1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * hosting IBM Z kernel virtual machines (s390x)
4 *
5 * Copyright IBM Corp. 2008, 2020
6 *
7 * Author(s): Carsten Otte <cotte@de.ibm.com>
8 * Christian Borntraeger <borntraeger@de.ibm.com>
9 * Christian Ehrhardt <ehrhardt@de.ibm.com>
10 * Jason J. Herne <jjherne@us.ibm.com>
11 */
12
13 #define KMSG_COMPONENT "kvm-s390"
14 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
15
16 #include <linux/compiler.h>
17 #include <linux/err.h>
18 #include <linux/fs.h>
19 #include <linux/hrtimer.h>
20 #include <linux/init.h>
21 #include <linux/kvm.h>
22 #include <linux/kvm_host.h>
23 #include <linux/mman.h>
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/random.h>
27 #include <linux/slab.h>
28 #include <linux/timer.h>
29 #include <linux/vmalloc.h>
30 #include <linux/bitmap.h>
31 #include <linux/sched/signal.h>
32 #include <linux/string.h>
33 #include <linux/pgtable.h>
34 #include <linux/mmu_notifier.h>
35
36 #include <asm/asm-offsets.h>
37 #include <asm/lowcore.h>
38 #include <asm/stp.h>
39 #include <asm/gmap.h>
40 #include <asm/nmi.h>
41 #include <asm/switch_to.h>
42 #include <asm/isc.h>
43 #include <asm/sclp.h>
44 #include <asm/cpacf.h>
45 #include <asm/timex.h>
46 #include <asm/ap.h>
47 #include <asm/uv.h>
48 #include <asm/fpu/api.h>
49 #include "kvm-s390.h"
50 #include "gaccess.h"
51 #include "pci.h"
52
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55 #include "trace-s390.h"
56
57 #define MEM_OP_MAX_SIZE 65536 /* Maximum transfer size for KVM_S390_MEM_OP */
58 #define LOCAL_IRQS 32
59 #define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
60 (KVM_MAX_VCPUS + LOCAL_IRQS))
61
62 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
63 KVM_GENERIC_VM_STATS(),
64 STATS_DESC_COUNTER(VM, inject_io),
65 STATS_DESC_COUNTER(VM, inject_float_mchk),
66 STATS_DESC_COUNTER(VM, inject_pfault_done),
67 STATS_DESC_COUNTER(VM, inject_service_signal),
68 STATS_DESC_COUNTER(VM, inject_virtio),
69 STATS_DESC_COUNTER(VM, aen_forward)
70 };
71
72 const struct kvm_stats_header kvm_vm_stats_header = {
73 .name_size = KVM_STATS_NAME_SIZE,
74 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
75 .id_offset = sizeof(struct kvm_stats_header),
76 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
77 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
78 sizeof(kvm_vm_stats_desc),
79 };
80
81 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
82 KVM_GENERIC_VCPU_STATS(),
83 STATS_DESC_COUNTER(VCPU, exit_userspace),
84 STATS_DESC_COUNTER(VCPU, exit_null),
85 STATS_DESC_COUNTER(VCPU, exit_external_request),
86 STATS_DESC_COUNTER(VCPU, exit_io_request),
87 STATS_DESC_COUNTER(VCPU, exit_external_interrupt),
88 STATS_DESC_COUNTER(VCPU, exit_stop_request),
89 STATS_DESC_COUNTER(VCPU, exit_validity),
90 STATS_DESC_COUNTER(VCPU, exit_instruction),
91 STATS_DESC_COUNTER(VCPU, exit_pei),
92 STATS_DESC_COUNTER(VCPU, halt_no_poll_steal),
93 STATS_DESC_COUNTER(VCPU, instruction_lctl),
94 STATS_DESC_COUNTER(VCPU, instruction_lctlg),
95 STATS_DESC_COUNTER(VCPU, instruction_stctl),
96 STATS_DESC_COUNTER(VCPU, instruction_stctg),
97 STATS_DESC_COUNTER(VCPU, exit_program_interruption),
98 STATS_DESC_COUNTER(VCPU, exit_instr_and_program),
99 STATS_DESC_COUNTER(VCPU, exit_operation_exception),
100 STATS_DESC_COUNTER(VCPU, deliver_ckc),
101 STATS_DESC_COUNTER(VCPU, deliver_cputm),
102 STATS_DESC_COUNTER(VCPU, deliver_external_call),
103 STATS_DESC_COUNTER(VCPU, deliver_emergency_signal),
104 STATS_DESC_COUNTER(VCPU, deliver_service_signal),
105 STATS_DESC_COUNTER(VCPU, deliver_virtio),
106 STATS_DESC_COUNTER(VCPU, deliver_stop_signal),
107 STATS_DESC_COUNTER(VCPU, deliver_prefix_signal),
108 STATS_DESC_COUNTER(VCPU, deliver_restart_signal),
109 STATS_DESC_COUNTER(VCPU, deliver_program),
110 STATS_DESC_COUNTER(VCPU, deliver_io),
111 STATS_DESC_COUNTER(VCPU, deliver_machine_check),
112 STATS_DESC_COUNTER(VCPU, exit_wait_state),
113 STATS_DESC_COUNTER(VCPU, inject_ckc),
114 STATS_DESC_COUNTER(VCPU, inject_cputm),
115 STATS_DESC_COUNTER(VCPU, inject_external_call),
116 STATS_DESC_COUNTER(VCPU, inject_emergency_signal),
117 STATS_DESC_COUNTER(VCPU, inject_mchk),
118 STATS_DESC_COUNTER(VCPU, inject_pfault_init),
119 STATS_DESC_COUNTER(VCPU, inject_program),
120 STATS_DESC_COUNTER(VCPU, inject_restart),
121 STATS_DESC_COUNTER(VCPU, inject_set_prefix),
122 STATS_DESC_COUNTER(VCPU, inject_stop_signal),
123 STATS_DESC_COUNTER(VCPU, instruction_epsw),
124 STATS_DESC_COUNTER(VCPU, instruction_gs),
125 STATS_DESC_COUNTER(VCPU, instruction_io_other),
126 STATS_DESC_COUNTER(VCPU, instruction_lpsw),
127 STATS_DESC_COUNTER(VCPU, instruction_lpswe),
128 STATS_DESC_COUNTER(VCPU, instruction_pfmf),
129 STATS_DESC_COUNTER(VCPU, instruction_ptff),
130 STATS_DESC_COUNTER(VCPU, instruction_sck),
131 STATS_DESC_COUNTER(VCPU, instruction_sckpf),
132 STATS_DESC_COUNTER(VCPU, instruction_stidp),
133 STATS_DESC_COUNTER(VCPU, instruction_spx),
134 STATS_DESC_COUNTER(VCPU, instruction_stpx),
135 STATS_DESC_COUNTER(VCPU, instruction_stap),
136 STATS_DESC_COUNTER(VCPU, instruction_iske),
137 STATS_DESC_COUNTER(VCPU, instruction_ri),
138 STATS_DESC_COUNTER(VCPU, instruction_rrbe),
139 STATS_DESC_COUNTER(VCPU, instruction_sske),
140 STATS_DESC_COUNTER(VCPU, instruction_ipte_interlock),
141 STATS_DESC_COUNTER(VCPU, instruction_stsi),
142 STATS_DESC_COUNTER(VCPU, instruction_stfl),
143 STATS_DESC_COUNTER(VCPU, instruction_tb),
144 STATS_DESC_COUNTER(VCPU, instruction_tpi),
145 STATS_DESC_COUNTER(VCPU, instruction_tprot),
146 STATS_DESC_COUNTER(VCPU, instruction_tsch),
147 STATS_DESC_COUNTER(VCPU, instruction_sie),
148 STATS_DESC_COUNTER(VCPU, instruction_essa),
149 STATS_DESC_COUNTER(VCPU, instruction_sthyi),
150 STATS_DESC_COUNTER(VCPU, instruction_sigp_sense),
151 STATS_DESC_COUNTER(VCPU, instruction_sigp_sense_running),
152 STATS_DESC_COUNTER(VCPU, instruction_sigp_external_call),
153 STATS_DESC_COUNTER(VCPU, instruction_sigp_emergency),
154 STATS_DESC_COUNTER(VCPU, instruction_sigp_cond_emergency),
155 STATS_DESC_COUNTER(VCPU, instruction_sigp_start),
156 STATS_DESC_COUNTER(VCPU, instruction_sigp_stop),
157 STATS_DESC_COUNTER(VCPU, instruction_sigp_stop_store_status),
158 STATS_DESC_COUNTER(VCPU, instruction_sigp_store_status),
159 STATS_DESC_COUNTER(VCPU, instruction_sigp_store_adtl_status),
160 STATS_DESC_COUNTER(VCPU, instruction_sigp_arch),
161 STATS_DESC_COUNTER(VCPU, instruction_sigp_prefix),
162 STATS_DESC_COUNTER(VCPU, instruction_sigp_restart),
163 STATS_DESC_COUNTER(VCPU, instruction_sigp_init_cpu_reset),
164 STATS_DESC_COUNTER(VCPU, instruction_sigp_cpu_reset),
165 STATS_DESC_COUNTER(VCPU, instruction_sigp_unknown),
166 STATS_DESC_COUNTER(VCPU, instruction_diagnose_10),
167 STATS_DESC_COUNTER(VCPU, instruction_diagnose_44),
168 STATS_DESC_COUNTER(VCPU, instruction_diagnose_9c),
169 STATS_DESC_COUNTER(VCPU, diag_9c_ignored),
170 STATS_DESC_COUNTER(VCPU, diag_9c_forward),
171 STATS_DESC_COUNTER(VCPU, instruction_diagnose_258),
172 STATS_DESC_COUNTER(VCPU, instruction_diagnose_308),
173 STATS_DESC_COUNTER(VCPU, instruction_diagnose_500),
174 STATS_DESC_COUNTER(VCPU, instruction_diagnose_other),
175 STATS_DESC_COUNTER(VCPU, pfault_sync)
176 };
177
178 const struct kvm_stats_header kvm_vcpu_stats_header = {
179 .name_size = KVM_STATS_NAME_SIZE,
180 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
181 .id_offset = sizeof(struct kvm_stats_header),
182 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
183 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
184 sizeof(kvm_vcpu_stats_desc),
185 };
186
187 /* allow nested virtualization in KVM (if enabled by user space) */
188 static int nested;
189 module_param(nested, int, S_IRUGO);
190 MODULE_PARM_DESC(nested, "Nested virtualization support");
191
192 /* allow 1m huge page guest backing, if !nested */
193 static int hpage;
194 module_param(hpage, int, 0444);
195 MODULE_PARM_DESC(hpage, "1m huge page backing support");
196
197 /* maximum percentage of steal time for polling. >100 is treated like 100 */
198 static u8 halt_poll_max_steal = 10;
199 module_param(halt_poll_max_steal, byte, 0644);
200 MODULE_PARM_DESC(halt_poll_max_steal, "Maximum percentage of steal time to allow polling");
201
202 /* if set to true, the GISA will be initialized and used if available */
203 static bool use_gisa = true;
204 module_param(use_gisa, bool, 0644);
205 MODULE_PARM_DESC(use_gisa, "Use the GISA if the host supports it.");
206
207 /* maximum diag9c forwarding per second */
208 unsigned int diag9c_forwarding_hz;
209 module_param(diag9c_forwarding_hz, uint, 0644);
210 MODULE_PARM_DESC(diag9c_forwarding_hz, "Maximum diag9c forwarding per second, 0 to turn off");
211
212 /*
213 * allow asynchronous deinit for protected guests; enable by default since
214 * the feature is opt-in anyway
215 */
216 static int async_destroy = 1;
217 module_param(async_destroy, int, 0444);
218 MODULE_PARM_DESC(async_destroy, "Asynchronous destroy for protected guests");
219
220 /*
221 * For now we handle at most 16 double words as this is what the s390 base
222 * kernel handles and stores in the prefix page. If we ever need to go beyond
223 * this, this requires changes to code, but the external uapi can stay.
224 */
225 #define SIZE_INTERNAL 16
226
227 /*
228 * Base feature mask that defines default mask for facilities. Consists of the
229 * defines in FACILITIES_KVM and the non-hypervisor managed bits.
230 */
231 static unsigned long kvm_s390_fac_base[SIZE_INTERNAL] = { FACILITIES_KVM };
232 /*
233 * Extended feature mask. Consists of the defines in FACILITIES_KVM_CPUMODEL
234 * and defines the facilities that can be enabled via a cpu model.
235 */
236 static unsigned long kvm_s390_fac_ext[SIZE_INTERNAL] = { FACILITIES_KVM_CPUMODEL };
237
kvm_s390_fac_size(void)238 static unsigned long kvm_s390_fac_size(void)
239 {
240 BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_MASK_SIZE_U64);
241 BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_LIST_SIZE_U64);
242 BUILD_BUG_ON(SIZE_INTERNAL * sizeof(unsigned long) >
243 sizeof(stfle_fac_list));
244
245 return SIZE_INTERNAL;
246 }
247
248 /* available cpu features supported by kvm */
249 static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
250 /* available subfunctions indicated via query / "test bit" */
251 static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc;
252
253 static struct gmap_notifier gmap_notifier;
254 static struct gmap_notifier vsie_gmap_notifier;
255 debug_info_t *kvm_s390_dbf;
256 debug_info_t *kvm_s390_dbf_uv;
257
258 /* Section: not file related */
259 /* forward declarations */
260 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
261 unsigned long end);
262 static int sca_switch_to_extended(struct kvm *kvm);
263
kvm_clock_sync_scb(struct kvm_s390_sie_block * scb,u64 delta)264 static void kvm_clock_sync_scb(struct kvm_s390_sie_block *scb, u64 delta)
265 {
266 u8 delta_idx = 0;
267
268 /*
269 * The TOD jumps by delta, we have to compensate this by adding
270 * -delta to the epoch.
271 */
272 delta = -delta;
273
274 /* sign-extension - we're adding to signed values below */
275 if ((s64)delta < 0)
276 delta_idx = -1;
277
278 scb->epoch += delta;
279 if (scb->ecd & ECD_MEF) {
280 scb->epdx += delta_idx;
281 if (scb->epoch < delta)
282 scb->epdx += 1;
283 }
284 }
285
286 /*
287 * This callback is executed during stop_machine(). All CPUs are therefore
288 * temporarily stopped. In order not to change guest behavior, we have to
289 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
290 * so a CPU won't be stopped while calculating with the epoch.
291 */
kvm_clock_sync(struct notifier_block * notifier,unsigned long val,void * v)292 static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
293 void *v)
294 {
295 struct kvm *kvm;
296 struct kvm_vcpu *vcpu;
297 unsigned long i;
298 unsigned long long *delta = v;
299
300 list_for_each_entry(kvm, &vm_list, vm_list) {
301 kvm_for_each_vcpu(i, vcpu, kvm) {
302 kvm_clock_sync_scb(vcpu->arch.sie_block, *delta);
303 if (i == 0) {
304 kvm->arch.epoch = vcpu->arch.sie_block->epoch;
305 kvm->arch.epdx = vcpu->arch.sie_block->epdx;
306 }
307 if (vcpu->arch.cputm_enabled)
308 vcpu->arch.cputm_start += *delta;
309 if (vcpu->arch.vsie_block)
310 kvm_clock_sync_scb(vcpu->arch.vsie_block,
311 *delta);
312 }
313 }
314 return NOTIFY_OK;
315 }
316
317 static struct notifier_block kvm_clock_notifier = {
318 .notifier_call = kvm_clock_sync,
319 };
320
allow_cpu_feat(unsigned long nr)321 static void allow_cpu_feat(unsigned long nr)
322 {
323 set_bit_inv(nr, kvm_s390_available_cpu_feat);
324 }
325
plo_test_bit(unsigned char nr)326 static inline int plo_test_bit(unsigned char nr)
327 {
328 unsigned long function = (unsigned long)nr | 0x100;
329 int cc;
330
331 asm volatile(
332 " lgr 0,%[function]\n"
333 /* Parameter registers are ignored for "test bit" */
334 " plo 0,0,0,0(0)\n"
335 " ipm %0\n"
336 " srl %0,28\n"
337 : "=d" (cc)
338 : [function] "d" (function)
339 : "cc", "0");
340 return cc == 0;
341 }
342
__insn32_query(unsigned int opcode,u8 * query)343 static __always_inline void __insn32_query(unsigned int opcode, u8 *query)
344 {
345 asm volatile(
346 " lghi 0,0\n"
347 " lgr 1,%[query]\n"
348 /* Parameter registers are ignored */
349 " .insn rrf,%[opc] << 16,2,4,6,0\n"
350 :
351 : [query] "d" ((unsigned long)query), [opc] "i" (opcode)
352 : "cc", "memory", "0", "1");
353 }
354
355 #define INSN_SORTL 0xb938
356 #define INSN_DFLTCC 0xb939
357
kvm_s390_cpu_feat_init(void)358 static void __init kvm_s390_cpu_feat_init(void)
359 {
360 int i;
361
362 for (i = 0; i < 256; ++i) {
363 if (plo_test_bit(i))
364 kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7);
365 }
366
367 if (test_facility(28)) /* TOD-clock steering */
368 ptff(kvm_s390_available_subfunc.ptff,
369 sizeof(kvm_s390_available_subfunc.ptff),
370 PTFF_QAF);
371
372 if (test_facility(17)) { /* MSA */
373 __cpacf_query(CPACF_KMAC, (cpacf_mask_t *)
374 kvm_s390_available_subfunc.kmac);
375 __cpacf_query(CPACF_KMC, (cpacf_mask_t *)
376 kvm_s390_available_subfunc.kmc);
377 __cpacf_query(CPACF_KM, (cpacf_mask_t *)
378 kvm_s390_available_subfunc.km);
379 __cpacf_query(CPACF_KIMD, (cpacf_mask_t *)
380 kvm_s390_available_subfunc.kimd);
381 __cpacf_query(CPACF_KLMD, (cpacf_mask_t *)
382 kvm_s390_available_subfunc.klmd);
383 }
384 if (test_facility(76)) /* MSA3 */
385 __cpacf_query(CPACF_PCKMO, (cpacf_mask_t *)
386 kvm_s390_available_subfunc.pckmo);
387 if (test_facility(77)) { /* MSA4 */
388 __cpacf_query(CPACF_KMCTR, (cpacf_mask_t *)
389 kvm_s390_available_subfunc.kmctr);
390 __cpacf_query(CPACF_KMF, (cpacf_mask_t *)
391 kvm_s390_available_subfunc.kmf);
392 __cpacf_query(CPACF_KMO, (cpacf_mask_t *)
393 kvm_s390_available_subfunc.kmo);
394 __cpacf_query(CPACF_PCC, (cpacf_mask_t *)
395 kvm_s390_available_subfunc.pcc);
396 }
397 if (test_facility(57)) /* MSA5 */
398 __cpacf_query(CPACF_PRNO, (cpacf_mask_t *)
399 kvm_s390_available_subfunc.ppno);
400
401 if (test_facility(146)) /* MSA8 */
402 __cpacf_query(CPACF_KMA, (cpacf_mask_t *)
403 kvm_s390_available_subfunc.kma);
404
405 if (test_facility(155)) /* MSA9 */
406 __cpacf_query(CPACF_KDSA, (cpacf_mask_t *)
407 kvm_s390_available_subfunc.kdsa);
408
409 if (test_facility(150)) /* SORTL */
410 __insn32_query(INSN_SORTL, kvm_s390_available_subfunc.sortl);
411
412 if (test_facility(151)) /* DFLTCC */
413 __insn32_query(INSN_DFLTCC, kvm_s390_available_subfunc.dfltcc);
414
415 if (MACHINE_HAS_ESOP)
416 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP);
417 /*
418 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow),
419 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing).
420 */
421 if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao ||
422 !test_facility(3) || !nested)
423 return;
424 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2);
425 if (sclp.has_64bscao)
426 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO);
427 if (sclp.has_siif)
428 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF);
429 if (sclp.has_gpere)
430 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE);
431 if (sclp.has_gsls)
432 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS);
433 if (sclp.has_ib)
434 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB);
435 if (sclp.has_cei)
436 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI);
437 if (sclp.has_ibs)
438 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS);
439 if (sclp.has_kss)
440 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_KSS);
441 /*
442 * KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make
443 * all skey handling functions read/set the skey from the PGSTE
444 * instead of the real storage key.
445 *
446 * KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make
447 * pages being detected as preserved although they are resident.
448 *
449 * KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will
450 * have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY.
451 *
452 * For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and
453 * KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be
454 * correctly shadowed. We can do that for the PGSTE but not for PTE.I.
455 *
456 * KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We
457 * cannot easily shadow the SCA because of the ipte lock.
458 */
459 }
460
__kvm_s390_init(void)461 static int __init __kvm_s390_init(void)
462 {
463 int rc = -ENOMEM;
464
465 kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
466 if (!kvm_s390_dbf)
467 return -ENOMEM;
468
469 kvm_s390_dbf_uv = debug_register("kvm-uv", 32, 1, 7 * sizeof(long));
470 if (!kvm_s390_dbf_uv)
471 goto err_kvm_uv;
472
473 if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view) ||
474 debug_register_view(kvm_s390_dbf_uv, &debug_sprintf_view))
475 goto err_debug_view;
476
477 kvm_s390_cpu_feat_init();
478
479 /* Register floating interrupt controller interface. */
480 rc = kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
481 if (rc) {
482 pr_err("A FLIC registration call failed with rc=%d\n", rc);
483 goto err_flic;
484 }
485
486 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) {
487 rc = kvm_s390_pci_init();
488 if (rc) {
489 pr_err("Unable to allocate AIFT for PCI\n");
490 goto err_pci;
491 }
492 }
493
494 rc = kvm_s390_gib_init(GAL_ISC);
495 if (rc)
496 goto err_gib;
497
498 gmap_notifier.notifier_call = kvm_gmap_notifier;
499 gmap_register_pte_notifier(&gmap_notifier);
500 vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier;
501 gmap_register_pte_notifier(&vsie_gmap_notifier);
502 atomic_notifier_chain_register(&s390_epoch_delta_notifier,
503 &kvm_clock_notifier);
504
505 return 0;
506
507 err_gib:
508 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM))
509 kvm_s390_pci_exit();
510 err_pci:
511 err_flic:
512 err_debug_view:
513 debug_unregister(kvm_s390_dbf_uv);
514 err_kvm_uv:
515 debug_unregister(kvm_s390_dbf);
516 return rc;
517 }
518
__kvm_s390_exit(void)519 static void __kvm_s390_exit(void)
520 {
521 gmap_unregister_pte_notifier(&gmap_notifier);
522 gmap_unregister_pte_notifier(&vsie_gmap_notifier);
523 atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
524 &kvm_clock_notifier);
525
526 kvm_s390_gib_destroy();
527 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM))
528 kvm_s390_pci_exit();
529 debug_unregister(kvm_s390_dbf);
530 debug_unregister(kvm_s390_dbf_uv);
531 }
532
533 /* Section: device related */
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)534 long kvm_arch_dev_ioctl(struct file *filp,
535 unsigned int ioctl, unsigned long arg)
536 {
537 if (ioctl == KVM_S390_ENABLE_SIE)
538 return s390_enable_sie();
539 return -EINVAL;
540 }
541
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)542 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
543 {
544 int r;
545
546 switch (ext) {
547 case KVM_CAP_S390_PSW:
548 case KVM_CAP_S390_GMAP:
549 case KVM_CAP_SYNC_MMU:
550 #ifdef CONFIG_KVM_S390_UCONTROL
551 case KVM_CAP_S390_UCONTROL:
552 #endif
553 case KVM_CAP_ASYNC_PF:
554 case KVM_CAP_SYNC_REGS:
555 case KVM_CAP_ONE_REG:
556 case KVM_CAP_ENABLE_CAP:
557 case KVM_CAP_S390_CSS_SUPPORT:
558 case KVM_CAP_IOEVENTFD:
559 case KVM_CAP_DEVICE_CTRL:
560 case KVM_CAP_S390_IRQCHIP:
561 case KVM_CAP_VM_ATTRIBUTES:
562 case KVM_CAP_MP_STATE:
563 case KVM_CAP_IMMEDIATE_EXIT:
564 case KVM_CAP_S390_INJECT_IRQ:
565 case KVM_CAP_S390_USER_SIGP:
566 case KVM_CAP_S390_USER_STSI:
567 case KVM_CAP_S390_SKEYS:
568 case KVM_CAP_S390_IRQ_STATE:
569 case KVM_CAP_S390_USER_INSTR0:
570 case KVM_CAP_S390_CMMA_MIGRATION:
571 case KVM_CAP_S390_AIS:
572 case KVM_CAP_S390_AIS_MIGRATION:
573 case KVM_CAP_S390_VCPU_RESETS:
574 case KVM_CAP_SET_GUEST_DEBUG:
575 case KVM_CAP_S390_DIAG318:
576 case KVM_CAP_IRQFD_RESAMPLE:
577 r = 1;
578 break;
579 case KVM_CAP_SET_GUEST_DEBUG2:
580 r = KVM_GUESTDBG_VALID_MASK;
581 break;
582 case KVM_CAP_S390_HPAGE_1M:
583 r = 0;
584 if (hpage && !kvm_is_ucontrol(kvm))
585 r = 1;
586 break;
587 case KVM_CAP_S390_MEM_OP:
588 r = MEM_OP_MAX_SIZE;
589 break;
590 case KVM_CAP_S390_MEM_OP_EXTENSION:
591 /*
592 * Flag bits indicating which extensions are supported.
593 * If r > 0, the base extension must also be supported/indicated,
594 * in order to maintain backwards compatibility.
595 */
596 r = KVM_S390_MEMOP_EXTENSION_CAP_BASE |
597 KVM_S390_MEMOP_EXTENSION_CAP_CMPXCHG;
598 break;
599 case KVM_CAP_NR_VCPUS:
600 case KVM_CAP_MAX_VCPUS:
601 case KVM_CAP_MAX_VCPU_ID:
602 r = KVM_S390_BSCA_CPU_SLOTS;
603 if (!kvm_s390_use_sca_entries())
604 r = KVM_MAX_VCPUS;
605 else if (sclp.has_esca && sclp.has_64bscao)
606 r = KVM_S390_ESCA_CPU_SLOTS;
607 if (ext == KVM_CAP_NR_VCPUS)
608 r = min_t(unsigned int, num_online_cpus(), r);
609 break;
610 case KVM_CAP_S390_COW:
611 r = MACHINE_HAS_ESOP;
612 break;
613 case KVM_CAP_S390_VECTOR_REGISTERS:
614 r = MACHINE_HAS_VX;
615 break;
616 case KVM_CAP_S390_RI:
617 r = test_facility(64);
618 break;
619 case KVM_CAP_S390_GS:
620 r = test_facility(133);
621 break;
622 case KVM_CAP_S390_BPB:
623 r = test_facility(82);
624 break;
625 case KVM_CAP_S390_PROTECTED_ASYNC_DISABLE:
626 r = async_destroy && is_prot_virt_host();
627 break;
628 case KVM_CAP_S390_PROTECTED:
629 r = is_prot_virt_host();
630 break;
631 case KVM_CAP_S390_PROTECTED_DUMP: {
632 u64 pv_cmds_dump[] = {
633 BIT_UVC_CMD_DUMP_INIT,
634 BIT_UVC_CMD_DUMP_CONFIG_STOR_STATE,
635 BIT_UVC_CMD_DUMP_CPU,
636 BIT_UVC_CMD_DUMP_COMPLETE,
637 };
638 int i;
639
640 r = is_prot_virt_host();
641
642 for (i = 0; i < ARRAY_SIZE(pv_cmds_dump); i++) {
643 if (!test_bit_inv(pv_cmds_dump[i],
644 (unsigned long *)&uv_info.inst_calls_list)) {
645 r = 0;
646 break;
647 }
648 }
649 break;
650 }
651 case KVM_CAP_S390_ZPCI_OP:
652 r = kvm_s390_pci_interp_allowed();
653 break;
654 case KVM_CAP_S390_CPU_TOPOLOGY:
655 r = test_facility(11);
656 break;
657 default:
658 r = 0;
659 }
660 return r;
661 }
662
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)663 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
664 {
665 int i;
666 gfn_t cur_gfn, last_gfn;
667 unsigned long gaddr, vmaddr;
668 struct gmap *gmap = kvm->arch.gmap;
669 DECLARE_BITMAP(bitmap, _PAGE_ENTRIES);
670
671 /* Loop over all guest segments */
672 cur_gfn = memslot->base_gfn;
673 last_gfn = memslot->base_gfn + memslot->npages;
674 for (; cur_gfn <= last_gfn; cur_gfn += _PAGE_ENTRIES) {
675 gaddr = gfn_to_gpa(cur_gfn);
676 vmaddr = gfn_to_hva_memslot(memslot, cur_gfn);
677 if (kvm_is_error_hva(vmaddr))
678 continue;
679
680 bitmap_zero(bitmap, _PAGE_ENTRIES);
681 gmap_sync_dirty_log_pmd(gmap, bitmap, gaddr, vmaddr);
682 for (i = 0; i < _PAGE_ENTRIES; i++) {
683 if (test_bit(i, bitmap))
684 mark_page_dirty(kvm, cur_gfn + i);
685 }
686
687 if (fatal_signal_pending(current))
688 return;
689 cond_resched();
690 }
691 }
692
693 /* Section: vm related */
694 static void sca_del_vcpu(struct kvm_vcpu *vcpu);
695
696 /*
697 * Get (and clear) the dirty memory log for a memory slot.
698 */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)699 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
700 struct kvm_dirty_log *log)
701 {
702 int r;
703 unsigned long n;
704 struct kvm_memory_slot *memslot;
705 int is_dirty;
706
707 if (kvm_is_ucontrol(kvm))
708 return -EINVAL;
709
710 mutex_lock(&kvm->slots_lock);
711
712 r = -EINVAL;
713 if (log->slot >= KVM_USER_MEM_SLOTS)
714 goto out;
715
716 r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot);
717 if (r)
718 goto out;
719
720 /* Clear the dirty log */
721 if (is_dirty) {
722 n = kvm_dirty_bitmap_bytes(memslot);
723 memset(memslot->dirty_bitmap, 0, n);
724 }
725 r = 0;
726 out:
727 mutex_unlock(&kvm->slots_lock);
728 return r;
729 }
730
icpt_operexc_on_all_vcpus(struct kvm * kvm)731 static void icpt_operexc_on_all_vcpus(struct kvm *kvm)
732 {
733 unsigned long i;
734 struct kvm_vcpu *vcpu;
735
736 kvm_for_each_vcpu(i, vcpu, kvm) {
737 kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu);
738 }
739 }
740
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)741 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
742 {
743 int r;
744
745 if (cap->flags)
746 return -EINVAL;
747
748 switch (cap->cap) {
749 case KVM_CAP_S390_IRQCHIP:
750 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
751 kvm->arch.use_irqchip = 1;
752 r = 0;
753 break;
754 case KVM_CAP_S390_USER_SIGP:
755 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
756 kvm->arch.user_sigp = 1;
757 r = 0;
758 break;
759 case KVM_CAP_S390_VECTOR_REGISTERS:
760 mutex_lock(&kvm->lock);
761 if (kvm->created_vcpus) {
762 r = -EBUSY;
763 } else if (MACHINE_HAS_VX) {
764 set_kvm_facility(kvm->arch.model.fac_mask, 129);
765 set_kvm_facility(kvm->arch.model.fac_list, 129);
766 if (test_facility(134)) {
767 set_kvm_facility(kvm->arch.model.fac_mask, 134);
768 set_kvm_facility(kvm->arch.model.fac_list, 134);
769 }
770 if (test_facility(135)) {
771 set_kvm_facility(kvm->arch.model.fac_mask, 135);
772 set_kvm_facility(kvm->arch.model.fac_list, 135);
773 }
774 if (test_facility(148)) {
775 set_kvm_facility(kvm->arch.model.fac_mask, 148);
776 set_kvm_facility(kvm->arch.model.fac_list, 148);
777 }
778 if (test_facility(152)) {
779 set_kvm_facility(kvm->arch.model.fac_mask, 152);
780 set_kvm_facility(kvm->arch.model.fac_list, 152);
781 }
782 if (test_facility(192)) {
783 set_kvm_facility(kvm->arch.model.fac_mask, 192);
784 set_kvm_facility(kvm->arch.model.fac_list, 192);
785 }
786 r = 0;
787 } else
788 r = -EINVAL;
789 mutex_unlock(&kvm->lock);
790 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
791 r ? "(not available)" : "(success)");
792 break;
793 case KVM_CAP_S390_RI:
794 r = -EINVAL;
795 mutex_lock(&kvm->lock);
796 if (kvm->created_vcpus) {
797 r = -EBUSY;
798 } else if (test_facility(64)) {
799 set_kvm_facility(kvm->arch.model.fac_mask, 64);
800 set_kvm_facility(kvm->arch.model.fac_list, 64);
801 r = 0;
802 }
803 mutex_unlock(&kvm->lock);
804 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
805 r ? "(not available)" : "(success)");
806 break;
807 case KVM_CAP_S390_AIS:
808 mutex_lock(&kvm->lock);
809 if (kvm->created_vcpus) {
810 r = -EBUSY;
811 } else {
812 set_kvm_facility(kvm->arch.model.fac_mask, 72);
813 set_kvm_facility(kvm->arch.model.fac_list, 72);
814 r = 0;
815 }
816 mutex_unlock(&kvm->lock);
817 VM_EVENT(kvm, 3, "ENABLE: AIS %s",
818 r ? "(not available)" : "(success)");
819 break;
820 case KVM_CAP_S390_GS:
821 r = -EINVAL;
822 mutex_lock(&kvm->lock);
823 if (kvm->created_vcpus) {
824 r = -EBUSY;
825 } else if (test_facility(133)) {
826 set_kvm_facility(kvm->arch.model.fac_mask, 133);
827 set_kvm_facility(kvm->arch.model.fac_list, 133);
828 r = 0;
829 }
830 mutex_unlock(&kvm->lock);
831 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_GS %s",
832 r ? "(not available)" : "(success)");
833 break;
834 case KVM_CAP_S390_HPAGE_1M:
835 mutex_lock(&kvm->lock);
836 if (kvm->created_vcpus)
837 r = -EBUSY;
838 else if (!hpage || kvm->arch.use_cmma || kvm_is_ucontrol(kvm))
839 r = -EINVAL;
840 else {
841 r = 0;
842 mmap_write_lock(kvm->mm);
843 kvm->mm->context.allow_gmap_hpage_1m = 1;
844 mmap_write_unlock(kvm->mm);
845 /*
846 * We might have to create fake 4k page
847 * tables. To avoid that the hardware works on
848 * stale PGSTEs, we emulate these instructions.
849 */
850 kvm->arch.use_skf = 0;
851 kvm->arch.use_pfmfi = 0;
852 }
853 mutex_unlock(&kvm->lock);
854 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_HPAGE %s",
855 r ? "(not available)" : "(success)");
856 break;
857 case KVM_CAP_S390_USER_STSI:
858 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
859 kvm->arch.user_stsi = 1;
860 r = 0;
861 break;
862 case KVM_CAP_S390_USER_INSTR0:
863 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0");
864 kvm->arch.user_instr0 = 1;
865 icpt_operexc_on_all_vcpus(kvm);
866 r = 0;
867 break;
868 case KVM_CAP_S390_CPU_TOPOLOGY:
869 r = -EINVAL;
870 mutex_lock(&kvm->lock);
871 if (kvm->created_vcpus) {
872 r = -EBUSY;
873 } else if (test_facility(11)) {
874 set_kvm_facility(kvm->arch.model.fac_mask, 11);
875 set_kvm_facility(kvm->arch.model.fac_list, 11);
876 r = 0;
877 }
878 mutex_unlock(&kvm->lock);
879 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_CPU_TOPOLOGY %s",
880 r ? "(not available)" : "(success)");
881 break;
882 default:
883 r = -EINVAL;
884 break;
885 }
886 return r;
887 }
888
kvm_s390_get_mem_control(struct kvm * kvm,struct kvm_device_attr * attr)889 static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
890 {
891 int ret;
892
893 switch (attr->attr) {
894 case KVM_S390_VM_MEM_LIMIT_SIZE:
895 ret = 0;
896 VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
897 kvm->arch.mem_limit);
898 if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
899 ret = -EFAULT;
900 break;
901 default:
902 ret = -ENXIO;
903 break;
904 }
905 return ret;
906 }
907
kvm_s390_set_mem_control(struct kvm * kvm,struct kvm_device_attr * attr)908 static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
909 {
910 int ret;
911 unsigned int idx;
912 switch (attr->attr) {
913 case KVM_S390_VM_MEM_ENABLE_CMMA:
914 ret = -ENXIO;
915 if (!sclp.has_cmma)
916 break;
917
918 VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
919 mutex_lock(&kvm->lock);
920 if (kvm->created_vcpus)
921 ret = -EBUSY;
922 else if (kvm->mm->context.allow_gmap_hpage_1m)
923 ret = -EINVAL;
924 else {
925 kvm->arch.use_cmma = 1;
926 /* Not compatible with cmma. */
927 kvm->arch.use_pfmfi = 0;
928 ret = 0;
929 }
930 mutex_unlock(&kvm->lock);
931 break;
932 case KVM_S390_VM_MEM_CLR_CMMA:
933 ret = -ENXIO;
934 if (!sclp.has_cmma)
935 break;
936 ret = -EINVAL;
937 if (!kvm->arch.use_cmma)
938 break;
939
940 VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
941 mutex_lock(&kvm->lock);
942 idx = srcu_read_lock(&kvm->srcu);
943 s390_reset_cmma(kvm->arch.gmap->mm);
944 srcu_read_unlock(&kvm->srcu, idx);
945 mutex_unlock(&kvm->lock);
946 ret = 0;
947 break;
948 case KVM_S390_VM_MEM_LIMIT_SIZE: {
949 unsigned long new_limit;
950
951 if (kvm_is_ucontrol(kvm))
952 return -EINVAL;
953
954 if (get_user(new_limit, (u64 __user *)attr->addr))
955 return -EFAULT;
956
957 if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
958 new_limit > kvm->arch.mem_limit)
959 return -E2BIG;
960
961 if (!new_limit)
962 return -EINVAL;
963
964 /* gmap_create takes last usable address */
965 if (new_limit != KVM_S390_NO_MEM_LIMIT)
966 new_limit -= 1;
967
968 ret = -EBUSY;
969 mutex_lock(&kvm->lock);
970 if (!kvm->created_vcpus) {
971 /* gmap_create will round the limit up */
972 struct gmap *new = gmap_create(current->mm, new_limit);
973
974 if (!new) {
975 ret = -ENOMEM;
976 } else {
977 gmap_remove(kvm->arch.gmap);
978 new->private = kvm;
979 kvm->arch.gmap = new;
980 ret = 0;
981 }
982 }
983 mutex_unlock(&kvm->lock);
984 VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
985 VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
986 (void *) kvm->arch.gmap->asce);
987 break;
988 }
989 default:
990 ret = -ENXIO;
991 break;
992 }
993 return ret;
994 }
995
996 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);
997
kvm_s390_vcpu_crypto_reset_all(struct kvm * kvm)998 void kvm_s390_vcpu_crypto_reset_all(struct kvm *kvm)
999 {
1000 struct kvm_vcpu *vcpu;
1001 unsigned long i;
1002
1003 kvm_s390_vcpu_block_all(kvm);
1004
1005 kvm_for_each_vcpu(i, vcpu, kvm) {
1006 kvm_s390_vcpu_crypto_setup(vcpu);
1007 /* recreate the shadow crycb by leaving the VSIE handler */
1008 kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu);
1009 }
1010
1011 kvm_s390_vcpu_unblock_all(kvm);
1012 }
1013
kvm_s390_vm_set_crypto(struct kvm * kvm,struct kvm_device_attr * attr)1014 static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
1015 {
1016 mutex_lock(&kvm->lock);
1017 switch (attr->attr) {
1018 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
1019 if (!test_kvm_facility(kvm, 76)) {
1020 mutex_unlock(&kvm->lock);
1021 return -EINVAL;
1022 }
1023 get_random_bytes(
1024 kvm->arch.crypto.crycb->aes_wrapping_key_mask,
1025 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
1026 kvm->arch.crypto.aes_kw = 1;
1027 VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
1028 break;
1029 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
1030 if (!test_kvm_facility(kvm, 76)) {
1031 mutex_unlock(&kvm->lock);
1032 return -EINVAL;
1033 }
1034 get_random_bytes(
1035 kvm->arch.crypto.crycb->dea_wrapping_key_mask,
1036 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1037 kvm->arch.crypto.dea_kw = 1;
1038 VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
1039 break;
1040 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
1041 if (!test_kvm_facility(kvm, 76)) {
1042 mutex_unlock(&kvm->lock);
1043 return -EINVAL;
1044 }
1045 kvm->arch.crypto.aes_kw = 0;
1046 memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
1047 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
1048 VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
1049 break;
1050 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
1051 if (!test_kvm_facility(kvm, 76)) {
1052 mutex_unlock(&kvm->lock);
1053 return -EINVAL;
1054 }
1055 kvm->arch.crypto.dea_kw = 0;
1056 memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
1057 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1058 VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
1059 break;
1060 case KVM_S390_VM_CRYPTO_ENABLE_APIE:
1061 if (!ap_instructions_available()) {
1062 mutex_unlock(&kvm->lock);
1063 return -EOPNOTSUPP;
1064 }
1065 kvm->arch.crypto.apie = 1;
1066 break;
1067 case KVM_S390_VM_CRYPTO_DISABLE_APIE:
1068 if (!ap_instructions_available()) {
1069 mutex_unlock(&kvm->lock);
1070 return -EOPNOTSUPP;
1071 }
1072 kvm->arch.crypto.apie = 0;
1073 break;
1074 default:
1075 mutex_unlock(&kvm->lock);
1076 return -ENXIO;
1077 }
1078
1079 kvm_s390_vcpu_crypto_reset_all(kvm);
1080 mutex_unlock(&kvm->lock);
1081 return 0;
1082 }
1083
kvm_s390_vcpu_pci_setup(struct kvm_vcpu * vcpu)1084 static void kvm_s390_vcpu_pci_setup(struct kvm_vcpu *vcpu)
1085 {
1086 /* Only set the ECB bits after guest requests zPCI interpretation */
1087 if (!vcpu->kvm->arch.use_zpci_interp)
1088 return;
1089
1090 vcpu->arch.sie_block->ecb2 |= ECB2_ZPCI_LSI;
1091 vcpu->arch.sie_block->ecb3 |= ECB3_AISII + ECB3_AISI;
1092 }
1093
kvm_s390_vcpu_pci_enable_interp(struct kvm * kvm)1094 void kvm_s390_vcpu_pci_enable_interp(struct kvm *kvm)
1095 {
1096 struct kvm_vcpu *vcpu;
1097 unsigned long i;
1098
1099 lockdep_assert_held(&kvm->lock);
1100
1101 if (!kvm_s390_pci_interp_allowed())
1102 return;
1103
1104 /*
1105 * If host is configured for PCI and the necessary facilities are
1106 * available, turn on interpretation for the life of this guest
1107 */
1108 kvm->arch.use_zpci_interp = 1;
1109
1110 kvm_s390_vcpu_block_all(kvm);
1111
1112 kvm_for_each_vcpu(i, vcpu, kvm) {
1113 kvm_s390_vcpu_pci_setup(vcpu);
1114 kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu);
1115 }
1116
1117 kvm_s390_vcpu_unblock_all(kvm);
1118 }
1119
kvm_s390_sync_request_broadcast(struct kvm * kvm,int req)1120 static void kvm_s390_sync_request_broadcast(struct kvm *kvm, int req)
1121 {
1122 unsigned long cx;
1123 struct kvm_vcpu *vcpu;
1124
1125 kvm_for_each_vcpu(cx, vcpu, kvm)
1126 kvm_s390_sync_request(req, vcpu);
1127 }
1128
1129 /*
1130 * Must be called with kvm->srcu held to avoid races on memslots, and with
1131 * kvm->slots_lock to avoid races with ourselves and kvm_s390_vm_stop_migration.
1132 */
kvm_s390_vm_start_migration(struct kvm * kvm)1133 static int kvm_s390_vm_start_migration(struct kvm *kvm)
1134 {
1135 struct kvm_memory_slot *ms;
1136 struct kvm_memslots *slots;
1137 unsigned long ram_pages = 0;
1138 int bkt;
1139
1140 /* migration mode already enabled */
1141 if (kvm->arch.migration_mode)
1142 return 0;
1143 slots = kvm_memslots(kvm);
1144 if (!slots || kvm_memslots_empty(slots))
1145 return -EINVAL;
1146
1147 if (!kvm->arch.use_cmma) {
1148 kvm->arch.migration_mode = 1;
1149 return 0;
1150 }
1151 /* mark all the pages in active slots as dirty */
1152 kvm_for_each_memslot(ms, bkt, slots) {
1153 if (!ms->dirty_bitmap)
1154 return -EINVAL;
1155 /*
1156 * The second half of the bitmap is only used on x86,
1157 * and would be wasted otherwise, so we put it to good
1158 * use here to keep track of the state of the storage
1159 * attributes.
1160 */
1161 memset(kvm_second_dirty_bitmap(ms), 0xff, kvm_dirty_bitmap_bytes(ms));
1162 ram_pages += ms->npages;
1163 }
1164 atomic64_set(&kvm->arch.cmma_dirty_pages, ram_pages);
1165 kvm->arch.migration_mode = 1;
1166 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_START_MIGRATION);
1167 return 0;
1168 }
1169
1170 /*
1171 * Must be called with kvm->slots_lock to avoid races with ourselves and
1172 * kvm_s390_vm_start_migration.
1173 */
kvm_s390_vm_stop_migration(struct kvm * kvm)1174 static int kvm_s390_vm_stop_migration(struct kvm *kvm)
1175 {
1176 /* migration mode already disabled */
1177 if (!kvm->arch.migration_mode)
1178 return 0;
1179 kvm->arch.migration_mode = 0;
1180 if (kvm->arch.use_cmma)
1181 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_STOP_MIGRATION);
1182 return 0;
1183 }
1184
kvm_s390_vm_set_migration(struct kvm * kvm,struct kvm_device_attr * attr)1185 static int kvm_s390_vm_set_migration(struct kvm *kvm,
1186 struct kvm_device_attr *attr)
1187 {
1188 int res = -ENXIO;
1189
1190 mutex_lock(&kvm->slots_lock);
1191 switch (attr->attr) {
1192 case KVM_S390_VM_MIGRATION_START:
1193 res = kvm_s390_vm_start_migration(kvm);
1194 break;
1195 case KVM_S390_VM_MIGRATION_STOP:
1196 res = kvm_s390_vm_stop_migration(kvm);
1197 break;
1198 default:
1199 break;
1200 }
1201 mutex_unlock(&kvm->slots_lock);
1202
1203 return res;
1204 }
1205
kvm_s390_vm_get_migration(struct kvm * kvm,struct kvm_device_attr * attr)1206 static int kvm_s390_vm_get_migration(struct kvm *kvm,
1207 struct kvm_device_attr *attr)
1208 {
1209 u64 mig = kvm->arch.migration_mode;
1210
1211 if (attr->attr != KVM_S390_VM_MIGRATION_STATUS)
1212 return -ENXIO;
1213
1214 if (copy_to_user((void __user *)attr->addr, &mig, sizeof(mig)))
1215 return -EFAULT;
1216 return 0;
1217 }
1218
1219 static void __kvm_s390_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod);
1220
kvm_s390_set_tod_ext(struct kvm * kvm,struct kvm_device_attr * attr)1221 static int kvm_s390_set_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr)
1222 {
1223 struct kvm_s390_vm_tod_clock gtod;
1224
1225 if (copy_from_user(>od, (void __user *)attr->addr, sizeof(gtod)))
1226 return -EFAULT;
1227
1228 if (!test_kvm_facility(kvm, 139) && gtod.epoch_idx)
1229 return -EINVAL;
1230 __kvm_s390_set_tod_clock(kvm, >od);
1231
1232 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x, TOD base: 0x%llx",
1233 gtod.epoch_idx, gtod.tod);
1234
1235 return 0;
1236 }
1237
kvm_s390_set_tod_high(struct kvm * kvm,struct kvm_device_attr * attr)1238 static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
1239 {
1240 u8 gtod_high;
1241
1242 if (copy_from_user(>od_high, (void __user *)attr->addr,
1243 sizeof(gtod_high)))
1244 return -EFAULT;
1245
1246 if (gtod_high != 0)
1247 return -EINVAL;
1248 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
1249
1250 return 0;
1251 }
1252
kvm_s390_set_tod_low(struct kvm * kvm,struct kvm_device_attr * attr)1253 static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
1254 {
1255 struct kvm_s390_vm_tod_clock gtod = { 0 };
1256
1257 if (copy_from_user(>od.tod, (void __user *)attr->addr,
1258 sizeof(gtod.tod)))
1259 return -EFAULT;
1260
1261 __kvm_s390_set_tod_clock(kvm, >od);
1262 VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod.tod);
1263 return 0;
1264 }
1265
kvm_s390_set_tod(struct kvm * kvm,struct kvm_device_attr * attr)1266 static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
1267 {
1268 int ret;
1269
1270 if (attr->flags)
1271 return -EINVAL;
1272
1273 mutex_lock(&kvm->lock);
1274 /*
1275 * For protected guests, the TOD is managed by the ultravisor, so trying
1276 * to change it will never bring the expected results.
1277 */
1278 if (kvm_s390_pv_is_protected(kvm)) {
1279 ret = -EOPNOTSUPP;
1280 goto out_unlock;
1281 }
1282
1283 switch (attr->attr) {
1284 case KVM_S390_VM_TOD_EXT:
1285 ret = kvm_s390_set_tod_ext(kvm, attr);
1286 break;
1287 case KVM_S390_VM_TOD_HIGH:
1288 ret = kvm_s390_set_tod_high(kvm, attr);
1289 break;
1290 case KVM_S390_VM_TOD_LOW:
1291 ret = kvm_s390_set_tod_low(kvm, attr);
1292 break;
1293 default:
1294 ret = -ENXIO;
1295 break;
1296 }
1297
1298 out_unlock:
1299 mutex_unlock(&kvm->lock);
1300 return ret;
1301 }
1302
kvm_s390_get_tod_clock(struct kvm * kvm,struct kvm_s390_vm_tod_clock * gtod)1303 static void kvm_s390_get_tod_clock(struct kvm *kvm,
1304 struct kvm_s390_vm_tod_clock *gtod)
1305 {
1306 union tod_clock clk;
1307
1308 preempt_disable();
1309
1310 store_tod_clock_ext(&clk);
1311
1312 gtod->tod = clk.tod + kvm->arch.epoch;
1313 gtod->epoch_idx = 0;
1314 if (test_kvm_facility(kvm, 139)) {
1315 gtod->epoch_idx = clk.ei + kvm->arch.epdx;
1316 if (gtod->tod < clk.tod)
1317 gtod->epoch_idx += 1;
1318 }
1319
1320 preempt_enable();
1321 }
1322
kvm_s390_get_tod_ext(struct kvm * kvm,struct kvm_device_attr * attr)1323 static int kvm_s390_get_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr)
1324 {
1325 struct kvm_s390_vm_tod_clock gtod;
1326
1327 memset(>od, 0, sizeof(gtod));
1328 kvm_s390_get_tod_clock(kvm, >od);
1329 if (copy_to_user((void __user *)attr->addr, >od, sizeof(gtod)))
1330 return -EFAULT;
1331
1332 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x, TOD base: 0x%llx",
1333 gtod.epoch_idx, gtod.tod);
1334 return 0;
1335 }
1336
kvm_s390_get_tod_high(struct kvm * kvm,struct kvm_device_attr * attr)1337 static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
1338 {
1339 u8 gtod_high = 0;
1340
1341 if (copy_to_user((void __user *)attr->addr, >od_high,
1342 sizeof(gtod_high)))
1343 return -EFAULT;
1344 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
1345
1346 return 0;
1347 }
1348
kvm_s390_get_tod_low(struct kvm * kvm,struct kvm_device_attr * attr)1349 static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
1350 {
1351 u64 gtod;
1352
1353 gtod = kvm_s390_get_tod_clock_fast(kvm);
1354 if (copy_to_user((void __user *)attr->addr, >od, sizeof(gtod)))
1355 return -EFAULT;
1356 VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
1357
1358 return 0;
1359 }
1360
kvm_s390_get_tod(struct kvm * kvm,struct kvm_device_attr * attr)1361 static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
1362 {
1363 int ret;
1364
1365 if (attr->flags)
1366 return -EINVAL;
1367
1368 switch (attr->attr) {
1369 case KVM_S390_VM_TOD_EXT:
1370 ret = kvm_s390_get_tod_ext(kvm, attr);
1371 break;
1372 case KVM_S390_VM_TOD_HIGH:
1373 ret = kvm_s390_get_tod_high(kvm, attr);
1374 break;
1375 case KVM_S390_VM_TOD_LOW:
1376 ret = kvm_s390_get_tod_low(kvm, attr);
1377 break;
1378 default:
1379 ret = -ENXIO;
1380 break;
1381 }
1382 return ret;
1383 }
1384
kvm_s390_set_processor(struct kvm * kvm,struct kvm_device_attr * attr)1385 static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
1386 {
1387 struct kvm_s390_vm_cpu_processor *proc;
1388 u16 lowest_ibc, unblocked_ibc;
1389 int ret = 0;
1390
1391 mutex_lock(&kvm->lock);
1392 if (kvm->created_vcpus) {
1393 ret = -EBUSY;
1394 goto out;
1395 }
1396 proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT);
1397 if (!proc) {
1398 ret = -ENOMEM;
1399 goto out;
1400 }
1401 if (!copy_from_user(proc, (void __user *)attr->addr,
1402 sizeof(*proc))) {
1403 kvm->arch.model.cpuid = proc->cpuid;
1404 lowest_ibc = sclp.ibc >> 16 & 0xfff;
1405 unblocked_ibc = sclp.ibc & 0xfff;
1406 if (lowest_ibc && proc->ibc) {
1407 if (proc->ibc > unblocked_ibc)
1408 kvm->arch.model.ibc = unblocked_ibc;
1409 else if (proc->ibc < lowest_ibc)
1410 kvm->arch.model.ibc = lowest_ibc;
1411 else
1412 kvm->arch.model.ibc = proc->ibc;
1413 }
1414 memcpy(kvm->arch.model.fac_list, proc->fac_list,
1415 S390_ARCH_FAC_LIST_SIZE_BYTE);
1416 VM_EVENT(kvm, 3, "SET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx",
1417 kvm->arch.model.ibc,
1418 kvm->arch.model.cpuid);
1419 VM_EVENT(kvm, 3, "SET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx",
1420 kvm->arch.model.fac_list[0],
1421 kvm->arch.model.fac_list[1],
1422 kvm->arch.model.fac_list[2]);
1423 } else
1424 ret = -EFAULT;
1425 kfree(proc);
1426 out:
1427 mutex_unlock(&kvm->lock);
1428 return ret;
1429 }
1430
kvm_s390_set_processor_feat(struct kvm * kvm,struct kvm_device_attr * attr)1431 static int kvm_s390_set_processor_feat(struct kvm *kvm,
1432 struct kvm_device_attr *attr)
1433 {
1434 struct kvm_s390_vm_cpu_feat data;
1435
1436 if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data)))
1437 return -EFAULT;
1438 if (!bitmap_subset((unsigned long *) data.feat,
1439 kvm_s390_available_cpu_feat,
1440 KVM_S390_VM_CPU_FEAT_NR_BITS))
1441 return -EINVAL;
1442
1443 mutex_lock(&kvm->lock);
1444 if (kvm->created_vcpus) {
1445 mutex_unlock(&kvm->lock);
1446 return -EBUSY;
1447 }
1448 bitmap_from_arr64(kvm->arch.cpu_feat, data.feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
1449 mutex_unlock(&kvm->lock);
1450 VM_EVENT(kvm, 3, "SET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx",
1451 data.feat[0],
1452 data.feat[1],
1453 data.feat[2]);
1454 return 0;
1455 }
1456
kvm_s390_set_processor_subfunc(struct kvm * kvm,struct kvm_device_attr * attr)1457 static int kvm_s390_set_processor_subfunc(struct kvm *kvm,
1458 struct kvm_device_attr *attr)
1459 {
1460 mutex_lock(&kvm->lock);
1461 if (kvm->created_vcpus) {
1462 mutex_unlock(&kvm->lock);
1463 return -EBUSY;
1464 }
1465
1466 if (copy_from_user(&kvm->arch.model.subfuncs, (void __user *)attr->addr,
1467 sizeof(struct kvm_s390_vm_cpu_subfunc))) {
1468 mutex_unlock(&kvm->lock);
1469 return -EFAULT;
1470 }
1471 mutex_unlock(&kvm->lock);
1472
1473 VM_EVENT(kvm, 3, "SET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1474 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[0],
1475 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[1],
1476 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[2],
1477 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]);
1478 VM_EVENT(kvm, 3, "SET: guest PTFF subfunc 0x%16.16lx.%16.16lx",
1479 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0],
1480 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]);
1481 VM_EVENT(kvm, 3, "SET: guest KMAC subfunc 0x%16.16lx.%16.16lx",
1482 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0],
1483 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]);
1484 VM_EVENT(kvm, 3, "SET: guest KMC subfunc 0x%16.16lx.%16.16lx",
1485 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0],
1486 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]);
1487 VM_EVENT(kvm, 3, "SET: guest KM subfunc 0x%16.16lx.%16.16lx",
1488 ((unsigned long *) &kvm->arch.model.subfuncs.km)[0],
1489 ((unsigned long *) &kvm->arch.model.subfuncs.km)[1]);
1490 VM_EVENT(kvm, 3, "SET: guest KIMD subfunc 0x%16.16lx.%16.16lx",
1491 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0],
1492 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]);
1493 VM_EVENT(kvm, 3, "SET: guest KLMD subfunc 0x%16.16lx.%16.16lx",
1494 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0],
1495 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]);
1496 VM_EVENT(kvm, 3, "SET: guest PCKMO subfunc 0x%16.16lx.%16.16lx",
1497 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0],
1498 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]);
1499 VM_EVENT(kvm, 3, "SET: guest KMCTR subfunc 0x%16.16lx.%16.16lx",
1500 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0],
1501 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]);
1502 VM_EVENT(kvm, 3, "SET: guest KMF subfunc 0x%16.16lx.%16.16lx",
1503 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0],
1504 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]);
1505 VM_EVENT(kvm, 3, "SET: guest KMO subfunc 0x%16.16lx.%16.16lx",
1506 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0],
1507 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]);
1508 VM_EVENT(kvm, 3, "SET: guest PCC subfunc 0x%16.16lx.%16.16lx",
1509 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0],
1510 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]);
1511 VM_EVENT(kvm, 3, "SET: guest PPNO subfunc 0x%16.16lx.%16.16lx",
1512 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0],
1513 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]);
1514 VM_EVENT(kvm, 3, "SET: guest KMA subfunc 0x%16.16lx.%16.16lx",
1515 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[0],
1516 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]);
1517 VM_EVENT(kvm, 3, "SET: guest KDSA subfunc 0x%16.16lx.%16.16lx",
1518 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0],
1519 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]);
1520 VM_EVENT(kvm, 3, "SET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1521 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0],
1522 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1],
1523 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2],
1524 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]);
1525 VM_EVENT(kvm, 3, "SET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1526 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0],
1527 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1],
1528 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2],
1529 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]);
1530
1531 return 0;
1532 }
1533
1534 #define KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK \
1535 ( \
1536 ((struct kvm_s390_vm_cpu_uv_feat){ \
1537 .ap = 1, \
1538 .ap_intr = 1, \
1539 }) \
1540 .feat \
1541 )
1542
kvm_s390_set_uv_feat(struct kvm * kvm,struct kvm_device_attr * attr)1543 static int kvm_s390_set_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr)
1544 {
1545 struct kvm_s390_vm_cpu_uv_feat __user *ptr = (void __user *)attr->addr;
1546 unsigned long data, filter;
1547
1548 filter = uv_info.uv_feature_indications & KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK;
1549 if (get_user(data, &ptr->feat))
1550 return -EFAULT;
1551 if (!bitmap_subset(&data, &filter, KVM_S390_VM_CPU_UV_FEAT_NR_BITS))
1552 return -EINVAL;
1553
1554 mutex_lock(&kvm->lock);
1555 if (kvm->created_vcpus) {
1556 mutex_unlock(&kvm->lock);
1557 return -EBUSY;
1558 }
1559 kvm->arch.model.uv_feat_guest.feat = data;
1560 mutex_unlock(&kvm->lock);
1561
1562 VM_EVENT(kvm, 3, "SET: guest UV-feat: 0x%16.16lx", data);
1563
1564 return 0;
1565 }
1566
kvm_s390_set_cpu_model(struct kvm * kvm,struct kvm_device_attr * attr)1567 static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
1568 {
1569 int ret = -ENXIO;
1570
1571 switch (attr->attr) {
1572 case KVM_S390_VM_CPU_PROCESSOR:
1573 ret = kvm_s390_set_processor(kvm, attr);
1574 break;
1575 case KVM_S390_VM_CPU_PROCESSOR_FEAT:
1576 ret = kvm_s390_set_processor_feat(kvm, attr);
1577 break;
1578 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1579 ret = kvm_s390_set_processor_subfunc(kvm, attr);
1580 break;
1581 case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST:
1582 ret = kvm_s390_set_uv_feat(kvm, attr);
1583 break;
1584 }
1585 return ret;
1586 }
1587
kvm_s390_get_processor(struct kvm * kvm,struct kvm_device_attr * attr)1588 static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
1589 {
1590 struct kvm_s390_vm_cpu_processor *proc;
1591 int ret = 0;
1592
1593 proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT);
1594 if (!proc) {
1595 ret = -ENOMEM;
1596 goto out;
1597 }
1598 proc->cpuid = kvm->arch.model.cpuid;
1599 proc->ibc = kvm->arch.model.ibc;
1600 memcpy(&proc->fac_list, kvm->arch.model.fac_list,
1601 S390_ARCH_FAC_LIST_SIZE_BYTE);
1602 VM_EVENT(kvm, 3, "GET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx",
1603 kvm->arch.model.ibc,
1604 kvm->arch.model.cpuid);
1605 VM_EVENT(kvm, 3, "GET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx",
1606 kvm->arch.model.fac_list[0],
1607 kvm->arch.model.fac_list[1],
1608 kvm->arch.model.fac_list[2]);
1609 if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
1610 ret = -EFAULT;
1611 kfree(proc);
1612 out:
1613 return ret;
1614 }
1615
kvm_s390_get_machine(struct kvm * kvm,struct kvm_device_attr * attr)1616 static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
1617 {
1618 struct kvm_s390_vm_cpu_machine *mach;
1619 int ret = 0;
1620
1621 mach = kzalloc(sizeof(*mach), GFP_KERNEL_ACCOUNT);
1622 if (!mach) {
1623 ret = -ENOMEM;
1624 goto out;
1625 }
1626 get_cpu_id((struct cpuid *) &mach->cpuid);
1627 mach->ibc = sclp.ibc;
1628 memcpy(&mach->fac_mask, kvm->arch.model.fac_mask,
1629 S390_ARCH_FAC_LIST_SIZE_BYTE);
1630 memcpy((unsigned long *)&mach->fac_list, stfle_fac_list,
1631 sizeof(stfle_fac_list));
1632 VM_EVENT(kvm, 3, "GET: host ibc: 0x%4.4x, host cpuid: 0x%16.16llx",
1633 kvm->arch.model.ibc,
1634 kvm->arch.model.cpuid);
1635 VM_EVENT(kvm, 3, "GET: host facmask: 0x%16.16llx.%16.16llx.%16.16llx",
1636 mach->fac_mask[0],
1637 mach->fac_mask[1],
1638 mach->fac_mask[2]);
1639 VM_EVENT(kvm, 3, "GET: host faclist: 0x%16.16llx.%16.16llx.%16.16llx",
1640 mach->fac_list[0],
1641 mach->fac_list[1],
1642 mach->fac_list[2]);
1643 if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
1644 ret = -EFAULT;
1645 kfree(mach);
1646 out:
1647 return ret;
1648 }
1649
kvm_s390_get_processor_feat(struct kvm * kvm,struct kvm_device_attr * attr)1650 static int kvm_s390_get_processor_feat(struct kvm *kvm,
1651 struct kvm_device_attr *attr)
1652 {
1653 struct kvm_s390_vm_cpu_feat data;
1654
1655 bitmap_to_arr64(data.feat, kvm->arch.cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
1656 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
1657 return -EFAULT;
1658 VM_EVENT(kvm, 3, "GET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx",
1659 data.feat[0],
1660 data.feat[1],
1661 data.feat[2]);
1662 return 0;
1663 }
1664
kvm_s390_get_machine_feat(struct kvm * kvm,struct kvm_device_attr * attr)1665 static int kvm_s390_get_machine_feat(struct kvm *kvm,
1666 struct kvm_device_attr *attr)
1667 {
1668 struct kvm_s390_vm_cpu_feat data;
1669
1670 bitmap_to_arr64(data.feat, kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
1671 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
1672 return -EFAULT;
1673 VM_EVENT(kvm, 3, "GET: host feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx",
1674 data.feat[0],
1675 data.feat[1],
1676 data.feat[2]);
1677 return 0;
1678 }
1679
kvm_s390_get_processor_subfunc(struct kvm * kvm,struct kvm_device_attr * attr)1680 static int kvm_s390_get_processor_subfunc(struct kvm *kvm,
1681 struct kvm_device_attr *attr)
1682 {
1683 if (copy_to_user((void __user *)attr->addr, &kvm->arch.model.subfuncs,
1684 sizeof(struct kvm_s390_vm_cpu_subfunc)))
1685 return -EFAULT;
1686
1687 VM_EVENT(kvm, 3, "GET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1688 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[0],
1689 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[1],
1690 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[2],
1691 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]);
1692 VM_EVENT(kvm, 3, "GET: guest PTFF subfunc 0x%16.16lx.%16.16lx",
1693 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0],
1694 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]);
1695 VM_EVENT(kvm, 3, "GET: guest KMAC subfunc 0x%16.16lx.%16.16lx",
1696 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0],
1697 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]);
1698 VM_EVENT(kvm, 3, "GET: guest KMC subfunc 0x%16.16lx.%16.16lx",
1699 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0],
1700 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]);
1701 VM_EVENT(kvm, 3, "GET: guest KM subfunc 0x%16.16lx.%16.16lx",
1702 ((unsigned long *) &kvm->arch.model.subfuncs.km)[0],
1703 ((unsigned long *) &kvm->arch.model.subfuncs.km)[1]);
1704 VM_EVENT(kvm, 3, "GET: guest KIMD subfunc 0x%16.16lx.%16.16lx",
1705 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0],
1706 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]);
1707 VM_EVENT(kvm, 3, "GET: guest KLMD subfunc 0x%16.16lx.%16.16lx",
1708 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0],
1709 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]);
1710 VM_EVENT(kvm, 3, "GET: guest PCKMO subfunc 0x%16.16lx.%16.16lx",
1711 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0],
1712 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]);
1713 VM_EVENT(kvm, 3, "GET: guest KMCTR subfunc 0x%16.16lx.%16.16lx",
1714 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0],
1715 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]);
1716 VM_EVENT(kvm, 3, "GET: guest KMF subfunc 0x%16.16lx.%16.16lx",
1717 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0],
1718 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]);
1719 VM_EVENT(kvm, 3, "GET: guest KMO subfunc 0x%16.16lx.%16.16lx",
1720 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0],
1721 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]);
1722 VM_EVENT(kvm, 3, "GET: guest PCC subfunc 0x%16.16lx.%16.16lx",
1723 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0],
1724 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]);
1725 VM_EVENT(kvm, 3, "GET: guest PPNO subfunc 0x%16.16lx.%16.16lx",
1726 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0],
1727 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]);
1728 VM_EVENT(kvm, 3, "GET: guest KMA subfunc 0x%16.16lx.%16.16lx",
1729 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[0],
1730 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]);
1731 VM_EVENT(kvm, 3, "GET: guest KDSA subfunc 0x%16.16lx.%16.16lx",
1732 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0],
1733 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]);
1734 VM_EVENT(kvm, 3, "GET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1735 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0],
1736 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1],
1737 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2],
1738 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]);
1739 VM_EVENT(kvm, 3, "GET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1740 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0],
1741 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1],
1742 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2],
1743 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]);
1744
1745 return 0;
1746 }
1747
kvm_s390_get_machine_subfunc(struct kvm * kvm,struct kvm_device_attr * attr)1748 static int kvm_s390_get_machine_subfunc(struct kvm *kvm,
1749 struct kvm_device_attr *attr)
1750 {
1751 if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc,
1752 sizeof(struct kvm_s390_vm_cpu_subfunc)))
1753 return -EFAULT;
1754
1755 VM_EVENT(kvm, 3, "GET: host PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1756 ((unsigned long *) &kvm_s390_available_subfunc.plo)[0],
1757 ((unsigned long *) &kvm_s390_available_subfunc.plo)[1],
1758 ((unsigned long *) &kvm_s390_available_subfunc.plo)[2],
1759 ((unsigned long *) &kvm_s390_available_subfunc.plo)[3]);
1760 VM_EVENT(kvm, 3, "GET: host PTFF subfunc 0x%16.16lx.%16.16lx",
1761 ((unsigned long *) &kvm_s390_available_subfunc.ptff)[0],
1762 ((unsigned long *) &kvm_s390_available_subfunc.ptff)[1]);
1763 VM_EVENT(kvm, 3, "GET: host KMAC subfunc 0x%16.16lx.%16.16lx",
1764 ((unsigned long *) &kvm_s390_available_subfunc.kmac)[0],
1765 ((unsigned long *) &kvm_s390_available_subfunc.kmac)[1]);
1766 VM_EVENT(kvm, 3, "GET: host KMC subfunc 0x%16.16lx.%16.16lx",
1767 ((unsigned long *) &kvm_s390_available_subfunc.kmc)[0],
1768 ((unsigned long *) &kvm_s390_available_subfunc.kmc)[1]);
1769 VM_EVENT(kvm, 3, "GET: host KM subfunc 0x%16.16lx.%16.16lx",
1770 ((unsigned long *) &kvm_s390_available_subfunc.km)[0],
1771 ((unsigned long *) &kvm_s390_available_subfunc.km)[1]);
1772 VM_EVENT(kvm, 3, "GET: host KIMD subfunc 0x%16.16lx.%16.16lx",
1773 ((unsigned long *) &kvm_s390_available_subfunc.kimd)[0],
1774 ((unsigned long *) &kvm_s390_available_subfunc.kimd)[1]);
1775 VM_EVENT(kvm, 3, "GET: host KLMD subfunc 0x%16.16lx.%16.16lx",
1776 ((unsigned long *) &kvm_s390_available_subfunc.klmd)[0],
1777 ((unsigned long *) &kvm_s390_available_subfunc.klmd)[1]);
1778 VM_EVENT(kvm, 3, "GET: host PCKMO subfunc 0x%16.16lx.%16.16lx",
1779 ((unsigned long *) &kvm_s390_available_subfunc.pckmo)[0],
1780 ((unsigned long *) &kvm_s390_available_subfunc.pckmo)[1]);
1781 VM_EVENT(kvm, 3, "GET: host KMCTR subfunc 0x%16.16lx.%16.16lx",
1782 ((unsigned long *) &kvm_s390_available_subfunc.kmctr)[0],
1783 ((unsigned long *) &kvm_s390_available_subfunc.kmctr)[1]);
1784 VM_EVENT(kvm, 3, "GET: host KMF subfunc 0x%16.16lx.%16.16lx",
1785 ((unsigned long *) &kvm_s390_available_subfunc.kmf)[0],
1786 ((unsigned long *) &kvm_s390_available_subfunc.kmf)[1]);
1787 VM_EVENT(kvm, 3, "GET: host KMO subfunc 0x%16.16lx.%16.16lx",
1788 ((unsigned long *) &kvm_s390_available_subfunc.kmo)[0],
1789 ((unsigned long *) &kvm_s390_available_subfunc.kmo)[1]);
1790 VM_EVENT(kvm, 3, "GET: host PCC subfunc 0x%16.16lx.%16.16lx",
1791 ((unsigned long *) &kvm_s390_available_subfunc.pcc)[0],
1792 ((unsigned long *) &kvm_s390_available_subfunc.pcc)[1]);
1793 VM_EVENT(kvm, 3, "GET: host PPNO subfunc 0x%16.16lx.%16.16lx",
1794 ((unsigned long *) &kvm_s390_available_subfunc.ppno)[0],
1795 ((unsigned long *) &kvm_s390_available_subfunc.ppno)[1]);
1796 VM_EVENT(kvm, 3, "GET: host KMA subfunc 0x%16.16lx.%16.16lx",
1797 ((unsigned long *) &kvm_s390_available_subfunc.kma)[0],
1798 ((unsigned long *) &kvm_s390_available_subfunc.kma)[1]);
1799 VM_EVENT(kvm, 3, "GET: host KDSA subfunc 0x%16.16lx.%16.16lx",
1800 ((unsigned long *) &kvm_s390_available_subfunc.kdsa)[0],
1801 ((unsigned long *) &kvm_s390_available_subfunc.kdsa)[1]);
1802 VM_EVENT(kvm, 3, "GET: host SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1803 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[0],
1804 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[1],
1805 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[2],
1806 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[3]);
1807 VM_EVENT(kvm, 3, "GET: host DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1808 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[0],
1809 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[1],
1810 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[2],
1811 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[3]);
1812
1813 return 0;
1814 }
1815
kvm_s390_get_processor_uv_feat(struct kvm * kvm,struct kvm_device_attr * attr)1816 static int kvm_s390_get_processor_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr)
1817 {
1818 struct kvm_s390_vm_cpu_uv_feat __user *dst = (void __user *)attr->addr;
1819 unsigned long feat = kvm->arch.model.uv_feat_guest.feat;
1820
1821 if (put_user(feat, &dst->feat))
1822 return -EFAULT;
1823 VM_EVENT(kvm, 3, "GET: guest UV-feat: 0x%16.16lx", feat);
1824
1825 return 0;
1826 }
1827
kvm_s390_get_machine_uv_feat(struct kvm * kvm,struct kvm_device_attr * attr)1828 static int kvm_s390_get_machine_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr)
1829 {
1830 struct kvm_s390_vm_cpu_uv_feat __user *dst = (void __user *)attr->addr;
1831 unsigned long feat;
1832
1833 BUILD_BUG_ON(sizeof(*dst) != sizeof(uv_info.uv_feature_indications));
1834
1835 feat = uv_info.uv_feature_indications & KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK;
1836 if (put_user(feat, &dst->feat))
1837 return -EFAULT;
1838 VM_EVENT(kvm, 3, "GET: guest UV-feat: 0x%16.16lx", feat);
1839
1840 return 0;
1841 }
1842
kvm_s390_get_cpu_model(struct kvm * kvm,struct kvm_device_attr * attr)1843 static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
1844 {
1845 int ret = -ENXIO;
1846
1847 switch (attr->attr) {
1848 case KVM_S390_VM_CPU_PROCESSOR:
1849 ret = kvm_s390_get_processor(kvm, attr);
1850 break;
1851 case KVM_S390_VM_CPU_MACHINE:
1852 ret = kvm_s390_get_machine(kvm, attr);
1853 break;
1854 case KVM_S390_VM_CPU_PROCESSOR_FEAT:
1855 ret = kvm_s390_get_processor_feat(kvm, attr);
1856 break;
1857 case KVM_S390_VM_CPU_MACHINE_FEAT:
1858 ret = kvm_s390_get_machine_feat(kvm, attr);
1859 break;
1860 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1861 ret = kvm_s390_get_processor_subfunc(kvm, attr);
1862 break;
1863 case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
1864 ret = kvm_s390_get_machine_subfunc(kvm, attr);
1865 break;
1866 case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST:
1867 ret = kvm_s390_get_processor_uv_feat(kvm, attr);
1868 break;
1869 case KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST:
1870 ret = kvm_s390_get_machine_uv_feat(kvm, attr);
1871 break;
1872 }
1873 return ret;
1874 }
1875
1876 /**
1877 * kvm_s390_update_topology_change_report - update CPU topology change report
1878 * @kvm: guest KVM description
1879 * @val: set or clear the MTCR bit
1880 *
1881 * Updates the Multiprocessor Topology-Change-Report bit to signal
1882 * the guest with a topology change.
1883 * This is only relevant if the topology facility is present.
1884 *
1885 * The SCA version, bsca or esca, doesn't matter as offset is the same.
1886 */
kvm_s390_update_topology_change_report(struct kvm * kvm,bool val)1887 static void kvm_s390_update_topology_change_report(struct kvm *kvm, bool val)
1888 {
1889 union sca_utility new, old;
1890 struct bsca_block *sca;
1891
1892 read_lock(&kvm->arch.sca_lock);
1893 sca = kvm->arch.sca;
1894 do {
1895 old = READ_ONCE(sca->utility);
1896 new = old;
1897 new.mtcr = val;
1898 } while (cmpxchg(&sca->utility.val, old.val, new.val) != old.val);
1899 read_unlock(&kvm->arch.sca_lock);
1900 }
1901
kvm_s390_set_topo_change_indication(struct kvm * kvm,struct kvm_device_attr * attr)1902 static int kvm_s390_set_topo_change_indication(struct kvm *kvm,
1903 struct kvm_device_attr *attr)
1904 {
1905 if (!test_kvm_facility(kvm, 11))
1906 return -ENXIO;
1907
1908 kvm_s390_update_topology_change_report(kvm, !!attr->attr);
1909 return 0;
1910 }
1911
kvm_s390_get_topo_change_indication(struct kvm * kvm,struct kvm_device_attr * attr)1912 static int kvm_s390_get_topo_change_indication(struct kvm *kvm,
1913 struct kvm_device_attr *attr)
1914 {
1915 u8 topo;
1916
1917 if (!test_kvm_facility(kvm, 11))
1918 return -ENXIO;
1919
1920 read_lock(&kvm->arch.sca_lock);
1921 topo = ((struct bsca_block *)kvm->arch.sca)->utility.mtcr;
1922 read_unlock(&kvm->arch.sca_lock);
1923
1924 return put_user(topo, (u8 __user *)attr->addr);
1925 }
1926
kvm_s390_vm_set_attr(struct kvm * kvm,struct kvm_device_attr * attr)1927 static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1928 {
1929 int ret;
1930
1931 switch (attr->group) {
1932 case KVM_S390_VM_MEM_CTRL:
1933 ret = kvm_s390_set_mem_control(kvm, attr);
1934 break;
1935 case KVM_S390_VM_TOD:
1936 ret = kvm_s390_set_tod(kvm, attr);
1937 break;
1938 case KVM_S390_VM_CPU_MODEL:
1939 ret = kvm_s390_set_cpu_model(kvm, attr);
1940 break;
1941 case KVM_S390_VM_CRYPTO:
1942 ret = kvm_s390_vm_set_crypto(kvm, attr);
1943 break;
1944 case KVM_S390_VM_MIGRATION:
1945 ret = kvm_s390_vm_set_migration(kvm, attr);
1946 break;
1947 case KVM_S390_VM_CPU_TOPOLOGY:
1948 ret = kvm_s390_set_topo_change_indication(kvm, attr);
1949 break;
1950 default:
1951 ret = -ENXIO;
1952 break;
1953 }
1954
1955 return ret;
1956 }
1957
kvm_s390_vm_get_attr(struct kvm * kvm,struct kvm_device_attr * attr)1958 static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1959 {
1960 int ret;
1961
1962 switch (attr->group) {
1963 case KVM_S390_VM_MEM_CTRL:
1964 ret = kvm_s390_get_mem_control(kvm, attr);
1965 break;
1966 case KVM_S390_VM_TOD:
1967 ret = kvm_s390_get_tod(kvm, attr);
1968 break;
1969 case KVM_S390_VM_CPU_MODEL:
1970 ret = kvm_s390_get_cpu_model(kvm, attr);
1971 break;
1972 case KVM_S390_VM_MIGRATION:
1973 ret = kvm_s390_vm_get_migration(kvm, attr);
1974 break;
1975 case KVM_S390_VM_CPU_TOPOLOGY:
1976 ret = kvm_s390_get_topo_change_indication(kvm, attr);
1977 break;
1978 default:
1979 ret = -ENXIO;
1980 break;
1981 }
1982
1983 return ret;
1984 }
1985
kvm_s390_vm_has_attr(struct kvm * kvm,struct kvm_device_attr * attr)1986 static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1987 {
1988 int ret;
1989
1990 switch (attr->group) {
1991 case KVM_S390_VM_MEM_CTRL:
1992 switch (attr->attr) {
1993 case KVM_S390_VM_MEM_ENABLE_CMMA:
1994 case KVM_S390_VM_MEM_CLR_CMMA:
1995 ret = sclp.has_cmma ? 0 : -ENXIO;
1996 break;
1997 case KVM_S390_VM_MEM_LIMIT_SIZE:
1998 ret = 0;
1999 break;
2000 default:
2001 ret = -ENXIO;
2002 break;
2003 }
2004 break;
2005 case KVM_S390_VM_TOD:
2006 switch (attr->attr) {
2007 case KVM_S390_VM_TOD_LOW:
2008 case KVM_S390_VM_TOD_HIGH:
2009 ret = 0;
2010 break;
2011 default:
2012 ret = -ENXIO;
2013 break;
2014 }
2015 break;
2016 case KVM_S390_VM_CPU_MODEL:
2017 switch (attr->attr) {
2018 case KVM_S390_VM_CPU_PROCESSOR:
2019 case KVM_S390_VM_CPU_MACHINE:
2020 case KVM_S390_VM_CPU_PROCESSOR_FEAT:
2021 case KVM_S390_VM_CPU_MACHINE_FEAT:
2022 case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
2023 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
2024 case KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST:
2025 case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST:
2026 ret = 0;
2027 break;
2028 default:
2029 ret = -ENXIO;
2030 break;
2031 }
2032 break;
2033 case KVM_S390_VM_CRYPTO:
2034 switch (attr->attr) {
2035 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
2036 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
2037 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
2038 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
2039 ret = 0;
2040 break;
2041 case KVM_S390_VM_CRYPTO_ENABLE_APIE:
2042 case KVM_S390_VM_CRYPTO_DISABLE_APIE:
2043 ret = ap_instructions_available() ? 0 : -ENXIO;
2044 break;
2045 default:
2046 ret = -ENXIO;
2047 break;
2048 }
2049 break;
2050 case KVM_S390_VM_MIGRATION:
2051 ret = 0;
2052 break;
2053 case KVM_S390_VM_CPU_TOPOLOGY:
2054 ret = test_kvm_facility(kvm, 11) ? 0 : -ENXIO;
2055 break;
2056 default:
2057 ret = -ENXIO;
2058 break;
2059 }
2060
2061 return ret;
2062 }
2063
kvm_s390_get_skeys(struct kvm * kvm,struct kvm_s390_skeys * args)2064 static int kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
2065 {
2066 uint8_t *keys;
2067 uint64_t hva;
2068 int srcu_idx, i, r = 0;
2069
2070 if (args->flags != 0)
2071 return -EINVAL;
2072
2073 /* Is this guest using storage keys? */
2074 if (!mm_uses_skeys(current->mm))
2075 return KVM_S390_GET_SKEYS_NONE;
2076
2077 /* Enforce sane limit on memory allocation */
2078 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
2079 return -EINVAL;
2080
2081 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL_ACCOUNT);
2082 if (!keys)
2083 return -ENOMEM;
2084
2085 mmap_read_lock(current->mm);
2086 srcu_idx = srcu_read_lock(&kvm->srcu);
2087 for (i = 0; i < args->count; i++) {
2088 hva = gfn_to_hva(kvm, args->start_gfn + i);
2089 if (kvm_is_error_hva(hva)) {
2090 r = -EFAULT;
2091 break;
2092 }
2093
2094 r = get_guest_storage_key(current->mm, hva, &keys[i]);
2095 if (r)
2096 break;
2097 }
2098 srcu_read_unlock(&kvm->srcu, srcu_idx);
2099 mmap_read_unlock(current->mm);
2100
2101 if (!r) {
2102 r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
2103 sizeof(uint8_t) * args->count);
2104 if (r)
2105 r = -EFAULT;
2106 }
2107
2108 kvfree(keys);
2109 return r;
2110 }
2111
kvm_s390_set_skeys(struct kvm * kvm,struct kvm_s390_skeys * args)2112 static int kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
2113 {
2114 uint8_t *keys;
2115 uint64_t hva;
2116 int srcu_idx, i, r = 0;
2117 bool unlocked;
2118
2119 if (args->flags != 0)
2120 return -EINVAL;
2121
2122 /* Enforce sane limit on memory allocation */
2123 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
2124 return -EINVAL;
2125
2126 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL_ACCOUNT);
2127 if (!keys)
2128 return -ENOMEM;
2129
2130 r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
2131 sizeof(uint8_t) * args->count);
2132 if (r) {
2133 r = -EFAULT;
2134 goto out;
2135 }
2136
2137 /* Enable storage key handling for the guest */
2138 r = s390_enable_skey();
2139 if (r)
2140 goto out;
2141
2142 i = 0;
2143 mmap_read_lock(current->mm);
2144 srcu_idx = srcu_read_lock(&kvm->srcu);
2145 while (i < args->count) {
2146 unlocked = false;
2147 hva = gfn_to_hva(kvm, args->start_gfn + i);
2148 if (kvm_is_error_hva(hva)) {
2149 r = -EFAULT;
2150 break;
2151 }
2152
2153 /* Lowest order bit is reserved */
2154 if (keys[i] & 0x01) {
2155 r = -EINVAL;
2156 break;
2157 }
2158
2159 r = set_guest_storage_key(current->mm, hva, keys[i], 0);
2160 if (r) {
2161 r = fixup_user_fault(current->mm, hva,
2162 FAULT_FLAG_WRITE, &unlocked);
2163 if (r)
2164 break;
2165 }
2166 if (!r)
2167 i++;
2168 }
2169 srcu_read_unlock(&kvm->srcu, srcu_idx);
2170 mmap_read_unlock(current->mm);
2171 out:
2172 kvfree(keys);
2173 return r;
2174 }
2175
2176 /*
2177 * Base address and length must be sent at the start of each block, therefore
2178 * it's cheaper to send some clean data, as long as it's less than the size of
2179 * two longs.
2180 */
2181 #define KVM_S390_MAX_BIT_DISTANCE (2 * sizeof(void *))
2182 /* for consistency */
2183 #define KVM_S390_CMMA_SIZE_MAX ((u32)KVM_S390_SKEYS_MAX)
2184
kvm_s390_peek_cmma(struct kvm * kvm,struct kvm_s390_cmma_log * args,u8 * res,unsigned long bufsize)2185 static int kvm_s390_peek_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args,
2186 u8 *res, unsigned long bufsize)
2187 {
2188 unsigned long pgstev, hva, cur_gfn = args->start_gfn;
2189
2190 args->count = 0;
2191 while (args->count < bufsize) {
2192 hva = gfn_to_hva(kvm, cur_gfn);
2193 /*
2194 * We return an error if the first value was invalid, but we
2195 * return successfully if at least one value was copied.
2196 */
2197 if (kvm_is_error_hva(hva))
2198 return args->count ? 0 : -EFAULT;
2199 if (get_pgste(kvm->mm, hva, &pgstev) < 0)
2200 pgstev = 0;
2201 res[args->count++] = (pgstev >> 24) & 0x43;
2202 cur_gfn++;
2203 }
2204
2205 return 0;
2206 }
2207
gfn_to_memslot_approx(struct kvm_memslots * slots,gfn_t gfn)2208 static struct kvm_memory_slot *gfn_to_memslot_approx(struct kvm_memslots *slots,
2209 gfn_t gfn)
2210 {
2211 return ____gfn_to_memslot(slots, gfn, true);
2212 }
2213
kvm_s390_next_dirty_cmma(struct kvm_memslots * slots,unsigned long cur_gfn)2214 static unsigned long kvm_s390_next_dirty_cmma(struct kvm_memslots *slots,
2215 unsigned long cur_gfn)
2216 {
2217 struct kvm_memory_slot *ms = gfn_to_memslot_approx(slots, cur_gfn);
2218 unsigned long ofs = cur_gfn - ms->base_gfn;
2219 struct rb_node *mnode = &ms->gfn_node[slots->node_idx];
2220
2221 if (ms->base_gfn + ms->npages <= cur_gfn) {
2222 mnode = rb_next(mnode);
2223 /* If we are above the highest slot, wrap around */
2224 if (!mnode)
2225 mnode = rb_first(&slots->gfn_tree);
2226
2227 ms = container_of(mnode, struct kvm_memory_slot, gfn_node[slots->node_idx]);
2228 ofs = 0;
2229 }
2230
2231 if (cur_gfn < ms->base_gfn)
2232 ofs = 0;
2233
2234 ofs = find_next_bit(kvm_second_dirty_bitmap(ms), ms->npages, ofs);
2235 while (ofs >= ms->npages && (mnode = rb_next(mnode))) {
2236 ms = container_of(mnode, struct kvm_memory_slot, gfn_node[slots->node_idx]);
2237 ofs = find_first_bit(kvm_second_dirty_bitmap(ms), ms->npages);
2238 }
2239 return ms->base_gfn + ofs;
2240 }
2241
kvm_s390_get_cmma(struct kvm * kvm,struct kvm_s390_cmma_log * args,u8 * res,unsigned long bufsize)2242 static int kvm_s390_get_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args,
2243 u8 *res, unsigned long bufsize)
2244 {
2245 unsigned long mem_end, cur_gfn, next_gfn, hva, pgstev;
2246 struct kvm_memslots *slots = kvm_memslots(kvm);
2247 struct kvm_memory_slot *ms;
2248
2249 if (unlikely(kvm_memslots_empty(slots)))
2250 return 0;
2251
2252 cur_gfn = kvm_s390_next_dirty_cmma(slots, args->start_gfn);
2253 ms = gfn_to_memslot(kvm, cur_gfn);
2254 args->count = 0;
2255 args->start_gfn = cur_gfn;
2256 if (!ms)
2257 return 0;
2258 next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1);
2259 mem_end = kvm_s390_get_gfn_end(slots);
2260
2261 while (args->count < bufsize) {
2262 hva = gfn_to_hva(kvm, cur_gfn);
2263 if (kvm_is_error_hva(hva))
2264 return 0;
2265 /* Decrement only if we actually flipped the bit to 0 */
2266 if (test_and_clear_bit(cur_gfn - ms->base_gfn, kvm_second_dirty_bitmap(ms)))
2267 atomic64_dec(&kvm->arch.cmma_dirty_pages);
2268 if (get_pgste(kvm->mm, hva, &pgstev) < 0)
2269 pgstev = 0;
2270 /* Save the value */
2271 res[args->count++] = (pgstev >> 24) & 0x43;
2272 /* If the next bit is too far away, stop. */
2273 if (next_gfn > cur_gfn + KVM_S390_MAX_BIT_DISTANCE)
2274 return 0;
2275 /* If we reached the previous "next", find the next one */
2276 if (cur_gfn == next_gfn)
2277 next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1);
2278 /* Reached the end of memory or of the buffer, stop */
2279 if ((next_gfn >= mem_end) ||
2280 (next_gfn - args->start_gfn >= bufsize))
2281 return 0;
2282 cur_gfn++;
2283 /* Reached the end of the current memslot, take the next one. */
2284 if (cur_gfn - ms->base_gfn >= ms->npages) {
2285 ms = gfn_to_memslot(kvm, cur_gfn);
2286 if (!ms)
2287 return 0;
2288 }
2289 }
2290 return 0;
2291 }
2292
2293 /*
2294 * This function searches for the next page with dirty CMMA attributes, and
2295 * saves the attributes in the buffer up to either the end of the buffer or
2296 * until a block of at least KVM_S390_MAX_BIT_DISTANCE clean bits is found;
2297 * no trailing clean bytes are saved.
2298 * In case no dirty bits were found, or if CMMA was not enabled or used, the
2299 * output buffer will indicate 0 as length.
2300 */
kvm_s390_get_cmma_bits(struct kvm * kvm,struct kvm_s390_cmma_log * args)2301 static int kvm_s390_get_cmma_bits(struct kvm *kvm,
2302 struct kvm_s390_cmma_log *args)
2303 {
2304 unsigned long bufsize;
2305 int srcu_idx, peek, ret;
2306 u8 *values;
2307
2308 if (!kvm->arch.use_cmma)
2309 return -ENXIO;
2310 /* Invalid/unsupported flags were specified */
2311 if (args->flags & ~KVM_S390_CMMA_PEEK)
2312 return -EINVAL;
2313 /* Migration mode query, and we are not doing a migration */
2314 peek = !!(args->flags & KVM_S390_CMMA_PEEK);
2315 if (!peek && !kvm->arch.migration_mode)
2316 return -EINVAL;
2317 /* CMMA is disabled or was not used, or the buffer has length zero */
2318 bufsize = min(args->count, KVM_S390_CMMA_SIZE_MAX);
2319 if (!bufsize || !kvm->mm->context.uses_cmm) {
2320 memset(args, 0, sizeof(*args));
2321 return 0;
2322 }
2323 /* We are not peeking, and there are no dirty pages */
2324 if (!peek && !atomic64_read(&kvm->arch.cmma_dirty_pages)) {
2325 memset(args, 0, sizeof(*args));
2326 return 0;
2327 }
2328
2329 values = vmalloc(bufsize);
2330 if (!values)
2331 return -ENOMEM;
2332
2333 mmap_read_lock(kvm->mm);
2334 srcu_idx = srcu_read_lock(&kvm->srcu);
2335 if (peek)
2336 ret = kvm_s390_peek_cmma(kvm, args, values, bufsize);
2337 else
2338 ret = kvm_s390_get_cmma(kvm, args, values, bufsize);
2339 srcu_read_unlock(&kvm->srcu, srcu_idx);
2340 mmap_read_unlock(kvm->mm);
2341
2342 if (kvm->arch.migration_mode)
2343 args->remaining = atomic64_read(&kvm->arch.cmma_dirty_pages);
2344 else
2345 args->remaining = 0;
2346
2347 if (copy_to_user((void __user *)args->values, values, args->count))
2348 ret = -EFAULT;
2349
2350 vfree(values);
2351 return ret;
2352 }
2353
2354 /*
2355 * This function sets the CMMA attributes for the given pages. If the input
2356 * buffer has zero length, no action is taken, otherwise the attributes are
2357 * set and the mm->context.uses_cmm flag is set.
2358 */
kvm_s390_set_cmma_bits(struct kvm * kvm,const struct kvm_s390_cmma_log * args)2359 static int kvm_s390_set_cmma_bits(struct kvm *kvm,
2360 const struct kvm_s390_cmma_log *args)
2361 {
2362 unsigned long hva, mask, pgstev, i;
2363 uint8_t *bits;
2364 int srcu_idx, r = 0;
2365
2366 mask = args->mask;
2367
2368 if (!kvm->arch.use_cmma)
2369 return -ENXIO;
2370 /* invalid/unsupported flags */
2371 if (args->flags != 0)
2372 return -EINVAL;
2373 /* Enforce sane limit on memory allocation */
2374 if (args->count > KVM_S390_CMMA_SIZE_MAX)
2375 return -EINVAL;
2376 /* Nothing to do */
2377 if (args->count == 0)
2378 return 0;
2379
2380 bits = vmalloc(array_size(sizeof(*bits), args->count));
2381 if (!bits)
2382 return -ENOMEM;
2383
2384 r = copy_from_user(bits, (void __user *)args->values, args->count);
2385 if (r) {
2386 r = -EFAULT;
2387 goto out;
2388 }
2389
2390 mmap_read_lock(kvm->mm);
2391 srcu_idx = srcu_read_lock(&kvm->srcu);
2392 for (i = 0; i < args->count; i++) {
2393 hva = gfn_to_hva(kvm, args->start_gfn + i);
2394 if (kvm_is_error_hva(hva)) {
2395 r = -EFAULT;
2396 break;
2397 }
2398
2399 pgstev = bits[i];
2400 pgstev = pgstev << 24;
2401 mask &= _PGSTE_GPS_USAGE_MASK | _PGSTE_GPS_NODAT;
2402 set_pgste_bits(kvm->mm, hva, mask, pgstev);
2403 }
2404 srcu_read_unlock(&kvm->srcu, srcu_idx);
2405 mmap_read_unlock(kvm->mm);
2406
2407 if (!kvm->mm->context.uses_cmm) {
2408 mmap_write_lock(kvm->mm);
2409 kvm->mm->context.uses_cmm = 1;
2410 mmap_write_unlock(kvm->mm);
2411 }
2412 out:
2413 vfree(bits);
2414 return r;
2415 }
2416
2417 /**
2418 * kvm_s390_cpus_from_pv - Convert all protected vCPUs in a protected VM to
2419 * non protected.
2420 * @kvm: the VM whose protected vCPUs are to be converted
2421 * @rc: return value for the RC field of the UVC (in case of error)
2422 * @rrc: return value for the RRC field of the UVC (in case of error)
2423 *
2424 * Does not stop in case of error, tries to convert as many
2425 * CPUs as possible. In case of error, the RC and RRC of the last error are
2426 * returned.
2427 *
2428 * Return: 0 in case of success, otherwise -EIO
2429 */
kvm_s390_cpus_from_pv(struct kvm * kvm,u16 * rc,u16 * rrc)2430 int kvm_s390_cpus_from_pv(struct kvm *kvm, u16 *rc, u16 *rrc)
2431 {
2432 struct kvm_vcpu *vcpu;
2433 unsigned long i;
2434 u16 _rc, _rrc;
2435 int ret = 0;
2436
2437 /*
2438 * We ignore failures and try to destroy as many CPUs as possible.
2439 * At the same time we must not free the assigned resources when
2440 * this fails, as the ultravisor has still access to that memory.
2441 * So kvm_s390_pv_destroy_cpu can leave a "wanted" memory leak
2442 * behind.
2443 * We want to return the first failure rc and rrc, though.
2444 */
2445 kvm_for_each_vcpu(i, vcpu, kvm) {
2446 mutex_lock(&vcpu->mutex);
2447 if (kvm_s390_pv_destroy_cpu(vcpu, &_rc, &_rrc) && !ret) {
2448 *rc = _rc;
2449 *rrc = _rrc;
2450 ret = -EIO;
2451 }
2452 mutex_unlock(&vcpu->mutex);
2453 }
2454 /* Ensure that we re-enable gisa if the non-PV guest used it but the PV guest did not. */
2455 if (use_gisa)
2456 kvm_s390_gisa_enable(kvm);
2457 return ret;
2458 }
2459
2460 /**
2461 * kvm_s390_cpus_to_pv - Convert all non-protected vCPUs in a protected VM
2462 * to protected.
2463 * @kvm: the VM whose protected vCPUs are to be converted
2464 * @rc: return value for the RC field of the UVC (in case of error)
2465 * @rrc: return value for the RRC field of the UVC (in case of error)
2466 *
2467 * Tries to undo the conversion in case of error.
2468 *
2469 * Return: 0 in case of success, otherwise -EIO
2470 */
kvm_s390_cpus_to_pv(struct kvm * kvm,u16 * rc,u16 * rrc)2471 static int kvm_s390_cpus_to_pv(struct kvm *kvm, u16 *rc, u16 *rrc)
2472 {
2473 unsigned long i;
2474 int r = 0;
2475 u16 dummy;
2476
2477 struct kvm_vcpu *vcpu;
2478
2479 /* Disable the GISA if the ultravisor does not support AIV. */
2480 if (!uv_has_feature(BIT_UV_FEAT_AIV))
2481 kvm_s390_gisa_disable(kvm);
2482
2483 kvm_for_each_vcpu(i, vcpu, kvm) {
2484 mutex_lock(&vcpu->mutex);
2485 r = kvm_s390_pv_create_cpu(vcpu, rc, rrc);
2486 mutex_unlock(&vcpu->mutex);
2487 if (r)
2488 break;
2489 }
2490 if (r)
2491 kvm_s390_cpus_from_pv(kvm, &dummy, &dummy);
2492 return r;
2493 }
2494
2495 /*
2496 * Here we provide user space with a direct interface to query UV
2497 * related data like UV maxima and available features as well as
2498 * feature specific data.
2499 *
2500 * To facilitate future extension of the data structures we'll try to
2501 * write data up to the maximum requested length.
2502 */
kvm_s390_handle_pv_info(struct kvm_s390_pv_info * info)2503 static ssize_t kvm_s390_handle_pv_info(struct kvm_s390_pv_info *info)
2504 {
2505 ssize_t len_min;
2506
2507 switch (info->header.id) {
2508 case KVM_PV_INFO_VM: {
2509 len_min = sizeof(info->header) + sizeof(info->vm);
2510
2511 if (info->header.len_max < len_min)
2512 return -EINVAL;
2513
2514 memcpy(info->vm.inst_calls_list,
2515 uv_info.inst_calls_list,
2516 sizeof(uv_info.inst_calls_list));
2517
2518 /* It's max cpuid not max cpus, so it's off by one */
2519 info->vm.max_cpus = uv_info.max_guest_cpu_id + 1;
2520 info->vm.max_guests = uv_info.max_num_sec_conf;
2521 info->vm.max_guest_addr = uv_info.max_sec_stor_addr;
2522 info->vm.feature_indication = uv_info.uv_feature_indications;
2523
2524 return len_min;
2525 }
2526 case KVM_PV_INFO_DUMP: {
2527 len_min = sizeof(info->header) + sizeof(info->dump);
2528
2529 if (info->header.len_max < len_min)
2530 return -EINVAL;
2531
2532 info->dump.dump_cpu_buffer_len = uv_info.guest_cpu_stor_len;
2533 info->dump.dump_config_mem_buffer_per_1m = uv_info.conf_dump_storage_state_len;
2534 info->dump.dump_config_finalize_len = uv_info.conf_dump_finalize_len;
2535 return len_min;
2536 }
2537 default:
2538 return -EINVAL;
2539 }
2540 }
2541
kvm_s390_pv_dmp(struct kvm * kvm,struct kvm_pv_cmd * cmd,struct kvm_s390_pv_dmp dmp)2542 static int kvm_s390_pv_dmp(struct kvm *kvm, struct kvm_pv_cmd *cmd,
2543 struct kvm_s390_pv_dmp dmp)
2544 {
2545 int r = -EINVAL;
2546 void __user *result_buff = (void __user *)dmp.buff_addr;
2547
2548 switch (dmp.subcmd) {
2549 case KVM_PV_DUMP_INIT: {
2550 if (kvm->arch.pv.dumping)
2551 break;
2552
2553 /*
2554 * Block SIE entry as concurrent dump UVCs could lead
2555 * to validities.
2556 */
2557 kvm_s390_vcpu_block_all(kvm);
2558
2559 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
2560 UVC_CMD_DUMP_INIT, &cmd->rc, &cmd->rrc);
2561 KVM_UV_EVENT(kvm, 3, "PROTVIRT DUMP INIT: rc %x rrc %x",
2562 cmd->rc, cmd->rrc);
2563 if (!r) {
2564 kvm->arch.pv.dumping = true;
2565 } else {
2566 kvm_s390_vcpu_unblock_all(kvm);
2567 r = -EINVAL;
2568 }
2569 break;
2570 }
2571 case KVM_PV_DUMP_CONFIG_STOR_STATE: {
2572 if (!kvm->arch.pv.dumping)
2573 break;
2574
2575 /*
2576 * gaddr is an output parameter since we might stop
2577 * early. As dmp will be copied back in our caller, we
2578 * don't need to do it ourselves.
2579 */
2580 r = kvm_s390_pv_dump_stor_state(kvm, result_buff, &dmp.gaddr, dmp.buff_len,
2581 &cmd->rc, &cmd->rrc);
2582 break;
2583 }
2584 case KVM_PV_DUMP_COMPLETE: {
2585 if (!kvm->arch.pv.dumping)
2586 break;
2587
2588 r = -EINVAL;
2589 if (dmp.buff_len < uv_info.conf_dump_finalize_len)
2590 break;
2591
2592 r = kvm_s390_pv_dump_complete(kvm, result_buff,
2593 &cmd->rc, &cmd->rrc);
2594 break;
2595 }
2596 default:
2597 r = -ENOTTY;
2598 break;
2599 }
2600
2601 return r;
2602 }
2603
kvm_s390_handle_pv(struct kvm * kvm,struct kvm_pv_cmd * cmd)2604 static int kvm_s390_handle_pv(struct kvm *kvm, struct kvm_pv_cmd *cmd)
2605 {
2606 const bool need_lock = (cmd->cmd != KVM_PV_ASYNC_CLEANUP_PERFORM);
2607 void __user *argp = (void __user *)cmd->data;
2608 int r = 0;
2609 u16 dummy;
2610
2611 if (need_lock)
2612 mutex_lock(&kvm->lock);
2613
2614 switch (cmd->cmd) {
2615 case KVM_PV_ENABLE: {
2616 r = -EINVAL;
2617 if (kvm_s390_pv_is_protected(kvm))
2618 break;
2619
2620 /*
2621 * FMT 4 SIE needs esca. As we never switch back to bsca from
2622 * esca, we need no cleanup in the error cases below
2623 */
2624 r = sca_switch_to_extended(kvm);
2625 if (r)
2626 break;
2627
2628 mmap_write_lock(current->mm);
2629 r = gmap_mark_unmergeable();
2630 mmap_write_unlock(current->mm);
2631 if (r)
2632 break;
2633
2634 r = kvm_s390_pv_init_vm(kvm, &cmd->rc, &cmd->rrc);
2635 if (r)
2636 break;
2637
2638 r = kvm_s390_cpus_to_pv(kvm, &cmd->rc, &cmd->rrc);
2639 if (r)
2640 kvm_s390_pv_deinit_vm(kvm, &dummy, &dummy);
2641
2642 /* we need to block service interrupts from now on */
2643 set_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs);
2644 break;
2645 }
2646 case KVM_PV_ASYNC_CLEANUP_PREPARE:
2647 r = -EINVAL;
2648 if (!kvm_s390_pv_is_protected(kvm) || !async_destroy)
2649 break;
2650
2651 r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc);
2652 /*
2653 * If a CPU could not be destroyed, destroy VM will also fail.
2654 * There is no point in trying to destroy it. Instead return
2655 * the rc and rrc from the first CPU that failed destroying.
2656 */
2657 if (r)
2658 break;
2659 r = kvm_s390_pv_set_aside(kvm, &cmd->rc, &cmd->rrc);
2660
2661 /* no need to block service interrupts any more */
2662 clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs);
2663 break;
2664 case KVM_PV_ASYNC_CLEANUP_PERFORM:
2665 r = -EINVAL;
2666 if (!async_destroy)
2667 break;
2668 /* kvm->lock must not be held; this is asserted inside the function. */
2669 r = kvm_s390_pv_deinit_aside_vm(kvm, &cmd->rc, &cmd->rrc);
2670 break;
2671 case KVM_PV_DISABLE: {
2672 r = -EINVAL;
2673 if (!kvm_s390_pv_is_protected(kvm))
2674 break;
2675
2676 r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc);
2677 /*
2678 * If a CPU could not be destroyed, destroy VM will also fail.
2679 * There is no point in trying to destroy it. Instead return
2680 * the rc and rrc from the first CPU that failed destroying.
2681 */
2682 if (r)
2683 break;
2684 r = kvm_s390_pv_deinit_cleanup_all(kvm, &cmd->rc, &cmd->rrc);
2685
2686 /* no need to block service interrupts any more */
2687 clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs);
2688 break;
2689 }
2690 case KVM_PV_SET_SEC_PARMS: {
2691 struct kvm_s390_pv_sec_parm parms = {};
2692 void *hdr;
2693
2694 r = -EINVAL;
2695 if (!kvm_s390_pv_is_protected(kvm))
2696 break;
2697
2698 r = -EFAULT;
2699 if (copy_from_user(&parms, argp, sizeof(parms)))
2700 break;
2701
2702 /* Currently restricted to 8KB */
2703 r = -EINVAL;
2704 if (parms.length > PAGE_SIZE * 2)
2705 break;
2706
2707 r = -ENOMEM;
2708 hdr = vmalloc(parms.length);
2709 if (!hdr)
2710 break;
2711
2712 r = -EFAULT;
2713 if (!copy_from_user(hdr, (void __user *)parms.origin,
2714 parms.length))
2715 r = kvm_s390_pv_set_sec_parms(kvm, hdr, parms.length,
2716 &cmd->rc, &cmd->rrc);
2717
2718 vfree(hdr);
2719 break;
2720 }
2721 case KVM_PV_UNPACK: {
2722 struct kvm_s390_pv_unp unp = {};
2723
2724 r = -EINVAL;
2725 if (!kvm_s390_pv_is_protected(kvm) || !mm_is_protected(kvm->mm))
2726 break;
2727
2728 r = -EFAULT;
2729 if (copy_from_user(&unp, argp, sizeof(unp)))
2730 break;
2731
2732 r = kvm_s390_pv_unpack(kvm, unp.addr, unp.size, unp.tweak,
2733 &cmd->rc, &cmd->rrc);
2734 break;
2735 }
2736 case KVM_PV_VERIFY: {
2737 r = -EINVAL;
2738 if (!kvm_s390_pv_is_protected(kvm))
2739 break;
2740
2741 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
2742 UVC_CMD_VERIFY_IMG, &cmd->rc, &cmd->rrc);
2743 KVM_UV_EVENT(kvm, 3, "PROTVIRT VERIFY: rc %x rrc %x", cmd->rc,
2744 cmd->rrc);
2745 break;
2746 }
2747 case KVM_PV_PREP_RESET: {
2748 r = -EINVAL;
2749 if (!kvm_s390_pv_is_protected(kvm))
2750 break;
2751
2752 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
2753 UVC_CMD_PREPARE_RESET, &cmd->rc, &cmd->rrc);
2754 KVM_UV_EVENT(kvm, 3, "PROTVIRT PREP RESET: rc %x rrc %x",
2755 cmd->rc, cmd->rrc);
2756 break;
2757 }
2758 case KVM_PV_UNSHARE_ALL: {
2759 r = -EINVAL;
2760 if (!kvm_s390_pv_is_protected(kvm))
2761 break;
2762
2763 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
2764 UVC_CMD_SET_UNSHARE_ALL, &cmd->rc, &cmd->rrc);
2765 KVM_UV_EVENT(kvm, 3, "PROTVIRT UNSHARE: rc %x rrc %x",
2766 cmd->rc, cmd->rrc);
2767 break;
2768 }
2769 case KVM_PV_INFO: {
2770 struct kvm_s390_pv_info info = {};
2771 ssize_t data_len;
2772
2773 /*
2774 * No need to check the VM protection here.
2775 *
2776 * Maybe user space wants to query some of the data
2777 * when the VM is still unprotected. If we see the
2778 * need to fence a new data command we can still
2779 * return an error in the info handler.
2780 */
2781
2782 r = -EFAULT;
2783 if (copy_from_user(&info, argp, sizeof(info.header)))
2784 break;
2785
2786 r = -EINVAL;
2787 if (info.header.len_max < sizeof(info.header))
2788 break;
2789
2790 data_len = kvm_s390_handle_pv_info(&info);
2791 if (data_len < 0) {
2792 r = data_len;
2793 break;
2794 }
2795 /*
2796 * If a data command struct is extended (multiple
2797 * times) this can be used to determine how much of it
2798 * is valid.
2799 */
2800 info.header.len_written = data_len;
2801
2802 r = -EFAULT;
2803 if (copy_to_user(argp, &info, data_len))
2804 break;
2805
2806 r = 0;
2807 break;
2808 }
2809 case KVM_PV_DUMP: {
2810 struct kvm_s390_pv_dmp dmp;
2811
2812 r = -EINVAL;
2813 if (!kvm_s390_pv_is_protected(kvm))
2814 break;
2815
2816 r = -EFAULT;
2817 if (copy_from_user(&dmp, argp, sizeof(dmp)))
2818 break;
2819
2820 r = kvm_s390_pv_dmp(kvm, cmd, dmp);
2821 if (r)
2822 break;
2823
2824 if (copy_to_user(argp, &dmp, sizeof(dmp))) {
2825 r = -EFAULT;
2826 break;
2827 }
2828
2829 break;
2830 }
2831 default:
2832 r = -ENOTTY;
2833 }
2834 if (need_lock)
2835 mutex_unlock(&kvm->lock);
2836
2837 return r;
2838 }
2839
mem_op_validate_common(struct kvm_s390_mem_op * mop,u64 supported_flags)2840 static int mem_op_validate_common(struct kvm_s390_mem_op *mop, u64 supported_flags)
2841 {
2842 if (mop->flags & ~supported_flags || !mop->size)
2843 return -EINVAL;
2844 if (mop->size > MEM_OP_MAX_SIZE)
2845 return -E2BIG;
2846 if (mop->flags & KVM_S390_MEMOP_F_SKEY_PROTECTION) {
2847 if (mop->key > 0xf)
2848 return -EINVAL;
2849 } else {
2850 mop->key = 0;
2851 }
2852 return 0;
2853 }
2854
kvm_s390_vm_mem_op_abs(struct kvm * kvm,struct kvm_s390_mem_op * mop)2855 static int kvm_s390_vm_mem_op_abs(struct kvm *kvm, struct kvm_s390_mem_op *mop)
2856 {
2857 void __user *uaddr = (void __user *)mop->buf;
2858 enum gacc_mode acc_mode;
2859 void *tmpbuf = NULL;
2860 int r, srcu_idx;
2861
2862 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_SKEY_PROTECTION |
2863 KVM_S390_MEMOP_F_CHECK_ONLY);
2864 if (r)
2865 return r;
2866
2867 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
2868 tmpbuf = vmalloc(mop->size);
2869 if (!tmpbuf)
2870 return -ENOMEM;
2871 }
2872
2873 srcu_idx = srcu_read_lock(&kvm->srcu);
2874
2875 if (kvm_is_error_gpa(kvm, mop->gaddr)) {
2876 r = PGM_ADDRESSING;
2877 goto out_unlock;
2878 }
2879
2880 acc_mode = mop->op == KVM_S390_MEMOP_ABSOLUTE_READ ? GACC_FETCH : GACC_STORE;
2881 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2882 r = check_gpa_range(kvm, mop->gaddr, mop->size, acc_mode, mop->key);
2883 goto out_unlock;
2884 }
2885 if (acc_mode == GACC_FETCH) {
2886 r = access_guest_abs_with_key(kvm, mop->gaddr, tmpbuf,
2887 mop->size, GACC_FETCH, mop->key);
2888 if (r)
2889 goto out_unlock;
2890 if (copy_to_user(uaddr, tmpbuf, mop->size))
2891 r = -EFAULT;
2892 } else {
2893 if (copy_from_user(tmpbuf, uaddr, mop->size)) {
2894 r = -EFAULT;
2895 goto out_unlock;
2896 }
2897 r = access_guest_abs_with_key(kvm, mop->gaddr, tmpbuf,
2898 mop->size, GACC_STORE, mop->key);
2899 }
2900
2901 out_unlock:
2902 srcu_read_unlock(&kvm->srcu, srcu_idx);
2903
2904 vfree(tmpbuf);
2905 return r;
2906 }
2907
kvm_s390_vm_mem_op_cmpxchg(struct kvm * kvm,struct kvm_s390_mem_op * mop)2908 static int kvm_s390_vm_mem_op_cmpxchg(struct kvm *kvm, struct kvm_s390_mem_op *mop)
2909 {
2910 void __user *uaddr = (void __user *)mop->buf;
2911 void __user *old_addr = (void __user *)mop->old_addr;
2912 union {
2913 __uint128_t quad;
2914 char raw[sizeof(__uint128_t)];
2915 } old = { .quad = 0}, new = { .quad = 0 };
2916 unsigned int off_in_quad = sizeof(new) - mop->size;
2917 int r, srcu_idx;
2918 bool success;
2919
2920 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_SKEY_PROTECTION);
2921 if (r)
2922 return r;
2923 /*
2924 * This validates off_in_quad. Checking that size is a power
2925 * of two is not necessary, as cmpxchg_guest_abs_with_key
2926 * takes care of that
2927 */
2928 if (mop->size > sizeof(new))
2929 return -EINVAL;
2930 if (copy_from_user(&new.raw[off_in_quad], uaddr, mop->size))
2931 return -EFAULT;
2932 if (copy_from_user(&old.raw[off_in_quad], old_addr, mop->size))
2933 return -EFAULT;
2934
2935 srcu_idx = srcu_read_lock(&kvm->srcu);
2936
2937 if (kvm_is_error_gpa(kvm, mop->gaddr)) {
2938 r = PGM_ADDRESSING;
2939 goto out_unlock;
2940 }
2941
2942 r = cmpxchg_guest_abs_with_key(kvm, mop->gaddr, mop->size, &old.quad,
2943 new.quad, mop->key, &success);
2944 if (!success && copy_to_user(old_addr, &old.raw[off_in_quad], mop->size))
2945 r = -EFAULT;
2946
2947 out_unlock:
2948 srcu_read_unlock(&kvm->srcu, srcu_idx);
2949 return r;
2950 }
2951
kvm_s390_vm_mem_op(struct kvm * kvm,struct kvm_s390_mem_op * mop)2952 static int kvm_s390_vm_mem_op(struct kvm *kvm, struct kvm_s390_mem_op *mop)
2953 {
2954 /*
2955 * This is technically a heuristic only, if the kvm->lock is not
2956 * taken, it is not guaranteed that the vm is/remains non-protected.
2957 * This is ok from a kernel perspective, wrongdoing is detected
2958 * on the access, -EFAULT is returned and the vm may crash the
2959 * next time it accesses the memory in question.
2960 * There is no sane usecase to do switching and a memop on two
2961 * different CPUs at the same time.
2962 */
2963 if (kvm_s390_pv_get_handle(kvm))
2964 return -EINVAL;
2965
2966 switch (mop->op) {
2967 case KVM_S390_MEMOP_ABSOLUTE_READ:
2968 case KVM_S390_MEMOP_ABSOLUTE_WRITE:
2969 return kvm_s390_vm_mem_op_abs(kvm, mop);
2970 case KVM_S390_MEMOP_ABSOLUTE_CMPXCHG:
2971 return kvm_s390_vm_mem_op_cmpxchg(kvm, mop);
2972 default:
2973 return -EINVAL;
2974 }
2975 }
2976
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2977 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
2978 {
2979 struct kvm *kvm = filp->private_data;
2980 void __user *argp = (void __user *)arg;
2981 struct kvm_device_attr attr;
2982 int r;
2983
2984 switch (ioctl) {
2985 case KVM_S390_INTERRUPT: {
2986 struct kvm_s390_interrupt s390int;
2987
2988 r = -EFAULT;
2989 if (copy_from_user(&s390int, argp, sizeof(s390int)))
2990 break;
2991 r = kvm_s390_inject_vm(kvm, &s390int);
2992 break;
2993 }
2994 case KVM_CREATE_IRQCHIP: {
2995 struct kvm_irq_routing_entry routing;
2996
2997 r = -EINVAL;
2998 if (kvm->arch.use_irqchip) {
2999 /* Set up dummy routing. */
3000 memset(&routing, 0, sizeof(routing));
3001 r = kvm_set_irq_routing(kvm, &routing, 0, 0);
3002 }
3003 break;
3004 }
3005 case KVM_SET_DEVICE_ATTR: {
3006 r = -EFAULT;
3007 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3008 break;
3009 r = kvm_s390_vm_set_attr(kvm, &attr);
3010 break;
3011 }
3012 case KVM_GET_DEVICE_ATTR: {
3013 r = -EFAULT;
3014 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3015 break;
3016 r = kvm_s390_vm_get_attr(kvm, &attr);
3017 break;
3018 }
3019 case KVM_HAS_DEVICE_ATTR: {
3020 r = -EFAULT;
3021 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3022 break;
3023 r = kvm_s390_vm_has_attr(kvm, &attr);
3024 break;
3025 }
3026 case KVM_S390_GET_SKEYS: {
3027 struct kvm_s390_skeys args;
3028
3029 r = -EFAULT;
3030 if (copy_from_user(&args, argp,
3031 sizeof(struct kvm_s390_skeys)))
3032 break;
3033 r = kvm_s390_get_skeys(kvm, &args);
3034 break;
3035 }
3036 case KVM_S390_SET_SKEYS: {
3037 struct kvm_s390_skeys args;
3038
3039 r = -EFAULT;
3040 if (copy_from_user(&args, argp,
3041 sizeof(struct kvm_s390_skeys)))
3042 break;
3043 r = kvm_s390_set_skeys(kvm, &args);
3044 break;
3045 }
3046 case KVM_S390_GET_CMMA_BITS: {
3047 struct kvm_s390_cmma_log args;
3048
3049 r = -EFAULT;
3050 if (copy_from_user(&args, argp, sizeof(args)))
3051 break;
3052 mutex_lock(&kvm->slots_lock);
3053 r = kvm_s390_get_cmma_bits(kvm, &args);
3054 mutex_unlock(&kvm->slots_lock);
3055 if (!r) {
3056 r = copy_to_user(argp, &args, sizeof(args));
3057 if (r)
3058 r = -EFAULT;
3059 }
3060 break;
3061 }
3062 case KVM_S390_SET_CMMA_BITS: {
3063 struct kvm_s390_cmma_log args;
3064
3065 r = -EFAULT;
3066 if (copy_from_user(&args, argp, sizeof(args)))
3067 break;
3068 mutex_lock(&kvm->slots_lock);
3069 r = kvm_s390_set_cmma_bits(kvm, &args);
3070 mutex_unlock(&kvm->slots_lock);
3071 break;
3072 }
3073 case KVM_S390_PV_COMMAND: {
3074 struct kvm_pv_cmd args;
3075
3076 /* protvirt means user cpu state */
3077 kvm_s390_set_user_cpu_state_ctrl(kvm);
3078 r = 0;
3079 if (!is_prot_virt_host()) {
3080 r = -EINVAL;
3081 break;
3082 }
3083 if (copy_from_user(&args, argp, sizeof(args))) {
3084 r = -EFAULT;
3085 break;
3086 }
3087 if (args.flags) {
3088 r = -EINVAL;
3089 break;
3090 }
3091 /* must be called without kvm->lock */
3092 r = kvm_s390_handle_pv(kvm, &args);
3093 if (copy_to_user(argp, &args, sizeof(args))) {
3094 r = -EFAULT;
3095 break;
3096 }
3097 break;
3098 }
3099 case KVM_S390_MEM_OP: {
3100 struct kvm_s390_mem_op mem_op;
3101
3102 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
3103 r = kvm_s390_vm_mem_op(kvm, &mem_op);
3104 else
3105 r = -EFAULT;
3106 break;
3107 }
3108 case KVM_S390_ZPCI_OP: {
3109 struct kvm_s390_zpci_op args;
3110
3111 r = -EINVAL;
3112 if (!IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM))
3113 break;
3114 if (copy_from_user(&args, argp, sizeof(args))) {
3115 r = -EFAULT;
3116 break;
3117 }
3118 r = kvm_s390_pci_zpci_op(kvm, &args);
3119 break;
3120 }
3121 default:
3122 r = -ENOTTY;
3123 }
3124
3125 return r;
3126 }
3127
kvm_s390_apxa_installed(void)3128 static int kvm_s390_apxa_installed(void)
3129 {
3130 struct ap_config_info info;
3131
3132 if (ap_instructions_available()) {
3133 if (ap_qci(&info) == 0)
3134 return info.apxa;
3135 }
3136
3137 return 0;
3138 }
3139
3140 /*
3141 * The format of the crypto control block (CRYCB) is specified in the 3 low
3142 * order bits of the CRYCB designation (CRYCBD) field as follows:
3143 * Format 0: Neither the message security assist extension 3 (MSAX3) nor the
3144 * AP extended addressing (APXA) facility are installed.
3145 * Format 1: The APXA facility is not installed but the MSAX3 facility is.
3146 * Format 2: Both the APXA and MSAX3 facilities are installed
3147 */
kvm_s390_set_crycb_format(struct kvm * kvm)3148 static void kvm_s390_set_crycb_format(struct kvm *kvm)
3149 {
3150 kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;
3151
3152 /* Clear the CRYCB format bits - i.e., set format 0 by default */
3153 kvm->arch.crypto.crycbd &= ~(CRYCB_FORMAT_MASK);
3154
3155 /* Check whether MSAX3 is installed */
3156 if (!test_kvm_facility(kvm, 76))
3157 return;
3158
3159 if (kvm_s390_apxa_installed())
3160 kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
3161 else
3162 kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
3163 }
3164
3165 /*
3166 * kvm_arch_crypto_set_masks
3167 *
3168 * @kvm: pointer to the target guest's KVM struct containing the crypto masks
3169 * to be set.
3170 * @apm: the mask identifying the accessible AP adapters
3171 * @aqm: the mask identifying the accessible AP domains
3172 * @adm: the mask identifying the accessible AP control domains
3173 *
3174 * Set the masks that identify the adapters, domains and control domains to
3175 * which the KVM guest is granted access.
3176 *
3177 * Note: The kvm->lock mutex must be locked by the caller before invoking this
3178 * function.
3179 */
kvm_arch_crypto_set_masks(struct kvm * kvm,unsigned long * apm,unsigned long * aqm,unsigned long * adm)3180 void kvm_arch_crypto_set_masks(struct kvm *kvm, unsigned long *apm,
3181 unsigned long *aqm, unsigned long *adm)
3182 {
3183 struct kvm_s390_crypto_cb *crycb = kvm->arch.crypto.crycb;
3184
3185 kvm_s390_vcpu_block_all(kvm);
3186
3187 switch (kvm->arch.crypto.crycbd & CRYCB_FORMAT_MASK) {
3188 case CRYCB_FORMAT2: /* APCB1 use 256 bits */
3189 memcpy(crycb->apcb1.apm, apm, 32);
3190 VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx %016lx %016lx %016lx",
3191 apm[0], apm[1], apm[2], apm[3]);
3192 memcpy(crycb->apcb1.aqm, aqm, 32);
3193 VM_EVENT(kvm, 3, "SET CRYCB: aqm %016lx %016lx %016lx %016lx",
3194 aqm[0], aqm[1], aqm[2], aqm[3]);
3195 memcpy(crycb->apcb1.adm, adm, 32);
3196 VM_EVENT(kvm, 3, "SET CRYCB: adm %016lx %016lx %016lx %016lx",
3197 adm[0], adm[1], adm[2], adm[3]);
3198 break;
3199 case CRYCB_FORMAT1:
3200 case CRYCB_FORMAT0: /* Fall through both use APCB0 */
3201 memcpy(crycb->apcb0.apm, apm, 8);
3202 memcpy(crycb->apcb0.aqm, aqm, 2);
3203 memcpy(crycb->apcb0.adm, adm, 2);
3204 VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx aqm %04x adm %04x",
3205 apm[0], *((unsigned short *)aqm),
3206 *((unsigned short *)adm));
3207 break;
3208 default: /* Can not happen */
3209 break;
3210 }
3211
3212 /* recreate the shadow crycb for each vcpu */
3213 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART);
3214 kvm_s390_vcpu_unblock_all(kvm);
3215 }
3216 EXPORT_SYMBOL_GPL(kvm_arch_crypto_set_masks);
3217
3218 /*
3219 * kvm_arch_crypto_clear_masks
3220 *
3221 * @kvm: pointer to the target guest's KVM struct containing the crypto masks
3222 * to be cleared.
3223 *
3224 * Clear the masks that identify the adapters, domains and control domains to
3225 * which the KVM guest is granted access.
3226 *
3227 * Note: The kvm->lock mutex must be locked by the caller before invoking this
3228 * function.
3229 */
kvm_arch_crypto_clear_masks(struct kvm * kvm)3230 void kvm_arch_crypto_clear_masks(struct kvm *kvm)
3231 {
3232 kvm_s390_vcpu_block_all(kvm);
3233
3234 memset(&kvm->arch.crypto.crycb->apcb0, 0,
3235 sizeof(kvm->arch.crypto.crycb->apcb0));
3236 memset(&kvm->arch.crypto.crycb->apcb1, 0,
3237 sizeof(kvm->arch.crypto.crycb->apcb1));
3238
3239 VM_EVENT(kvm, 3, "%s", "CLR CRYCB:");
3240 /* recreate the shadow crycb for each vcpu */
3241 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART);
3242 kvm_s390_vcpu_unblock_all(kvm);
3243 }
3244 EXPORT_SYMBOL_GPL(kvm_arch_crypto_clear_masks);
3245
kvm_s390_get_initial_cpuid(void)3246 static u64 kvm_s390_get_initial_cpuid(void)
3247 {
3248 struct cpuid cpuid;
3249
3250 get_cpu_id(&cpuid);
3251 cpuid.version = 0xff;
3252 return *((u64 *) &cpuid);
3253 }
3254
kvm_s390_crypto_init(struct kvm * kvm)3255 static void kvm_s390_crypto_init(struct kvm *kvm)
3256 {
3257 kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
3258 kvm_s390_set_crycb_format(kvm);
3259 init_rwsem(&kvm->arch.crypto.pqap_hook_rwsem);
3260
3261 if (!test_kvm_facility(kvm, 76))
3262 return;
3263
3264 /* Enable AES/DEA protected key functions by default */
3265 kvm->arch.crypto.aes_kw = 1;
3266 kvm->arch.crypto.dea_kw = 1;
3267 get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
3268 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
3269 get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
3270 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
3271 }
3272
sca_dispose(struct kvm * kvm)3273 static void sca_dispose(struct kvm *kvm)
3274 {
3275 if (kvm->arch.use_esca)
3276 free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
3277 else
3278 free_page((unsigned long)(kvm->arch.sca));
3279 kvm->arch.sca = NULL;
3280 }
3281
kvm_arch_free_vm(struct kvm * kvm)3282 void kvm_arch_free_vm(struct kvm *kvm)
3283 {
3284 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM))
3285 kvm_s390_pci_clear_list(kvm);
3286
3287 __kvm_arch_free_vm(kvm);
3288 }
3289
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)3290 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
3291 {
3292 gfp_t alloc_flags = GFP_KERNEL_ACCOUNT;
3293 int i, rc;
3294 char debug_name[16];
3295 static unsigned long sca_offset;
3296
3297 rc = -EINVAL;
3298 #ifdef CONFIG_KVM_S390_UCONTROL
3299 if (type & ~KVM_VM_S390_UCONTROL)
3300 goto out_err;
3301 if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
3302 goto out_err;
3303 #else
3304 if (type)
3305 goto out_err;
3306 #endif
3307
3308 rc = s390_enable_sie();
3309 if (rc)
3310 goto out_err;
3311
3312 rc = -ENOMEM;
3313
3314 if (!sclp.has_64bscao)
3315 alloc_flags |= GFP_DMA;
3316 rwlock_init(&kvm->arch.sca_lock);
3317 /* start with basic SCA */
3318 kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags);
3319 if (!kvm->arch.sca)
3320 goto out_err;
3321 mutex_lock(&kvm_lock);
3322 sca_offset += 16;
3323 if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
3324 sca_offset = 0;
3325 kvm->arch.sca = (struct bsca_block *)
3326 ((char *) kvm->arch.sca + sca_offset);
3327 mutex_unlock(&kvm_lock);
3328
3329 sprintf(debug_name, "kvm-%u", current->pid);
3330
3331 kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
3332 if (!kvm->arch.dbf)
3333 goto out_err;
3334
3335 BUILD_BUG_ON(sizeof(struct sie_page2) != 4096);
3336 kvm->arch.sie_page2 =
3337 (struct sie_page2 *) get_zeroed_page(GFP_KERNEL_ACCOUNT | GFP_DMA);
3338 if (!kvm->arch.sie_page2)
3339 goto out_err;
3340
3341 kvm->arch.sie_page2->kvm = kvm;
3342 kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list;
3343
3344 for (i = 0; i < kvm_s390_fac_size(); i++) {
3345 kvm->arch.model.fac_mask[i] = stfle_fac_list[i] &
3346 (kvm_s390_fac_base[i] |
3347 kvm_s390_fac_ext[i]);
3348 kvm->arch.model.fac_list[i] = stfle_fac_list[i] &
3349 kvm_s390_fac_base[i];
3350 }
3351 kvm->arch.model.subfuncs = kvm_s390_available_subfunc;
3352
3353 /* we are always in czam mode - even on pre z14 machines */
3354 set_kvm_facility(kvm->arch.model.fac_mask, 138);
3355 set_kvm_facility(kvm->arch.model.fac_list, 138);
3356 /* we emulate STHYI in kvm */
3357 set_kvm_facility(kvm->arch.model.fac_mask, 74);
3358 set_kvm_facility(kvm->arch.model.fac_list, 74);
3359 if (MACHINE_HAS_TLB_GUEST) {
3360 set_kvm_facility(kvm->arch.model.fac_mask, 147);
3361 set_kvm_facility(kvm->arch.model.fac_list, 147);
3362 }
3363
3364 if (css_general_characteristics.aiv && test_facility(65))
3365 set_kvm_facility(kvm->arch.model.fac_mask, 65);
3366
3367 kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid();
3368 kvm->arch.model.ibc = sclp.ibc & 0x0fff;
3369
3370 kvm->arch.model.uv_feat_guest.feat = 0;
3371
3372 kvm_s390_crypto_init(kvm);
3373
3374 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) {
3375 mutex_lock(&kvm->lock);
3376 kvm_s390_pci_init_list(kvm);
3377 kvm_s390_vcpu_pci_enable_interp(kvm);
3378 mutex_unlock(&kvm->lock);
3379 }
3380
3381 mutex_init(&kvm->arch.float_int.ais_lock);
3382 spin_lock_init(&kvm->arch.float_int.lock);
3383 for (i = 0; i < FIRQ_LIST_COUNT; i++)
3384 INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
3385 init_waitqueue_head(&kvm->arch.ipte_wq);
3386 mutex_init(&kvm->arch.ipte_mutex);
3387
3388 debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
3389 VM_EVENT(kvm, 3, "vm created with type %lu", type);
3390
3391 if (type & KVM_VM_S390_UCONTROL) {
3392 kvm->arch.gmap = NULL;
3393 kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
3394 } else {
3395 if (sclp.hamax == U64_MAX)
3396 kvm->arch.mem_limit = TASK_SIZE_MAX;
3397 else
3398 kvm->arch.mem_limit = min_t(unsigned long, TASK_SIZE_MAX,
3399 sclp.hamax + 1);
3400 kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1);
3401 if (!kvm->arch.gmap)
3402 goto out_err;
3403 kvm->arch.gmap->private = kvm;
3404 kvm->arch.gmap->pfault_enabled = 0;
3405 }
3406
3407 kvm->arch.use_pfmfi = sclp.has_pfmfi;
3408 kvm->arch.use_skf = sclp.has_skey;
3409 spin_lock_init(&kvm->arch.start_stop_lock);
3410 kvm_s390_vsie_init(kvm);
3411 if (use_gisa)
3412 kvm_s390_gisa_init(kvm);
3413 INIT_LIST_HEAD(&kvm->arch.pv.need_cleanup);
3414 kvm->arch.pv.set_aside = NULL;
3415 KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
3416
3417 return 0;
3418 out_err:
3419 free_page((unsigned long)kvm->arch.sie_page2);
3420 debug_unregister(kvm->arch.dbf);
3421 sca_dispose(kvm);
3422 KVM_EVENT(3, "creation of vm failed: %d", rc);
3423 return rc;
3424 }
3425
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)3426 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
3427 {
3428 u16 rc, rrc;
3429
3430 VCPU_EVENT(vcpu, 3, "%s", "free cpu");
3431 trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
3432 kvm_s390_clear_local_irqs(vcpu);
3433 kvm_clear_async_pf_completion_queue(vcpu);
3434 if (!kvm_is_ucontrol(vcpu->kvm))
3435 sca_del_vcpu(vcpu);
3436 kvm_s390_update_topology_change_report(vcpu->kvm, 1);
3437
3438 if (kvm_is_ucontrol(vcpu->kvm))
3439 gmap_remove(vcpu->arch.gmap);
3440
3441 if (vcpu->kvm->arch.use_cmma)
3442 kvm_s390_vcpu_unsetup_cmma(vcpu);
3443 /* We can not hold the vcpu mutex here, we are already dying */
3444 if (kvm_s390_pv_cpu_get_handle(vcpu))
3445 kvm_s390_pv_destroy_cpu(vcpu, &rc, &rrc);
3446 free_page((unsigned long)(vcpu->arch.sie_block));
3447 }
3448
kvm_arch_destroy_vm(struct kvm * kvm)3449 void kvm_arch_destroy_vm(struct kvm *kvm)
3450 {
3451 u16 rc, rrc;
3452
3453 kvm_destroy_vcpus(kvm);
3454 sca_dispose(kvm);
3455 kvm_s390_gisa_destroy(kvm);
3456 /*
3457 * We are already at the end of life and kvm->lock is not taken.
3458 * This is ok as the file descriptor is closed by now and nobody
3459 * can mess with the pv state.
3460 */
3461 kvm_s390_pv_deinit_cleanup_all(kvm, &rc, &rrc);
3462 /*
3463 * Remove the mmu notifier only when the whole KVM VM is torn down,
3464 * and only if one was registered to begin with. If the VM is
3465 * currently not protected, but has been previously been protected,
3466 * then it's possible that the notifier is still registered.
3467 */
3468 if (kvm->arch.pv.mmu_notifier.ops)
3469 mmu_notifier_unregister(&kvm->arch.pv.mmu_notifier, kvm->mm);
3470
3471 debug_unregister(kvm->arch.dbf);
3472 free_page((unsigned long)kvm->arch.sie_page2);
3473 if (!kvm_is_ucontrol(kvm))
3474 gmap_remove(kvm->arch.gmap);
3475 kvm_s390_destroy_adapters(kvm);
3476 kvm_s390_clear_float_irqs(kvm);
3477 kvm_s390_vsie_destroy(kvm);
3478 KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
3479 }
3480
3481 /* Section: vcpu related */
__kvm_ucontrol_vcpu_init(struct kvm_vcpu * vcpu)3482 static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
3483 {
3484 vcpu->arch.gmap = gmap_create(current->mm, -1UL);
3485 if (!vcpu->arch.gmap)
3486 return -ENOMEM;
3487 vcpu->arch.gmap->private = vcpu->kvm;
3488
3489 return 0;
3490 }
3491
sca_del_vcpu(struct kvm_vcpu * vcpu)3492 static void sca_del_vcpu(struct kvm_vcpu *vcpu)
3493 {
3494 if (!kvm_s390_use_sca_entries())
3495 return;
3496 read_lock(&vcpu->kvm->arch.sca_lock);
3497 if (vcpu->kvm->arch.use_esca) {
3498 struct esca_block *sca = vcpu->kvm->arch.sca;
3499
3500 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
3501 sca->cpu[vcpu->vcpu_id].sda = 0;
3502 } else {
3503 struct bsca_block *sca = vcpu->kvm->arch.sca;
3504
3505 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
3506 sca->cpu[vcpu->vcpu_id].sda = 0;
3507 }
3508 read_unlock(&vcpu->kvm->arch.sca_lock);
3509 }
3510
sca_add_vcpu(struct kvm_vcpu * vcpu)3511 static void sca_add_vcpu(struct kvm_vcpu *vcpu)
3512 {
3513 if (!kvm_s390_use_sca_entries()) {
3514 phys_addr_t sca_phys = virt_to_phys(vcpu->kvm->arch.sca);
3515
3516 /* we still need the basic sca for the ipte control */
3517 vcpu->arch.sie_block->scaoh = sca_phys >> 32;
3518 vcpu->arch.sie_block->scaol = sca_phys;
3519 return;
3520 }
3521 read_lock(&vcpu->kvm->arch.sca_lock);
3522 if (vcpu->kvm->arch.use_esca) {
3523 struct esca_block *sca = vcpu->kvm->arch.sca;
3524 phys_addr_t sca_phys = virt_to_phys(sca);
3525
3526 sca->cpu[vcpu->vcpu_id].sda = virt_to_phys(vcpu->arch.sie_block);
3527 vcpu->arch.sie_block->scaoh = sca_phys >> 32;
3528 vcpu->arch.sie_block->scaol = sca_phys & ESCA_SCAOL_MASK;
3529 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA;
3530 set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
3531 } else {
3532 struct bsca_block *sca = vcpu->kvm->arch.sca;
3533 phys_addr_t sca_phys = virt_to_phys(sca);
3534
3535 sca->cpu[vcpu->vcpu_id].sda = virt_to_phys(vcpu->arch.sie_block);
3536 vcpu->arch.sie_block->scaoh = sca_phys >> 32;
3537 vcpu->arch.sie_block->scaol = sca_phys;
3538 set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
3539 }
3540 read_unlock(&vcpu->kvm->arch.sca_lock);
3541 }
3542
3543 /* Basic SCA to Extended SCA data copy routines */
sca_copy_entry(struct esca_entry * d,struct bsca_entry * s)3544 static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
3545 {
3546 d->sda = s->sda;
3547 d->sigp_ctrl.c = s->sigp_ctrl.c;
3548 d->sigp_ctrl.scn = s->sigp_ctrl.scn;
3549 }
3550
sca_copy_b_to_e(struct esca_block * d,struct bsca_block * s)3551 static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
3552 {
3553 int i;
3554
3555 d->ipte_control = s->ipte_control;
3556 d->mcn[0] = s->mcn;
3557 for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
3558 sca_copy_entry(&d->cpu[i], &s->cpu[i]);
3559 }
3560
sca_switch_to_extended(struct kvm * kvm)3561 static int sca_switch_to_extended(struct kvm *kvm)
3562 {
3563 struct bsca_block *old_sca = kvm->arch.sca;
3564 struct esca_block *new_sca;
3565 struct kvm_vcpu *vcpu;
3566 unsigned long vcpu_idx;
3567 u32 scaol, scaoh;
3568 phys_addr_t new_sca_phys;
3569
3570 if (kvm->arch.use_esca)
3571 return 0;
3572
3573 new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3574 if (!new_sca)
3575 return -ENOMEM;
3576
3577 new_sca_phys = virt_to_phys(new_sca);
3578 scaoh = new_sca_phys >> 32;
3579 scaol = new_sca_phys & ESCA_SCAOL_MASK;
3580
3581 kvm_s390_vcpu_block_all(kvm);
3582 write_lock(&kvm->arch.sca_lock);
3583
3584 sca_copy_b_to_e(new_sca, old_sca);
3585
3586 kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
3587 vcpu->arch.sie_block->scaoh = scaoh;
3588 vcpu->arch.sie_block->scaol = scaol;
3589 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA;
3590 }
3591 kvm->arch.sca = new_sca;
3592 kvm->arch.use_esca = 1;
3593
3594 write_unlock(&kvm->arch.sca_lock);
3595 kvm_s390_vcpu_unblock_all(kvm);
3596
3597 free_page((unsigned long)old_sca);
3598
3599 VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
3600 old_sca, kvm->arch.sca);
3601 return 0;
3602 }
3603
sca_can_add_vcpu(struct kvm * kvm,unsigned int id)3604 static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
3605 {
3606 int rc;
3607
3608 if (!kvm_s390_use_sca_entries()) {
3609 if (id < KVM_MAX_VCPUS)
3610 return true;
3611 return false;
3612 }
3613 if (id < KVM_S390_BSCA_CPU_SLOTS)
3614 return true;
3615 if (!sclp.has_esca || !sclp.has_64bscao)
3616 return false;
3617
3618 rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
3619
3620 return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
3621 }
3622
3623 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
__start_cpu_timer_accounting(struct kvm_vcpu * vcpu)3624 static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3625 {
3626 WARN_ON_ONCE(vcpu->arch.cputm_start != 0);
3627 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
3628 vcpu->arch.cputm_start = get_tod_clock_fast();
3629 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
3630 }
3631
3632 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
__stop_cpu_timer_accounting(struct kvm_vcpu * vcpu)3633 static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3634 {
3635 WARN_ON_ONCE(vcpu->arch.cputm_start == 0);
3636 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
3637 vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start;
3638 vcpu->arch.cputm_start = 0;
3639 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
3640 }
3641
3642 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
__enable_cpu_timer_accounting(struct kvm_vcpu * vcpu)3643 static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3644 {
3645 WARN_ON_ONCE(vcpu->arch.cputm_enabled);
3646 vcpu->arch.cputm_enabled = true;
3647 __start_cpu_timer_accounting(vcpu);
3648 }
3649
3650 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
__disable_cpu_timer_accounting(struct kvm_vcpu * vcpu)3651 static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3652 {
3653 WARN_ON_ONCE(!vcpu->arch.cputm_enabled);
3654 __stop_cpu_timer_accounting(vcpu);
3655 vcpu->arch.cputm_enabled = false;
3656 }
3657
enable_cpu_timer_accounting(struct kvm_vcpu * vcpu)3658 static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3659 {
3660 preempt_disable(); /* protect from TOD sync and vcpu_load/put */
3661 __enable_cpu_timer_accounting(vcpu);
3662 preempt_enable();
3663 }
3664
disable_cpu_timer_accounting(struct kvm_vcpu * vcpu)3665 static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3666 {
3667 preempt_disable(); /* protect from TOD sync and vcpu_load/put */
3668 __disable_cpu_timer_accounting(vcpu);
3669 preempt_enable();
3670 }
3671
3672 /* set the cpu timer - may only be called from the VCPU thread itself */
kvm_s390_set_cpu_timer(struct kvm_vcpu * vcpu,__u64 cputm)3673 void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm)
3674 {
3675 preempt_disable(); /* protect from TOD sync and vcpu_load/put */
3676 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
3677 if (vcpu->arch.cputm_enabled)
3678 vcpu->arch.cputm_start = get_tod_clock_fast();
3679 vcpu->arch.sie_block->cputm = cputm;
3680 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
3681 preempt_enable();
3682 }
3683
3684 /* update and get the cpu timer - can also be called from other VCPU threads */
kvm_s390_get_cpu_timer(struct kvm_vcpu * vcpu)3685 __u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
3686 {
3687 unsigned int seq;
3688 __u64 value;
3689
3690 if (unlikely(!vcpu->arch.cputm_enabled))
3691 return vcpu->arch.sie_block->cputm;
3692
3693 preempt_disable(); /* protect from TOD sync and vcpu_load/put */
3694 do {
3695 seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount);
3696 /*
3697 * If the writer would ever execute a read in the critical
3698 * section, e.g. in irq context, we have a deadlock.
3699 */
3700 WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu);
3701 value = vcpu->arch.sie_block->cputm;
3702 /* if cputm_start is 0, accounting is being started/stopped */
3703 if (likely(vcpu->arch.cputm_start))
3704 value -= get_tod_clock_fast() - vcpu->arch.cputm_start;
3705 } while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1));
3706 preempt_enable();
3707 return value;
3708 }
3709
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)3710 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3711 {
3712
3713 gmap_enable(vcpu->arch.enabled_gmap);
3714 kvm_s390_set_cpuflags(vcpu, CPUSTAT_RUNNING);
3715 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
3716 __start_cpu_timer_accounting(vcpu);
3717 vcpu->cpu = cpu;
3718 }
3719
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)3720 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3721 {
3722 vcpu->cpu = -1;
3723 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
3724 __stop_cpu_timer_accounting(vcpu);
3725 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_RUNNING);
3726 vcpu->arch.enabled_gmap = gmap_get_enabled();
3727 gmap_disable(vcpu->arch.enabled_gmap);
3728
3729 }
3730
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)3731 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
3732 {
3733 mutex_lock(&vcpu->kvm->lock);
3734 preempt_disable();
3735 vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
3736 vcpu->arch.sie_block->epdx = vcpu->kvm->arch.epdx;
3737 preempt_enable();
3738 mutex_unlock(&vcpu->kvm->lock);
3739 if (!kvm_is_ucontrol(vcpu->kvm)) {
3740 vcpu->arch.gmap = vcpu->kvm->arch.gmap;
3741 sca_add_vcpu(vcpu);
3742 }
3743 if (test_kvm_facility(vcpu->kvm, 74) || vcpu->kvm->arch.user_instr0)
3744 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
3745 /* make vcpu_load load the right gmap on the first trigger */
3746 vcpu->arch.enabled_gmap = vcpu->arch.gmap;
3747 }
3748
kvm_has_pckmo_subfunc(struct kvm * kvm,unsigned long nr)3749 static bool kvm_has_pckmo_subfunc(struct kvm *kvm, unsigned long nr)
3750 {
3751 if (test_bit_inv(nr, (unsigned long *)&kvm->arch.model.subfuncs.pckmo) &&
3752 test_bit_inv(nr, (unsigned long *)&kvm_s390_available_subfunc.pckmo))
3753 return true;
3754 return false;
3755 }
3756
kvm_has_pckmo_ecc(struct kvm * kvm)3757 static bool kvm_has_pckmo_ecc(struct kvm *kvm)
3758 {
3759 /* At least one ECC subfunction must be present */
3760 return kvm_has_pckmo_subfunc(kvm, 32) ||
3761 kvm_has_pckmo_subfunc(kvm, 33) ||
3762 kvm_has_pckmo_subfunc(kvm, 34) ||
3763 kvm_has_pckmo_subfunc(kvm, 40) ||
3764 kvm_has_pckmo_subfunc(kvm, 41);
3765
3766 }
3767
kvm_s390_vcpu_crypto_setup(struct kvm_vcpu * vcpu)3768 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
3769 {
3770 /*
3771 * If the AP instructions are not being interpreted and the MSAX3
3772 * facility is not configured for the guest, there is nothing to set up.
3773 */
3774 if (!vcpu->kvm->arch.crypto.apie && !test_kvm_facility(vcpu->kvm, 76))
3775 return;
3776
3777 vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
3778 vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);
3779 vcpu->arch.sie_block->eca &= ~ECA_APIE;
3780 vcpu->arch.sie_block->ecd &= ~ECD_ECC;
3781
3782 if (vcpu->kvm->arch.crypto.apie)
3783 vcpu->arch.sie_block->eca |= ECA_APIE;
3784
3785 /* Set up protected key support */
3786 if (vcpu->kvm->arch.crypto.aes_kw) {
3787 vcpu->arch.sie_block->ecb3 |= ECB3_AES;
3788 /* ecc is also wrapped with AES key */
3789 if (kvm_has_pckmo_ecc(vcpu->kvm))
3790 vcpu->arch.sie_block->ecd |= ECD_ECC;
3791 }
3792
3793 if (vcpu->kvm->arch.crypto.dea_kw)
3794 vcpu->arch.sie_block->ecb3 |= ECB3_DEA;
3795 }
3796
kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu * vcpu)3797 void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
3798 {
3799 free_page((unsigned long)phys_to_virt(vcpu->arch.sie_block->cbrlo));
3800 vcpu->arch.sie_block->cbrlo = 0;
3801 }
3802
kvm_s390_vcpu_setup_cmma(struct kvm_vcpu * vcpu)3803 int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
3804 {
3805 void *cbrlo_page = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3806
3807 if (!cbrlo_page)
3808 return -ENOMEM;
3809
3810 vcpu->arch.sie_block->cbrlo = virt_to_phys(cbrlo_page);
3811 return 0;
3812 }
3813
kvm_s390_vcpu_setup_model(struct kvm_vcpu * vcpu)3814 static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
3815 {
3816 struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;
3817
3818 vcpu->arch.sie_block->ibc = model->ibc;
3819 if (test_kvm_facility(vcpu->kvm, 7))
3820 vcpu->arch.sie_block->fac = virt_to_phys(model->fac_list);
3821 }
3822
kvm_s390_vcpu_setup(struct kvm_vcpu * vcpu)3823 static int kvm_s390_vcpu_setup(struct kvm_vcpu *vcpu)
3824 {
3825 int rc = 0;
3826 u16 uvrc, uvrrc;
3827
3828 atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
3829 CPUSTAT_SM |
3830 CPUSTAT_STOPPED);
3831
3832 if (test_kvm_facility(vcpu->kvm, 78))
3833 kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED2);
3834 else if (test_kvm_facility(vcpu->kvm, 8))
3835 kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED);
3836
3837 kvm_s390_vcpu_setup_model(vcpu);
3838
3839 /* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */
3840 if (MACHINE_HAS_ESOP)
3841 vcpu->arch.sie_block->ecb |= ECB_HOSTPROTINT;
3842 if (test_kvm_facility(vcpu->kvm, 9))
3843 vcpu->arch.sie_block->ecb |= ECB_SRSI;
3844 if (test_kvm_facility(vcpu->kvm, 11))
3845 vcpu->arch.sie_block->ecb |= ECB_PTF;
3846 if (test_kvm_facility(vcpu->kvm, 73))
3847 vcpu->arch.sie_block->ecb |= ECB_TE;
3848 if (!kvm_is_ucontrol(vcpu->kvm))
3849 vcpu->arch.sie_block->ecb |= ECB_SPECI;
3850
3851 if (test_kvm_facility(vcpu->kvm, 8) && vcpu->kvm->arch.use_pfmfi)
3852 vcpu->arch.sie_block->ecb2 |= ECB2_PFMFI;
3853 if (test_kvm_facility(vcpu->kvm, 130))
3854 vcpu->arch.sie_block->ecb2 |= ECB2_IEP;
3855 vcpu->arch.sie_block->eca = ECA_MVPGI | ECA_PROTEXCI;
3856 if (sclp.has_cei)
3857 vcpu->arch.sie_block->eca |= ECA_CEI;
3858 if (sclp.has_ib)
3859 vcpu->arch.sie_block->eca |= ECA_IB;
3860 if (sclp.has_siif)
3861 vcpu->arch.sie_block->eca |= ECA_SII;
3862 if (sclp.has_sigpif)
3863 vcpu->arch.sie_block->eca |= ECA_SIGPI;
3864 if (test_kvm_facility(vcpu->kvm, 129)) {
3865 vcpu->arch.sie_block->eca |= ECA_VX;
3866 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT;
3867 }
3868 if (test_kvm_facility(vcpu->kvm, 139))
3869 vcpu->arch.sie_block->ecd |= ECD_MEF;
3870 if (test_kvm_facility(vcpu->kvm, 156))
3871 vcpu->arch.sie_block->ecd |= ECD_ETOKENF;
3872 if (vcpu->arch.sie_block->gd) {
3873 vcpu->arch.sie_block->eca |= ECA_AIV;
3874 VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u",
3875 vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id);
3876 }
3877 vcpu->arch.sie_block->sdnxo = virt_to_phys(&vcpu->run->s.regs.sdnx) | SDNXC;
3878 vcpu->arch.sie_block->riccbd = virt_to_phys(&vcpu->run->s.regs.riccb);
3879
3880 if (sclp.has_kss)
3881 kvm_s390_set_cpuflags(vcpu, CPUSTAT_KSS);
3882 else
3883 vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
3884
3885 if (vcpu->kvm->arch.use_cmma) {
3886 rc = kvm_s390_vcpu_setup_cmma(vcpu);
3887 if (rc)
3888 return rc;
3889 }
3890 hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3891 vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
3892
3893 vcpu->arch.sie_block->hpid = HPID_KVM;
3894
3895 kvm_s390_vcpu_crypto_setup(vcpu);
3896
3897 kvm_s390_vcpu_pci_setup(vcpu);
3898
3899 mutex_lock(&vcpu->kvm->lock);
3900 if (kvm_s390_pv_is_protected(vcpu->kvm)) {
3901 rc = kvm_s390_pv_create_cpu(vcpu, &uvrc, &uvrrc);
3902 if (rc)
3903 kvm_s390_vcpu_unsetup_cmma(vcpu);
3904 }
3905 mutex_unlock(&vcpu->kvm->lock);
3906
3907 return rc;
3908 }
3909
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)3910 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
3911 {
3912 if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
3913 return -EINVAL;
3914 return 0;
3915 }
3916
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)3917 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
3918 {
3919 struct sie_page *sie_page;
3920 int rc;
3921
3922 BUILD_BUG_ON(sizeof(struct sie_page) != 4096);
3923 sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL_ACCOUNT);
3924 if (!sie_page)
3925 return -ENOMEM;
3926
3927 vcpu->arch.sie_block = &sie_page->sie_block;
3928 vcpu->arch.sie_block->itdba = virt_to_phys(&sie_page->itdb);
3929
3930 /* the real guest size will always be smaller than msl */
3931 vcpu->arch.sie_block->mso = 0;
3932 vcpu->arch.sie_block->msl = sclp.hamax;
3933
3934 vcpu->arch.sie_block->icpua = vcpu->vcpu_id;
3935 spin_lock_init(&vcpu->arch.local_int.lock);
3936 vcpu->arch.sie_block->gd = kvm_s390_get_gisa_desc(vcpu->kvm);
3937 seqcount_init(&vcpu->arch.cputm_seqcount);
3938
3939 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
3940 kvm_clear_async_pf_completion_queue(vcpu);
3941 vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
3942 KVM_SYNC_GPRS |
3943 KVM_SYNC_ACRS |
3944 KVM_SYNC_CRS |
3945 KVM_SYNC_ARCH0 |
3946 KVM_SYNC_PFAULT |
3947 KVM_SYNC_DIAG318;
3948 kvm_s390_set_prefix(vcpu, 0);
3949 if (test_kvm_facility(vcpu->kvm, 64))
3950 vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
3951 if (test_kvm_facility(vcpu->kvm, 82))
3952 vcpu->run->kvm_valid_regs |= KVM_SYNC_BPBC;
3953 if (test_kvm_facility(vcpu->kvm, 133))
3954 vcpu->run->kvm_valid_regs |= KVM_SYNC_GSCB;
3955 if (test_kvm_facility(vcpu->kvm, 156))
3956 vcpu->run->kvm_valid_regs |= KVM_SYNC_ETOKEN;
3957 /* fprs can be synchronized via vrs, even if the guest has no vx. With
3958 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format.
3959 */
3960 if (MACHINE_HAS_VX)
3961 vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
3962 else
3963 vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
3964
3965 if (kvm_is_ucontrol(vcpu->kvm)) {
3966 rc = __kvm_ucontrol_vcpu_init(vcpu);
3967 if (rc)
3968 goto out_free_sie_block;
3969 }
3970
3971 VM_EVENT(vcpu->kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK",
3972 vcpu->vcpu_id, vcpu, vcpu->arch.sie_block);
3973 trace_kvm_s390_create_vcpu(vcpu->vcpu_id, vcpu, vcpu->arch.sie_block);
3974
3975 rc = kvm_s390_vcpu_setup(vcpu);
3976 if (rc)
3977 goto out_ucontrol_uninit;
3978
3979 kvm_s390_update_topology_change_report(vcpu->kvm, 1);
3980 return 0;
3981
3982 out_ucontrol_uninit:
3983 if (kvm_is_ucontrol(vcpu->kvm))
3984 gmap_remove(vcpu->arch.gmap);
3985 out_free_sie_block:
3986 free_page((unsigned long)(vcpu->arch.sie_block));
3987 return rc;
3988 }
3989
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)3990 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
3991 {
3992 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.gisa_int.kicked_mask);
3993 return kvm_s390_vcpu_has_irq(vcpu, 0);
3994 }
3995
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)3996 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
3997 {
3998 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE);
3999 }
4000
kvm_s390_vcpu_block(struct kvm_vcpu * vcpu)4001 void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
4002 {
4003 atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
4004 exit_sie(vcpu);
4005 }
4006
kvm_s390_vcpu_unblock(struct kvm_vcpu * vcpu)4007 void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
4008 {
4009 atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
4010 }
4011
kvm_s390_vcpu_request(struct kvm_vcpu * vcpu)4012 static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
4013 {
4014 atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
4015 exit_sie(vcpu);
4016 }
4017
kvm_s390_vcpu_sie_inhibited(struct kvm_vcpu * vcpu)4018 bool kvm_s390_vcpu_sie_inhibited(struct kvm_vcpu *vcpu)
4019 {
4020 return atomic_read(&vcpu->arch.sie_block->prog20) &
4021 (PROG_BLOCK_SIE | PROG_REQUEST);
4022 }
4023
kvm_s390_vcpu_request_handled(struct kvm_vcpu * vcpu)4024 static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
4025 {
4026 atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
4027 }
4028
4029 /*
4030 * Kick a guest cpu out of (v)SIE and wait until (v)SIE is not running.
4031 * If the CPU is not running (e.g. waiting as idle) the function will
4032 * return immediately. */
exit_sie(struct kvm_vcpu * vcpu)4033 void exit_sie(struct kvm_vcpu *vcpu)
4034 {
4035 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
4036 kvm_s390_vsie_kick(vcpu);
4037 while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
4038 cpu_relax();
4039 }
4040
4041 /* Kick a guest cpu out of SIE to process a request synchronously */
kvm_s390_sync_request(int req,struct kvm_vcpu * vcpu)4042 void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
4043 {
4044 __kvm_make_request(req, vcpu);
4045 kvm_s390_vcpu_request(vcpu);
4046 }
4047
kvm_gmap_notifier(struct gmap * gmap,unsigned long start,unsigned long end)4048 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
4049 unsigned long end)
4050 {
4051 struct kvm *kvm = gmap->private;
4052 struct kvm_vcpu *vcpu;
4053 unsigned long prefix;
4054 unsigned long i;
4055
4056 if (gmap_is_shadow(gmap))
4057 return;
4058 if (start >= 1UL << 31)
4059 /* We are only interested in prefix pages */
4060 return;
4061 kvm_for_each_vcpu(i, vcpu, kvm) {
4062 /* match against both prefix pages */
4063 prefix = kvm_s390_get_prefix(vcpu);
4064 if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) {
4065 VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx",
4066 start, end);
4067 kvm_s390_sync_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu);
4068 }
4069 }
4070 }
4071
kvm_arch_no_poll(struct kvm_vcpu * vcpu)4072 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
4073 {
4074 /* do not poll with more than halt_poll_max_steal percent of steal time */
4075 if (S390_lowcore.avg_steal_timer * 100 / (TICK_USEC << 12) >=
4076 READ_ONCE(halt_poll_max_steal)) {
4077 vcpu->stat.halt_no_poll_steal++;
4078 return true;
4079 }
4080 return false;
4081 }
4082
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)4083 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
4084 {
4085 /* kvm common code refers to this, but never calls it */
4086 BUG();
4087 return 0;
4088 }
4089
kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu * vcpu,struct kvm_one_reg * reg)4090 static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
4091 struct kvm_one_reg *reg)
4092 {
4093 int r = -EINVAL;
4094
4095 switch (reg->id) {
4096 case KVM_REG_S390_TODPR:
4097 r = put_user(vcpu->arch.sie_block->todpr,
4098 (u32 __user *)reg->addr);
4099 break;
4100 case KVM_REG_S390_EPOCHDIFF:
4101 r = put_user(vcpu->arch.sie_block->epoch,
4102 (u64 __user *)reg->addr);
4103 break;
4104 case KVM_REG_S390_CPU_TIMER:
4105 r = put_user(kvm_s390_get_cpu_timer(vcpu),
4106 (u64 __user *)reg->addr);
4107 break;
4108 case KVM_REG_S390_CLOCK_COMP:
4109 r = put_user(vcpu->arch.sie_block->ckc,
4110 (u64 __user *)reg->addr);
4111 break;
4112 case KVM_REG_S390_PFTOKEN:
4113 r = put_user(vcpu->arch.pfault_token,
4114 (u64 __user *)reg->addr);
4115 break;
4116 case KVM_REG_S390_PFCOMPARE:
4117 r = put_user(vcpu->arch.pfault_compare,
4118 (u64 __user *)reg->addr);
4119 break;
4120 case KVM_REG_S390_PFSELECT:
4121 r = put_user(vcpu->arch.pfault_select,
4122 (u64 __user *)reg->addr);
4123 break;
4124 case KVM_REG_S390_PP:
4125 r = put_user(vcpu->arch.sie_block->pp,
4126 (u64 __user *)reg->addr);
4127 break;
4128 case KVM_REG_S390_GBEA:
4129 r = put_user(vcpu->arch.sie_block->gbea,
4130 (u64 __user *)reg->addr);
4131 break;
4132 default:
4133 break;
4134 }
4135
4136 return r;
4137 }
4138
kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu * vcpu,struct kvm_one_reg * reg)4139 static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
4140 struct kvm_one_reg *reg)
4141 {
4142 int r = -EINVAL;
4143 __u64 val;
4144
4145 switch (reg->id) {
4146 case KVM_REG_S390_TODPR:
4147 r = get_user(vcpu->arch.sie_block->todpr,
4148 (u32 __user *)reg->addr);
4149 break;
4150 case KVM_REG_S390_EPOCHDIFF:
4151 r = get_user(vcpu->arch.sie_block->epoch,
4152 (u64 __user *)reg->addr);
4153 break;
4154 case KVM_REG_S390_CPU_TIMER:
4155 r = get_user(val, (u64 __user *)reg->addr);
4156 if (!r)
4157 kvm_s390_set_cpu_timer(vcpu, val);
4158 break;
4159 case KVM_REG_S390_CLOCK_COMP:
4160 r = get_user(vcpu->arch.sie_block->ckc,
4161 (u64 __user *)reg->addr);
4162 break;
4163 case KVM_REG_S390_PFTOKEN:
4164 r = get_user(vcpu->arch.pfault_token,
4165 (u64 __user *)reg->addr);
4166 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
4167 kvm_clear_async_pf_completion_queue(vcpu);
4168 break;
4169 case KVM_REG_S390_PFCOMPARE:
4170 r = get_user(vcpu->arch.pfault_compare,
4171 (u64 __user *)reg->addr);
4172 break;
4173 case KVM_REG_S390_PFSELECT:
4174 r = get_user(vcpu->arch.pfault_select,
4175 (u64 __user *)reg->addr);
4176 break;
4177 case KVM_REG_S390_PP:
4178 r = get_user(vcpu->arch.sie_block->pp,
4179 (u64 __user *)reg->addr);
4180 break;
4181 case KVM_REG_S390_GBEA:
4182 r = get_user(vcpu->arch.sie_block->gbea,
4183 (u64 __user *)reg->addr);
4184 break;
4185 default:
4186 break;
4187 }
4188
4189 return r;
4190 }
4191
kvm_arch_vcpu_ioctl_normal_reset(struct kvm_vcpu * vcpu)4192 static void kvm_arch_vcpu_ioctl_normal_reset(struct kvm_vcpu *vcpu)
4193 {
4194 vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_RI;
4195 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
4196 memset(vcpu->run->s.regs.riccb, 0, sizeof(vcpu->run->s.regs.riccb));
4197
4198 kvm_clear_async_pf_completion_queue(vcpu);
4199 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
4200 kvm_s390_vcpu_stop(vcpu);
4201 kvm_s390_clear_local_irqs(vcpu);
4202 }
4203
kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu * vcpu)4204 static void kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
4205 {
4206 /* Initial reset is a superset of the normal reset */
4207 kvm_arch_vcpu_ioctl_normal_reset(vcpu);
4208
4209 /*
4210 * This equals initial cpu reset in pop, but we don't switch to ESA.
4211 * We do not only reset the internal data, but also ...
4212 */
4213 vcpu->arch.sie_block->gpsw.mask = 0;
4214 vcpu->arch.sie_block->gpsw.addr = 0;
4215 kvm_s390_set_prefix(vcpu, 0);
4216 kvm_s390_set_cpu_timer(vcpu, 0);
4217 vcpu->arch.sie_block->ckc = 0;
4218 memset(vcpu->arch.sie_block->gcr, 0, sizeof(vcpu->arch.sie_block->gcr));
4219 vcpu->arch.sie_block->gcr[0] = CR0_INITIAL_MASK;
4220 vcpu->arch.sie_block->gcr[14] = CR14_INITIAL_MASK;
4221
4222 /* ... the data in sync regs */
4223 memset(vcpu->run->s.regs.crs, 0, sizeof(vcpu->run->s.regs.crs));
4224 vcpu->run->s.regs.ckc = 0;
4225 vcpu->run->s.regs.crs[0] = CR0_INITIAL_MASK;
4226 vcpu->run->s.regs.crs[14] = CR14_INITIAL_MASK;
4227 vcpu->run->psw_addr = 0;
4228 vcpu->run->psw_mask = 0;
4229 vcpu->run->s.regs.todpr = 0;
4230 vcpu->run->s.regs.cputm = 0;
4231 vcpu->run->s.regs.ckc = 0;
4232 vcpu->run->s.regs.pp = 0;
4233 vcpu->run->s.regs.gbea = 1;
4234 vcpu->run->s.regs.fpc = 0;
4235 /*
4236 * Do not reset these registers in the protected case, as some of
4237 * them are overlaid and they are not accessible in this case
4238 * anyway.
4239 */
4240 if (!kvm_s390_pv_cpu_is_protected(vcpu)) {
4241 vcpu->arch.sie_block->gbea = 1;
4242 vcpu->arch.sie_block->pp = 0;
4243 vcpu->arch.sie_block->fpf &= ~FPF_BPBC;
4244 vcpu->arch.sie_block->todpr = 0;
4245 }
4246 }
4247
kvm_arch_vcpu_ioctl_clear_reset(struct kvm_vcpu * vcpu)4248 static void kvm_arch_vcpu_ioctl_clear_reset(struct kvm_vcpu *vcpu)
4249 {
4250 struct kvm_sync_regs *regs = &vcpu->run->s.regs;
4251
4252 /* Clear reset is a superset of the initial reset */
4253 kvm_arch_vcpu_ioctl_initial_reset(vcpu);
4254
4255 memset(®s->gprs, 0, sizeof(regs->gprs));
4256 memset(®s->vrs, 0, sizeof(regs->vrs));
4257 memset(®s->acrs, 0, sizeof(regs->acrs));
4258 memset(®s->gscb, 0, sizeof(regs->gscb));
4259
4260 regs->etoken = 0;
4261 regs->etoken_extension = 0;
4262 }
4263
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)4264 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4265 {
4266 vcpu_load(vcpu);
4267 memcpy(&vcpu->run->s.regs.gprs, ®s->gprs, sizeof(regs->gprs));
4268 vcpu_put(vcpu);
4269 return 0;
4270 }
4271
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)4272 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4273 {
4274 vcpu_load(vcpu);
4275 memcpy(®s->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
4276 vcpu_put(vcpu);
4277 return 0;
4278 }
4279
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)4280 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4281 struct kvm_sregs *sregs)
4282 {
4283 vcpu_load(vcpu);
4284
4285 memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
4286 memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
4287
4288 vcpu_put(vcpu);
4289 return 0;
4290 }
4291
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)4292 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
4293 struct kvm_sregs *sregs)
4294 {
4295 vcpu_load(vcpu);
4296
4297 memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
4298 memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
4299
4300 vcpu_put(vcpu);
4301 return 0;
4302 }
4303
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)4304 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4305 {
4306 int ret = 0;
4307
4308 vcpu_load(vcpu);
4309
4310 vcpu->run->s.regs.fpc = fpu->fpc;
4311 if (MACHINE_HAS_VX)
4312 convert_fp_to_vx((__vector128 *) vcpu->run->s.regs.vrs,
4313 (freg_t *) fpu->fprs);
4314 else
4315 memcpy(vcpu->run->s.regs.fprs, &fpu->fprs, sizeof(fpu->fprs));
4316
4317 vcpu_put(vcpu);
4318 return ret;
4319 }
4320
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)4321 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4322 {
4323 vcpu_load(vcpu);
4324
4325 /* make sure we have the latest values */
4326 save_fpu_regs();
4327 if (MACHINE_HAS_VX)
4328 convert_vx_to_fp((freg_t *) fpu->fprs,
4329 (__vector128 *) vcpu->run->s.regs.vrs);
4330 else
4331 memcpy(fpu->fprs, vcpu->run->s.regs.fprs, sizeof(fpu->fprs));
4332 fpu->fpc = vcpu->run->s.regs.fpc;
4333
4334 vcpu_put(vcpu);
4335 return 0;
4336 }
4337
kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu * vcpu,psw_t psw)4338 static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
4339 {
4340 int rc = 0;
4341
4342 if (!is_vcpu_stopped(vcpu))
4343 rc = -EBUSY;
4344 else {
4345 vcpu->run->psw_mask = psw.mask;
4346 vcpu->run->psw_addr = psw.addr;
4347 }
4348 return rc;
4349 }
4350
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)4351 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4352 struct kvm_translation *tr)
4353 {
4354 return -EINVAL; /* not implemented yet */
4355 }
4356
4357 #define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
4358 KVM_GUESTDBG_USE_HW_BP | \
4359 KVM_GUESTDBG_ENABLE)
4360
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)4361 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4362 struct kvm_guest_debug *dbg)
4363 {
4364 int rc = 0;
4365
4366 vcpu_load(vcpu);
4367
4368 vcpu->guest_debug = 0;
4369 kvm_s390_clear_bp_data(vcpu);
4370
4371 if (dbg->control & ~VALID_GUESTDBG_FLAGS) {
4372 rc = -EINVAL;
4373 goto out;
4374 }
4375 if (!sclp.has_gpere) {
4376 rc = -EINVAL;
4377 goto out;
4378 }
4379
4380 if (dbg->control & KVM_GUESTDBG_ENABLE) {
4381 vcpu->guest_debug = dbg->control;
4382 /* enforce guest PER */
4383 kvm_s390_set_cpuflags(vcpu, CPUSTAT_P);
4384
4385 if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
4386 rc = kvm_s390_import_bp_data(vcpu, dbg);
4387 } else {
4388 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P);
4389 vcpu->arch.guestdbg.last_bp = 0;
4390 }
4391
4392 if (rc) {
4393 vcpu->guest_debug = 0;
4394 kvm_s390_clear_bp_data(vcpu);
4395 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P);
4396 }
4397
4398 out:
4399 vcpu_put(vcpu);
4400 return rc;
4401 }
4402
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)4403 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
4404 struct kvm_mp_state *mp_state)
4405 {
4406 int ret;
4407
4408 vcpu_load(vcpu);
4409
4410 /* CHECK_STOP and LOAD are not supported yet */
4411 ret = is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
4412 KVM_MP_STATE_OPERATING;
4413
4414 vcpu_put(vcpu);
4415 return ret;
4416 }
4417
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)4418 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
4419 struct kvm_mp_state *mp_state)
4420 {
4421 int rc = 0;
4422
4423 vcpu_load(vcpu);
4424
4425 /* user space knows about this interface - let it control the state */
4426 kvm_s390_set_user_cpu_state_ctrl(vcpu->kvm);
4427
4428 switch (mp_state->mp_state) {
4429 case KVM_MP_STATE_STOPPED:
4430 rc = kvm_s390_vcpu_stop(vcpu);
4431 break;
4432 case KVM_MP_STATE_OPERATING:
4433 rc = kvm_s390_vcpu_start(vcpu);
4434 break;
4435 case KVM_MP_STATE_LOAD:
4436 if (!kvm_s390_pv_cpu_is_protected(vcpu)) {
4437 rc = -ENXIO;
4438 break;
4439 }
4440 rc = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR_LOAD);
4441 break;
4442 case KVM_MP_STATE_CHECK_STOP:
4443 fallthrough; /* CHECK_STOP and LOAD are not supported yet */
4444 default:
4445 rc = -ENXIO;
4446 }
4447
4448 vcpu_put(vcpu);
4449 return rc;
4450 }
4451
ibs_enabled(struct kvm_vcpu * vcpu)4452 static bool ibs_enabled(struct kvm_vcpu *vcpu)
4453 {
4454 return kvm_s390_test_cpuflags(vcpu, CPUSTAT_IBS);
4455 }
4456
kvm_s390_handle_requests(struct kvm_vcpu * vcpu)4457 static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
4458 {
4459 retry:
4460 kvm_s390_vcpu_request_handled(vcpu);
4461 if (!kvm_request_pending(vcpu))
4462 return 0;
4463 /*
4464 * If the guest prefix changed, re-arm the ipte notifier for the
4465 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock.
4466 * This ensures that the ipte instruction for this request has
4467 * already finished. We might race against a second unmapper that
4468 * wants to set the blocking bit. Lets just retry the request loop.
4469 */
4470 if (kvm_check_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu)) {
4471 int rc;
4472 rc = gmap_mprotect_notify(vcpu->arch.gmap,
4473 kvm_s390_get_prefix(vcpu),
4474 PAGE_SIZE * 2, PROT_WRITE);
4475 if (rc) {
4476 kvm_make_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu);
4477 return rc;
4478 }
4479 goto retry;
4480 }
4481
4482 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
4483 vcpu->arch.sie_block->ihcpu = 0xffff;
4484 goto retry;
4485 }
4486
4487 if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
4488 if (!ibs_enabled(vcpu)) {
4489 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
4490 kvm_s390_set_cpuflags(vcpu, CPUSTAT_IBS);
4491 }
4492 goto retry;
4493 }
4494
4495 if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
4496 if (ibs_enabled(vcpu)) {
4497 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
4498 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IBS);
4499 }
4500 goto retry;
4501 }
4502
4503 if (kvm_check_request(KVM_REQ_ICPT_OPEREXC, vcpu)) {
4504 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
4505 goto retry;
4506 }
4507
4508 if (kvm_check_request(KVM_REQ_START_MIGRATION, vcpu)) {
4509 /*
4510 * Disable CMM virtualization; we will emulate the ESSA
4511 * instruction manually, in order to provide additional
4512 * functionalities needed for live migration.
4513 */
4514 vcpu->arch.sie_block->ecb2 &= ~ECB2_CMMA;
4515 goto retry;
4516 }
4517
4518 if (kvm_check_request(KVM_REQ_STOP_MIGRATION, vcpu)) {
4519 /*
4520 * Re-enable CMM virtualization if CMMA is available and
4521 * CMM has been used.
4522 */
4523 if ((vcpu->kvm->arch.use_cmma) &&
4524 (vcpu->kvm->mm->context.uses_cmm))
4525 vcpu->arch.sie_block->ecb2 |= ECB2_CMMA;
4526 goto retry;
4527 }
4528
4529 /* we left the vsie handler, nothing to do, just clear the request */
4530 kvm_clear_request(KVM_REQ_VSIE_RESTART, vcpu);
4531
4532 return 0;
4533 }
4534
__kvm_s390_set_tod_clock(struct kvm * kvm,const struct kvm_s390_vm_tod_clock * gtod)4535 static void __kvm_s390_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod)
4536 {
4537 struct kvm_vcpu *vcpu;
4538 union tod_clock clk;
4539 unsigned long i;
4540
4541 preempt_disable();
4542
4543 store_tod_clock_ext(&clk);
4544
4545 kvm->arch.epoch = gtod->tod - clk.tod;
4546 kvm->arch.epdx = 0;
4547 if (test_kvm_facility(kvm, 139)) {
4548 kvm->arch.epdx = gtod->epoch_idx - clk.ei;
4549 if (kvm->arch.epoch > gtod->tod)
4550 kvm->arch.epdx -= 1;
4551 }
4552
4553 kvm_s390_vcpu_block_all(kvm);
4554 kvm_for_each_vcpu(i, vcpu, kvm) {
4555 vcpu->arch.sie_block->epoch = kvm->arch.epoch;
4556 vcpu->arch.sie_block->epdx = kvm->arch.epdx;
4557 }
4558
4559 kvm_s390_vcpu_unblock_all(kvm);
4560 preempt_enable();
4561 }
4562
kvm_s390_try_set_tod_clock(struct kvm * kvm,const struct kvm_s390_vm_tod_clock * gtod)4563 int kvm_s390_try_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod)
4564 {
4565 if (!mutex_trylock(&kvm->lock))
4566 return 0;
4567 __kvm_s390_set_tod_clock(kvm, gtod);
4568 mutex_unlock(&kvm->lock);
4569 return 1;
4570 }
4571
4572 /**
4573 * kvm_arch_fault_in_page - fault-in guest page if necessary
4574 * @vcpu: The corresponding virtual cpu
4575 * @gpa: Guest physical address
4576 * @writable: Whether the page should be writable or not
4577 *
4578 * Make sure that a guest page has been faulted-in on the host.
4579 *
4580 * Return: Zero on success, negative error code otherwise.
4581 */
kvm_arch_fault_in_page(struct kvm_vcpu * vcpu,gpa_t gpa,int writable)4582 long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
4583 {
4584 return gmap_fault(vcpu->arch.gmap, gpa,
4585 writable ? FAULT_FLAG_WRITE : 0);
4586 }
4587
__kvm_inject_pfault_token(struct kvm_vcpu * vcpu,bool start_token,unsigned long token)4588 static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
4589 unsigned long token)
4590 {
4591 struct kvm_s390_interrupt inti;
4592 struct kvm_s390_irq irq;
4593
4594 if (start_token) {
4595 irq.u.ext.ext_params2 = token;
4596 irq.type = KVM_S390_INT_PFAULT_INIT;
4597 WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
4598 } else {
4599 inti.type = KVM_S390_INT_PFAULT_DONE;
4600 inti.parm64 = token;
4601 WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
4602 }
4603 }
4604
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)4605 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
4606 struct kvm_async_pf *work)
4607 {
4608 trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
4609 __kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
4610
4611 return true;
4612 }
4613
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)4614 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
4615 struct kvm_async_pf *work)
4616 {
4617 trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
4618 __kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
4619 }
4620
kvm_arch_async_page_ready(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)4621 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
4622 struct kvm_async_pf *work)
4623 {
4624 /* s390 will always inject the page directly */
4625 }
4626
kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu * vcpu)4627 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
4628 {
4629 /*
4630 * s390 will always inject the page directly,
4631 * but we still want check_async_completion to cleanup
4632 */
4633 return true;
4634 }
4635
kvm_arch_setup_async_pf(struct kvm_vcpu * vcpu)4636 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
4637 {
4638 hva_t hva;
4639 struct kvm_arch_async_pf arch;
4640
4641 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
4642 return false;
4643 if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
4644 vcpu->arch.pfault_compare)
4645 return false;
4646 if (psw_extint_disabled(vcpu))
4647 return false;
4648 if (kvm_s390_vcpu_has_irq(vcpu, 0))
4649 return false;
4650 if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK))
4651 return false;
4652 if (!vcpu->arch.gmap->pfault_enabled)
4653 return false;
4654
4655 hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
4656 hva += current->thread.gmap_addr & ~PAGE_MASK;
4657 if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
4658 return false;
4659
4660 return kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
4661 }
4662
vcpu_pre_run(struct kvm_vcpu * vcpu)4663 static int vcpu_pre_run(struct kvm_vcpu *vcpu)
4664 {
4665 int rc, cpuflags;
4666
4667 /*
4668 * On s390 notifications for arriving pages will be delivered directly
4669 * to the guest but the house keeping for completed pfaults is
4670 * handled outside the worker.
4671 */
4672 kvm_check_async_pf_completion(vcpu);
4673
4674 vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
4675 vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
4676
4677 if (need_resched())
4678 schedule();
4679
4680 if (!kvm_is_ucontrol(vcpu->kvm)) {
4681 rc = kvm_s390_deliver_pending_interrupts(vcpu);
4682 if (rc || guestdbg_exit_pending(vcpu))
4683 return rc;
4684 }
4685
4686 rc = kvm_s390_handle_requests(vcpu);
4687 if (rc)
4688 return rc;
4689
4690 if (guestdbg_enabled(vcpu)) {
4691 kvm_s390_backup_guest_per_regs(vcpu);
4692 kvm_s390_patch_guest_per_regs(vcpu);
4693 }
4694
4695 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.gisa_int.kicked_mask);
4696
4697 vcpu->arch.sie_block->icptcode = 0;
4698 cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
4699 VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
4700 trace_kvm_s390_sie_enter(vcpu, cpuflags);
4701
4702 return 0;
4703 }
4704
vcpu_post_run_fault_in_sie(struct kvm_vcpu * vcpu)4705 static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
4706 {
4707 struct kvm_s390_pgm_info pgm_info = {
4708 .code = PGM_ADDRESSING,
4709 };
4710 u8 opcode, ilen;
4711 int rc;
4712
4713 VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
4714 trace_kvm_s390_sie_fault(vcpu);
4715
4716 /*
4717 * We want to inject an addressing exception, which is defined as a
4718 * suppressing or terminating exception. However, since we came here
4719 * by a DAT access exception, the PSW still points to the faulting
4720 * instruction since DAT exceptions are nullifying. So we've got
4721 * to look up the current opcode to get the length of the instruction
4722 * to be able to forward the PSW.
4723 */
4724 rc = read_guest_instr(vcpu, vcpu->arch.sie_block->gpsw.addr, &opcode, 1);
4725 ilen = insn_length(opcode);
4726 if (rc < 0) {
4727 return rc;
4728 } else if (rc) {
4729 /* Instruction-Fetching Exceptions - we can't detect the ilen.
4730 * Forward by arbitrary ilc, injection will take care of
4731 * nullification if necessary.
4732 */
4733 pgm_info = vcpu->arch.pgm;
4734 ilen = 4;
4735 }
4736 pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
4737 kvm_s390_forward_psw(vcpu, ilen);
4738 return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
4739 }
4740
vcpu_post_run(struct kvm_vcpu * vcpu,int exit_reason)4741 static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
4742 {
4743 struct mcck_volatile_info *mcck_info;
4744 struct sie_page *sie_page;
4745
4746 VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
4747 vcpu->arch.sie_block->icptcode);
4748 trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);
4749
4750 if (guestdbg_enabled(vcpu))
4751 kvm_s390_restore_guest_per_regs(vcpu);
4752
4753 vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
4754 vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
4755
4756 if (exit_reason == -EINTR) {
4757 VCPU_EVENT(vcpu, 3, "%s", "machine check");
4758 sie_page = container_of(vcpu->arch.sie_block,
4759 struct sie_page, sie_block);
4760 mcck_info = &sie_page->mcck_info;
4761 kvm_s390_reinject_machine_check(vcpu, mcck_info);
4762 return 0;
4763 }
4764
4765 if (vcpu->arch.sie_block->icptcode > 0) {
4766 int rc = kvm_handle_sie_intercept(vcpu);
4767
4768 if (rc != -EOPNOTSUPP)
4769 return rc;
4770 vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
4771 vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
4772 vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
4773 vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
4774 return -EREMOTE;
4775 } else if (exit_reason != -EFAULT) {
4776 vcpu->stat.exit_null++;
4777 return 0;
4778 } else if (kvm_is_ucontrol(vcpu->kvm)) {
4779 vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
4780 vcpu->run->s390_ucontrol.trans_exc_code =
4781 current->thread.gmap_addr;
4782 vcpu->run->s390_ucontrol.pgm_code = 0x10;
4783 return -EREMOTE;
4784 } else if (current->thread.gmap_pfault) {
4785 trace_kvm_s390_major_guest_pfault(vcpu);
4786 current->thread.gmap_pfault = 0;
4787 if (kvm_arch_setup_async_pf(vcpu))
4788 return 0;
4789 vcpu->stat.pfault_sync++;
4790 return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
4791 }
4792 return vcpu_post_run_fault_in_sie(vcpu);
4793 }
4794
4795 #define PSW_INT_MASK (PSW_MASK_EXT | PSW_MASK_IO | PSW_MASK_MCHECK)
__vcpu_run(struct kvm_vcpu * vcpu)4796 static int __vcpu_run(struct kvm_vcpu *vcpu)
4797 {
4798 int rc, exit_reason;
4799 struct sie_page *sie_page = (struct sie_page *)vcpu->arch.sie_block;
4800
4801 /*
4802 * We try to hold kvm->srcu during most of vcpu_run (except when run-
4803 * ning the guest), so that memslots (and other stuff) are protected
4804 */
4805 kvm_vcpu_srcu_read_lock(vcpu);
4806
4807 do {
4808 rc = vcpu_pre_run(vcpu);
4809 if (rc || guestdbg_exit_pending(vcpu))
4810 break;
4811
4812 kvm_vcpu_srcu_read_unlock(vcpu);
4813 /*
4814 * As PF_VCPU will be used in fault handler, between
4815 * guest_enter and guest_exit should be no uaccess.
4816 */
4817 local_irq_disable();
4818 guest_enter_irqoff();
4819 __disable_cpu_timer_accounting(vcpu);
4820 local_irq_enable();
4821 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
4822 memcpy(sie_page->pv_grregs,
4823 vcpu->run->s.regs.gprs,
4824 sizeof(sie_page->pv_grregs));
4825 }
4826 if (test_cpu_flag(CIF_FPU))
4827 load_fpu_regs();
4828 exit_reason = sie64a(vcpu->arch.sie_block,
4829 vcpu->run->s.regs.gprs);
4830 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
4831 memcpy(vcpu->run->s.regs.gprs,
4832 sie_page->pv_grregs,
4833 sizeof(sie_page->pv_grregs));
4834 /*
4835 * We're not allowed to inject interrupts on intercepts
4836 * that leave the guest state in an "in-between" state
4837 * where the next SIE entry will do a continuation.
4838 * Fence interrupts in our "internal" PSW.
4839 */
4840 if (vcpu->arch.sie_block->icptcode == ICPT_PV_INSTR ||
4841 vcpu->arch.sie_block->icptcode == ICPT_PV_PREF) {
4842 vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK;
4843 }
4844 }
4845 local_irq_disable();
4846 __enable_cpu_timer_accounting(vcpu);
4847 guest_exit_irqoff();
4848 local_irq_enable();
4849 kvm_vcpu_srcu_read_lock(vcpu);
4850
4851 rc = vcpu_post_run(vcpu, exit_reason);
4852 } while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
4853
4854 kvm_vcpu_srcu_read_unlock(vcpu);
4855 return rc;
4856 }
4857
sync_regs_fmt2(struct kvm_vcpu * vcpu)4858 static void sync_regs_fmt2(struct kvm_vcpu *vcpu)
4859 {
4860 struct kvm_run *kvm_run = vcpu->run;
4861 struct runtime_instr_cb *riccb;
4862 struct gs_cb *gscb;
4863
4864 riccb = (struct runtime_instr_cb *) &kvm_run->s.regs.riccb;
4865 gscb = (struct gs_cb *) &kvm_run->s.regs.gscb;
4866 vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
4867 vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
4868 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
4869 vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
4870 vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
4871 vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
4872 }
4873 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
4874 vcpu->arch.pfault_token = kvm_run->s.regs.pft;
4875 vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
4876 vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
4877 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
4878 kvm_clear_async_pf_completion_queue(vcpu);
4879 }
4880 if (kvm_run->kvm_dirty_regs & KVM_SYNC_DIAG318) {
4881 vcpu->arch.diag318_info.val = kvm_run->s.regs.diag318;
4882 vcpu->arch.sie_block->cpnc = vcpu->arch.diag318_info.cpnc;
4883 VCPU_EVENT(vcpu, 3, "setting cpnc to %d", vcpu->arch.diag318_info.cpnc);
4884 }
4885 /*
4886 * If userspace sets the riccb (e.g. after migration) to a valid state,
4887 * we should enable RI here instead of doing the lazy enablement.
4888 */
4889 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_RICCB) &&
4890 test_kvm_facility(vcpu->kvm, 64) &&
4891 riccb->v &&
4892 !(vcpu->arch.sie_block->ecb3 & ECB3_RI)) {
4893 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: RI (sync_regs)");
4894 vcpu->arch.sie_block->ecb3 |= ECB3_RI;
4895 }
4896 /*
4897 * If userspace sets the gscb (e.g. after migration) to non-zero,
4898 * we should enable GS here instead of doing the lazy enablement.
4899 */
4900 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_GSCB) &&
4901 test_kvm_facility(vcpu->kvm, 133) &&
4902 gscb->gssm &&
4903 !vcpu->arch.gs_enabled) {
4904 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: GS (sync_regs)");
4905 vcpu->arch.sie_block->ecb |= ECB_GS;
4906 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT;
4907 vcpu->arch.gs_enabled = 1;
4908 }
4909 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_BPBC) &&
4910 test_kvm_facility(vcpu->kvm, 82)) {
4911 vcpu->arch.sie_block->fpf &= ~FPF_BPBC;
4912 vcpu->arch.sie_block->fpf |= kvm_run->s.regs.bpbc ? FPF_BPBC : 0;
4913 }
4914 if (MACHINE_HAS_GS) {
4915 preempt_disable();
4916 __ctl_set_bit(2, 4);
4917 if (current->thread.gs_cb) {
4918 vcpu->arch.host_gscb = current->thread.gs_cb;
4919 save_gs_cb(vcpu->arch.host_gscb);
4920 }
4921 if (vcpu->arch.gs_enabled) {
4922 current->thread.gs_cb = (struct gs_cb *)
4923 &vcpu->run->s.regs.gscb;
4924 restore_gs_cb(current->thread.gs_cb);
4925 }
4926 preempt_enable();
4927 }
4928 /* SIE will load etoken directly from SDNX and therefore kvm_run */
4929 }
4930
sync_regs(struct kvm_vcpu * vcpu)4931 static void sync_regs(struct kvm_vcpu *vcpu)
4932 {
4933 struct kvm_run *kvm_run = vcpu->run;
4934
4935 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
4936 kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
4937 if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
4938 memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
4939 /* some control register changes require a tlb flush */
4940 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4941 }
4942 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
4943 kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm);
4944 vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
4945 }
4946 save_access_regs(vcpu->arch.host_acrs);
4947 restore_access_regs(vcpu->run->s.regs.acrs);
4948 /* save host (userspace) fprs/vrs */
4949 save_fpu_regs();
4950 vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc;
4951 vcpu->arch.host_fpregs.regs = current->thread.fpu.regs;
4952 if (MACHINE_HAS_VX)
4953 current->thread.fpu.regs = vcpu->run->s.regs.vrs;
4954 else
4955 current->thread.fpu.regs = vcpu->run->s.regs.fprs;
4956 current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
4957 if (test_fp_ctl(current->thread.fpu.fpc))
4958 /* User space provided an invalid FPC, let's clear it */
4959 current->thread.fpu.fpc = 0;
4960
4961 /* Sync fmt2 only data */
4962 if (likely(!kvm_s390_pv_cpu_is_protected(vcpu))) {
4963 sync_regs_fmt2(vcpu);
4964 } else {
4965 /*
4966 * In several places we have to modify our internal view to
4967 * not do things that are disallowed by the ultravisor. For
4968 * example we must not inject interrupts after specific exits
4969 * (e.g. 112 prefix page not secure). We do this by turning
4970 * off the machine check, external and I/O interrupt bits
4971 * of our PSW copy. To avoid getting validity intercepts, we
4972 * do only accept the condition code from userspace.
4973 */
4974 vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_CC;
4975 vcpu->arch.sie_block->gpsw.mask |= kvm_run->psw_mask &
4976 PSW_MASK_CC;
4977 }
4978
4979 kvm_run->kvm_dirty_regs = 0;
4980 }
4981
store_regs_fmt2(struct kvm_vcpu * vcpu)4982 static void store_regs_fmt2(struct kvm_vcpu *vcpu)
4983 {
4984 struct kvm_run *kvm_run = vcpu->run;
4985
4986 kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
4987 kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
4988 kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
4989 kvm_run->s.regs.bpbc = (vcpu->arch.sie_block->fpf & FPF_BPBC) == FPF_BPBC;
4990 kvm_run->s.regs.diag318 = vcpu->arch.diag318_info.val;
4991 if (MACHINE_HAS_GS) {
4992 preempt_disable();
4993 __ctl_set_bit(2, 4);
4994 if (vcpu->arch.gs_enabled)
4995 save_gs_cb(current->thread.gs_cb);
4996 current->thread.gs_cb = vcpu->arch.host_gscb;
4997 restore_gs_cb(vcpu->arch.host_gscb);
4998 if (!vcpu->arch.host_gscb)
4999 __ctl_clear_bit(2, 4);
5000 vcpu->arch.host_gscb = NULL;
5001 preempt_enable();
5002 }
5003 /* SIE will save etoken directly into SDNX and therefore kvm_run */
5004 }
5005
store_regs(struct kvm_vcpu * vcpu)5006 static void store_regs(struct kvm_vcpu *vcpu)
5007 {
5008 struct kvm_run *kvm_run = vcpu->run;
5009
5010 kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
5011 kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
5012 kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
5013 memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
5014 kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu);
5015 kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
5016 kvm_run->s.regs.pft = vcpu->arch.pfault_token;
5017 kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
5018 kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
5019 save_access_regs(vcpu->run->s.regs.acrs);
5020 restore_access_regs(vcpu->arch.host_acrs);
5021 /* Save guest register state */
5022 save_fpu_regs();
5023 vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
5024 /* Restore will be done lazily at return */
5025 current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc;
5026 current->thread.fpu.regs = vcpu->arch.host_fpregs.regs;
5027 if (likely(!kvm_s390_pv_cpu_is_protected(vcpu)))
5028 store_regs_fmt2(vcpu);
5029 }
5030
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)5031 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
5032 {
5033 struct kvm_run *kvm_run = vcpu->run;
5034 int rc;
5035
5036 /*
5037 * Running a VM while dumping always has the potential to
5038 * produce inconsistent dump data. But for PV vcpus a SIE
5039 * entry while dumping could also lead to a fatal validity
5040 * intercept which we absolutely want to avoid.
5041 */
5042 if (vcpu->kvm->arch.pv.dumping)
5043 return -EINVAL;
5044
5045 if (kvm_run->immediate_exit)
5046 return -EINTR;
5047
5048 if (kvm_run->kvm_valid_regs & ~KVM_SYNC_S390_VALID_FIELDS ||
5049 kvm_run->kvm_dirty_regs & ~KVM_SYNC_S390_VALID_FIELDS)
5050 return -EINVAL;
5051
5052 vcpu_load(vcpu);
5053
5054 if (guestdbg_exit_pending(vcpu)) {
5055 kvm_s390_prepare_debug_exit(vcpu);
5056 rc = 0;
5057 goto out;
5058 }
5059
5060 kvm_sigset_activate(vcpu);
5061
5062 /*
5063 * no need to check the return value of vcpu_start as it can only have
5064 * an error for protvirt, but protvirt means user cpu state
5065 */
5066 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
5067 kvm_s390_vcpu_start(vcpu);
5068 } else if (is_vcpu_stopped(vcpu)) {
5069 pr_err_ratelimited("can't run stopped vcpu %d\n",
5070 vcpu->vcpu_id);
5071 rc = -EINVAL;
5072 goto out;
5073 }
5074
5075 sync_regs(vcpu);
5076 enable_cpu_timer_accounting(vcpu);
5077
5078 might_fault();
5079 rc = __vcpu_run(vcpu);
5080
5081 if (signal_pending(current) && !rc) {
5082 kvm_run->exit_reason = KVM_EXIT_INTR;
5083 rc = -EINTR;
5084 }
5085
5086 if (guestdbg_exit_pending(vcpu) && !rc) {
5087 kvm_s390_prepare_debug_exit(vcpu);
5088 rc = 0;
5089 }
5090
5091 if (rc == -EREMOTE) {
5092 /* userspace support is needed, kvm_run has been prepared */
5093 rc = 0;
5094 }
5095
5096 disable_cpu_timer_accounting(vcpu);
5097 store_regs(vcpu);
5098
5099 kvm_sigset_deactivate(vcpu);
5100
5101 vcpu->stat.exit_userspace++;
5102 out:
5103 vcpu_put(vcpu);
5104 return rc;
5105 }
5106
5107 /*
5108 * store status at address
5109 * we use have two special cases:
5110 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
5111 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
5112 */
kvm_s390_store_status_unloaded(struct kvm_vcpu * vcpu,unsigned long gpa)5113 int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
5114 {
5115 unsigned char archmode = 1;
5116 freg_t fprs[NUM_FPRS];
5117 unsigned int px;
5118 u64 clkcomp, cputm;
5119 int rc;
5120
5121 px = kvm_s390_get_prefix(vcpu);
5122 if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
5123 if (write_guest_abs(vcpu, 163, &archmode, 1))
5124 return -EFAULT;
5125 gpa = 0;
5126 } else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
5127 if (write_guest_real(vcpu, 163, &archmode, 1))
5128 return -EFAULT;
5129 gpa = px;
5130 } else
5131 gpa -= __LC_FPREGS_SAVE_AREA;
5132
5133 /* manually convert vector registers if necessary */
5134 if (MACHINE_HAS_VX) {
5135 convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
5136 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
5137 fprs, 128);
5138 } else {
5139 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
5140 vcpu->run->s.regs.fprs, 128);
5141 }
5142 rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
5143 vcpu->run->s.regs.gprs, 128);
5144 rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
5145 &vcpu->arch.sie_block->gpsw, 16);
5146 rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
5147 &px, 4);
5148 rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
5149 &vcpu->run->s.regs.fpc, 4);
5150 rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
5151 &vcpu->arch.sie_block->todpr, 4);
5152 cputm = kvm_s390_get_cpu_timer(vcpu);
5153 rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
5154 &cputm, 8);
5155 clkcomp = vcpu->arch.sie_block->ckc >> 8;
5156 rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
5157 &clkcomp, 8);
5158 rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
5159 &vcpu->run->s.regs.acrs, 64);
5160 rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
5161 &vcpu->arch.sie_block->gcr, 128);
5162 return rc ? -EFAULT : 0;
5163 }
5164
kvm_s390_vcpu_store_status(struct kvm_vcpu * vcpu,unsigned long addr)5165 int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
5166 {
5167 /*
5168 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
5169 * switch in the run ioctl. Let's update our copies before we save
5170 * it into the save area
5171 */
5172 save_fpu_regs();
5173 vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
5174 save_access_regs(vcpu->run->s.regs.acrs);
5175
5176 return kvm_s390_store_status_unloaded(vcpu, addr);
5177 }
5178
__disable_ibs_on_vcpu(struct kvm_vcpu * vcpu)5179 static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
5180 {
5181 kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
5182 kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
5183 }
5184
__disable_ibs_on_all_vcpus(struct kvm * kvm)5185 static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
5186 {
5187 unsigned long i;
5188 struct kvm_vcpu *vcpu;
5189
5190 kvm_for_each_vcpu(i, vcpu, kvm) {
5191 __disable_ibs_on_vcpu(vcpu);
5192 }
5193 }
5194
__enable_ibs_on_vcpu(struct kvm_vcpu * vcpu)5195 static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
5196 {
5197 if (!sclp.has_ibs)
5198 return;
5199 kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
5200 kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
5201 }
5202
kvm_s390_vcpu_start(struct kvm_vcpu * vcpu)5203 int kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
5204 {
5205 int i, online_vcpus, r = 0, started_vcpus = 0;
5206
5207 if (!is_vcpu_stopped(vcpu))
5208 return 0;
5209
5210 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
5211 /* Only one cpu at a time may enter/leave the STOPPED state. */
5212 spin_lock(&vcpu->kvm->arch.start_stop_lock);
5213 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);
5214
5215 /* Let's tell the UV that we want to change into the operating state */
5216 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5217 r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR);
5218 if (r) {
5219 spin_unlock(&vcpu->kvm->arch.start_stop_lock);
5220 return r;
5221 }
5222 }
5223
5224 for (i = 0; i < online_vcpus; i++) {
5225 if (!is_vcpu_stopped(kvm_get_vcpu(vcpu->kvm, i)))
5226 started_vcpus++;
5227 }
5228
5229 if (started_vcpus == 0) {
5230 /* we're the only active VCPU -> speed it up */
5231 __enable_ibs_on_vcpu(vcpu);
5232 } else if (started_vcpus == 1) {
5233 /*
5234 * As we are starting a second VCPU, we have to disable
5235 * the IBS facility on all VCPUs to remove potentially
5236 * outstanding ENABLE requests.
5237 */
5238 __disable_ibs_on_all_vcpus(vcpu->kvm);
5239 }
5240
5241 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_STOPPED);
5242 /*
5243 * The real PSW might have changed due to a RESTART interpreted by the
5244 * ultravisor. We block all interrupts and let the next sie exit
5245 * refresh our view.
5246 */
5247 if (kvm_s390_pv_cpu_is_protected(vcpu))
5248 vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK;
5249 /*
5250 * Another VCPU might have used IBS while we were offline.
5251 * Let's play safe and flush the VCPU at startup.
5252 */
5253 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5254 spin_unlock(&vcpu->kvm->arch.start_stop_lock);
5255 return 0;
5256 }
5257
kvm_s390_vcpu_stop(struct kvm_vcpu * vcpu)5258 int kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
5259 {
5260 int i, online_vcpus, r = 0, started_vcpus = 0;
5261 struct kvm_vcpu *started_vcpu = NULL;
5262
5263 if (is_vcpu_stopped(vcpu))
5264 return 0;
5265
5266 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
5267 /* Only one cpu at a time may enter/leave the STOPPED state. */
5268 spin_lock(&vcpu->kvm->arch.start_stop_lock);
5269 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);
5270
5271 /* Let's tell the UV that we want to change into the stopped state */
5272 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5273 r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_STP);
5274 if (r) {
5275 spin_unlock(&vcpu->kvm->arch.start_stop_lock);
5276 return r;
5277 }
5278 }
5279
5280 /*
5281 * Set the VCPU to STOPPED and THEN clear the interrupt flag,
5282 * now that the SIGP STOP and SIGP STOP AND STORE STATUS orders
5283 * have been fully processed. This will ensure that the VCPU
5284 * is kept BUSY if another VCPU is inquiring with SIGP SENSE.
5285 */
5286 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOPPED);
5287 kvm_s390_clear_stop_irq(vcpu);
5288
5289 __disable_ibs_on_vcpu(vcpu);
5290
5291 for (i = 0; i < online_vcpus; i++) {
5292 struct kvm_vcpu *tmp = kvm_get_vcpu(vcpu->kvm, i);
5293
5294 if (!is_vcpu_stopped(tmp)) {
5295 started_vcpus++;
5296 started_vcpu = tmp;
5297 }
5298 }
5299
5300 if (started_vcpus == 1) {
5301 /*
5302 * As we only have one VCPU left, we want to enable the
5303 * IBS facility for that VCPU to speed it up.
5304 */
5305 __enable_ibs_on_vcpu(started_vcpu);
5306 }
5307
5308 spin_unlock(&vcpu->kvm->arch.start_stop_lock);
5309 return 0;
5310 }
5311
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)5312 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5313 struct kvm_enable_cap *cap)
5314 {
5315 int r;
5316
5317 if (cap->flags)
5318 return -EINVAL;
5319
5320 switch (cap->cap) {
5321 case KVM_CAP_S390_CSS_SUPPORT:
5322 if (!vcpu->kvm->arch.css_support) {
5323 vcpu->kvm->arch.css_support = 1;
5324 VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
5325 trace_kvm_s390_enable_css(vcpu->kvm);
5326 }
5327 r = 0;
5328 break;
5329 default:
5330 r = -EINVAL;
5331 break;
5332 }
5333 return r;
5334 }
5335
kvm_s390_vcpu_sida_op(struct kvm_vcpu * vcpu,struct kvm_s390_mem_op * mop)5336 static long kvm_s390_vcpu_sida_op(struct kvm_vcpu *vcpu,
5337 struct kvm_s390_mem_op *mop)
5338 {
5339 void __user *uaddr = (void __user *)mop->buf;
5340 void *sida_addr;
5341 int r = 0;
5342
5343 if (mop->flags || !mop->size)
5344 return -EINVAL;
5345 if (mop->size + mop->sida_offset < mop->size)
5346 return -EINVAL;
5347 if (mop->size + mop->sida_offset > sida_size(vcpu->arch.sie_block))
5348 return -E2BIG;
5349 if (!kvm_s390_pv_cpu_is_protected(vcpu))
5350 return -EINVAL;
5351
5352 sida_addr = (char *)sida_addr(vcpu->arch.sie_block) + mop->sida_offset;
5353
5354 switch (mop->op) {
5355 case KVM_S390_MEMOP_SIDA_READ:
5356 if (copy_to_user(uaddr, sida_addr, mop->size))
5357 r = -EFAULT;
5358
5359 break;
5360 case KVM_S390_MEMOP_SIDA_WRITE:
5361 if (copy_from_user(sida_addr, uaddr, mop->size))
5362 r = -EFAULT;
5363 break;
5364 }
5365 return r;
5366 }
5367
kvm_s390_vcpu_mem_op(struct kvm_vcpu * vcpu,struct kvm_s390_mem_op * mop)5368 static long kvm_s390_vcpu_mem_op(struct kvm_vcpu *vcpu,
5369 struct kvm_s390_mem_op *mop)
5370 {
5371 void __user *uaddr = (void __user *)mop->buf;
5372 enum gacc_mode acc_mode;
5373 void *tmpbuf = NULL;
5374 int r;
5375
5376 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_INJECT_EXCEPTION |
5377 KVM_S390_MEMOP_F_CHECK_ONLY |
5378 KVM_S390_MEMOP_F_SKEY_PROTECTION);
5379 if (r)
5380 return r;
5381 if (mop->ar >= NUM_ACRS)
5382 return -EINVAL;
5383 if (kvm_s390_pv_cpu_is_protected(vcpu))
5384 return -EINVAL;
5385 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
5386 tmpbuf = vmalloc(mop->size);
5387 if (!tmpbuf)
5388 return -ENOMEM;
5389 }
5390
5391 acc_mode = mop->op == KVM_S390_MEMOP_LOGICAL_READ ? GACC_FETCH : GACC_STORE;
5392 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
5393 r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size,
5394 acc_mode, mop->key);
5395 goto out_inject;
5396 }
5397 if (acc_mode == GACC_FETCH) {
5398 r = read_guest_with_key(vcpu, mop->gaddr, mop->ar, tmpbuf,
5399 mop->size, mop->key);
5400 if (r)
5401 goto out_inject;
5402 if (copy_to_user(uaddr, tmpbuf, mop->size)) {
5403 r = -EFAULT;
5404 goto out_free;
5405 }
5406 } else {
5407 if (copy_from_user(tmpbuf, uaddr, mop->size)) {
5408 r = -EFAULT;
5409 goto out_free;
5410 }
5411 r = write_guest_with_key(vcpu, mop->gaddr, mop->ar, tmpbuf,
5412 mop->size, mop->key);
5413 }
5414
5415 out_inject:
5416 if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
5417 kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);
5418
5419 out_free:
5420 vfree(tmpbuf);
5421 return r;
5422 }
5423
kvm_s390_vcpu_memsida_op(struct kvm_vcpu * vcpu,struct kvm_s390_mem_op * mop)5424 static long kvm_s390_vcpu_memsida_op(struct kvm_vcpu *vcpu,
5425 struct kvm_s390_mem_op *mop)
5426 {
5427 int r, srcu_idx;
5428
5429 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5430
5431 switch (mop->op) {
5432 case KVM_S390_MEMOP_LOGICAL_READ:
5433 case KVM_S390_MEMOP_LOGICAL_WRITE:
5434 r = kvm_s390_vcpu_mem_op(vcpu, mop);
5435 break;
5436 case KVM_S390_MEMOP_SIDA_READ:
5437 case KVM_S390_MEMOP_SIDA_WRITE:
5438 /* we are locked against sida going away by the vcpu->mutex */
5439 r = kvm_s390_vcpu_sida_op(vcpu, mop);
5440 break;
5441 default:
5442 r = -EINVAL;
5443 }
5444
5445 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
5446 return r;
5447 }
5448
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5449 long kvm_arch_vcpu_async_ioctl(struct file *filp,
5450 unsigned int ioctl, unsigned long arg)
5451 {
5452 struct kvm_vcpu *vcpu = filp->private_data;
5453 void __user *argp = (void __user *)arg;
5454 int rc;
5455
5456 switch (ioctl) {
5457 case KVM_S390_IRQ: {
5458 struct kvm_s390_irq s390irq;
5459
5460 if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
5461 return -EFAULT;
5462 rc = kvm_s390_inject_vcpu(vcpu, &s390irq);
5463 break;
5464 }
5465 case KVM_S390_INTERRUPT: {
5466 struct kvm_s390_interrupt s390int;
5467 struct kvm_s390_irq s390irq = {};
5468
5469 if (copy_from_user(&s390int, argp, sizeof(s390int)))
5470 return -EFAULT;
5471 if (s390int_to_s390irq(&s390int, &s390irq))
5472 return -EINVAL;
5473 rc = kvm_s390_inject_vcpu(vcpu, &s390irq);
5474 break;
5475 }
5476 default:
5477 rc = -ENOIOCTLCMD;
5478 break;
5479 }
5480
5481 /*
5482 * To simplify single stepping of userspace-emulated instructions,
5483 * KVM_EXIT_S390_SIEIC exit sets KVM_GUESTDBG_EXIT_PENDING (see
5484 * should_handle_per_ifetch()). However, if userspace emulation injects
5485 * an interrupt, it needs to be cleared, so that KVM_EXIT_DEBUG happens
5486 * after (and not before) the interrupt delivery.
5487 */
5488 if (!rc)
5489 vcpu->guest_debug &= ~KVM_GUESTDBG_EXIT_PENDING;
5490
5491 return rc;
5492 }
5493
kvm_s390_handle_pv_vcpu_dump(struct kvm_vcpu * vcpu,struct kvm_pv_cmd * cmd)5494 static int kvm_s390_handle_pv_vcpu_dump(struct kvm_vcpu *vcpu,
5495 struct kvm_pv_cmd *cmd)
5496 {
5497 struct kvm_s390_pv_dmp dmp;
5498 void *data;
5499 int ret;
5500
5501 /* Dump initialization is a prerequisite */
5502 if (!vcpu->kvm->arch.pv.dumping)
5503 return -EINVAL;
5504
5505 if (copy_from_user(&dmp, (__u8 __user *)cmd->data, sizeof(dmp)))
5506 return -EFAULT;
5507
5508 /* We only handle this subcmd right now */
5509 if (dmp.subcmd != KVM_PV_DUMP_CPU)
5510 return -EINVAL;
5511
5512 /* CPU dump length is the same as create cpu storage donation. */
5513 if (dmp.buff_len != uv_info.guest_cpu_stor_len)
5514 return -EINVAL;
5515
5516 data = kvzalloc(uv_info.guest_cpu_stor_len, GFP_KERNEL);
5517 if (!data)
5518 return -ENOMEM;
5519
5520 ret = kvm_s390_pv_dump_cpu(vcpu, data, &cmd->rc, &cmd->rrc);
5521
5522 VCPU_EVENT(vcpu, 3, "PROTVIRT DUMP CPU %d rc %x rrc %x",
5523 vcpu->vcpu_id, cmd->rc, cmd->rrc);
5524
5525 if (ret)
5526 ret = -EINVAL;
5527
5528 /* On success copy over the dump data */
5529 if (!ret && copy_to_user((__u8 __user *)dmp.buff_addr, data, uv_info.guest_cpu_stor_len))
5530 ret = -EFAULT;
5531
5532 kvfree(data);
5533 return ret;
5534 }
5535
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5536 long kvm_arch_vcpu_ioctl(struct file *filp,
5537 unsigned int ioctl, unsigned long arg)
5538 {
5539 struct kvm_vcpu *vcpu = filp->private_data;
5540 void __user *argp = (void __user *)arg;
5541 int idx;
5542 long r;
5543 u16 rc, rrc;
5544
5545 vcpu_load(vcpu);
5546
5547 switch (ioctl) {
5548 case KVM_S390_STORE_STATUS:
5549 idx = srcu_read_lock(&vcpu->kvm->srcu);
5550 r = kvm_s390_store_status_unloaded(vcpu, arg);
5551 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5552 break;
5553 case KVM_S390_SET_INITIAL_PSW: {
5554 psw_t psw;
5555
5556 r = -EFAULT;
5557 if (copy_from_user(&psw, argp, sizeof(psw)))
5558 break;
5559 r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
5560 break;
5561 }
5562 case KVM_S390_CLEAR_RESET:
5563 r = 0;
5564 kvm_arch_vcpu_ioctl_clear_reset(vcpu);
5565 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5566 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu),
5567 UVC_CMD_CPU_RESET_CLEAR, &rc, &rrc);
5568 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET CLEAR VCPU: rc %x rrc %x",
5569 rc, rrc);
5570 }
5571 break;
5572 case KVM_S390_INITIAL_RESET:
5573 r = 0;
5574 kvm_arch_vcpu_ioctl_initial_reset(vcpu);
5575 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5576 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu),
5577 UVC_CMD_CPU_RESET_INITIAL,
5578 &rc, &rrc);
5579 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET INITIAL VCPU: rc %x rrc %x",
5580 rc, rrc);
5581 }
5582 break;
5583 case KVM_S390_NORMAL_RESET:
5584 r = 0;
5585 kvm_arch_vcpu_ioctl_normal_reset(vcpu);
5586 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5587 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu),
5588 UVC_CMD_CPU_RESET, &rc, &rrc);
5589 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET NORMAL VCPU: rc %x rrc %x",
5590 rc, rrc);
5591 }
5592 break;
5593 case KVM_SET_ONE_REG:
5594 case KVM_GET_ONE_REG: {
5595 struct kvm_one_reg reg;
5596 r = -EINVAL;
5597 if (kvm_s390_pv_cpu_is_protected(vcpu))
5598 break;
5599 r = -EFAULT;
5600 if (copy_from_user(®, argp, sizeof(reg)))
5601 break;
5602 if (ioctl == KVM_SET_ONE_REG)
5603 r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, ®);
5604 else
5605 r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, ®);
5606 break;
5607 }
5608 #ifdef CONFIG_KVM_S390_UCONTROL
5609 case KVM_S390_UCAS_MAP: {
5610 struct kvm_s390_ucas_mapping ucasmap;
5611
5612 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
5613 r = -EFAULT;
5614 break;
5615 }
5616
5617 if (!kvm_is_ucontrol(vcpu->kvm)) {
5618 r = -EINVAL;
5619 break;
5620 }
5621
5622 r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
5623 ucasmap.vcpu_addr, ucasmap.length);
5624 break;
5625 }
5626 case KVM_S390_UCAS_UNMAP: {
5627 struct kvm_s390_ucas_mapping ucasmap;
5628
5629 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
5630 r = -EFAULT;
5631 break;
5632 }
5633
5634 if (!kvm_is_ucontrol(vcpu->kvm)) {
5635 r = -EINVAL;
5636 break;
5637 }
5638
5639 r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
5640 ucasmap.length);
5641 break;
5642 }
5643 #endif
5644 case KVM_S390_VCPU_FAULT: {
5645 r = gmap_fault(vcpu->arch.gmap, arg, 0);
5646 break;
5647 }
5648 case KVM_ENABLE_CAP:
5649 {
5650 struct kvm_enable_cap cap;
5651 r = -EFAULT;
5652 if (copy_from_user(&cap, argp, sizeof(cap)))
5653 break;
5654 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5655 break;
5656 }
5657 case KVM_S390_MEM_OP: {
5658 struct kvm_s390_mem_op mem_op;
5659
5660 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
5661 r = kvm_s390_vcpu_memsida_op(vcpu, &mem_op);
5662 else
5663 r = -EFAULT;
5664 break;
5665 }
5666 case KVM_S390_SET_IRQ_STATE: {
5667 struct kvm_s390_irq_state irq_state;
5668
5669 r = -EFAULT;
5670 if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
5671 break;
5672 if (irq_state.len > VCPU_IRQS_MAX_BUF ||
5673 irq_state.len == 0 ||
5674 irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
5675 r = -EINVAL;
5676 break;
5677 }
5678 /* do not use irq_state.flags, it will break old QEMUs */
5679 r = kvm_s390_set_irq_state(vcpu,
5680 (void __user *) irq_state.buf,
5681 irq_state.len);
5682 break;
5683 }
5684 case KVM_S390_GET_IRQ_STATE: {
5685 struct kvm_s390_irq_state irq_state;
5686
5687 r = -EFAULT;
5688 if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
5689 break;
5690 if (irq_state.len == 0) {
5691 r = -EINVAL;
5692 break;
5693 }
5694 /* do not use irq_state.flags, it will break old QEMUs */
5695 r = kvm_s390_get_irq_state(vcpu,
5696 (__u8 __user *) irq_state.buf,
5697 irq_state.len);
5698 break;
5699 }
5700 case KVM_S390_PV_CPU_COMMAND: {
5701 struct kvm_pv_cmd cmd;
5702
5703 r = -EINVAL;
5704 if (!is_prot_virt_host())
5705 break;
5706
5707 r = -EFAULT;
5708 if (copy_from_user(&cmd, argp, sizeof(cmd)))
5709 break;
5710
5711 r = -EINVAL;
5712 if (cmd.flags)
5713 break;
5714
5715 /* We only handle this cmd right now */
5716 if (cmd.cmd != KVM_PV_DUMP)
5717 break;
5718
5719 r = kvm_s390_handle_pv_vcpu_dump(vcpu, &cmd);
5720
5721 /* Always copy over UV rc / rrc data */
5722 if (copy_to_user((__u8 __user *)argp, &cmd.rc,
5723 sizeof(cmd.rc) + sizeof(cmd.rrc)))
5724 r = -EFAULT;
5725 break;
5726 }
5727 default:
5728 r = -ENOTTY;
5729 }
5730
5731 vcpu_put(vcpu);
5732 return r;
5733 }
5734
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)5735 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5736 {
5737 #ifdef CONFIG_KVM_S390_UCONTROL
5738 if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
5739 && (kvm_is_ucontrol(vcpu->kvm))) {
5740 vmf->page = virt_to_page(vcpu->arch.sie_block);
5741 get_page(vmf->page);
5742 return 0;
5743 }
5744 #endif
5745 return VM_FAULT_SIGBUS;
5746 }
5747
kvm_arch_irqchip_in_kernel(struct kvm * kvm)5748 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
5749 {
5750 return true;
5751 }
5752
5753 /* Section: memory related */
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)5754 int kvm_arch_prepare_memory_region(struct kvm *kvm,
5755 const struct kvm_memory_slot *old,
5756 struct kvm_memory_slot *new,
5757 enum kvm_mr_change change)
5758 {
5759 gpa_t size;
5760
5761 /* When we are protected, we should not change the memory slots */
5762 if (kvm_s390_pv_get_handle(kvm))
5763 return -EINVAL;
5764
5765 if (change != KVM_MR_DELETE && change != KVM_MR_FLAGS_ONLY) {
5766 /*
5767 * A few sanity checks. We can have memory slots which have to be
5768 * located/ended at a segment boundary (1MB). The memory in userland is
5769 * ok to be fragmented into various different vmas. It is okay to mmap()
5770 * and munmap() stuff in this slot after doing this call at any time
5771 */
5772
5773 if (new->userspace_addr & 0xffffful)
5774 return -EINVAL;
5775
5776 size = new->npages * PAGE_SIZE;
5777 if (size & 0xffffful)
5778 return -EINVAL;
5779
5780 if ((new->base_gfn * PAGE_SIZE) + size > kvm->arch.mem_limit)
5781 return -EINVAL;
5782 }
5783
5784 if (!kvm->arch.migration_mode)
5785 return 0;
5786
5787 /*
5788 * Turn off migration mode when:
5789 * - userspace creates a new memslot with dirty logging off,
5790 * - userspace modifies an existing memslot (MOVE or FLAGS_ONLY) and
5791 * dirty logging is turned off.
5792 * Migration mode expects dirty page logging being enabled to store
5793 * its dirty bitmap.
5794 */
5795 if (change != KVM_MR_DELETE &&
5796 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
5797 WARN(kvm_s390_vm_stop_migration(kvm),
5798 "Failed to stop migration mode");
5799
5800 return 0;
5801 }
5802
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)5803 void kvm_arch_commit_memory_region(struct kvm *kvm,
5804 struct kvm_memory_slot *old,
5805 const struct kvm_memory_slot *new,
5806 enum kvm_mr_change change)
5807 {
5808 int rc = 0;
5809
5810 switch (change) {
5811 case KVM_MR_DELETE:
5812 rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE,
5813 old->npages * PAGE_SIZE);
5814 break;
5815 case KVM_MR_MOVE:
5816 rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE,
5817 old->npages * PAGE_SIZE);
5818 if (rc)
5819 break;
5820 fallthrough;
5821 case KVM_MR_CREATE:
5822 rc = gmap_map_segment(kvm->arch.gmap, new->userspace_addr,
5823 new->base_gfn * PAGE_SIZE,
5824 new->npages * PAGE_SIZE);
5825 break;
5826 case KVM_MR_FLAGS_ONLY:
5827 break;
5828 default:
5829 WARN(1, "Unknown KVM MR CHANGE: %d\n", change);
5830 }
5831 if (rc)
5832 pr_warn("failed to commit memory region\n");
5833 return;
5834 }
5835
nonhyp_mask(int i)5836 static inline unsigned long nonhyp_mask(int i)
5837 {
5838 unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30;
5839
5840 return 0x0000ffffffffffffUL >> (nonhyp_fai << 4);
5841 }
5842
kvm_s390_init(void)5843 static int __init kvm_s390_init(void)
5844 {
5845 int i, r;
5846
5847 if (!sclp.has_sief2) {
5848 pr_info("SIE is not available\n");
5849 return -ENODEV;
5850 }
5851
5852 if (nested && hpage) {
5853 pr_info("A KVM host that supports nesting cannot back its KVM guests with huge pages\n");
5854 return -EINVAL;
5855 }
5856
5857 for (i = 0; i < 16; i++)
5858 kvm_s390_fac_base[i] |=
5859 stfle_fac_list[i] & nonhyp_mask(i);
5860
5861 r = __kvm_s390_init();
5862 if (r)
5863 return r;
5864
5865 r = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
5866 if (r) {
5867 __kvm_s390_exit();
5868 return r;
5869 }
5870 return 0;
5871 }
5872
kvm_s390_exit(void)5873 static void __exit kvm_s390_exit(void)
5874 {
5875 kvm_exit();
5876
5877 __kvm_s390_exit();
5878 }
5879
5880 module_init(kvm_s390_init);
5881 module_exit(kvm_s390_exit);
5882
5883 /*
5884 * Enable autoloading of the kvm module.
5885 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
5886 * since x86 takes a different approach.
5887 */
5888 #include <linux/miscdevice.h>
5889 MODULE_ALIAS_MISCDEV(KVM_MINOR);
5890 MODULE_ALIAS("devname:kvm");
5891