1 /*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/percpu.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/sched.h>
17 #include <linux/syscore_ops.h>
18 #include <linux/clocksource.h>
19 #include <linux/jiffies.h>
20 #include <linux/time.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
23
24 /* Structure holding internal timekeeping values. */
25 struct timekeeper {
26 /* Current clocksource used for timekeeping. */
27 struct clocksource *clock;
28 /* The shift value of the current clocksource. */
29 int shift;
30
31 /* Number of clock cycles in one NTP interval. */
32 cycle_t cycle_interval;
33 /* Number of clock shifted nano seconds in one NTP interval. */
34 u64 xtime_interval;
35 /* shifted nano seconds left over when rounding cycle_interval */
36 s64 xtime_remainder;
37 /* Raw nano seconds accumulated per NTP interval. */
38 u32 raw_interval;
39
40 /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
41 u64 xtime_nsec;
42 /* Difference between accumulated time and NTP time in ntp
43 * shifted nano seconds. */
44 s64 ntp_error;
45 /* Shift conversion between clock shifted nano seconds and
46 * ntp shifted nano seconds. */
47 int ntp_error_shift;
48 /* NTP adjusted clock multiplier */
49 u32 mult;
50 };
51
52 static struct timekeeper timekeeper;
53
54 /**
55 * timekeeper_setup_internals - Set up internals to use clocksource clock.
56 *
57 * @clock: Pointer to clocksource.
58 *
59 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
60 * pair and interval request.
61 *
62 * Unless you're the timekeeping code, you should not be using this!
63 */
timekeeper_setup_internals(struct clocksource * clock)64 static void timekeeper_setup_internals(struct clocksource *clock)
65 {
66 cycle_t interval;
67 u64 tmp, ntpinterval;
68
69 timekeeper.clock = clock;
70 clock->cycle_last = clock->read(clock);
71
72 /* Do the ns -> cycle conversion first, using original mult */
73 tmp = NTP_INTERVAL_LENGTH;
74 tmp <<= clock->shift;
75 ntpinterval = tmp;
76 tmp += clock->mult/2;
77 do_div(tmp, clock->mult);
78 if (tmp == 0)
79 tmp = 1;
80
81 interval = (cycle_t) tmp;
82 timekeeper.cycle_interval = interval;
83
84 /* Go back from cycles -> shifted ns */
85 timekeeper.xtime_interval = (u64) interval * clock->mult;
86 timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
87 timekeeper.raw_interval =
88 ((u64) interval * clock->mult) >> clock->shift;
89
90 timekeeper.xtime_nsec = 0;
91 timekeeper.shift = clock->shift;
92
93 timekeeper.ntp_error = 0;
94 timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
95
96 /*
97 * The timekeeper keeps its own mult values for the currently
98 * active clocksource. These value will be adjusted via NTP
99 * to counteract clock drifting.
100 */
101 timekeeper.mult = clock->mult;
102 }
103
104 /* Timekeeper helper functions. */
timekeeping_get_ns(void)105 static inline s64 timekeeping_get_ns(void)
106 {
107 cycle_t cycle_now, cycle_delta;
108 struct clocksource *clock;
109
110 /* read clocksource: */
111 clock = timekeeper.clock;
112 cycle_now = clock->read(clock);
113
114 /* calculate the delta since the last update_wall_time: */
115 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
116
117 /* return delta convert to nanoseconds using ntp adjusted mult. */
118 return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
119 timekeeper.shift);
120 }
121
timekeeping_get_ns_raw(void)122 static inline s64 timekeeping_get_ns_raw(void)
123 {
124 cycle_t cycle_now, cycle_delta;
125 struct clocksource *clock;
126
127 /* read clocksource: */
128 clock = timekeeper.clock;
129 cycle_now = clock->read(clock);
130
131 /* calculate the delta since the last update_wall_time: */
132 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
133
134 /* return delta convert to nanoseconds using ntp adjusted mult. */
135 return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
136 }
137
138 /*
139 * This read-write spinlock protects us from races in SMP while
140 * playing with xtime.
141 */
142 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
143
144
145 /*
146 * The current time
147 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
148 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
149 * at zero at system boot time, so wall_to_monotonic will be negative,
150 * however, we will ALWAYS keep the tv_nsec part positive so we can use
151 * the usual normalization.
152 *
153 * wall_to_monotonic is moved after resume from suspend for the monotonic
154 * time not to jump. We need to add total_sleep_time to wall_to_monotonic
155 * to get the real boot based time offset.
156 *
157 * - wall_to_monotonic is no longer the boot time, getboottime must be
158 * used instead.
159 */
160 static struct timespec xtime __attribute__ ((aligned (16)));
161 static struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
162 static struct timespec total_sleep_time;
163
164 /*
165 * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
166 */
167 static struct timespec raw_time;
168
169 /* flag for if timekeeping is suspended */
170 int __read_mostly timekeeping_suspended;
171
172 /* must hold xtime_lock */
timekeeping_leap_insert(int leapsecond)173 void timekeeping_leap_insert(int leapsecond)
174 {
175 xtime.tv_sec += leapsecond;
176 wall_to_monotonic.tv_sec -= leapsecond;
177 update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
178 timekeeper.mult);
179 }
180
181 /**
182 * timekeeping_forward_now - update clock to the current time
183 *
184 * Forward the current clock to update its state since the last call to
185 * update_wall_time(). This is useful before significant clock changes,
186 * as it avoids having to deal with this time offset explicitly.
187 */
timekeeping_forward_now(void)188 static void timekeeping_forward_now(void)
189 {
190 cycle_t cycle_now, cycle_delta;
191 struct clocksource *clock;
192 s64 nsec;
193
194 clock = timekeeper.clock;
195 cycle_now = clock->read(clock);
196 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
197 clock->cycle_last = cycle_now;
198
199 nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
200 timekeeper.shift);
201
202 /* If arch requires, add in gettimeoffset() */
203 nsec += arch_gettimeoffset();
204
205 timespec_add_ns(&xtime, nsec);
206
207 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
208 timespec_add_ns(&raw_time, nsec);
209 }
210
211 /**
212 * getnstimeofday - Returns the time of day in a timespec
213 * @ts: pointer to the timespec to be set
214 *
215 * Returns the time of day in a timespec.
216 */
getnstimeofday(struct timespec * ts)217 void getnstimeofday(struct timespec *ts)
218 {
219 unsigned long seq;
220 s64 nsecs;
221
222 WARN_ON(timekeeping_suspended);
223
224 do {
225 seq = read_seqbegin(&xtime_lock);
226
227 *ts = xtime;
228 nsecs = timekeeping_get_ns();
229
230 /* If arch requires, add in gettimeoffset() */
231 nsecs += arch_gettimeoffset();
232
233 } while (read_seqretry(&xtime_lock, seq));
234
235 timespec_add_ns(ts, nsecs);
236 }
237
238 EXPORT_SYMBOL(getnstimeofday);
239
ktime_get(void)240 ktime_t ktime_get(void)
241 {
242 unsigned int seq;
243 s64 secs, nsecs;
244
245 WARN_ON(timekeeping_suspended);
246
247 do {
248 seq = read_seqbegin(&xtime_lock);
249 secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
250 nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
251 nsecs += timekeeping_get_ns();
252
253 } while (read_seqretry(&xtime_lock, seq));
254 /*
255 * Use ktime_set/ktime_add_ns to create a proper ktime on
256 * 32-bit architectures without CONFIG_KTIME_SCALAR.
257 */
258 return ktime_add_ns(ktime_set(secs, 0), nsecs);
259 }
260 EXPORT_SYMBOL_GPL(ktime_get);
261
262 /**
263 * ktime_get_ts - get the monotonic clock in timespec format
264 * @ts: pointer to timespec variable
265 *
266 * The function calculates the monotonic clock from the realtime
267 * clock and the wall_to_monotonic offset and stores the result
268 * in normalized timespec format in the variable pointed to by @ts.
269 */
ktime_get_ts(struct timespec * ts)270 void ktime_get_ts(struct timespec *ts)
271 {
272 struct timespec tomono;
273 unsigned int seq;
274 s64 nsecs;
275
276 WARN_ON(timekeeping_suspended);
277
278 do {
279 seq = read_seqbegin(&xtime_lock);
280 *ts = xtime;
281 tomono = wall_to_monotonic;
282 nsecs = timekeeping_get_ns();
283
284 } while (read_seqretry(&xtime_lock, seq));
285
286 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
287 ts->tv_nsec + tomono.tv_nsec + nsecs);
288 }
289 EXPORT_SYMBOL_GPL(ktime_get_ts);
290
291 #ifdef CONFIG_NTP_PPS
292
293 /**
294 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
295 * @ts_raw: pointer to the timespec to be set to raw monotonic time
296 * @ts_real: pointer to the timespec to be set to the time of day
297 *
298 * This function reads both the time of day and raw monotonic time at the
299 * same time atomically and stores the resulting timestamps in timespec
300 * format.
301 */
getnstime_raw_and_real(struct timespec * ts_raw,struct timespec * ts_real)302 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
303 {
304 unsigned long seq;
305 s64 nsecs_raw, nsecs_real;
306
307 WARN_ON_ONCE(timekeeping_suspended);
308
309 do {
310 u32 arch_offset;
311
312 seq = read_seqbegin(&xtime_lock);
313
314 *ts_raw = raw_time;
315 *ts_real = xtime;
316
317 nsecs_raw = timekeeping_get_ns_raw();
318 nsecs_real = timekeeping_get_ns();
319
320 /* If arch requires, add in gettimeoffset() */
321 arch_offset = arch_gettimeoffset();
322 nsecs_raw += arch_offset;
323 nsecs_real += arch_offset;
324
325 } while (read_seqretry(&xtime_lock, seq));
326
327 timespec_add_ns(ts_raw, nsecs_raw);
328 timespec_add_ns(ts_real, nsecs_real);
329 }
330 EXPORT_SYMBOL(getnstime_raw_and_real);
331
332 #endif /* CONFIG_NTP_PPS */
333
334 /**
335 * do_gettimeofday - Returns the time of day in a timeval
336 * @tv: pointer to the timeval to be set
337 *
338 * NOTE: Users should be converted to using getnstimeofday()
339 */
do_gettimeofday(struct timeval * tv)340 void do_gettimeofday(struct timeval *tv)
341 {
342 struct timespec now;
343
344 getnstimeofday(&now);
345 tv->tv_sec = now.tv_sec;
346 tv->tv_usec = now.tv_nsec/1000;
347 }
348
349 EXPORT_SYMBOL(do_gettimeofday);
350 /**
351 * do_settimeofday - Sets the time of day
352 * @tv: pointer to the timespec variable containing the new time
353 *
354 * Sets the time of day to the new time and update NTP and notify hrtimers
355 */
do_settimeofday(const struct timespec * tv)356 int do_settimeofday(const struct timespec *tv)
357 {
358 struct timespec ts_delta;
359 unsigned long flags;
360
361 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
362 return -EINVAL;
363
364 write_seqlock_irqsave(&xtime_lock, flags);
365
366 timekeeping_forward_now();
367
368 ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
369 ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
370 wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
371
372 xtime = *tv;
373
374 timekeeper.ntp_error = 0;
375 ntp_clear();
376
377 update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
378 timekeeper.mult);
379
380 write_sequnlock_irqrestore(&xtime_lock, flags);
381
382 /* signal hrtimers about time change */
383 clock_was_set();
384
385 return 0;
386 }
387
388 EXPORT_SYMBOL(do_settimeofday);
389
390
391 /**
392 * timekeeping_inject_offset - Adds or subtracts from the current time.
393 * @tv: pointer to the timespec variable containing the offset
394 *
395 * Adds or subtracts an offset value from the current time.
396 */
timekeeping_inject_offset(struct timespec * ts)397 int timekeeping_inject_offset(struct timespec *ts)
398 {
399 unsigned long flags;
400
401 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
402 return -EINVAL;
403
404 write_seqlock_irqsave(&xtime_lock, flags);
405
406 timekeeping_forward_now();
407
408 xtime = timespec_add(xtime, *ts);
409 wall_to_monotonic = timespec_sub(wall_to_monotonic, *ts);
410
411 timekeeper.ntp_error = 0;
412 ntp_clear();
413
414 update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
415 timekeeper.mult);
416
417 write_sequnlock_irqrestore(&xtime_lock, flags);
418
419 /* signal hrtimers about time change */
420 clock_was_set();
421
422 return 0;
423 }
424 EXPORT_SYMBOL(timekeeping_inject_offset);
425
426 /**
427 * change_clocksource - Swaps clocksources if a new one is available
428 *
429 * Accumulates current time interval and initializes new clocksource
430 */
change_clocksource(void * data)431 static int change_clocksource(void *data)
432 {
433 struct clocksource *new, *old;
434
435 new = (struct clocksource *) data;
436
437 timekeeping_forward_now();
438 if (!new->enable || new->enable(new) == 0) {
439 old = timekeeper.clock;
440 timekeeper_setup_internals(new);
441 if (old->disable)
442 old->disable(old);
443 }
444 return 0;
445 }
446
447 /**
448 * timekeeping_notify - Install a new clock source
449 * @clock: pointer to the clock source
450 *
451 * This function is called from clocksource.c after a new, better clock
452 * source has been registered. The caller holds the clocksource_mutex.
453 */
timekeeping_notify(struct clocksource * clock)454 void timekeeping_notify(struct clocksource *clock)
455 {
456 if (timekeeper.clock == clock)
457 return;
458 stop_machine(change_clocksource, clock, NULL);
459 tick_clock_notify();
460 }
461
462 /**
463 * ktime_get_real - get the real (wall-) time in ktime_t format
464 *
465 * returns the time in ktime_t format
466 */
ktime_get_real(void)467 ktime_t ktime_get_real(void)
468 {
469 struct timespec now;
470
471 getnstimeofday(&now);
472
473 return timespec_to_ktime(now);
474 }
475 EXPORT_SYMBOL_GPL(ktime_get_real);
476
477 /**
478 * getrawmonotonic - Returns the raw monotonic time in a timespec
479 * @ts: pointer to the timespec to be set
480 *
481 * Returns the raw monotonic time (completely un-modified by ntp)
482 */
getrawmonotonic(struct timespec * ts)483 void getrawmonotonic(struct timespec *ts)
484 {
485 unsigned long seq;
486 s64 nsecs;
487
488 do {
489 seq = read_seqbegin(&xtime_lock);
490 nsecs = timekeeping_get_ns_raw();
491 *ts = raw_time;
492
493 } while (read_seqretry(&xtime_lock, seq));
494
495 timespec_add_ns(ts, nsecs);
496 }
497 EXPORT_SYMBOL(getrawmonotonic);
498
499
500 /**
501 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
502 */
timekeeping_valid_for_hres(void)503 int timekeeping_valid_for_hres(void)
504 {
505 unsigned long seq;
506 int ret;
507
508 do {
509 seq = read_seqbegin(&xtime_lock);
510
511 ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
512
513 } while (read_seqretry(&xtime_lock, seq));
514
515 return ret;
516 }
517
518 /**
519 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
520 *
521 * Caller must observe xtime_lock via read_seqbegin/read_seqretry to
522 * ensure that the clocksource does not change!
523 */
timekeeping_max_deferment(void)524 u64 timekeeping_max_deferment(void)
525 {
526 return timekeeper.clock->max_idle_ns;
527 }
528
529 /**
530 * read_persistent_clock - Return time from the persistent clock.
531 *
532 * Weak dummy function for arches that do not yet support it.
533 * Reads the time from the battery backed persistent clock.
534 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
535 *
536 * XXX - Do be sure to remove it once all arches implement it.
537 */
read_persistent_clock(struct timespec * ts)538 void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
539 {
540 ts->tv_sec = 0;
541 ts->tv_nsec = 0;
542 }
543
544 /**
545 * read_boot_clock - Return time of the system start.
546 *
547 * Weak dummy function for arches that do not yet support it.
548 * Function to read the exact time the system has been started.
549 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
550 *
551 * XXX - Do be sure to remove it once all arches implement it.
552 */
read_boot_clock(struct timespec * ts)553 void __attribute__((weak)) read_boot_clock(struct timespec *ts)
554 {
555 ts->tv_sec = 0;
556 ts->tv_nsec = 0;
557 }
558
559 /*
560 * timekeeping_init - Initializes the clocksource and common timekeeping values
561 */
timekeeping_init(void)562 void __init timekeeping_init(void)
563 {
564 struct clocksource *clock;
565 unsigned long flags;
566 struct timespec now, boot;
567
568 read_persistent_clock(&now);
569 read_boot_clock(&boot);
570
571 write_seqlock_irqsave(&xtime_lock, flags);
572
573 ntp_init();
574
575 clock = clocksource_default_clock();
576 if (clock->enable)
577 clock->enable(clock);
578 timekeeper_setup_internals(clock);
579
580 xtime.tv_sec = now.tv_sec;
581 xtime.tv_nsec = now.tv_nsec;
582 raw_time.tv_sec = 0;
583 raw_time.tv_nsec = 0;
584 if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
585 boot.tv_sec = xtime.tv_sec;
586 boot.tv_nsec = xtime.tv_nsec;
587 }
588 set_normalized_timespec(&wall_to_monotonic,
589 -boot.tv_sec, -boot.tv_nsec);
590 total_sleep_time.tv_sec = 0;
591 total_sleep_time.tv_nsec = 0;
592 write_sequnlock_irqrestore(&xtime_lock, flags);
593 }
594
595 /* time in seconds when suspend began */
596 static struct timespec timekeeping_suspend_time;
597
598 /**
599 * timekeeping_resume - Resumes the generic timekeeping subsystem.
600 *
601 * This is for the generic clocksource timekeeping.
602 * xtime/wall_to_monotonic/jiffies/etc are
603 * still managed by arch specific suspend/resume code.
604 */
timekeeping_resume(void)605 static void timekeeping_resume(void)
606 {
607 unsigned long flags;
608 struct timespec ts;
609
610 read_persistent_clock(&ts);
611
612 clocksource_resume();
613
614 write_seqlock_irqsave(&xtime_lock, flags);
615
616 if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
617 ts = timespec_sub(ts, timekeeping_suspend_time);
618 xtime = timespec_add(xtime, ts);
619 wall_to_monotonic = timespec_sub(wall_to_monotonic, ts);
620 total_sleep_time = timespec_add(total_sleep_time, ts);
621 }
622 /* re-base the last cycle value */
623 timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
624 timekeeper.ntp_error = 0;
625 timekeeping_suspended = 0;
626 write_sequnlock_irqrestore(&xtime_lock, flags);
627
628 touch_softlockup_watchdog();
629
630 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
631
632 /* Resume hrtimers */
633 hres_timers_resume();
634 }
635
timekeeping_suspend(void)636 static int timekeeping_suspend(void)
637 {
638 unsigned long flags;
639
640 read_persistent_clock(&timekeeping_suspend_time);
641
642 write_seqlock_irqsave(&xtime_lock, flags);
643 timekeeping_forward_now();
644 timekeeping_suspended = 1;
645 write_sequnlock_irqrestore(&xtime_lock, flags);
646
647 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
648 clocksource_suspend();
649
650 return 0;
651 }
652
653 /* sysfs resume/suspend bits for timekeeping */
654 static struct syscore_ops timekeeping_syscore_ops = {
655 .resume = timekeeping_resume,
656 .suspend = timekeeping_suspend,
657 };
658
timekeeping_init_ops(void)659 static int __init timekeeping_init_ops(void)
660 {
661 register_syscore_ops(&timekeeping_syscore_ops);
662 return 0;
663 }
664
665 device_initcall(timekeeping_init_ops);
666
667 /*
668 * If the error is already larger, we look ahead even further
669 * to compensate for late or lost adjustments.
670 */
timekeeping_bigadjust(s64 error,s64 * interval,s64 * offset)671 static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
672 s64 *offset)
673 {
674 s64 tick_error, i;
675 u32 look_ahead, adj;
676 s32 error2, mult;
677
678 /*
679 * Use the current error value to determine how much to look ahead.
680 * The larger the error the slower we adjust for it to avoid problems
681 * with losing too many ticks, otherwise we would overadjust and
682 * produce an even larger error. The smaller the adjustment the
683 * faster we try to adjust for it, as lost ticks can do less harm
684 * here. This is tuned so that an error of about 1 msec is adjusted
685 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
686 */
687 error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
688 error2 = abs(error2);
689 for (look_ahead = 0; error2 > 0; look_ahead++)
690 error2 >>= 2;
691
692 /*
693 * Now calculate the error in (1 << look_ahead) ticks, but first
694 * remove the single look ahead already included in the error.
695 */
696 tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
697 tick_error -= timekeeper.xtime_interval >> 1;
698 error = ((error - tick_error) >> look_ahead) + tick_error;
699
700 /* Finally calculate the adjustment shift value. */
701 i = *interval;
702 mult = 1;
703 if (error < 0) {
704 error = -error;
705 *interval = -*interval;
706 *offset = -*offset;
707 mult = -1;
708 }
709 for (adj = 0; error > i; adj++)
710 error >>= 1;
711
712 *interval <<= adj;
713 *offset <<= adj;
714 return mult << adj;
715 }
716
717 /*
718 * Adjust the multiplier to reduce the error value,
719 * this is optimized for the most common adjustments of -1,0,1,
720 * for other values we can do a bit more work.
721 */
timekeeping_adjust(s64 offset)722 static void timekeeping_adjust(s64 offset)
723 {
724 s64 error, interval = timekeeper.cycle_interval;
725 int adj;
726
727 error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
728 if (error > interval) {
729 error >>= 2;
730 if (likely(error <= interval))
731 adj = 1;
732 else
733 adj = timekeeping_bigadjust(error, &interval, &offset);
734 } else if (error < -interval) {
735 error >>= 2;
736 if (likely(error >= -interval)) {
737 adj = -1;
738 interval = -interval;
739 offset = -offset;
740 } else
741 adj = timekeeping_bigadjust(error, &interval, &offset);
742 } else
743 return;
744
745 timekeeper.mult += adj;
746 timekeeper.xtime_interval += interval;
747 timekeeper.xtime_nsec -= offset;
748 timekeeper.ntp_error -= (interval - offset) <<
749 timekeeper.ntp_error_shift;
750 }
751
752
753 /**
754 * logarithmic_accumulation - shifted accumulation of cycles
755 *
756 * This functions accumulates a shifted interval of cycles into
757 * into a shifted interval nanoseconds. Allows for O(log) accumulation
758 * loop.
759 *
760 * Returns the unconsumed cycles.
761 */
logarithmic_accumulation(cycle_t offset,int shift)762 static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
763 {
764 u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
765 u64 raw_nsecs;
766
767 /* If the offset is smaller then a shifted interval, do nothing */
768 if (offset < timekeeper.cycle_interval<<shift)
769 return offset;
770
771 /* Accumulate one shifted interval */
772 offset -= timekeeper.cycle_interval << shift;
773 timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;
774
775 timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
776 while (timekeeper.xtime_nsec >= nsecps) {
777 timekeeper.xtime_nsec -= nsecps;
778 xtime.tv_sec++;
779 second_overflow();
780 }
781
782 /* Accumulate raw time */
783 raw_nsecs = timekeeper.raw_interval << shift;
784 raw_nsecs += raw_time.tv_nsec;
785 if (raw_nsecs >= NSEC_PER_SEC) {
786 u64 raw_secs = raw_nsecs;
787 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
788 raw_time.tv_sec += raw_secs;
789 }
790 raw_time.tv_nsec = raw_nsecs;
791
792 /* Accumulate error between NTP and clock interval */
793 timekeeper.ntp_error += tick_length << shift;
794 timekeeper.ntp_error -=
795 (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
796 (timekeeper.ntp_error_shift + shift);
797
798 return offset;
799 }
800
801
802 /**
803 * update_wall_time - Uses the current clocksource to increment the wall time
804 *
805 * Called from the timer interrupt, must hold a write on xtime_lock.
806 */
update_wall_time(void)807 static void update_wall_time(void)
808 {
809 struct clocksource *clock;
810 cycle_t offset;
811 int shift = 0, maxshift;
812
813 /* Make sure we're fully resumed: */
814 if (unlikely(timekeeping_suspended))
815 return;
816
817 clock = timekeeper.clock;
818
819 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
820 offset = timekeeper.cycle_interval;
821 #else
822 offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
823 #endif
824 timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift;
825
826 /*
827 * With NO_HZ we may have to accumulate many cycle_intervals
828 * (think "ticks") worth of time at once. To do this efficiently,
829 * we calculate the largest doubling multiple of cycle_intervals
830 * that is smaller then the offset. We then accumulate that
831 * chunk in one go, and then try to consume the next smaller
832 * doubled multiple.
833 */
834 shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
835 shift = max(0, shift);
836 /* Bound shift to one less then what overflows tick_length */
837 maxshift = (8*sizeof(tick_length) - (ilog2(tick_length)+1)) - 1;
838 shift = min(shift, maxshift);
839 while (offset >= timekeeper.cycle_interval) {
840 offset = logarithmic_accumulation(offset, shift);
841 if(offset < timekeeper.cycle_interval<<shift)
842 shift--;
843 }
844
845 /* correct the clock when NTP error is too big */
846 timekeeping_adjust(offset);
847
848 /*
849 * Since in the loop above, we accumulate any amount of time
850 * in xtime_nsec over a second into xtime.tv_sec, its possible for
851 * xtime_nsec to be fairly small after the loop. Further, if we're
852 * slightly speeding the clocksource up in timekeeping_adjust(),
853 * its possible the required corrective factor to xtime_nsec could
854 * cause it to underflow.
855 *
856 * Now, we cannot simply roll the accumulated second back, since
857 * the NTP subsystem has been notified via second_overflow. So
858 * instead we push xtime_nsec forward by the amount we underflowed,
859 * and add that amount into the error.
860 *
861 * We'll correct this error next time through this function, when
862 * xtime_nsec is not as small.
863 */
864 if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
865 s64 neg = -(s64)timekeeper.xtime_nsec;
866 timekeeper.xtime_nsec = 0;
867 timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
868 }
869
870
871 /*
872 * Store full nanoseconds into xtime after rounding it up and
873 * add the remainder to the error difference.
874 */
875 xtime.tv_nsec = ((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1;
876 timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift;
877 timekeeper.ntp_error += timekeeper.xtime_nsec <<
878 timekeeper.ntp_error_shift;
879
880 /*
881 * Finally, make sure that after the rounding
882 * xtime.tv_nsec isn't larger then NSEC_PER_SEC
883 */
884 if (unlikely(xtime.tv_nsec >= NSEC_PER_SEC)) {
885 xtime.tv_nsec -= NSEC_PER_SEC;
886 xtime.tv_sec++;
887 second_overflow();
888 }
889
890 /* check to see if there is a new clocksource to use */
891 update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
892 timekeeper.mult);
893 }
894
895 /**
896 * getboottime - Return the real time of system boot.
897 * @ts: pointer to the timespec to be set
898 *
899 * Returns the wall-time of boot in a timespec.
900 *
901 * This is based on the wall_to_monotonic offset and the total suspend
902 * time. Calls to settimeofday will affect the value returned (which
903 * basically means that however wrong your real time clock is at boot time,
904 * you get the right time here).
905 */
getboottime(struct timespec * ts)906 void getboottime(struct timespec *ts)
907 {
908 struct timespec boottime = {
909 .tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec,
910 .tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec
911 };
912
913 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
914 }
915 EXPORT_SYMBOL_GPL(getboottime);
916
917
918 /**
919 * get_monotonic_boottime - Returns monotonic time since boot
920 * @ts: pointer to the timespec to be set
921 *
922 * Returns the monotonic time since boot in a timespec.
923 *
924 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
925 * includes the time spent in suspend.
926 */
get_monotonic_boottime(struct timespec * ts)927 void get_monotonic_boottime(struct timespec *ts)
928 {
929 struct timespec tomono, sleep;
930 unsigned int seq;
931 s64 nsecs;
932
933 WARN_ON(timekeeping_suspended);
934
935 do {
936 seq = read_seqbegin(&xtime_lock);
937 *ts = xtime;
938 tomono = wall_to_monotonic;
939 sleep = total_sleep_time;
940 nsecs = timekeeping_get_ns();
941
942 } while (read_seqretry(&xtime_lock, seq));
943
944 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
945 ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec + nsecs);
946 }
947 EXPORT_SYMBOL_GPL(get_monotonic_boottime);
948
949 /**
950 * ktime_get_boottime - Returns monotonic time since boot in a ktime
951 *
952 * Returns the monotonic time since boot in a ktime
953 *
954 * This is similar to CLOCK_MONTONIC/ktime_get, but also
955 * includes the time spent in suspend.
956 */
ktime_get_boottime(void)957 ktime_t ktime_get_boottime(void)
958 {
959 struct timespec ts;
960
961 get_monotonic_boottime(&ts);
962 return timespec_to_ktime(ts);
963 }
964 EXPORT_SYMBOL_GPL(ktime_get_boottime);
965
966 /**
967 * monotonic_to_bootbased - Convert the monotonic time to boot based.
968 * @ts: pointer to the timespec to be converted
969 */
monotonic_to_bootbased(struct timespec * ts)970 void monotonic_to_bootbased(struct timespec *ts)
971 {
972 *ts = timespec_add(*ts, total_sleep_time);
973 }
974 EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
975
get_seconds(void)976 unsigned long get_seconds(void)
977 {
978 return xtime.tv_sec;
979 }
980 EXPORT_SYMBOL(get_seconds);
981
__current_kernel_time(void)982 struct timespec __current_kernel_time(void)
983 {
984 return xtime;
985 }
986
current_kernel_time(void)987 struct timespec current_kernel_time(void)
988 {
989 struct timespec now;
990 unsigned long seq;
991
992 do {
993 seq = read_seqbegin(&xtime_lock);
994
995 now = xtime;
996 } while (read_seqretry(&xtime_lock, seq));
997
998 return now;
999 }
1000 EXPORT_SYMBOL(current_kernel_time);
1001
get_monotonic_coarse(void)1002 struct timespec get_monotonic_coarse(void)
1003 {
1004 struct timespec now, mono;
1005 unsigned long seq;
1006
1007 do {
1008 seq = read_seqbegin(&xtime_lock);
1009
1010 now = xtime;
1011 mono = wall_to_monotonic;
1012 } while (read_seqretry(&xtime_lock, seq));
1013
1014 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
1015 now.tv_nsec + mono.tv_nsec);
1016 return now;
1017 }
1018
1019 /*
1020 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1021 * without sampling the sequence number in xtime_lock.
1022 * jiffies is defined in the linker script...
1023 */
do_timer(unsigned long ticks)1024 void do_timer(unsigned long ticks)
1025 {
1026 jiffies_64 += ticks;
1027 update_wall_time();
1028 calc_global_load(ticks);
1029 }
1030
1031 /**
1032 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
1033 * and sleep offsets.
1034 * @xtim: pointer to timespec to be set with xtime
1035 * @wtom: pointer to timespec to be set with wall_to_monotonic
1036 * @sleep: pointer to timespec to be set with time in suspend
1037 */
get_xtime_and_monotonic_and_sleep_offset(struct timespec * xtim,struct timespec * wtom,struct timespec * sleep)1038 void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
1039 struct timespec *wtom, struct timespec *sleep)
1040 {
1041 unsigned long seq;
1042
1043 do {
1044 seq = read_seqbegin(&xtime_lock);
1045 *xtim = xtime;
1046 *wtom = wall_to_monotonic;
1047 *sleep = total_sleep_time;
1048 } while (read_seqretry(&xtime_lock, seq));
1049 }
1050
1051 /**
1052 * xtime_update() - advances the timekeeping infrastructure
1053 * @ticks: number of ticks, that have elapsed since the last call.
1054 *
1055 * Must be called with interrupts disabled.
1056 */
xtime_update(unsigned long ticks)1057 void xtime_update(unsigned long ticks)
1058 {
1059 write_seqlock(&xtime_lock);
1060 do_timer(ticks);
1061 write_sequnlock(&xtime_lock);
1062 }
1063