1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 *
6 * Derived from arch/arm/kvm/guest.c:
7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9 */
10
11 #include <linux/bits.h>
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/nospec.h>
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/stddef.h>
18 #include <linux/string.h>
19 #include <linux/vmalloc.h>
20 #include <linux/fs.h>
21 #include <kvm/arm_hypercalls.h>
22 #include <asm/cputype.h>
23 #include <linux/uaccess.h>
24 #include <asm/fpsimd.h>
25 #include <asm/kvm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_nested.h>
28 #include <asm/sigcontext.h>
29
30 #include "trace.h"
31
32 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
33 KVM_GENERIC_VM_STATS()
34 };
35
36 const struct kvm_stats_header kvm_vm_stats_header = {
37 .name_size = KVM_STATS_NAME_SIZE,
38 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
39 .id_offset = sizeof(struct kvm_stats_header),
40 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
41 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
42 sizeof(kvm_vm_stats_desc),
43 };
44
45 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
46 KVM_GENERIC_VCPU_STATS(),
47 STATS_DESC_COUNTER(VCPU, hvc_exit_stat),
48 STATS_DESC_COUNTER(VCPU, wfe_exit_stat),
49 STATS_DESC_COUNTER(VCPU, wfi_exit_stat),
50 STATS_DESC_COUNTER(VCPU, mmio_exit_user),
51 STATS_DESC_COUNTER(VCPU, mmio_exit_kernel),
52 STATS_DESC_COUNTER(VCPU, signal_exits),
53 STATS_DESC_COUNTER(VCPU, exits)
54 };
55
56 const struct kvm_stats_header kvm_vcpu_stats_header = {
57 .name_size = KVM_STATS_NAME_SIZE,
58 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
59 .id_offset = sizeof(struct kvm_stats_header),
60 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
61 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
62 sizeof(kvm_vcpu_stats_desc),
63 };
64
core_reg_offset_is_vreg(u64 off)65 static bool core_reg_offset_is_vreg(u64 off)
66 {
67 return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
68 off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
69 }
70
core_reg_offset_from_id(u64 id)71 static u64 core_reg_offset_from_id(u64 id)
72 {
73 return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
74 }
75
core_reg_size_from_offset(const struct kvm_vcpu * vcpu,u64 off)76 static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
77 {
78 int size;
79
80 switch (off) {
81 case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
82 KVM_REG_ARM_CORE_REG(regs.regs[30]):
83 case KVM_REG_ARM_CORE_REG(regs.sp):
84 case KVM_REG_ARM_CORE_REG(regs.pc):
85 case KVM_REG_ARM_CORE_REG(regs.pstate):
86 case KVM_REG_ARM_CORE_REG(sp_el1):
87 case KVM_REG_ARM_CORE_REG(elr_el1):
88 case KVM_REG_ARM_CORE_REG(spsr[0]) ...
89 KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
90 size = sizeof(__u64);
91 break;
92
93 case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
94 KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
95 size = sizeof(__uint128_t);
96 break;
97
98 case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
99 case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
100 size = sizeof(__u32);
101 break;
102
103 default:
104 return -EINVAL;
105 }
106
107 if (!IS_ALIGNED(off, size / sizeof(__u32)))
108 return -EINVAL;
109
110 /*
111 * The KVM_REG_ARM64_SVE regs must be used instead of
112 * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
113 * SVE-enabled vcpus:
114 */
115 if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
116 return -EINVAL;
117
118 return size;
119 }
120
core_reg_addr(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)121 static void *core_reg_addr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
122 {
123 u64 off = core_reg_offset_from_id(reg->id);
124 int size = core_reg_size_from_offset(vcpu, off);
125
126 if (size < 0)
127 return NULL;
128
129 if (KVM_REG_SIZE(reg->id) != size)
130 return NULL;
131
132 switch (off) {
133 case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
134 KVM_REG_ARM_CORE_REG(regs.regs[30]):
135 off -= KVM_REG_ARM_CORE_REG(regs.regs[0]);
136 off /= 2;
137 return &vcpu->arch.ctxt.regs.regs[off];
138
139 case KVM_REG_ARM_CORE_REG(regs.sp):
140 return &vcpu->arch.ctxt.regs.sp;
141
142 case KVM_REG_ARM_CORE_REG(regs.pc):
143 return &vcpu->arch.ctxt.regs.pc;
144
145 case KVM_REG_ARM_CORE_REG(regs.pstate):
146 return &vcpu->arch.ctxt.regs.pstate;
147
148 case KVM_REG_ARM_CORE_REG(sp_el1):
149 return __ctxt_sys_reg(&vcpu->arch.ctxt, SP_EL1);
150
151 case KVM_REG_ARM_CORE_REG(elr_el1):
152 return __ctxt_sys_reg(&vcpu->arch.ctxt, ELR_EL1);
153
154 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_EL1]):
155 return __ctxt_sys_reg(&vcpu->arch.ctxt, SPSR_EL1);
156
157 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_ABT]):
158 return &vcpu->arch.ctxt.spsr_abt;
159
160 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_UND]):
161 return &vcpu->arch.ctxt.spsr_und;
162
163 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_IRQ]):
164 return &vcpu->arch.ctxt.spsr_irq;
165
166 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_FIQ]):
167 return &vcpu->arch.ctxt.spsr_fiq;
168
169 case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
170 KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
171 off -= KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]);
172 off /= 4;
173 return &vcpu->arch.ctxt.fp_regs.vregs[off];
174
175 case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
176 return &vcpu->arch.ctxt.fp_regs.fpsr;
177
178 case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
179 return &vcpu->arch.ctxt.fp_regs.fpcr;
180
181 default:
182 return NULL;
183 }
184 }
185
get_core_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)186 static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
187 {
188 /*
189 * Because the kvm_regs structure is a mix of 32, 64 and
190 * 128bit fields, we index it as if it was a 32bit
191 * array. Hence below, nr_regs is the number of entries, and
192 * off the index in the "array".
193 */
194 __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
195 int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
196 void *addr;
197 u32 off;
198
199 /* Our ID is an index into the kvm_regs struct. */
200 off = core_reg_offset_from_id(reg->id);
201 if (off >= nr_regs ||
202 (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
203 return -ENOENT;
204
205 addr = core_reg_addr(vcpu, reg);
206 if (!addr)
207 return -EINVAL;
208
209 if (copy_to_user(uaddr, addr, KVM_REG_SIZE(reg->id)))
210 return -EFAULT;
211
212 return 0;
213 }
214
set_core_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)215 static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
216 {
217 __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
218 int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
219 __uint128_t tmp;
220 void *valp = &tmp, *addr;
221 u64 off;
222 int err = 0;
223
224 /* Our ID is an index into the kvm_regs struct. */
225 off = core_reg_offset_from_id(reg->id);
226 if (off >= nr_regs ||
227 (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
228 return -ENOENT;
229
230 addr = core_reg_addr(vcpu, reg);
231 if (!addr)
232 return -EINVAL;
233
234 if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
235 return -EINVAL;
236
237 if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
238 err = -EFAULT;
239 goto out;
240 }
241
242 if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
243 u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
244 switch (mode) {
245 case PSR_AA32_MODE_USR:
246 if (!kvm_supports_32bit_el0())
247 return -EINVAL;
248 break;
249 case PSR_AA32_MODE_FIQ:
250 case PSR_AA32_MODE_IRQ:
251 case PSR_AA32_MODE_SVC:
252 case PSR_AA32_MODE_ABT:
253 case PSR_AA32_MODE_UND:
254 if (!vcpu_el1_is_32bit(vcpu))
255 return -EINVAL;
256 break;
257 case PSR_MODE_EL2h:
258 case PSR_MODE_EL2t:
259 if (!vcpu_has_nv(vcpu))
260 return -EINVAL;
261 fallthrough;
262 case PSR_MODE_EL0t:
263 case PSR_MODE_EL1t:
264 case PSR_MODE_EL1h:
265 if (vcpu_el1_is_32bit(vcpu))
266 return -EINVAL;
267 break;
268 default:
269 err = -EINVAL;
270 goto out;
271 }
272 }
273
274 memcpy(addr, valp, KVM_REG_SIZE(reg->id));
275
276 if (*vcpu_cpsr(vcpu) & PSR_MODE32_BIT) {
277 int i, nr_reg;
278
279 switch (*vcpu_cpsr(vcpu)) {
280 /*
281 * Either we are dealing with user mode, and only the
282 * first 15 registers (+ PC) must be narrowed to 32bit.
283 * AArch32 r0-r14 conveniently map to AArch64 x0-x14.
284 */
285 case PSR_AA32_MODE_USR:
286 case PSR_AA32_MODE_SYS:
287 nr_reg = 15;
288 break;
289
290 /*
291 * Otherwise, this is a privileged mode, and *all* the
292 * registers must be narrowed to 32bit.
293 */
294 default:
295 nr_reg = 31;
296 break;
297 }
298
299 for (i = 0; i < nr_reg; i++)
300 vcpu_set_reg(vcpu, i, (u32)vcpu_get_reg(vcpu, i));
301
302 *vcpu_pc(vcpu) = (u32)*vcpu_pc(vcpu);
303 }
304 out:
305 return err;
306 }
307
308 #define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
309 #define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
310 #define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq)))
311
get_sve_vls(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)312 static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
313 {
314 unsigned int max_vq, vq;
315 u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
316
317 if (!vcpu_has_sve(vcpu))
318 return -ENOENT;
319
320 if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
321 return -EINVAL;
322
323 memset(vqs, 0, sizeof(vqs));
324
325 max_vq = vcpu_sve_max_vq(vcpu);
326 for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
327 if (sve_vq_available(vq))
328 vqs[vq_word(vq)] |= vq_mask(vq);
329
330 if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
331 return -EFAULT;
332
333 return 0;
334 }
335
set_sve_vls(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)336 static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
337 {
338 unsigned int max_vq, vq;
339 u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
340
341 if (!vcpu_has_sve(vcpu))
342 return -ENOENT;
343
344 if (kvm_arm_vcpu_sve_finalized(vcpu))
345 return -EPERM; /* too late! */
346
347 if (WARN_ON(vcpu->arch.sve_state))
348 return -EINVAL;
349
350 if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
351 return -EFAULT;
352
353 max_vq = 0;
354 for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
355 if (vq_present(vqs, vq))
356 max_vq = vq;
357
358 if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
359 return -EINVAL;
360
361 /*
362 * Vector lengths supported by the host can't currently be
363 * hidden from the guest individually: instead we can only set a
364 * maximum via ZCR_EL2.LEN. So, make sure the available vector
365 * lengths match the set requested exactly up to the requested
366 * maximum:
367 */
368 for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
369 if (vq_present(vqs, vq) != sve_vq_available(vq))
370 return -EINVAL;
371
372 /* Can't run with no vector lengths at all: */
373 if (max_vq < SVE_VQ_MIN)
374 return -EINVAL;
375
376 /* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */
377 vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);
378
379 return 0;
380 }
381
382 #define SVE_REG_SLICE_SHIFT 0
383 #define SVE_REG_SLICE_BITS 5
384 #define SVE_REG_ID_SHIFT (SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
385 #define SVE_REG_ID_BITS 5
386
387 #define SVE_REG_SLICE_MASK \
388 GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1, \
389 SVE_REG_SLICE_SHIFT)
390 #define SVE_REG_ID_MASK \
391 GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)
392
393 #define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)
394
395 #define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
396 #define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))
397
398 /*
399 * Number of register slices required to cover each whole SVE register.
400 * NOTE: Only the first slice every exists, for now.
401 * If you are tempted to modify this, you must also rework sve_reg_to_region()
402 * to match:
403 */
404 #define vcpu_sve_slices(vcpu) 1
405
406 /* Bounds of a single SVE register slice within vcpu->arch.sve_state */
407 struct sve_state_reg_region {
408 unsigned int koffset; /* offset into sve_state in kernel memory */
409 unsigned int klen; /* length in kernel memory */
410 unsigned int upad; /* extra trailing padding in user memory */
411 };
412
413 /*
414 * Validate SVE register ID and get sanitised bounds for user/kernel SVE
415 * register copy
416 */
sve_reg_to_region(struct sve_state_reg_region * region,struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)417 static int sve_reg_to_region(struct sve_state_reg_region *region,
418 struct kvm_vcpu *vcpu,
419 const struct kvm_one_reg *reg)
420 {
421 /* reg ID ranges for Z- registers */
422 const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
423 const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
424 SVE_NUM_SLICES - 1);
425
426 /* reg ID ranges for P- registers and FFR (which are contiguous) */
427 const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
428 const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);
429
430 unsigned int vq;
431 unsigned int reg_num;
432
433 unsigned int reqoffset, reqlen; /* User-requested offset and length */
434 unsigned int maxlen; /* Maximum permitted length */
435
436 size_t sve_state_size;
437
438 const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
439 SVE_NUM_SLICES - 1);
440
441 /* Verify that the P-regs and FFR really do have contiguous IDs: */
442 BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);
443
444 /* Verify that we match the UAPI header: */
445 BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);
446
447 reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;
448
449 if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
450 if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
451 return -ENOENT;
452
453 vq = vcpu_sve_max_vq(vcpu);
454
455 reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
456 SVE_SIG_REGS_OFFSET;
457 reqlen = KVM_SVE_ZREG_SIZE;
458 maxlen = SVE_SIG_ZREG_SIZE(vq);
459 } else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
460 if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
461 return -ENOENT;
462
463 vq = vcpu_sve_max_vq(vcpu);
464
465 reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
466 SVE_SIG_REGS_OFFSET;
467 reqlen = KVM_SVE_PREG_SIZE;
468 maxlen = SVE_SIG_PREG_SIZE(vq);
469 } else {
470 return -EINVAL;
471 }
472
473 sve_state_size = vcpu_sve_state_size(vcpu);
474 if (WARN_ON(!sve_state_size))
475 return -EINVAL;
476
477 region->koffset = array_index_nospec(reqoffset, sve_state_size);
478 region->klen = min(maxlen, reqlen);
479 region->upad = reqlen - region->klen;
480
481 return 0;
482 }
483
get_sve_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)484 static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
485 {
486 int ret;
487 struct sve_state_reg_region region;
488 char __user *uptr = (char __user *)reg->addr;
489
490 /* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
491 if (reg->id == KVM_REG_ARM64_SVE_VLS)
492 return get_sve_vls(vcpu, reg);
493
494 /* Try to interpret reg ID as an architectural SVE register... */
495 ret = sve_reg_to_region(®ion, vcpu, reg);
496 if (ret)
497 return ret;
498
499 if (!kvm_arm_vcpu_sve_finalized(vcpu))
500 return -EPERM;
501
502 if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
503 region.klen) ||
504 clear_user(uptr + region.klen, region.upad))
505 return -EFAULT;
506
507 return 0;
508 }
509
set_sve_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)510 static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
511 {
512 int ret;
513 struct sve_state_reg_region region;
514 const char __user *uptr = (const char __user *)reg->addr;
515
516 /* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
517 if (reg->id == KVM_REG_ARM64_SVE_VLS)
518 return set_sve_vls(vcpu, reg);
519
520 /* Try to interpret reg ID as an architectural SVE register... */
521 ret = sve_reg_to_region(®ion, vcpu, reg);
522 if (ret)
523 return ret;
524
525 if (!kvm_arm_vcpu_sve_finalized(vcpu))
526 return -EPERM;
527
528 if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
529 region.klen))
530 return -EFAULT;
531
532 return 0;
533 }
534
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)535 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
536 {
537 return -EINVAL;
538 }
539
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)540 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
541 {
542 return -EINVAL;
543 }
544
copy_core_reg_indices(const struct kvm_vcpu * vcpu,u64 __user * uindices)545 static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
546 u64 __user *uindices)
547 {
548 unsigned int i;
549 int n = 0;
550
551 for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
552 u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i;
553 int size = core_reg_size_from_offset(vcpu, i);
554
555 if (size < 0)
556 continue;
557
558 switch (size) {
559 case sizeof(__u32):
560 reg |= KVM_REG_SIZE_U32;
561 break;
562
563 case sizeof(__u64):
564 reg |= KVM_REG_SIZE_U64;
565 break;
566
567 case sizeof(__uint128_t):
568 reg |= KVM_REG_SIZE_U128;
569 break;
570
571 default:
572 WARN_ON(1);
573 continue;
574 }
575
576 if (uindices) {
577 if (put_user(reg, uindices))
578 return -EFAULT;
579 uindices++;
580 }
581
582 n++;
583 }
584
585 return n;
586 }
587
num_core_regs(const struct kvm_vcpu * vcpu)588 static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
589 {
590 return copy_core_reg_indices(vcpu, NULL);
591 }
592
593 static const u64 timer_reg_list[] = {
594 KVM_REG_ARM_TIMER_CTL,
595 KVM_REG_ARM_TIMER_CNT,
596 KVM_REG_ARM_TIMER_CVAL,
597 KVM_REG_ARM_PTIMER_CTL,
598 KVM_REG_ARM_PTIMER_CNT,
599 KVM_REG_ARM_PTIMER_CVAL,
600 };
601
602 #define NUM_TIMER_REGS ARRAY_SIZE(timer_reg_list)
603
is_timer_reg(u64 index)604 static bool is_timer_reg(u64 index)
605 {
606 switch (index) {
607 case KVM_REG_ARM_TIMER_CTL:
608 case KVM_REG_ARM_TIMER_CNT:
609 case KVM_REG_ARM_TIMER_CVAL:
610 case KVM_REG_ARM_PTIMER_CTL:
611 case KVM_REG_ARM_PTIMER_CNT:
612 case KVM_REG_ARM_PTIMER_CVAL:
613 return true;
614 }
615 return false;
616 }
617
copy_timer_indices(struct kvm_vcpu * vcpu,u64 __user * uindices)618 static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
619 {
620 for (int i = 0; i < NUM_TIMER_REGS; i++) {
621 if (put_user(timer_reg_list[i], uindices))
622 return -EFAULT;
623 uindices++;
624 }
625
626 return 0;
627 }
628
set_timer_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)629 static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
630 {
631 void __user *uaddr = (void __user *)(long)reg->addr;
632 u64 val;
633 int ret;
634
635 ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
636 if (ret != 0)
637 return -EFAULT;
638
639 return kvm_arm_timer_set_reg(vcpu, reg->id, val);
640 }
641
get_timer_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)642 static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
643 {
644 void __user *uaddr = (void __user *)(long)reg->addr;
645 u64 val;
646
647 val = kvm_arm_timer_get_reg(vcpu, reg->id);
648 return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
649 }
650
num_sve_regs(const struct kvm_vcpu * vcpu)651 static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
652 {
653 const unsigned int slices = vcpu_sve_slices(vcpu);
654
655 if (!vcpu_has_sve(vcpu))
656 return 0;
657
658 /* Policed by KVM_GET_REG_LIST: */
659 WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
660
661 return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */)
662 + 1; /* KVM_REG_ARM64_SVE_VLS */
663 }
664
copy_sve_reg_indices(const struct kvm_vcpu * vcpu,u64 __user * uindices)665 static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
666 u64 __user *uindices)
667 {
668 const unsigned int slices = vcpu_sve_slices(vcpu);
669 u64 reg;
670 unsigned int i, n;
671 int num_regs = 0;
672
673 if (!vcpu_has_sve(vcpu))
674 return 0;
675
676 /* Policed by KVM_GET_REG_LIST: */
677 WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
678
679 /*
680 * Enumerate this first, so that userspace can save/restore in
681 * the order reported by KVM_GET_REG_LIST:
682 */
683 reg = KVM_REG_ARM64_SVE_VLS;
684 if (put_user(reg, uindices++))
685 return -EFAULT;
686 ++num_regs;
687
688 for (i = 0; i < slices; i++) {
689 for (n = 0; n < SVE_NUM_ZREGS; n++) {
690 reg = KVM_REG_ARM64_SVE_ZREG(n, i);
691 if (put_user(reg, uindices++))
692 return -EFAULT;
693 num_regs++;
694 }
695
696 for (n = 0; n < SVE_NUM_PREGS; n++) {
697 reg = KVM_REG_ARM64_SVE_PREG(n, i);
698 if (put_user(reg, uindices++))
699 return -EFAULT;
700 num_regs++;
701 }
702
703 reg = KVM_REG_ARM64_SVE_FFR(i);
704 if (put_user(reg, uindices++))
705 return -EFAULT;
706 num_regs++;
707 }
708
709 return num_regs;
710 }
711
712 /**
713 * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
714 *
715 * This is for all registers.
716 */
kvm_arm_num_regs(struct kvm_vcpu * vcpu)717 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
718 {
719 unsigned long res = 0;
720
721 res += num_core_regs(vcpu);
722 res += num_sve_regs(vcpu);
723 res += kvm_arm_num_sys_reg_descs(vcpu);
724 res += kvm_arm_get_fw_num_regs(vcpu);
725 res += NUM_TIMER_REGS;
726
727 return res;
728 }
729
730 /**
731 * kvm_arm_copy_reg_indices - get indices of all registers.
732 *
733 * We do core registers right here, then we append system regs.
734 */
kvm_arm_copy_reg_indices(struct kvm_vcpu * vcpu,u64 __user * uindices)735 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
736 {
737 int ret;
738
739 ret = copy_core_reg_indices(vcpu, uindices);
740 if (ret < 0)
741 return ret;
742 uindices += ret;
743
744 ret = copy_sve_reg_indices(vcpu, uindices);
745 if (ret < 0)
746 return ret;
747 uindices += ret;
748
749 ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
750 if (ret < 0)
751 return ret;
752 uindices += kvm_arm_get_fw_num_regs(vcpu);
753
754 ret = copy_timer_indices(vcpu, uindices);
755 if (ret < 0)
756 return ret;
757 uindices += NUM_TIMER_REGS;
758
759 return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
760 }
761
kvm_arm_get_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)762 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
763 {
764 /* We currently use nothing arch-specific in upper 32 bits */
765 if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
766 return -EINVAL;
767
768 switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
769 case KVM_REG_ARM_CORE: return get_core_reg(vcpu, reg);
770 case KVM_REG_ARM_FW:
771 case KVM_REG_ARM_FW_FEAT_BMAP:
772 return kvm_arm_get_fw_reg(vcpu, reg);
773 case KVM_REG_ARM64_SVE: return get_sve_reg(vcpu, reg);
774 }
775
776 if (is_timer_reg(reg->id))
777 return get_timer_reg(vcpu, reg);
778
779 return kvm_arm_sys_reg_get_reg(vcpu, reg);
780 }
781
kvm_arm_set_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)782 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
783 {
784 /* We currently use nothing arch-specific in upper 32 bits */
785 if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
786 return -EINVAL;
787
788 switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
789 case KVM_REG_ARM_CORE: return set_core_reg(vcpu, reg);
790 case KVM_REG_ARM_FW:
791 case KVM_REG_ARM_FW_FEAT_BMAP:
792 return kvm_arm_set_fw_reg(vcpu, reg);
793 case KVM_REG_ARM64_SVE: return set_sve_reg(vcpu, reg);
794 }
795
796 if (is_timer_reg(reg->id))
797 return set_timer_reg(vcpu, reg);
798
799 return kvm_arm_sys_reg_set_reg(vcpu, reg);
800 }
801
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)802 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
803 struct kvm_sregs *sregs)
804 {
805 return -EINVAL;
806 }
807
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)808 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
809 struct kvm_sregs *sregs)
810 {
811 return -EINVAL;
812 }
813
__kvm_arm_vcpu_get_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)814 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
815 struct kvm_vcpu_events *events)
816 {
817 events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE);
818 events->exception.serror_has_esr = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
819
820 if (events->exception.serror_pending && events->exception.serror_has_esr)
821 events->exception.serror_esr = vcpu_get_vsesr(vcpu);
822
823 /*
824 * We never return a pending ext_dabt here because we deliver it to
825 * the virtual CPU directly when setting the event and it's no longer
826 * 'pending' at this point.
827 */
828
829 return 0;
830 }
831
__kvm_arm_vcpu_set_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)832 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
833 struct kvm_vcpu_events *events)
834 {
835 bool serror_pending = events->exception.serror_pending;
836 bool has_esr = events->exception.serror_has_esr;
837 bool ext_dabt_pending = events->exception.ext_dabt_pending;
838
839 if (serror_pending && has_esr) {
840 if (!cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
841 return -EINVAL;
842
843 if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK))
844 kvm_set_sei_esr(vcpu, events->exception.serror_esr);
845 else
846 return -EINVAL;
847 } else if (serror_pending) {
848 kvm_inject_vabt(vcpu);
849 }
850
851 if (ext_dabt_pending)
852 kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
853
854 return 0;
855 }
856
kvm_target_cpu(void)857 u32 __attribute_const__ kvm_target_cpu(void)
858 {
859 unsigned long implementor = read_cpuid_implementor();
860 unsigned long part_number = read_cpuid_part_number();
861
862 switch (implementor) {
863 case ARM_CPU_IMP_ARM:
864 switch (part_number) {
865 case ARM_CPU_PART_AEM_V8:
866 return KVM_ARM_TARGET_AEM_V8;
867 case ARM_CPU_PART_FOUNDATION:
868 return KVM_ARM_TARGET_FOUNDATION_V8;
869 case ARM_CPU_PART_CORTEX_A53:
870 return KVM_ARM_TARGET_CORTEX_A53;
871 case ARM_CPU_PART_CORTEX_A57:
872 return KVM_ARM_TARGET_CORTEX_A57;
873 }
874 break;
875 case ARM_CPU_IMP_APM:
876 switch (part_number) {
877 case APM_CPU_PART_XGENE:
878 return KVM_ARM_TARGET_XGENE_POTENZA;
879 }
880 break;
881 }
882
883 /* Return a default generic target */
884 return KVM_ARM_TARGET_GENERIC_V8;
885 }
886
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)887 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
888 {
889 return -EINVAL;
890 }
891
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)892 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
893 {
894 return -EINVAL;
895 }
896
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)897 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
898 struct kvm_translation *tr)
899 {
900 return -EINVAL;
901 }
902
903 /**
904 * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
905 * @kvm: pointer to the KVM struct
906 * @kvm_guest_debug: the ioctl data buffer
907 *
908 * This sets up and enables the VM for guest debugging. Userspace
909 * passes in a control flag to enable different debug types and
910 * potentially other architecture specific information in the rest of
911 * the structure.
912 */
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)913 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
914 struct kvm_guest_debug *dbg)
915 {
916 int ret = 0;
917
918 trace_kvm_set_guest_debug(vcpu, dbg->control);
919
920 if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
921 ret = -EINVAL;
922 goto out;
923 }
924
925 if (dbg->control & KVM_GUESTDBG_ENABLE) {
926 vcpu->guest_debug = dbg->control;
927
928 /* Hardware assisted Break and Watch points */
929 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
930 vcpu->arch.external_debug_state = dbg->arch;
931 }
932
933 } else {
934 /* If not enabled clear all flags */
935 vcpu->guest_debug = 0;
936 vcpu_clear_flag(vcpu, DBG_SS_ACTIVE_PENDING);
937 }
938
939 out:
940 return ret;
941 }
942
kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)943 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
944 struct kvm_device_attr *attr)
945 {
946 int ret;
947
948 switch (attr->group) {
949 case KVM_ARM_VCPU_PMU_V3_CTRL:
950 mutex_lock(&vcpu->kvm->arch.config_lock);
951 ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
952 mutex_unlock(&vcpu->kvm->arch.config_lock);
953 break;
954 case KVM_ARM_VCPU_TIMER_CTRL:
955 ret = kvm_arm_timer_set_attr(vcpu, attr);
956 break;
957 case KVM_ARM_VCPU_PVTIME_CTRL:
958 ret = kvm_arm_pvtime_set_attr(vcpu, attr);
959 break;
960 default:
961 ret = -ENXIO;
962 break;
963 }
964
965 return ret;
966 }
967
kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)968 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
969 struct kvm_device_attr *attr)
970 {
971 int ret;
972
973 switch (attr->group) {
974 case KVM_ARM_VCPU_PMU_V3_CTRL:
975 ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
976 break;
977 case KVM_ARM_VCPU_TIMER_CTRL:
978 ret = kvm_arm_timer_get_attr(vcpu, attr);
979 break;
980 case KVM_ARM_VCPU_PVTIME_CTRL:
981 ret = kvm_arm_pvtime_get_attr(vcpu, attr);
982 break;
983 default:
984 ret = -ENXIO;
985 break;
986 }
987
988 return ret;
989 }
990
kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)991 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
992 struct kvm_device_attr *attr)
993 {
994 int ret;
995
996 switch (attr->group) {
997 case KVM_ARM_VCPU_PMU_V3_CTRL:
998 ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
999 break;
1000 case KVM_ARM_VCPU_TIMER_CTRL:
1001 ret = kvm_arm_timer_has_attr(vcpu, attr);
1002 break;
1003 case KVM_ARM_VCPU_PVTIME_CTRL:
1004 ret = kvm_arm_pvtime_has_attr(vcpu, attr);
1005 break;
1006 default:
1007 ret = -ENXIO;
1008 break;
1009 }
1010
1011 return ret;
1012 }
1013
kvm_vm_ioctl_mte_copy_tags(struct kvm * kvm,struct kvm_arm_copy_mte_tags * copy_tags)1014 int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
1015 struct kvm_arm_copy_mte_tags *copy_tags)
1016 {
1017 gpa_t guest_ipa = copy_tags->guest_ipa;
1018 size_t length = copy_tags->length;
1019 void __user *tags = copy_tags->addr;
1020 gpa_t gfn;
1021 bool write = !(copy_tags->flags & KVM_ARM_TAGS_FROM_GUEST);
1022 int ret = 0;
1023
1024 if (!kvm_has_mte(kvm))
1025 return -EINVAL;
1026
1027 if (copy_tags->reserved[0] || copy_tags->reserved[1])
1028 return -EINVAL;
1029
1030 if (copy_tags->flags & ~KVM_ARM_TAGS_FROM_GUEST)
1031 return -EINVAL;
1032
1033 if (length & ~PAGE_MASK || guest_ipa & ~PAGE_MASK)
1034 return -EINVAL;
1035
1036 /* Lengths above INT_MAX cannot be represented in the return value */
1037 if (length > INT_MAX)
1038 return -EINVAL;
1039
1040 gfn = gpa_to_gfn(guest_ipa);
1041
1042 mutex_lock(&kvm->slots_lock);
1043
1044 while (length > 0) {
1045 kvm_pfn_t pfn = gfn_to_pfn_prot(kvm, gfn, write, NULL);
1046 void *maddr;
1047 unsigned long num_tags;
1048 struct page *page;
1049
1050 if (is_error_noslot_pfn(pfn)) {
1051 ret = -EFAULT;
1052 goto out;
1053 }
1054
1055 page = pfn_to_online_page(pfn);
1056 if (!page) {
1057 /* Reject ZONE_DEVICE memory */
1058 ret = -EFAULT;
1059 goto out;
1060 }
1061 maddr = page_address(page);
1062
1063 if (!write) {
1064 if (page_mte_tagged(page))
1065 num_tags = mte_copy_tags_to_user(tags, maddr,
1066 MTE_GRANULES_PER_PAGE);
1067 else
1068 /* No tags in memory, so write zeros */
1069 num_tags = MTE_GRANULES_PER_PAGE -
1070 clear_user(tags, MTE_GRANULES_PER_PAGE);
1071 kvm_release_pfn_clean(pfn);
1072 } else {
1073 /*
1074 * Only locking to serialise with a concurrent
1075 * set_pte_at() in the VMM but still overriding the
1076 * tags, hence ignoring the return value.
1077 */
1078 try_page_mte_tagging(page);
1079 num_tags = mte_copy_tags_from_user(maddr, tags,
1080 MTE_GRANULES_PER_PAGE);
1081
1082 /* uaccess failed, don't leave stale tags */
1083 if (num_tags != MTE_GRANULES_PER_PAGE)
1084 mte_clear_page_tags(maddr);
1085 set_page_mte_tagged(page);
1086
1087 kvm_release_pfn_dirty(pfn);
1088 }
1089
1090 if (num_tags != MTE_GRANULES_PER_PAGE) {
1091 ret = -EFAULT;
1092 goto out;
1093 }
1094
1095 gfn++;
1096 tags += num_tags;
1097 length -= PAGE_SIZE;
1098 }
1099
1100 out:
1101 mutex_unlock(&kvm->slots_lock);
1102 /* If some data has been copied report the number of bytes copied */
1103 if (length != copy_tags->length)
1104 return copy_tags->length - length;
1105 return ret;
1106 }
1107