1 #include <linux/mm.h>
2 #include <linux/slab.h>
3 #include <linux/string.h>
4 #include <linux/export.h>
5 #include <linux/err.h>
6 #include <linux/sched.h>
7 #include <asm/uaccess.h>
8
9 #include "internal.h"
10
11 #define CREATE_TRACE_POINTS
12 #include <trace/events/kmem.h>
13
14 /**
15 * kstrdup - allocate space for and copy an existing string
16 * @s: the string to duplicate
17 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
18 */
kstrdup(const char * s,gfp_t gfp)19 char *kstrdup(const char *s, gfp_t gfp)
20 {
21 size_t len;
22 char *buf;
23
24 if (!s)
25 return NULL;
26
27 len = strlen(s) + 1;
28 buf = kmalloc_track_caller(len, gfp);
29 if (buf)
30 memcpy(buf, s, len);
31 return buf;
32 }
33 EXPORT_SYMBOL(kstrdup);
34
35 /**
36 * kstrndup - allocate space for and copy an existing string
37 * @s: the string to duplicate
38 * @max: read at most @max chars from @s
39 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
40 */
kstrndup(const char * s,size_t max,gfp_t gfp)41 char *kstrndup(const char *s, size_t max, gfp_t gfp)
42 {
43 size_t len;
44 char *buf;
45
46 if (!s)
47 return NULL;
48
49 len = strnlen(s, max);
50 buf = kmalloc_track_caller(len+1, gfp);
51 if (buf) {
52 memcpy(buf, s, len);
53 buf[len] = '\0';
54 }
55 return buf;
56 }
57 EXPORT_SYMBOL(kstrndup);
58
59 /**
60 * kmemdup - duplicate region of memory
61 *
62 * @src: memory region to duplicate
63 * @len: memory region length
64 * @gfp: GFP mask to use
65 */
kmemdup(const void * src,size_t len,gfp_t gfp)66 void *kmemdup(const void *src, size_t len, gfp_t gfp)
67 {
68 void *p;
69
70 p = kmalloc_track_caller(len, gfp);
71 if (p)
72 memcpy(p, src, len);
73 return p;
74 }
75 EXPORT_SYMBOL(kmemdup);
76
77 /**
78 * memdup_user - duplicate memory region from user space
79 *
80 * @src: source address in user space
81 * @len: number of bytes to copy
82 *
83 * Returns an ERR_PTR() on failure.
84 */
memdup_user(const void __user * src,size_t len)85 void *memdup_user(const void __user *src, size_t len)
86 {
87 void *p;
88
89 /*
90 * Always use GFP_KERNEL, since copy_from_user() can sleep and
91 * cause pagefault, which makes it pointless to use GFP_NOFS
92 * or GFP_ATOMIC.
93 */
94 p = kmalloc_track_caller(len, GFP_KERNEL);
95 if (!p)
96 return ERR_PTR(-ENOMEM);
97
98 if (copy_from_user(p, src, len)) {
99 kfree(p);
100 return ERR_PTR(-EFAULT);
101 }
102
103 return p;
104 }
105 EXPORT_SYMBOL(memdup_user);
106
107 /**
108 * __krealloc - like krealloc() but don't free @p.
109 * @p: object to reallocate memory for.
110 * @new_size: how many bytes of memory are required.
111 * @flags: the type of memory to allocate.
112 *
113 * This function is like krealloc() except it never frees the originally
114 * allocated buffer. Use this if you don't want to free the buffer immediately
115 * like, for example, with RCU.
116 */
__krealloc(const void * p,size_t new_size,gfp_t flags)117 void *__krealloc(const void *p, size_t new_size, gfp_t flags)
118 {
119 void *ret;
120 size_t ks = 0;
121
122 if (unlikely(!new_size))
123 return ZERO_SIZE_PTR;
124
125 if (p)
126 ks = ksize(p);
127
128 if (ks >= new_size)
129 return (void *)p;
130
131 ret = kmalloc_track_caller(new_size, flags);
132 if (ret && p)
133 memcpy(ret, p, ks);
134
135 return ret;
136 }
137 EXPORT_SYMBOL(__krealloc);
138
139 /**
140 * krealloc - reallocate memory. The contents will remain unchanged.
141 * @p: object to reallocate memory for.
142 * @new_size: how many bytes of memory are required.
143 * @flags: the type of memory to allocate.
144 *
145 * The contents of the object pointed to are preserved up to the
146 * lesser of the new and old sizes. If @p is %NULL, krealloc()
147 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
148 * %NULL pointer, the object pointed to is freed.
149 */
krealloc(const void * p,size_t new_size,gfp_t flags)150 void *krealloc(const void *p, size_t new_size, gfp_t flags)
151 {
152 void *ret;
153
154 if (unlikely(!new_size)) {
155 kfree(p);
156 return ZERO_SIZE_PTR;
157 }
158
159 ret = __krealloc(p, new_size, flags);
160 if (ret && p != ret)
161 kfree(p);
162
163 return ret;
164 }
165 EXPORT_SYMBOL(krealloc);
166
167 /**
168 * kzfree - like kfree but zero memory
169 * @p: object to free memory of
170 *
171 * The memory of the object @p points to is zeroed before freed.
172 * If @p is %NULL, kzfree() does nothing.
173 *
174 * Note: this function zeroes the whole allocated buffer which can be a good
175 * deal bigger than the requested buffer size passed to kmalloc(). So be
176 * careful when using this function in performance sensitive code.
177 */
kzfree(const void * p)178 void kzfree(const void *p)
179 {
180 size_t ks;
181 void *mem = (void *)p;
182
183 if (unlikely(ZERO_OR_NULL_PTR(mem)))
184 return;
185 ks = ksize(mem);
186 memset(mem, 0, ks);
187 kfree(mem);
188 }
189 EXPORT_SYMBOL(kzfree);
190
191 /*
192 * strndup_user - duplicate an existing string from user space
193 * @s: The string to duplicate
194 * @n: Maximum number of bytes to copy, including the trailing NUL.
195 */
strndup_user(const char __user * s,long n)196 char *strndup_user(const char __user *s, long n)
197 {
198 char *p;
199 long length;
200
201 length = strnlen_user(s, n);
202
203 if (!length)
204 return ERR_PTR(-EFAULT);
205
206 if (length > n)
207 return ERR_PTR(-EINVAL);
208
209 p = memdup_user(s, length);
210
211 if (IS_ERR(p))
212 return p;
213
214 p[length - 1] = '\0';
215
216 return p;
217 }
218 EXPORT_SYMBOL(strndup_user);
219
__vma_link_list(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node * rb_parent)220 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
221 struct vm_area_struct *prev, struct rb_node *rb_parent)
222 {
223 struct vm_area_struct *next;
224
225 vma->vm_prev = prev;
226 if (prev) {
227 next = prev->vm_next;
228 prev->vm_next = vma;
229 } else {
230 mm->mmap = vma;
231 if (rb_parent)
232 next = rb_entry(rb_parent,
233 struct vm_area_struct, vm_rb);
234 else
235 next = NULL;
236 }
237 vma->vm_next = next;
238 if (next)
239 next->vm_prev = vma;
240 }
241
242 /* Check if the vma is being used as a stack by this task */
vm_is_stack_for_task(struct task_struct * t,struct vm_area_struct * vma)243 static int vm_is_stack_for_task(struct task_struct *t,
244 struct vm_area_struct *vma)
245 {
246 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
247 }
248
249 /*
250 * Check if the vma is being used as a stack.
251 * If is_group is non-zero, check in the entire thread group or else
252 * just check in the current task. Returns the pid of the task that
253 * the vma is stack for.
254 */
vm_is_stack(struct task_struct * task,struct vm_area_struct * vma,int in_group)255 pid_t vm_is_stack(struct task_struct *task,
256 struct vm_area_struct *vma, int in_group)
257 {
258 pid_t ret = 0;
259
260 if (vm_is_stack_for_task(task, vma))
261 return task->pid;
262
263 if (in_group) {
264 struct task_struct *t;
265 rcu_read_lock();
266 if (!pid_alive(task))
267 goto done;
268
269 t = task;
270 do {
271 if (vm_is_stack_for_task(t, vma)) {
272 ret = t->pid;
273 goto done;
274 }
275 } while_each_thread(task, t);
276 done:
277 rcu_read_unlock();
278 }
279
280 return ret;
281 }
282
283 #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
arch_pick_mmap_layout(struct mm_struct * mm)284 void arch_pick_mmap_layout(struct mm_struct *mm)
285 {
286 mm->mmap_base = TASK_UNMAPPED_BASE;
287 mm->get_unmapped_area = arch_get_unmapped_area;
288 mm->unmap_area = arch_unmap_area;
289 }
290 #endif
291
292 /*
293 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
294 * back to the regular GUP.
295 * If the architecture not support this function, simply return with no
296 * page pinned
297 */
__get_user_pages_fast(unsigned long start,int nr_pages,int write,struct page ** pages)298 int __attribute__((weak)) __get_user_pages_fast(unsigned long start,
299 int nr_pages, int write, struct page **pages)
300 {
301 return 0;
302 }
303 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
304
305 /**
306 * get_user_pages_fast() - pin user pages in memory
307 * @start: starting user address
308 * @nr_pages: number of pages from start to pin
309 * @write: whether pages will be written to
310 * @pages: array that receives pointers to the pages pinned.
311 * Should be at least nr_pages long.
312 *
313 * Returns number of pages pinned. This may be fewer than the number
314 * requested. If nr_pages is 0 or negative, returns 0. If no pages
315 * were pinned, returns -errno.
316 *
317 * get_user_pages_fast provides equivalent functionality to get_user_pages,
318 * operating on current and current->mm, with force=0 and vma=NULL. However
319 * unlike get_user_pages, it must be called without mmap_sem held.
320 *
321 * get_user_pages_fast may take mmap_sem and page table locks, so no
322 * assumptions can be made about lack of locking. get_user_pages_fast is to be
323 * implemented in a way that is advantageous (vs get_user_pages()) when the
324 * user memory area is already faulted in and present in ptes. However if the
325 * pages have to be faulted in, it may turn out to be slightly slower so
326 * callers need to carefully consider what to use. On many architectures,
327 * get_user_pages_fast simply falls back to get_user_pages.
328 */
get_user_pages_fast(unsigned long start,int nr_pages,int write,struct page ** pages)329 int __attribute__((weak)) get_user_pages_fast(unsigned long start,
330 int nr_pages, int write, struct page **pages)
331 {
332 struct mm_struct *mm = current->mm;
333 int ret;
334
335 down_read(&mm->mmap_sem);
336 ret = get_user_pages(current, mm, start, nr_pages,
337 write, 0, pages, NULL);
338 up_read(&mm->mmap_sem);
339
340 return ret;
341 }
342 EXPORT_SYMBOL_GPL(get_user_pages_fast);
343
344 /* Tracepoints definitions. */
345 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
346 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
347 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
348 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
349 EXPORT_TRACEPOINT_SYMBOL(kfree);
350 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
351