1 /*
2  * vtlb.c: guest virtual tlb handling module.
3  * Copyright (c) 2004, Intel Corporation.
4  *  Yaozu Dong (Eddie Dong) <Eddie.dong@intel.com>
5  *  Xuefei Xu (Anthony Xu) <anthony.xu@intel.com>
6  *
7  * Copyright (c) 2007, Intel Corporation.
8  *  Xuefei Xu (Anthony Xu) <anthony.xu@intel.com>
9  *  Xiantao Zhang <xiantao.zhang@intel.com>
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms and conditions of the GNU General Public License,
13  * version 2, as published by the Free Software Foundation.
14  *
15  * This program is distributed in the hope it will be useful, but WITHOUT
16  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18  * more details.
19  *
20  * You should have received a copy of the GNU General Public License along with
21  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
22  * Place - Suite 330, Boston, MA 02111-1307 USA.
23  *
24  */
25 
26 #include "vcpu.h"
27 
28 #include <linux/rwsem.h>
29 
30 #include <asm/tlb.h>
31 
32 /*
33  * Check to see if the address rid:va is translated by the TLB
34  */
35 
__is_tr_translated(struct thash_data * trp,u64 rid,u64 va)36 static int __is_tr_translated(struct thash_data *trp, u64 rid, u64 va)
37 {
38 	return ((trp->p) && (trp->rid == rid)
39 				&& ((va-trp->vadr) < PSIZE(trp->ps)));
40 }
41 
42 /*
43  * Only for GUEST TR format.
44  */
__is_tr_overlap(struct thash_data * trp,u64 rid,u64 sva,u64 eva)45 static int __is_tr_overlap(struct thash_data *trp, u64 rid, u64 sva, u64 eva)
46 {
47 	u64 sa1, ea1;
48 
49 	if (!trp->p || trp->rid != rid)
50 		return 0;
51 
52 	sa1 = trp->vadr;
53 	ea1 = sa1 + PSIZE(trp->ps) - 1;
54 	eva -= 1;
55 	if ((sva > ea1) || (sa1 > eva))
56 		return 0;
57 	else
58 		return 1;
59 
60 }
61 
machine_tlb_purge(u64 va,u64 ps)62 void machine_tlb_purge(u64 va, u64 ps)
63 {
64 	ia64_ptcl(va, ps << 2);
65 }
66 
local_flush_tlb_all(void)67 void local_flush_tlb_all(void)
68 {
69 	int i, j;
70 	unsigned long flags, count0, count1;
71 	unsigned long stride0, stride1, addr;
72 
73 	addr    = current_vcpu->arch.ptce_base;
74 	count0  = current_vcpu->arch.ptce_count[0];
75 	count1  = current_vcpu->arch.ptce_count[1];
76 	stride0 = current_vcpu->arch.ptce_stride[0];
77 	stride1 = current_vcpu->arch.ptce_stride[1];
78 
79 	local_irq_save(flags);
80 	for (i = 0; i < count0; ++i) {
81 		for (j = 0; j < count1; ++j) {
82 			ia64_ptce(addr);
83 			addr += stride1;
84 		}
85 		addr += stride0;
86 	}
87 	local_irq_restore(flags);
88 	ia64_srlz_i();          /* srlz.i implies srlz.d */
89 }
90 
vhpt_enabled(struct kvm_vcpu * vcpu,u64 vadr,enum vhpt_ref ref)91 int vhpt_enabled(struct kvm_vcpu *vcpu, u64 vadr, enum vhpt_ref ref)
92 {
93 	union ia64_rr    vrr;
94 	union ia64_pta   vpta;
95 	struct  ia64_psr   vpsr;
96 
97 	vpsr = *(struct ia64_psr *)&VCPU(vcpu, vpsr);
98 	vrr.val = vcpu_get_rr(vcpu, vadr);
99 	vpta.val = vcpu_get_pta(vcpu);
100 
101 	if (vrr.ve & vpta.ve) {
102 		switch (ref) {
103 		case DATA_REF:
104 		case NA_REF:
105 			return vpsr.dt;
106 		case INST_REF:
107 			return vpsr.dt && vpsr.it && vpsr.ic;
108 		case RSE_REF:
109 			return vpsr.dt && vpsr.rt;
110 
111 		}
112 	}
113 	return 0;
114 }
115 
vsa_thash(union ia64_pta vpta,u64 va,u64 vrr,u64 * tag)116 struct thash_data *vsa_thash(union ia64_pta vpta, u64 va, u64 vrr, u64 *tag)
117 {
118 	u64 index, pfn, rid, pfn_bits;
119 
120 	pfn_bits = vpta.size - 5 - 8;
121 	pfn = REGION_OFFSET(va) >> _REGION_PAGE_SIZE(vrr);
122 	rid = _REGION_ID(vrr);
123 	index = ((rid & 0xff) << pfn_bits)|(pfn & ((1UL << pfn_bits) - 1));
124 	*tag = ((rid >> 8) & 0xffff) | ((pfn >> pfn_bits) << 16);
125 
126 	return (struct thash_data *)((vpta.base << PTA_BASE_SHIFT) +
127 				(index << 5));
128 }
129 
__vtr_lookup(struct kvm_vcpu * vcpu,u64 va,int type)130 struct thash_data *__vtr_lookup(struct kvm_vcpu *vcpu, u64 va, int type)
131 {
132 
133 	struct thash_data *trp;
134 	int  i;
135 	u64 rid;
136 
137 	rid = vcpu_get_rr(vcpu, va);
138 	rid = rid & RR_RID_MASK;
139 	if (type == D_TLB) {
140 		if (vcpu_quick_region_check(vcpu->arch.dtr_regions, va)) {
141 			for (trp = (struct thash_data *)&vcpu->arch.dtrs, i = 0;
142 						i < NDTRS; i++, trp++) {
143 				if (__is_tr_translated(trp, rid, va))
144 					return trp;
145 			}
146 		}
147 	} else {
148 		if (vcpu_quick_region_check(vcpu->arch.itr_regions, va)) {
149 			for (trp = (struct thash_data *)&vcpu->arch.itrs, i = 0;
150 					i < NITRS; i++, trp++) {
151 				if (__is_tr_translated(trp, rid, va))
152 					return trp;
153 			}
154 		}
155 	}
156 
157 	return NULL;
158 }
159 
vhpt_insert(u64 pte,u64 itir,u64 ifa,u64 gpte)160 static void vhpt_insert(u64 pte, u64 itir, u64 ifa, u64 gpte)
161 {
162 	union ia64_rr rr;
163 	struct thash_data *head;
164 	unsigned long ps, gpaddr;
165 
166 	ps = itir_ps(itir);
167 	rr.val = ia64_get_rr(ifa);
168 
169 	 gpaddr = ((gpte & _PAGE_PPN_MASK) >> ps << ps) |
170 					(ifa & ((1UL << ps) - 1));
171 
172 	head = (struct thash_data *)ia64_thash(ifa);
173 	head->etag = INVALID_TI_TAG;
174 	ia64_mf();
175 	head->page_flags = pte & ~PAGE_FLAGS_RV_MASK;
176 	head->itir = rr.ps << 2;
177 	head->etag = ia64_ttag(ifa);
178 	head->gpaddr = gpaddr;
179 }
180 
mark_pages_dirty(struct kvm_vcpu * v,u64 pte,u64 ps)181 void mark_pages_dirty(struct kvm_vcpu *v, u64 pte, u64 ps)
182 {
183 	u64 i, dirty_pages = 1;
184 	u64 base_gfn = (pte&_PAGE_PPN_MASK) >> PAGE_SHIFT;
185 	vmm_spinlock_t *lock = __kvm_va(v->arch.dirty_log_lock_pa);
186 	void *dirty_bitmap = (void *)KVM_MEM_DIRTY_LOG_BASE;
187 
188 	dirty_pages <<= ps <= PAGE_SHIFT ? 0 : ps - PAGE_SHIFT;
189 
190 	vmm_spin_lock(lock);
191 	for (i = 0; i < dirty_pages; i++) {
192 		/* avoid RMW */
193 		if (!test_bit(base_gfn + i, dirty_bitmap))
194 			set_bit(base_gfn + i , dirty_bitmap);
195 	}
196 	vmm_spin_unlock(lock);
197 }
198 
thash_vhpt_insert(struct kvm_vcpu * v,u64 pte,u64 itir,u64 va,int type)199 void thash_vhpt_insert(struct kvm_vcpu *v, u64 pte, u64 itir, u64 va, int type)
200 {
201 	u64 phy_pte, psr;
202 	union ia64_rr mrr;
203 
204 	mrr.val = ia64_get_rr(va);
205 	phy_pte = translate_phy_pte(&pte, itir, va);
206 
207 	if (itir_ps(itir) >= mrr.ps) {
208 		vhpt_insert(phy_pte, itir, va, pte);
209 	} else {
210 		phy_pte  &= ~PAGE_FLAGS_RV_MASK;
211 		psr = ia64_clear_ic();
212 		ia64_itc(type, va, phy_pte, itir_ps(itir));
213 		paravirt_dv_serialize_data();
214 		ia64_set_psr(psr);
215 	}
216 
217 	if (!(pte&VTLB_PTE_IO))
218 		mark_pages_dirty(v, pte, itir_ps(itir));
219 }
220 
221 /*
222  *   vhpt lookup
223  */
vhpt_lookup(u64 va)224 struct thash_data *vhpt_lookup(u64 va)
225 {
226 	struct thash_data *head;
227 	u64 tag;
228 
229 	head = (struct thash_data *)ia64_thash(va);
230 	tag = ia64_ttag(va);
231 	if (head->etag == tag)
232 		return head;
233 	return NULL;
234 }
235 
guest_vhpt_lookup(u64 iha,u64 * pte)236 u64 guest_vhpt_lookup(u64 iha, u64 *pte)
237 {
238 	u64 ret;
239 	struct thash_data *data;
240 
241 	data = __vtr_lookup(current_vcpu, iha, D_TLB);
242 	if (data != NULL)
243 		thash_vhpt_insert(current_vcpu, data->page_flags,
244 			data->itir, iha, D_TLB);
245 
246 	asm volatile ("rsm psr.ic|psr.i;;"
247 			"srlz.d;;"
248 			"ld8.s r9=[%1];;"
249 			"tnat.nz p6,p7=r9;;"
250 			"(p6) mov %0=1;"
251 			"(p6) mov r9=r0;"
252 			"(p7) extr.u r9=r9,0,53;;"
253 			"(p7) mov %0=r0;"
254 			"(p7) st8 [%2]=r9;;"
255 			"ssm psr.ic;;"
256 			"srlz.d;;"
257 			"ssm psr.i;;"
258 			"srlz.d;;"
259 			: "=&r"(ret) : "r"(iha), "r"(pte) : "memory");
260 
261 	return ret;
262 }
263 
264 /*
265  *  purge software guest tlb
266  */
267 
vtlb_purge(struct kvm_vcpu * v,u64 va,u64 ps)268 static void vtlb_purge(struct kvm_vcpu *v, u64 va, u64 ps)
269 {
270 	struct thash_data *cur;
271 	u64 start, curadr, size, psbits, tag, rr_ps, num;
272 	union ia64_rr vrr;
273 	struct thash_cb *hcb = &v->arch.vtlb;
274 
275 	vrr.val = vcpu_get_rr(v, va);
276 	psbits = VMX(v, psbits[(va >> 61)]);
277 	start = va & ~((1UL << ps) - 1);
278 	while (psbits) {
279 		curadr = start;
280 		rr_ps = __ffs(psbits);
281 		psbits &= ~(1UL << rr_ps);
282 		num = 1UL << ((ps < rr_ps) ? 0 : (ps - rr_ps));
283 		size = PSIZE(rr_ps);
284 		vrr.ps = rr_ps;
285 		while (num) {
286 			cur = vsa_thash(hcb->pta, curadr, vrr.val, &tag);
287 			if (cur->etag == tag && cur->ps == rr_ps)
288 				cur->etag = INVALID_TI_TAG;
289 			curadr += size;
290 			num--;
291 		}
292 	}
293 }
294 
295 
296 /*
297  *  purge VHPT and machine TLB
298  */
vhpt_purge(struct kvm_vcpu * v,u64 va,u64 ps)299 static void vhpt_purge(struct kvm_vcpu *v, u64 va, u64 ps)
300 {
301 	struct thash_data *cur;
302 	u64 start, size, tag, num;
303 	union ia64_rr rr;
304 
305 	start = va & ~((1UL << ps) - 1);
306 	rr.val = ia64_get_rr(va);
307 	size = PSIZE(rr.ps);
308 	num = 1UL << ((ps < rr.ps) ? 0 : (ps - rr.ps));
309 	while (num) {
310 		cur = (struct thash_data *)ia64_thash(start);
311 		tag = ia64_ttag(start);
312 		if (cur->etag == tag)
313 			cur->etag = INVALID_TI_TAG;
314 		start += size;
315 		num--;
316 	}
317 	machine_tlb_purge(va, ps);
318 }
319 
320 /*
321  * Insert an entry into hash TLB or VHPT.
322  * NOTES:
323  *  1: When inserting VHPT to thash, "va" is a must covered
324  *  address by the inserted machine VHPT entry.
325  *  2: The format of entry is always in TLB.
326  *  3: The caller need to make sure the new entry will not overlap
327  *     with any existed entry.
328  */
vtlb_insert(struct kvm_vcpu * v,u64 pte,u64 itir,u64 va)329 void vtlb_insert(struct kvm_vcpu *v, u64 pte, u64 itir, u64 va)
330 {
331 	struct thash_data *head;
332 	union ia64_rr vrr;
333 	u64 tag;
334 	struct thash_cb *hcb = &v->arch.vtlb;
335 
336 	vrr.val = vcpu_get_rr(v, va);
337 	vrr.ps = itir_ps(itir);
338 	VMX(v, psbits[va >> 61]) |= (1UL << vrr.ps);
339 	head = vsa_thash(hcb->pta, va, vrr.val, &tag);
340 	head->page_flags = pte;
341 	head->itir = itir;
342 	head->etag = tag;
343 }
344 
vtr_find_overlap(struct kvm_vcpu * vcpu,u64 va,u64 ps,int type)345 int vtr_find_overlap(struct kvm_vcpu *vcpu, u64 va, u64 ps, int type)
346 {
347 	struct thash_data  *trp;
348 	int  i;
349 	u64 end, rid;
350 
351 	rid = vcpu_get_rr(vcpu, va);
352 	rid = rid & RR_RID_MASK;
353 	end = va + PSIZE(ps);
354 	if (type == D_TLB) {
355 		if (vcpu_quick_region_check(vcpu->arch.dtr_regions, va)) {
356 			for (trp = (struct thash_data *)&vcpu->arch.dtrs, i = 0;
357 					i < NDTRS; i++, trp++) {
358 				if (__is_tr_overlap(trp, rid, va, end))
359 					return i;
360 			}
361 		}
362 	} else {
363 		if (vcpu_quick_region_check(vcpu->arch.itr_regions, va)) {
364 			for (trp = (struct thash_data *)&vcpu->arch.itrs, i = 0;
365 					i < NITRS; i++, trp++) {
366 				if (__is_tr_overlap(trp, rid, va, end))
367 					return i;
368 			}
369 		}
370 	}
371 	return -1;
372 }
373 
374 /*
375  * Purge entries in VTLB and VHPT
376  */
thash_purge_entries(struct kvm_vcpu * v,u64 va,u64 ps)377 void thash_purge_entries(struct kvm_vcpu *v, u64 va, u64 ps)
378 {
379 	if (vcpu_quick_region_check(v->arch.tc_regions, va))
380 		vtlb_purge(v, va, ps);
381 	vhpt_purge(v, va, ps);
382 }
383 
thash_purge_entries_remote(struct kvm_vcpu * v,u64 va,u64 ps)384 void thash_purge_entries_remote(struct kvm_vcpu *v, u64 va, u64 ps)
385 {
386 	u64 old_va = va;
387 	va = REGION_OFFSET(va);
388 	if (vcpu_quick_region_check(v->arch.tc_regions, old_va))
389 		vtlb_purge(v, va, ps);
390 	vhpt_purge(v, va, ps);
391 }
392 
translate_phy_pte(u64 * pte,u64 itir,u64 va)393 u64 translate_phy_pte(u64 *pte, u64 itir, u64 va)
394 {
395 	u64 ps, ps_mask, paddr, maddr, io_mask;
396 	union pte_flags phy_pte;
397 
398 	ps = itir_ps(itir);
399 	ps_mask = ~((1UL << ps) - 1);
400 	phy_pte.val = *pte;
401 	paddr = *pte;
402 	paddr = ((paddr & _PAGE_PPN_MASK) & ps_mask) | (va & ~ps_mask);
403 	maddr = kvm_get_mpt_entry(paddr >> PAGE_SHIFT);
404 	io_mask = maddr & GPFN_IO_MASK;
405 	if (io_mask && (io_mask != GPFN_PHYS_MMIO)) {
406 		*pte |= VTLB_PTE_IO;
407 		return -1;
408 	}
409 	maddr = ((maddr & _PAGE_PPN_MASK) & PAGE_MASK) |
410 					(paddr & ~PAGE_MASK);
411 	phy_pte.ppn = maddr >> ARCH_PAGE_SHIFT;
412 	return phy_pte.val;
413 }
414 
415 /*
416  * Purge overlap TCs and then insert the new entry to emulate itc ops.
417  * Notes: Only TC entry can purge and insert.
418  */
thash_purge_and_insert(struct kvm_vcpu * v,u64 pte,u64 itir,u64 ifa,int type)419 void  thash_purge_and_insert(struct kvm_vcpu *v, u64 pte, u64 itir,
420 						u64 ifa, int type)
421 {
422 	u64 ps;
423 	u64 phy_pte, io_mask, index;
424 	union ia64_rr vrr, mrr;
425 
426 	ps = itir_ps(itir);
427 	vrr.val = vcpu_get_rr(v, ifa);
428 	mrr.val = ia64_get_rr(ifa);
429 
430 	index = (pte & _PAGE_PPN_MASK) >> PAGE_SHIFT;
431 	io_mask = kvm_get_mpt_entry(index) & GPFN_IO_MASK;
432 	phy_pte = translate_phy_pte(&pte, itir, ifa);
433 
434 	/* Ensure WB attribute if pte is related to a normal mem page,
435 	 * which is required by vga acceleration since qemu maps shared
436 	 * vram buffer with WB.
437 	 */
438 	if (!(pte & VTLB_PTE_IO) && ((pte & _PAGE_MA_MASK) != _PAGE_MA_NAT) &&
439 			io_mask != GPFN_PHYS_MMIO) {
440 		pte &= ~_PAGE_MA_MASK;
441 		phy_pte &= ~_PAGE_MA_MASK;
442 	}
443 
444 	vtlb_purge(v, ifa, ps);
445 	vhpt_purge(v, ifa, ps);
446 
447 	if ((ps != mrr.ps) || (pte & VTLB_PTE_IO)) {
448 		vtlb_insert(v, pte, itir, ifa);
449 		vcpu_quick_region_set(VMX(v, tc_regions), ifa);
450 	}
451 	if (pte & VTLB_PTE_IO)
452 		return;
453 
454 	if (ps >= mrr.ps)
455 		vhpt_insert(phy_pte, itir, ifa, pte);
456 	else {
457 		u64 psr;
458 		phy_pte  &= ~PAGE_FLAGS_RV_MASK;
459 		psr = ia64_clear_ic();
460 		ia64_itc(type, ifa, phy_pte, ps);
461 		paravirt_dv_serialize_data();
462 		ia64_set_psr(psr);
463 	}
464 	if (!(pte&VTLB_PTE_IO))
465 		mark_pages_dirty(v, pte, ps);
466 
467 }
468 
469 /*
470  * Purge all TCs or VHPT entries including those in Hash table.
471  *
472  */
473 
thash_purge_all(struct kvm_vcpu * v)474 void thash_purge_all(struct kvm_vcpu *v)
475 {
476 	int i;
477 	struct thash_data *head;
478 	struct thash_cb  *vtlb, *vhpt;
479 	vtlb = &v->arch.vtlb;
480 	vhpt = &v->arch.vhpt;
481 
482 	for (i = 0; i < 8; i++)
483 		VMX(v, psbits[i]) = 0;
484 
485 	head = vtlb->hash;
486 	for (i = 0; i < vtlb->num; i++) {
487 		head->page_flags = 0;
488 		head->etag = INVALID_TI_TAG;
489 		head->itir = 0;
490 		head->next = 0;
491 		head++;
492 	};
493 
494 	head = vhpt->hash;
495 	for (i = 0; i < vhpt->num; i++) {
496 		head->page_flags = 0;
497 		head->etag = INVALID_TI_TAG;
498 		head->itir = 0;
499 		head->next = 0;
500 		head++;
501 	};
502 
503 	local_flush_tlb_all();
504 }
505 
506 /*
507  * Lookup the hash table and its collision chain to find an entry
508  * covering this address rid:va or the entry.
509  *
510  * INPUT:
511  *  in: TLB format for both VHPT & TLB.
512  */
vtlb_lookup(struct kvm_vcpu * v,u64 va,int is_data)513 struct thash_data *vtlb_lookup(struct kvm_vcpu *v, u64 va, int is_data)
514 {
515 	struct thash_data  *cch;
516 	u64    psbits, ps, tag;
517 	union ia64_rr vrr;
518 
519 	struct thash_cb *hcb = &v->arch.vtlb;
520 
521 	cch = __vtr_lookup(v, va, is_data);
522 	if (cch)
523 		return cch;
524 
525 	if (vcpu_quick_region_check(v->arch.tc_regions, va) == 0)
526 		return NULL;
527 
528 	psbits = VMX(v, psbits[(va >> 61)]);
529 	vrr.val = vcpu_get_rr(v, va);
530 	while (psbits) {
531 		ps = __ffs(psbits);
532 		psbits &= ~(1UL << ps);
533 		vrr.ps = ps;
534 		cch = vsa_thash(hcb->pta, va, vrr.val, &tag);
535 		if (cch->etag == tag && cch->ps == ps)
536 			return cch;
537 	}
538 
539 	return NULL;
540 }
541 
542 /*
543  * Initialize internal control data before service.
544  */
thash_init(struct thash_cb * hcb,u64 sz)545 void thash_init(struct thash_cb *hcb, u64 sz)
546 {
547 	int i;
548 	struct thash_data *head;
549 
550 	hcb->pta.val = (unsigned long)hcb->hash;
551 	hcb->pta.vf = 1;
552 	hcb->pta.ve = 1;
553 	hcb->pta.size = sz;
554 	head = hcb->hash;
555 	for (i = 0; i < hcb->num; i++) {
556 		head->page_flags = 0;
557 		head->itir = 0;
558 		head->etag = INVALID_TI_TAG;
559 		head->next = 0;
560 		head++;
561 	}
562 }
563 
kvm_get_mpt_entry(u64 gpfn)564 u64 kvm_get_mpt_entry(u64 gpfn)
565 {
566 	u64 *base = (u64 *) KVM_P2M_BASE;
567 
568 	if (gpfn >= (KVM_P2M_SIZE >> 3))
569 		panic_vm(current_vcpu, "Invalid gpfn =%lx\n", gpfn);
570 
571 	return *(base + gpfn);
572 }
573 
kvm_lookup_mpa(u64 gpfn)574 u64 kvm_lookup_mpa(u64 gpfn)
575 {
576 	u64 maddr;
577 	maddr = kvm_get_mpt_entry(gpfn);
578 	return maddr&_PAGE_PPN_MASK;
579 }
580 
kvm_gpa_to_mpa(u64 gpa)581 u64 kvm_gpa_to_mpa(u64 gpa)
582 {
583 	u64 pte = kvm_lookup_mpa(gpa >> PAGE_SHIFT);
584 	return (pte >> PAGE_SHIFT << PAGE_SHIFT) | (gpa & ~PAGE_MASK);
585 }
586 
587 /*
588  * Fetch guest bundle code.
589  * INPUT:
590  *  gip: guest ip
591  *  pbundle: used to return fetched bundle.
592  */
fetch_code(struct kvm_vcpu * vcpu,u64 gip,IA64_BUNDLE * pbundle)593 int fetch_code(struct kvm_vcpu *vcpu, u64 gip, IA64_BUNDLE *pbundle)
594 {
595 	u64     gpip = 0;   /* guest physical IP*/
596 	u64     *vpa;
597 	struct thash_data    *tlb;
598 	u64     maddr;
599 
600 	if (!(VCPU(vcpu, vpsr) & IA64_PSR_IT)) {
601 		/* I-side physical mode */
602 		gpip = gip;
603 	} else {
604 		tlb = vtlb_lookup(vcpu, gip, I_TLB);
605 		if (tlb)
606 			gpip = (tlb->ppn >> (tlb->ps - 12) << tlb->ps) |
607 				(gip & (PSIZE(tlb->ps) - 1));
608 	}
609 	if (gpip) {
610 		maddr = kvm_gpa_to_mpa(gpip);
611 	} else {
612 		tlb = vhpt_lookup(gip);
613 		if (tlb == NULL) {
614 			ia64_ptcl(gip, ARCH_PAGE_SHIFT << 2);
615 			return IA64_FAULT;
616 		}
617 		maddr = (tlb->ppn >> (tlb->ps - 12) << tlb->ps)
618 					| (gip & (PSIZE(tlb->ps) - 1));
619 	}
620 	vpa = (u64 *)__kvm_va(maddr);
621 
622 	pbundle->i64[0] = *vpa++;
623 	pbundle->i64[1] = *vpa;
624 
625 	return IA64_NO_FAULT;
626 }
627 
kvm_init_vhpt(struct kvm_vcpu * v)628 void kvm_init_vhpt(struct kvm_vcpu *v)
629 {
630 	v->arch.vhpt.num = VHPT_NUM_ENTRIES;
631 	thash_init(&v->arch.vhpt, VHPT_SHIFT);
632 	ia64_set_pta(v->arch.vhpt.pta.val);
633 	/*Enable VHPT here?*/
634 }
635 
kvm_init_vtlb(struct kvm_vcpu * v)636 void kvm_init_vtlb(struct kvm_vcpu *v)
637 {
638 	v->arch.vtlb.num = VTLB_NUM_ENTRIES;
639 	thash_init(&v->arch.vtlb, VTLB_SHIFT);
640 }
641