1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/percpu.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/sched.h>
17 #include <linux/syscore_ops.h>
18 #include <linux/clocksource.h>
19 #include <linux/jiffies.h>
20 #include <linux/time.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
23 
24 /* Structure holding internal timekeeping values. */
25 struct timekeeper {
26 	/* Current clocksource used for timekeeping. */
27 	struct clocksource *clock;
28 	/* The shift value of the current clocksource. */
29 	int	shift;
30 
31 	/* Number of clock cycles in one NTP interval. */
32 	cycle_t cycle_interval;
33 	/* Number of clock shifted nano seconds in one NTP interval. */
34 	u64	xtime_interval;
35 	/* shifted nano seconds left over when rounding cycle_interval */
36 	s64	xtime_remainder;
37 	/* Raw nano seconds accumulated per NTP interval. */
38 	u32	raw_interval;
39 
40 	/* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
41 	u64	xtime_nsec;
42 	/* Difference between accumulated time and NTP time in ntp
43 	 * shifted nano seconds. */
44 	s64	ntp_error;
45 	/* Shift conversion between clock shifted nano seconds and
46 	 * ntp shifted nano seconds. */
47 	int	ntp_error_shift;
48 	/* NTP adjusted clock multiplier */
49 	u32	mult;
50 };
51 
52 static struct timekeeper timekeeper;
53 
54 /**
55  * timekeeper_setup_internals - Set up internals to use clocksource clock.
56  *
57  * @clock:		Pointer to clocksource.
58  *
59  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
60  * pair and interval request.
61  *
62  * Unless you're the timekeeping code, you should not be using this!
63  */
timekeeper_setup_internals(struct clocksource * clock)64 static void timekeeper_setup_internals(struct clocksource *clock)
65 {
66 	cycle_t interval;
67 	u64 tmp, ntpinterval;
68 
69 	timekeeper.clock = clock;
70 	clock->cycle_last = clock->read(clock);
71 
72 	/* Do the ns -> cycle conversion first, using original mult */
73 	tmp = NTP_INTERVAL_LENGTH;
74 	tmp <<= clock->shift;
75 	ntpinterval = tmp;
76 	tmp += clock->mult/2;
77 	do_div(tmp, clock->mult);
78 	if (tmp == 0)
79 		tmp = 1;
80 
81 	interval = (cycle_t) tmp;
82 	timekeeper.cycle_interval = interval;
83 
84 	/* Go back from cycles -> shifted ns */
85 	timekeeper.xtime_interval = (u64) interval * clock->mult;
86 	timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
87 	timekeeper.raw_interval =
88 		((u64) interval * clock->mult) >> clock->shift;
89 
90 	timekeeper.xtime_nsec = 0;
91 	timekeeper.shift = clock->shift;
92 
93 	timekeeper.ntp_error = 0;
94 	timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
95 
96 	/*
97 	 * The timekeeper keeps its own mult values for the currently
98 	 * active clocksource. These value will be adjusted via NTP
99 	 * to counteract clock drifting.
100 	 */
101 	timekeeper.mult = clock->mult;
102 }
103 
104 /* Timekeeper helper functions. */
timekeeping_get_ns(void)105 static inline s64 timekeeping_get_ns(void)
106 {
107 	cycle_t cycle_now, cycle_delta;
108 	struct clocksource *clock;
109 
110 	/* read clocksource: */
111 	clock = timekeeper.clock;
112 	cycle_now = clock->read(clock);
113 
114 	/* calculate the delta since the last update_wall_time: */
115 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
116 
117 	/* return delta convert to nanoseconds using ntp adjusted mult. */
118 	return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
119 				  timekeeper.shift);
120 }
121 
timekeeping_get_ns_raw(void)122 static inline s64 timekeeping_get_ns_raw(void)
123 {
124 	cycle_t cycle_now, cycle_delta;
125 	struct clocksource *clock;
126 
127 	/* read clocksource: */
128 	clock = timekeeper.clock;
129 	cycle_now = clock->read(clock);
130 
131 	/* calculate the delta since the last update_wall_time: */
132 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
133 
134 	/* return delta convert to nanoseconds using ntp adjusted mult. */
135 	return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
136 }
137 
138 /*
139  * This read-write spinlock protects us from races in SMP while
140  * playing with xtime.
141  */
142 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
143 
144 
145 /*
146  * The current time
147  * wall_to_monotonic is what we need to add to xtime (or xtime corrected
148  * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
149  * at zero at system boot time, so wall_to_monotonic will be negative,
150  * however, we will ALWAYS keep the tv_nsec part positive so we can use
151  * the usual normalization.
152  *
153  * wall_to_monotonic is moved after resume from suspend for the monotonic
154  * time not to jump. We need to add total_sleep_time to wall_to_monotonic
155  * to get the real boot based time offset.
156  *
157  * - wall_to_monotonic is no longer the boot time, getboottime must be
158  * used instead.
159  */
160 static struct timespec xtime __attribute__ ((aligned (16)));
161 static struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
162 static struct timespec total_sleep_time;
163 
164 /*
165  * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
166  */
167 static struct timespec raw_time;
168 
169 /* flag for if timekeeping is suspended */
170 int __read_mostly timekeeping_suspended;
171 
172 /* must hold xtime_lock */
timekeeping_leap_insert(int leapsecond)173 void timekeeping_leap_insert(int leapsecond)
174 {
175 	xtime.tv_sec += leapsecond;
176 	wall_to_monotonic.tv_sec -= leapsecond;
177 	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
178 			timekeeper.mult);
179 }
180 
181 /**
182  * timekeeping_forward_now - update clock to the current time
183  *
184  * Forward the current clock to update its state since the last call to
185  * update_wall_time(). This is useful before significant clock changes,
186  * as it avoids having to deal with this time offset explicitly.
187  */
timekeeping_forward_now(void)188 static void timekeeping_forward_now(void)
189 {
190 	cycle_t cycle_now, cycle_delta;
191 	struct clocksource *clock;
192 	s64 nsec;
193 
194 	clock = timekeeper.clock;
195 	cycle_now = clock->read(clock);
196 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
197 	clock->cycle_last = cycle_now;
198 
199 	nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
200 				  timekeeper.shift);
201 
202 	/* If arch requires, add in gettimeoffset() */
203 	nsec += arch_gettimeoffset();
204 
205 	timespec_add_ns(&xtime, nsec);
206 
207 	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
208 	timespec_add_ns(&raw_time, nsec);
209 }
210 
211 /**
212  * getnstimeofday - Returns the time of day in a timespec
213  * @ts:		pointer to the timespec to be set
214  *
215  * Returns the time of day in a timespec.
216  */
getnstimeofday(struct timespec * ts)217 void getnstimeofday(struct timespec *ts)
218 {
219 	unsigned long seq;
220 	s64 nsecs;
221 
222 	WARN_ON(timekeeping_suspended);
223 
224 	do {
225 		seq = read_seqbegin(&xtime_lock);
226 
227 		*ts = xtime;
228 		nsecs = timekeeping_get_ns();
229 
230 		/* If arch requires, add in gettimeoffset() */
231 		nsecs += arch_gettimeoffset();
232 
233 	} while (read_seqretry(&xtime_lock, seq));
234 
235 	timespec_add_ns(ts, nsecs);
236 }
237 
238 EXPORT_SYMBOL(getnstimeofday);
239 
ktime_get(void)240 ktime_t ktime_get(void)
241 {
242 	unsigned int seq;
243 	s64 secs, nsecs;
244 
245 	WARN_ON(timekeeping_suspended);
246 
247 	do {
248 		seq = read_seqbegin(&xtime_lock);
249 		secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
250 		nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
251 		nsecs += timekeeping_get_ns();
252 
253 	} while (read_seqretry(&xtime_lock, seq));
254 	/*
255 	 * Use ktime_set/ktime_add_ns to create a proper ktime on
256 	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
257 	 */
258 	return ktime_add_ns(ktime_set(secs, 0), nsecs);
259 }
260 EXPORT_SYMBOL_GPL(ktime_get);
261 
262 /**
263  * ktime_get_ts - get the monotonic clock in timespec format
264  * @ts:		pointer to timespec variable
265  *
266  * The function calculates the monotonic clock from the realtime
267  * clock and the wall_to_monotonic offset and stores the result
268  * in normalized timespec format in the variable pointed to by @ts.
269  */
ktime_get_ts(struct timespec * ts)270 void ktime_get_ts(struct timespec *ts)
271 {
272 	struct timespec tomono;
273 	unsigned int seq;
274 	s64 nsecs;
275 
276 	WARN_ON(timekeeping_suspended);
277 
278 	do {
279 		seq = read_seqbegin(&xtime_lock);
280 		*ts = xtime;
281 		tomono = wall_to_monotonic;
282 		nsecs = timekeeping_get_ns();
283 
284 	} while (read_seqretry(&xtime_lock, seq));
285 
286 	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
287 				ts->tv_nsec + tomono.tv_nsec + nsecs);
288 }
289 EXPORT_SYMBOL_GPL(ktime_get_ts);
290 
291 #ifdef CONFIG_NTP_PPS
292 
293 /**
294  * getnstime_raw_and_real - get day and raw monotonic time in timespec format
295  * @ts_raw:	pointer to the timespec to be set to raw monotonic time
296  * @ts_real:	pointer to the timespec to be set to the time of day
297  *
298  * This function reads both the time of day and raw monotonic time at the
299  * same time atomically and stores the resulting timestamps in timespec
300  * format.
301  */
getnstime_raw_and_real(struct timespec * ts_raw,struct timespec * ts_real)302 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
303 {
304 	unsigned long seq;
305 	s64 nsecs_raw, nsecs_real;
306 
307 	WARN_ON_ONCE(timekeeping_suspended);
308 
309 	do {
310 		u32 arch_offset;
311 
312 		seq = read_seqbegin(&xtime_lock);
313 
314 		*ts_raw = raw_time;
315 		*ts_real = xtime;
316 
317 		nsecs_raw = timekeeping_get_ns_raw();
318 		nsecs_real = timekeeping_get_ns();
319 
320 		/* If arch requires, add in gettimeoffset() */
321 		arch_offset = arch_gettimeoffset();
322 		nsecs_raw += arch_offset;
323 		nsecs_real += arch_offset;
324 
325 	} while (read_seqretry(&xtime_lock, seq));
326 
327 	timespec_add_ns(ts_raw, nsecs_raw);
328 	timespec_add_ns(ts_real, nsecs_real);
329 }
330 EXPORT_SYMBOL(getnstime_raw_and_real);
331 
332 #endif /* CONFIG_NTP_PPS */
333 
334 /**
335  * do_gettimeofday - Returns the time of day in a timeval
336  * @tv:		pointer to the timeval to be set
337  *
338  * NOTE: Users should be converted to using getnstimeofday()
339  */
do_gettimeofday(struct timeval * tv)340 void do_gettimeofday(struct timeval *tv)
341 {
342 	struct timespec now;
343 
344 	getnstimeofday(&now);
345 	tv->tv_sec = now.tv_sec;
346 	tv->tv_usec = now.tv_nsec/1000;
347 }
348 
349 EXPORT_SYMBOL(do_gettimeofday);
350 /**
351  * do_settimeofday - Sets the time of day
352  * @tv:		pointer to the timespec variable containing the new time
353  *
354  * Sets the time of day to the new time and update NTP and notify hrtimers
355  */
do_settimeofday(const struct timespec * tv)356 int do_settimeofday(const struct timespec *tv)
357 {
358 	struct timespec ts_delta;
359 	unsigned long flags;
360 
361 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
362 		return -EINVAL;
363 
364 	write_seqlock_irqsave(&xtime_lock, flags);
365 
366 	timekeeping_forward_now();
367 
368 	ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
369 	ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
370 	wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
371 
372 	xtime = *tv;
373 
374 	timekeeper.ntp_error = 0;
375 	ntp_clear();
376 
377 	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
378 				timekeeper.mult);
379 
380 	write_sequnlock_irqrestore(&xtime_lock, flags);
381 
382 	/* signal hrtimers about time change */
383 	clock_was_set();
384 
385 	return 0;
386 }
387 
388 EXPORT_SYMBOL(do_settimeofday);
389 
390 
391 /**
392  * timekeeping_inject_offset - Adds or subtracts from the current time.
393  * @tv:		pointer to the timespec variable containing the offset
394  *
395  * Adds or subtracts an offset value from the current time.
396  */
timekeeping_inject_offset(struct timespec * ts)397 int timekeeping_inject_offset(struct timespec *ts)
398 {
399 	unsigned long flags;
400 
401 	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
402 		return -EINVAL;
403 
404 	write_seqlock_irqsave(&xtime_lock, flags);
405 
406 	timekeeping_forward_now();
407 
408 	xtime = timespec_add(xtime, *ts);
409 	wall_to_monotonic = timespec_sub(wall_to_monotonic, *ts);
410 
411 	timekeeper.ntp_error = 0;
412 	ntp_clear();
413 
414 	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
415 				timekeeper.mult);
416 
417 	write_sequnlock_irqrestore(&xtime_lock, flags);
418 
419 	/* signal hrtimers about time change */
420 	clock_was_set();
421 
422 	return 0;
423 }
424 EXPORT_SYMBOL(timekeeping_inject_offset);
425 
426 /**
427  * change_clocksource - Swaps clocksources if a new one is available
428  *
429  * Accumulates current time interval and initializes new clocksource
430  */
change_clocksource(void * data)431 static int change_clocksource(void *data)
432 {
433 	struct clocksource *new, *old;
434 
435 	new = (struct clocksource *) data;
436 
437 	timekeeping_forward_now();
438 	if (!new->enable || new->enable(new) == 0) {
439 		old = timekeeper.clock;
440 		timekeeper_setup_internals(new);
441 		if (old->disable)
442 			old->disable(old);
443 	}
444 	return 0;
445 }
446 
447 /**
448  * timekeeping_notify - Install a new clock source
449  * @clock:		pointer to the clock source
450  *
451  * This function is called from clocksource.c after a new, better clock
452  * source has been registered. The caller holds the clocksource_mutex.
453  */
timekeeping_notify(struct clocksource * clock)454 void timekeeping_notify(struct clocksource *clock)
455 {
456 	if (timekeeper.clock == clock)
457 		return;
458 	stop_machine(change_clocksource, clock, NULL);
459 	tick_clock_notify();
460 }
461 
462 /**
463  * ktime_get_real - get the real (wall-) time in ktime_t format
464  *
465  * returns the time in ktime_t format
466  */
ktime_get_real(void)467 ktime_t ktime_get_real(void)
468 {
469 	struct timespec now;
470 
471 	getnstimeofday(&now);
472 
473 	return timespec_to_ktime(now);
474 }
475 EXPORT_SYMBOL_GPL(ktime_get_real);
476 
477 /**
478  * getrawmonotonic - Returns the raw monotonic time in a timespec
479  * @ts:		pointer to the timespec to be set
480  *
481  * Returns the raw monotonic time (completely un-modified by ntp)
482  */
getrawmonotonic(struct timespec * ts)483 void getrawmonotonic(struct timespec *ts)
484 {
485 	unsigned long seq;
486 	s64 nsecs;
487 
488 	do {
489 		seq = read_seqbegin(&xtime_lock);
490 		nsecs = timekeeping_get_ns_raw();
491 		*ts = raw_time;
492 
493 	} while (read_seqretry(&xtime_lock, seq));
494 
495 	timespec_add_ns(ts, nsecs);
496 }
497 EXPORT_SYMBOL(getrawmonotonic);
498 
499 
500 /**
501  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
502  */
timekeeping_valid_for_hres(void)503 int timekeeping_valid_for_hres(void)
504 {
505 	unsigned long seq;
506 	int ret;
507 
508 	do {
509 		seq = read_seqbegin(&xtime_lock);
510 
511 		ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
512 
513 	} while (read_seqretry(&xtime_lock, seq));
514 
515 	return ret;
516 }
517 
518 /**
519  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
520  *
521  * Caller must observe xtime_lock via read_seqbegin/read_seqretry to
522  * ensure that the clocksource does not change!
523  */
timekeeping_max_deferment(void)524 u64 timekeeping_max_deferment(void)
525 {
526 	return timekeeper.clock->max_idle_ns;
527 }
528 
529 /**
530  * read_persistent_clock -  Return time from the persistent clock.
531  *
532  * Weak dummy function for arches that do not yet support it.
533  * Reads the time from the battery backed persistent clock.
534  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
535  *
536  *  XXX - Do be sure to remove it once all arches implement it.
537  */
read_persistent_clock(struct timespec * ts)538 void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
539 {
540 	ts->tv_sec = 0;
541 	ts->tv_nsec = 0;
542 }
543 
544 /**
545  * read_boot_clock -  Return time of the system start.
546  *
547  * Weak dummy function for arches that do not yet support it.
548  * Function to read the exact time the system has been started.
549  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
550  *
551  *  XXX - Do be sure to remove it once all arches implement it.
552  */
read_boot_clock(struct timespec * ts)553 void __attribute__((weak)) read_boot_clock(struct timespec *ts)
554 {
555 	ts->tv_sec = 0;
556 	ts->tv_nsec = 0;
557 }
558 
559 /*
560  * timekeeping_init - Initializes the clocksource and common timekeeping values
561  */
timekeeping_init(void)562 void __init timekeeping_init(void)
563 {
564 	struct clocksource *clock;
565 	unsigned long flags;
566 	struct timespec now, boot;
567 
568 	read_persistent_clock(&now);
569 	read_boot_clock(&boot);
570 
571 	write_seqlock_irqsave(&xtime_lock, flags);
572 
573 	ntp_init();
574 
575 	clock = clocksource_default_clock();
576 	if (clock->enable)
577 		clock->enable(clock);
578 	timekeeper_setup_internals(clock);
579 
580 	xtime.tv_sec = now.tv_sec;
581 	xtime.tv_nsec = now.tv_nsec;
582 	raw_time.tv_sec = 0;
583 	raw_time.tv_nsec = 0;
584 	if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
585 		boot.tv_sec = xtime.tv_sec;
586 		boot.tv_nsec = xtime.tv_nsec;
587 	}
588 	set_normalized_timespec(&wall_to_monotonic,
589 				-boot.tv_sec, -boot.tv_nsec);
590 	total_sleep_time.tv_sec = 0;
591 	total_sleep_time.tv_nsec = 0;
592 	write_sequnlock_irqrestore(&xtime_lock, flags);
593 }
594 
595 /* time in seconds when suspend began */
596 static struct timespec timekeeping_suspend_time;
597 
598 /**
599  * timekeeping_resume - Resumes the generic timekeeping subsystem.
600  *
601  * This is for the generic clocksource timekeeping.
602  * xtime/wall_to_monotonic/jiffies/etc are
603  * still managed by arch specific suspend/resume code.
604  */
timekeeping_resume(void)605 static void timekeeping_resume(void)
606 {
607 	unsigned long flags;
608 	struct timespec ts;
609 
610 	read_persistent_clock(&ts);
611 
612 	clocksource_resume();
613 
614 	write_seqlock_irqsave(&xtime_lock, flags);
615 
616 	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
617 		ts = timespec_sub(ts, timekeeping_suspend_time);
618 		xtime = timespec_add(xtime, ts);
619 		wall_to_monotonic = timespec_sub(wall_to_monotonic, ts);
620 		total_sleep_time = timespec_add(total_sleep_time, ts);
621 	}
622 	/* re-base the last cycle value */
623 	timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
624 	timekeeper.ntp_error = 0;
625 	timekeeping_suspended = 0;
626 	write_sequnlock_irqrestore(&xtime_lock, flags);
627 
628 	touch_softlockup_watchdog();
629 
630 	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
631 
632 	/* Resume hrtimers */
633 	hres_timers_resume();
634 }
635 
timekeeping_suspend(void)636 static int timekeeping_suspend(void)
637 {
638 	unsigned long flags;
639 
640 	read_persistent_clock(&timekeeping_suspend_time);
641 
642 	write_seqlock_irqsave(&xtime_lock, flags);
643 	timekeeping_forward_now();
644 	timekeeping_suspended = 1;
645 	write_sequnlock_irqrestore(&xtime_lock, flags);
646 
647 	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
648 	clocksource_suspend();
649 
650 	return 0;
651 }
652 
653 /* sysfs resume/suspend bits for timekeeping */
654 static struct syscore_ops timekeeping_syscore_ops = {
655 	.resume		= timekeeping_resume,
656 	.suspend	= timekeeping_suspend,
657 };
658 
timekeeping_init_ops(void)659 static int __init timekeeping_init_ops(void)
660 {
661 	register_syscore_ops(&timekeeping_syscore_ops);
662 	return 0;
663 }
664 
665 device_initcall(timekeeping_init_ops);
666 
667 /*
668  * If the error is already larger, we look ahead even further
669  * to compensate for late or lost adjustments.
670  */
timekeeping_bigadjust(s64 error,s64 * interval,s64 * offset)671 static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
672 						 s64 *offset)
673 {
674 	s64 tick_error, i;
675 	u32 look_ahead, adj;
676 	s32 error2, mult;
677 
678 	/*
679 	 * Use the current error value to determine how much to look ahead.
680 	 * The larger the error the slower we adjust for it to avoid problems
681 	 * with losing too many ticks, otherwise we would overadjust and
682 	 * produce an even larger error.  The smaller the adjustment the
683 	 * faster we try to adjust for it, as lost ticks can do less harm
684 	 * here.  This is tuned so that an error of about 1 msec is adjusted
685 	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
686 	 */
687 	error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
688 	error2 = abs(error2);
689 	for (look_ahead = 0; error2 > 0; look_ahead++)
690 		error2 >>= 2;
691 
692 	/*
693 	 * Now calculate the error in (1 << look_ahead) ticks, but first
694 	 * remove the single look ahead already included in the error.
695 	 */
696 	tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
697 	tick_error -= timekeeper.xtime_interval >> 1;
698 	error = ((error - tick_error) >> look_ahead) + tick_error;
699 
700 	/* Finally calculate the adjustment shift value.  */
701 	i = *interval;
702 	mult = 1;
703 	if (error < 0) {
704 		error = -error;
705 		*interval = -*interval;
706 		*offset = -*offset;
707 		mult = -1;
708 	}
709 	for (adj = 0; error > i; adj++)
710 		error >>= 1;
711 
712 	*interval <<= adj;
713 	*offset <<= adj;
714 	return mult << adj;
715 }
716 
717 /*
718  * Adjust the multiplier to reduce the error value,
719  * this is optimized for the most common adjustments of -1,0,1,
720  * for other values we can do a bit more work.
721  */
timekeeping_adjust(s64 offset)722 static void timekeeping_adjust(s64 offset)
723 {
724 	s64 error, interval = timekeeper.cycle_interval;
725 	int adj;
726 
727 	error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
728 	if (error > interval) {
729 		error >>= 2;
730 		if (likely(error <= interval))
731 			adj = 1;
732 		else
733 			adj = timekeeping_bigadjust(error, &interval, &offset);
734 	} else if (error < -interval) {
735 		error >>= 2;
736 		if (likely(error >= -interval)) {
737 			adj = -1;
738 			interval = -interval;
739 			offset = -offset;
740 		} else
741 			adj = timekeeping_bigadjust(error, &interval, &offset);
742 	} else
743 		return;
744 
745 	timekeeper.mult += adj;
746 	timekeeper.xtime_interval += interval;
747 	timekeeper.xtime_nsec -= offset;
748 	timekeeper.ntp_error -= (interval - offset) <<
749 				timekeeper.ntp_error_shift;
750 }
751 
752 
753 /**
754  * logarithmic_accumulation - shifted accumulation of cycles
755  *
756  * This functions accumulates a shifted interval of cycles into
757  * into a shifted interval nanoseconds. Allows for O(log) accumulation
758  * loop.
759  *
760  * Returns the unconsumed cycles.
761  */
logarithmic_accumulation(cycle_t offset,int shift)762 static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
763 {
764 	u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
765 	u64 raw_nsecs;
766 
767 	/* If the offset is smaller then a shifted interval, do nothing */
768 	if (offset < timekeeper.cycle_interval<<shift)
769 		return offset;
770 
771 	/* Accumulate one shifted interval */
772 	offset -= timekeeper.cycle_interval << shift;
773 	timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;
774 
775 	timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
776 	while (timekeeper.xtime_nsec >= nsecps) {
777 		timekeeper.xtime_nsec -= nsecps;
778 		xtime.tv_sec++;
779 		second_overflow();
780 	}
781 
782 	/* Accumulate raw time */
783 	raw_nsecs = timekeeper.raw_interval << shift;
784 	raw_nsecs += raw_time.tv_nsec;
785 	if (raw_nsecs >= NSEC_PER_SEC) {
786 		u64 raw_secs = raw_nsecs;
787 		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
788 		raw_time.tv_sec += raw_secs;
789 	}
790 	raw_time.tv_nsec = raw_nsecs;
791 
792 	/* Accumulate error between NTP and clock interval */
793 	timekeeper.ntp_error += tick_length << shift;
794 	timekeeper.ntp_error -=
795 	    (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
796 				(timekeeper.ntp_error_shift + shift);
797 
798 	return offset;
799 }
800 
801 
802 /**
803  * update_wall_time - Uses the current clocksource to increment the wall time
804  *
805  * Called from the timer interrupt, must hold a write on xtime_lock.
806  */
update_wall_time(void)807 static void update_wall_time(void)
808 {
809 	struct clocksource *clock;
810 	cycle_t offset;
811 	int shift = 0, maxshift;
812 
813 	/* Make sure we're fully resumed: */
814 	if (unlikely(timekeeping_suspended))
815 		return;
816 
817 	clock = timekeeper.clock;
818 
819 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
820 	offset = timekeeper.cycle_interval;
821 #else
822 	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
823 #endif
824 	timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift;
825 
826 	/*
827 	 * With NO_HZ we may have to accumulate many cycle_intervals
828 	 * (think "ticks") worth of time at once. To do this efficiently,
829 	 * we calculate the largest doubling multiple of cycle_intervals
830 	 * that is smaller then the offset. We then accumulate that
831 	 * chunk in one go, and then try to consume the next smaller
832 	 * doubled multiple.
833 	 */
834 	shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
835 	shift = max(0, shift);
836 	/* Bound shift to one less then what overflows tick_length */
837 	maxshift = (8*sizeof(tick_length) - (ilog2(tick_length)+1)) - 1;
838 	shift = min(shift, maxshift);
839 	while (offset >= timekeeper.cycle_interval) {
840 		offset = logarithmic_accumulation(offset, shift);
841 		if(offset < timekeeper.cycle_interval<<shift)
842 			shift--;
843 	}
844 
845 	/* correct the clock when NTP error is too big */
846 	timekeeping_adjust(offset);
847 
848 	/*
849 	 * Since in the loop above, we accumulate any amount of time
850 	 * in xtime_nsec over a second into xtime.tv_sec, its possible for
851 	 * xtime_nsec to be fairly small after the loop. Further, if we're
852 	 * slightly speeding the clocksource up in timekeeping_adjust(),
853 	 * its possible the required corrective factor to xtime_nsec could
854 	 * cause it to underflow.
855 	 *
856 	 * Now, we cannot simply roll the accumulated second back, since
857 	 * the NTP subsystem has been notified via second_overflow. So
858 	 * instead we push xtime_nsec forward by the amount we underflowed,
859 	 * and add that amount into the error.
860 	 *
861 	 * We'll correct this error next time through this function, when
862 	 * xtime_nsec is not as small.
863 	 */
864 	if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
865 		s64 neg = -(s64)timekeeper.xtime_nsec;
866 		timekeeper.xtime_nsec = 0;
867 		timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
868 	}
869 
870 
871 	/*
872 	 * Store full nanoseconds into xtime after rounding it up and
873 	 * add the remainder to the error difference.
874 	 */
875 	xtime.tv_nsec =	((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1;
876 	timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift;
877 	timekeeper.ntp_error +=	timekeeper.xtime_nsec <<
878 				timekeeper.ntp_error_shift;
879 
880 	/*
881 	 * Finally, make sure that after the rounding
882 	 * xtime.tv_nsec isn't larger then NSEC_PER_SEC
883 	 */
884 	if (unlikely(xtime.tv_nsec >= NSEC_PER_SEC)) {
885 		xtime.tv_nsec -= NSEC_PER_SEC;
886 		xtime.tv_sec++;
887 		second_overflow();
888 	}
889 
890 	/* check to see if there is a new clocksource to use */
891 	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
892 				timekeeper.mult);
893 }
894 
895 /**
896  * getboottime - Return the real time of system boot.
897  * @ts:		pointer to the timespec to be set
898  *
899  * Returns the wall-time of boot in a timespec.
900  *
901  * This is based on the wall_to_monotonic offset and the total suspend
902  * time. Calls to settimeofday will affect the value returned (which
903  * basically means that however wrong your real time clock is at boot time,
904  * you get the right time here).
905  */
getboottime(struct timespec * ts)906 void getboottime(struct timespec *ts)
907 {
908 	struct timespec boottime = {
909 		.tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec,
910 		.tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec
911 	};
912 
913 	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
914 }
915 EXPORT_SYMBOL_GPL(getboottime);
916 
917 
918 /**
919  * get_monotonic_boottime - Returns monotonic time since boot
920  * @ts:		pointer to the timespec to be set
921  *
922  * Returns the monotonic time since boot in a timespec.
923  *
924  * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
925  * includes the time spent in suspend.
926  */
get_monotonic_boottime(struct timespec * ts)927 void get_monotonic_boottime(struct timespec *ts)
928 {
929 	struct timespec tomono, sleep;
930 	unsigned int seq;
931 	s64 nsecs;
932 
933 	WARN_ON(timekeeping_suspended);
934 
935 	do {
936 		seq = read_seqbegin(&xtime_lock);
937 		*ts = xtime;
938 		tomono = wall_to_monotonic;
939 		sleep = total_sleep_time;
940 		nsecs = timekeeping_get_ns();
941 
942 	} while (read_seqretry(&xtime_lock, seq));
943 
944 	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
945 			ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec + nsecs);
946 }
947 EXPORT_SYMBOL_GPL(get_monotonic_boottime);
948 
949 /**
950  * ktime_get_boottime - Returns monotonic time since boot in a ktime
951  *
952  * Returns the monotonic time since boot in a ktime
953  *
954  * This is similar to CLOCK_MONTONIC/ktime_get, but also
955  * includes the time spent in suspend.
956  */
ktime_get_boottime(void)957 ktime_t ktime_get_boottime(void)
958 {
959 	struct timespec ts;
960 
961 	get_monotonic_boottime(&ts);
962 	return timespec_to_ktime(ts);
963 }
964 EXPORT_SYMBOL_GPL(ktime_get_boottime);
965 
966 /**
967  * monotonic_to_bootbased - Convert the monotonic time to boot based.
968  * @ts:		pointer to the timespec to be converted
969  */
monotonic_to_bootbased(struct timespec * ts)970 void monotonic_to_bootbased(struct timespec *ts)
971 {
972 	*ts = timespec_add(*ts, total_sleep_time);
973 }
974 EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
975 
get_seconds(void)976 unsigned long get_seconds(void)
977 {
978 	return xtime.tv_sec;
979 }
980 EXPORT_SYMBOL(get_seconds);
981 
__current_kernel_time(void)982 struct timespec __current_kernel_time(void)
983 {
984 	return xtime;
985 }
986 
current_kernel_time(void)987 struct timespec current_kernel_time(void)
988 {
989 	struct timespec now;
990 	unsigned long seq;
991 
992 	do {
993 		seq = read_seqbegin(&xtime_lock);
994 
995 		now = xtime;
996 	} while (read_seqretry(&xtime_lock, seq));
997 
998 	return now;
999 }
1000 EXPORT_SYMBOL(current_kernel_time);
1001 
get_monotonic_coarse(void)1002 struct timespec get_monotonic_coarse(void)
1003 {
1004 	struct timespec now, mono;
1005 	unsigned long seq;
1006 
1007 	do {
1008 		seq = read_seqbegin(&xtime_lock);
1009 
1010 		now = xtime;
1011 		mono = wall_to_monotonic;
1012 	} while (read_seqretry(&xtime_lock, seq));
1013 
1014 	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
1015 				now.tv_nsec + mono.tv_nsec);
1016 	return now;
1017 }
1018 
1019 /*
1020  * The 64-bit jiffies value is not atomic - you MUST NOT read it
1021  * without sampling the sequence number in xtime_lock.
1022  * jiffies is defined in the linker script...
1023  */
do_timer(unsigned long ticks)1024 void do_timer(unsigned long ticks)
1025 {
1026 	jiffies_64 += ticks;
1027 	update_wall_time();
1028 	calc_global_load(ticks);
1029 }
1030 
1031 /**
1032  * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
1033  *    and sleep offsets.
1034  * @xtim:	pointer to timespec to be set with xtime
1035  * @wtom:	pointer to timespec to be set with wall_to_monotonic
1036  * @sleep:	pointer to timespec to be set with time in suspend
1037  */
get_xtime_and_monotonic_and_sleep_offset(struct timespec * xtim,struct timespec * wtom,struct timespec * sleep)1038 void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
1039 				struct timespec *wtom, struct timespec *sleep)
1040 {
1041 	unsigned long seq;
1042 
1043 	do {
1044 		seq = read_seqbegin(&xtime_lock);
1045 		*xtim = xtime;
1046 		*wtom = wall_to_monotonic;
1047 		*sleep = total_sleep_time;
1048 	} while (read_seqretry(&xtime_lock, seq));
1049 }
1050 
1051 /**
1052  * xtime_update() - advances the timekeeping infrastructure
1053  * @ticks:	number of ticks, that have elapsed since the last call.
1054  *
1055  * Must be called with interrupts disabled.
1056  */
xtime_update(unsigned long ticks)1057 void xtime_update(unsigned long ticks)
1058 {
1059 	write_seqlock(&xtime_lock);
1060 	do_timer(ticks);
1061 	write_sequnlock(&xtime_lock);
1062 }
1063