty logging on this memslot completes. Since the
5958 * split SPTEs retain the write and dirty bits of the huge SPTE, it is
5959 * safe for KVM to decide if a TLB flush is necessary based on the split
5960 * SPTEs.
5961 */
5962 }
5963
kvm_mmu_zap_collapsible_spte(struct kvm * kvm,struct kvm_rmap_head * rmap_head,const struct kvm_memory_slot * slot)5964 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5965 struct kvm_rmap_head *rmap_head,
5966 const struct kvm_memory_slot *slot)
5967 {
5968 u64 *sptep;
5969 struct rmap_iterator iter;
5970 int need_tlb_flush = 0;
5971 kvm_pfn_t pfn;
5972 struct kvm_mmu_page *sp;
5973
5974 restart:
5975 for_each_rmap_spte(rmap_head, &iter, sptep) {
5976 sp = sptep_to_sp(sptep);
5977 pfn = spte_to_pfn(*sptep);
5978
5979 /*
5980 * We cannot do huge page mapping for indirect shadow pages,
5981 * which are found on the last rmap (level = 1) when not using
5982 * tdp; such shadow pages are synced with the page table in
5983 * the guest, and the guest page table is using 4K page size
5984 * mapping if the indirect sp has level = 1.
5985 */
5986 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5987 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
5988 pfn, PG_LEVEL_NUM)) {
5989 pte_list_remove(kvm, rmap_head, sptep);
5990
5991 if (kvm_available_flush_tlb_with_range())
5992 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5993 KVM_PAGES_PER_HPAGE(sp->role.level));
5994 else
5995 need_tlb_flush = 1;
5996
5997 goto restart;
5998 }
5999 }
6000
6001 return need_tlb_flush;
6002 }
6003
kvm_mmu_zap_collapsible_sptes(struct kvm * kvm,const struct kvm_memory_slot * slot)6004 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
6005 const struct kvm_memory_slot *slot)
6006 {
6007 if (kvm_memslots_have_rmaps(kvm)) {
6008 write_lock(&kvm->mmu_lock);
6009 /*
6010 * Zap only 4k SPTEs since the legacy MMU only supports dirty
6011 * logging at a 4k granularity and never creates collapsible
6012 * 2m SPTEs during dirty logging.
6013 */
6014 if (slot_handle_level_4k(kvm, slot, kvm_mmu_zap_collapsible_spte, true))
6015 kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
6016 write_unlock(&kvm->mmu_lock);
6017 }
6018
6019 if (is_tdp_mmu_enabled(kvm)) {
6020 read_lock(&kvm->mmu_lock);
6021 kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot);
6022 read_unlock(&kvm->mmu_lock);
6023 }
6024 }
6025
kvm_arch_flush_remote_tlbs_memslot(struct kvm * kvm,const struct kvm_memory_slot * memslot)6026 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
6027 const struct kvm_memory_slot *memslot)
6028 {
6029 /*
6030 * All current use cases for flushing the TLBs for a specific memslot
6031 * related to dirty logging, and many do the TLB flush out of mmu_lock.
6032 * The interaction between the various operations on memslot must be
6033 * serialized by slots_locks to ensure the TLB flush from one operation
6034 * is observed by any other operation on the same memslot.
6035 */
6036 lockdep_assert_held(&kvm->slots_lock);
6037 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
6038 memslot->npages);
6039 }
6040
kvm_mmu_slot_leaf_clear_dirty(struct kvm * kvm,const struct kvm_memory_slot * memslot)6041 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
6042 const struct kvm_memory_slot *memslot)
6043 {
6044 if (kvm_memslots_have_rmaps(kvm)) {
6045 write_lock(&kvm->mmu_lock);
6046 /*
6047 * Clear dirty bits only on 4k SPTEs since the legacy MMU only
6048 * support dirty logging at a 4k granularity.
6049 */
6050 slot_handle_level_4k(kvm, memslot, __rmap_clear_dirty, false);
6051 write_unlock(&kvm->mmu_lock);
6052 }
6053
6054 if (is_tdp_mmu_enabled(kvm)) {
6055 read_lock(&kvm->mmu_lock);
6056 kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
6057 read_unlock(&kvm->mmu_lock);
6058 }
6059
6060 /*
6061 * The caller will flush the TLBs after this function returns.
6062 *
6063 * It's also safe to flush TLBs out of mmu lock here as currently this
6064 * function is only used for dirty logging, in which case flushing TLB
6065 * out of mmu lock also guarantees no dirty pages will be lost in
6066 * dirty_bitmap.
6067 */
6068 }
6069
kvm_mmu_zap_all(struct kvm * kvm)6070 void kvm_mmu_zap_all(struct kvm *kvm)
6071 {
6072 struct kvm_mmu_page *sp, *node;
6073 LIST_HEAD(invalid_list);
6074 int ign;
6075
6076 write_lock(&kvm->mmu_lock);
6077 restart:
6078 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6079 if (WARN_ON(sp->role.invalid))
6080 continue;
6081 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6082 goto restart;
6083 if (cond_resched_rwlock_write(&kvm->mmu_lock))
6084 goto restart;
6085 }
6086
6087 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6088
6089 if (is_tdp_mmu_enabled(kvm))
6090 kvm_tdp_mmu_zap_all(kvm);
6091
6092 write_unlock(&kvm->mmu_lock);
6093 }
6094
kvm_mmu_invalidate_mmio_sptes(struct kvm * kvm,u64 gen)6095 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6096 {
6097 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6098
6099 gen &= MMIO_SPTE_GEN_MASK;
6100
6101 /*
6102 * Generation numbers are incremented in multiples of the number of
6103 * address spaces in order to provide unique generations across all
6104 * address spaces. Strip what is effectively the address space
6105 * modifier prior to checking for a wrap of the MMIO generation so
6106 * that a wrap in any address space is detected.
6107 */
6108 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
6109
6110 /*
6111 * The very rare case: if the MMIO generation number has wrapped,
6112 * zap all shadow pages.
6113 */
6114 if (unlikely(gen == 0)) {
6115 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
6116 kvm_mmu_zap_all_fast(kvm);
6117 }
6118 }
6119
6120 static unsigned long
mmu_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)6121 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
6122 {
6123 struct kvm *kvm;
6124 int nr_to_scan = sc->nr_to_scan;
6125 unsigned long freed = 0;
6126
6127 mutex_lock(&kvm_lock);
6128
6129 list_for_each_entry(kvm, &vm_list, vm_list) {
6130 int idx;
6131 LIST_HEAD(invalid_list);
6132
6133 /*
6134 * Never scan more than sc->nr_to_scan VM instances.
6135 * Will not hit this condition practically since we do not try
6136 * to shrink more than one VM and it is very unlikely to see
6137 * !n_used_mmu_pages so many times.
6138 */
6139 if (!nr_to_scan--)
6140 break;
6141 /*
6142 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6143 * here. We may skip a VM instance errorneosly, but we do not
6144 * want to shrink a VM that only started to populate its MMU
6145 * anyway.
6146 */
6147 if (!kvm->arch.n_used_mmu_pages &&
6148 !kvm_has_zapped_obsolete_pages(kvm))
6149 continue;
6150
6151 idx = srcu_read_lock(&kvm->srcu);
6152 write_lock(&kvm->mmu_lock);
6153
6154 if (kvm_has_zapped_obsolete_pages(kvm)) {
6155 kvm_mmu_commit_zap_page(kvm,
6156 &kvm->arch.zapped_obsolete_pages);
6157 goto unlock;
6158 }
6159
6160 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
6161
6162 unlock:
6163 write_unlock(&kvm->mmu_lock);
6164 srcu_read_unlock(&kvm->srcu, idx);
6165
6166 /*
6167 * unfair on small ones
6168 * per-vm shrinkers cry out
6169 * sadness comes quickly
6170 */
6171 list_move_tail(&kvm->vm_list, &vm_list);
6172 break;
6173 }
6174
6175 mutex_unlock(&kvm_lock);
6176 return freed;
6177 }
6178
6179 static unsigned long
mmu_shrink_count(struct shrinker * shrink,struct shrink_control * sc)6180 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
6181 {
6182 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6183 }
6184
6185 static struct shrinker mmu_shrinker = {
6186 .count_objects = mmu_shrink_count,
6187 .scan_objects = mmu_shrink_scan,
6188 .seeks = DEFAULT_SEEKS * 10,
6189 };
6190
mmu_destroy_caches(void)6191 static void mmu_destroy_caches(void)
6192 {
6193 kmem_cache_destroy(pte_list_desc_cache);
6194 kmem_cache_destroy(mmu_page_header_cache);
6195 }
6196
get_nx_auto_mode(void)6197 static bool get_nx_auto_mode(void)
6198 {
6199 /* Return true when CPU has the bug, and mitigations are ON */
6200 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6201 }
6202
__set_nx_huge_pages(bool val)6203 static void __set_nx_huge_pages(bool val)
6204 {
6205 nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6206 }
6207
set_nx_huge_pages(const char * val,const struct kernel_param * kp)6208 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6209 {
6210 bool old_val = nx_huge_pages;
6211 bool new_val;
6212
6213 /* In "auto" mode deploy workaround only if CPU has the bug. */
6214 if (sysfs_streq(val, "off"))
6215 new_val = 0;
6216 else if (sysfs_streq(val, "force"))
6217 new_val = 1;
6218 else if (sysfs_streq(val, "auto"))
6219 new_val = get_nx_auto_mode();
6220 else if (strtobool(val, &new_val) < 0)
6221 return -EINVAL;
6222
6223 __set_nx_huge_pages(new_val);
6224
6225 if (new_val != old_val) {
6226 struct kvm *kvm;
6227
6228 mutex_lock(&kvm_lock);
6229
6230 list_for_each_entry(kvm, &vm_list, vm_list) {
6231 mutex_lock(&kvm->slots_lock);
6232 kvm_mmu_zap_all_fast(kvm);
6233 mutex_unlock(&kvm->slots_lock);
6234
6235 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6236 }
6237 mutex_unlock(&kvm_lock);
6238 }
6239
6240 return 0;
6241 }
6242
6243 /*
6244 * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as
6245 * its default value of -1 is technically undefined behavior for a boolean.
6246 * Forward the module init call to SPTE code so that it too can handle module
6247 * params that need to be resolved/snapshot.
6248 */
kvm_mmu_x86_module_init(void)6249 void __init kvm_mmu_x86_module_init(void)
6250 {
6251 if (nx_huge_pages == -1)
6252 __set_nx_huge_pages(get_nx_auto_mode());
6253
6254 kvm_mmu_spte_module_init();
6255 }
6256
6257 /*
6258 * The bulk of the MMU initialization is deferred until the vendor module is
6259 * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need
6260 * to be reset when a potentially different vendor module is loaded.
6261 */
kvm_mmu_vendor_module_init(void)6262 int kvm_mmu_vendor_module_init(void)
6263 {
6264 int ret = -ENOMEM;
6265
6266 /*
6267 * MMU roles use union aliasing which is, generally speaking, an
6268 * undefined behavior. However, we supposedly know how compilers behave
6269 * and the current status quo is unlikely to change. Guardians below are
6270 * supposed to let us know if the assumption becomes false.
6271 */
6272 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6273 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6274 BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64));
6275
6276 kvm_mmu_reset_all_pte_masks();
6277
6278 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6279 sizeof(struct pte_list_desc),
6280 0, SLAB_ACCOUNT, NULL);
6281 if (!pte_list_desc_cache)
6282 goto out;
6283
6284 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6285 sizeof(struct kvm_mmu_page),
6286 0, SLAB_ACCOUNT, NULL);
6287 if (!mmu_page_header_cache)
6288 goto out;
6289
6290 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6291 goto out;
6292
6293 ret = register_shrinker(&mmu_shrinker);
6294 if (ret)
6295 goto out;
6296
6297 return 0;
6298
6299 out:
6300 mmu_destroy_caches();
6301 return ret;
6302 }
6303
kvm_mmu_destroy(struct kvm_vcpu * vcpu)6304 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6305 {
6306 kvm_mmu_unload(vcpu);
6307 free_mmu_pages(&vcpu->arch.root_mmu);
6308 free_mmu_pages(&vcpu->arch.guest_mmu);
6309 mmu_free_memory_caches(vcpu);
6310 }
6311
kvm_mmu_vendor_module_exit(void)6312 void kvm_mmu_vendor_module_exit(void)
6313 {
6314 mmu_destroy_caches();
6315 percpu_counter_destroy(&kvm_total_used_mmu_pages);
6316 unregister_shrinker(&mmu_shrinker);
6317 }
6318
6319 /*
6320 * Calculate the effective recovery period, accounting for '0' meaning "let KVM
6321 * select a halving time of 1 hour". Returns true if recovery is enabled.
6322 */
calc_nx_huge_pages_recovery_period(uint * period)6323 static bool calc_nx_huge_pages_recovery_period(uint *period)
6324 {
6325 /*
6326 * Use READ_ONCE to get the params, this may be called outside of the
6327 * param setters, e.g. by the kthread to compute its next timeout.
6328 */
6329 bool enabled = READ_ONCE(nx_huge_pages);
6330 uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6331
6332 if (!enabled || !ratio)
6333 return false;
6334
6335 *period = READ_ONCE(nx_huge_pages_recovery_period_ms);
6336 if (!*period) {
6337 /* Make sure the period is not less than one second. */
6338 ratio = min(ratio, 3600u);
6339 *period = 60 * 60 * 1000 / ratio;
6340 }
6341 return true;
6342 }
6343
set_nx_huge_pages_recovery_param(const char * val,const struct kernel_param * kp)6344 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp)
6345 {
6346 bool was_recovery_enabled, is_recovery_enabled;
6347 uint old_period, new_period;
6348 int err;
6349
6350 was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period);
6351
6352 err = param_set_uint(val, kp);
6353 if (err)
6354 return err;
6355
6356 is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period);
6357
6358 if (is_recovery_enabled &&
6359 (!was_recovery_enabled || old_period > new_period)) {
6360 struct kvm *kvm;
6361
6362 mutex_lock(&kvm_lock);
6363
6364 list_for_each_entry(kvm, &vm_list, vm_list)
6365 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6366
6367 mutex_unlock(&kvm_lock);
6368 }
6369
6370 return err;
6371 }
6372
kvm_recover_nx_lpages(struct kvm * kvm)6373 static void kvm_recover_nx_lpages(struct kvm *kvm)
6374 {
6375 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
6376 int rcu_idx;
6377 struct kvm_mmu_page *sp;
6378 unsigned int ratio;
6379 LIST_HEAD(invalid_list);
6380 bool flush = false;
6381 ulong to_zap;
6382
6383 rcu_idx = srcu_read_lock(&kvm->srcu);
6384 write_lock(&kvm->mmu_lock);
6385
6386 /*
6387 * Zapping TDP MMU shadow pages, including the remote TLB flush, must
6388 * be done under RCU protection, because the pages are freed via RCU
6389 * callback.
6390 */
6391 rcu_read_lock();
6392
6393 ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6394 to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
6395 for ( ; to_zap; --to_zap) {
6396 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
6397 break;
6398
6399 /*
6400 * We use a separate list instead of just using active_mmu_pages
6401 * because the number of lpage_disallowed pages is expected to
6402 * be relatively small compared to the total.
6403 */
6404 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6405 struct kvm_mmu_page,
6406 lpage_disallowed_link);
6407 WARN_ON_ONCE(!sp->lpage_disallowed);
6408 if (is_tdp_mmu_page(sp)) {
6409 flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6410 } else {
6411 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6412 WARN_ON_ONCE(sp->lpage_disallowed);
6413 }
6414
6415 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6416 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6417 rcu_read_unlock();
6418
6419 cond_resched_rwlock_write(&kvm->mmu_lock);
6420 flush = false;
6421
6422 rcu_read_lock();
6423 }
6424 }
6425 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6426
6427 rcu_read_unlock();
6428
6429 write_unlock(&kvm->mmu_lock);
6430 srcu_read_unlock(&kvm->srcu, rcu_idx);
6431 }
6432
get_nx_lpage_recovery_timeout(u64 start_time)6433 static long get_nx_lpage_recovery_timeout(u64 start_time)
6434 {
6435 bool enabled;
6436 uint period;
6437
6438 enabled = calc_nx_huge_pages_recovery_period(&period);
6439
6440 return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64()
6441 : MAX_SCHEDULE_TIMEOUT;
6442 }
6443
kvm_nx_lpage_recovery_worker(struct kvm * kvm,uintptr_t data)6444 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6445 {
6446 u64 start_time;
6447 long remaining_time;
6448
6449 while (true) {
6450 start_time = get_jiffies_64();
6451 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6452
6453 set_current_state(TASK_INTERRUPTIBLE);
6454 while (!kthread_should_stop() && remaining_time > 0) {
6455 schedule_timeout(remaining_time);
6456 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6457 set_current_state(TASK_INTERRUPTIBLE);
6458 }
6459
6460 set_current_state(TASK_RUNNING);
6461
6462 if (kthread_should_stop())
6463 return 0;
6464
6465 kvm_recover_nx_lpages(kvm);
6466 }
6467 }
6468
kvm_mmu_post_init_vm(struct kvm * kvm)6469 int kvm_mmu_post_init_vm(struct kvm *kvm)
6470 {
6471 int err;
6472
6473 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6474 "kvm-nx-lpage-recovery",
6475 &kvm->arch.nx_lpage_recovery_thread);
6476 if (!err)
6477 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6478
6479 return err;
6480 }
6481
kvm_mmu_pre_destroy_vm(struct kvm * kvm)6482 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6483 {
6484 if (kvm->arch.nx_lpage_recovery_thread)
6485 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6486 }
6487