1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Slab allocator functions that are independent of the allocator strategy
4 *
5 * (C) 2012 Christoph Lameter <cl@linux.com>
6 */
7 #include <linux/slab.h>
8
9 #include <linux/mm.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/cache.h>
14 #include <linux/compiler.h>
15 #include <linux/kfence.h>
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/uaccess.h>
19 #include <linux/seq_file.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/swiotlb.h>
22 #include <linux/proc_fs.h>
23 #include <linux/debugfs.h>
24 #include <linux/kasan.h>
25 #include <asm/cacheflush.h>
26 #include <asm/tlbflush.h>
27 #include <asm/page.h>
28 #include <linux/memcontrol.h>
29 #include <linux/stackdepot.h>
30
31 #include "internal.h"
32 #include "slab.h"
33
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/kmem.h>
36
37 enum slab_state slab_state;
38 LIST_HEAD(slab_caches);
39 DEFINE_MUTEX(slab_mutex);
40 struct kmem_cache *kmem_cache;
41
42 static LIST_HEAD(slab_caches_to_rcu_destroy);
43 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
44 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
45 slab_caches_to_rcu_destroy_workfn);
46
47 /*
48 * Set of flags that will prevent slab merging
49 */
50 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
51 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
52 SLAB_FAILSLAB | SLAB_NO_MERGE | kasan_never_merge())
53
54 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
55 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
56
57 /*
58 * Merge control. If this is set then no merging of slab caches will occur.
59 */
60 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
61
setup_slab_nomerge(char * str)62 static int __init setup_slab_nomerge(char *str)
63 {
64 slab_nomerge = true;
65 return 1;
66 }
67
setup_slab_merge(char * str)68 static int __init setup_slab_merge(char *str)
69 {
70 slab_nomerge = false;
71 return 1;
72 }
73
74 #ifdef CONFIG_SLUB
75 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
76 __setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
77 #endif
78
79 __setup("slab_nomerge", setup_slab_nomerge);
80 __setup("slab_merge", setup_slab_merge);
81
82 /*
83 * Determine the size of a slab object
84 */
kmem_cache_size(struct kmem_cache * s)85 unsigned int kmem_cache_size(struct kmem_cache *s)
86 {
87 return s->object_size;
88 }
89 EXPORT_SYMBOL(kmem_cache_size);
90
91 #ifdef CONFIG_DEBUG_VM
kmem_cache_sanity_check(const char * name,unsigned int size)92 static int kmem_cache_sanity_check(const char *name, unsigned int size)
93 {
94 if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
95 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
96 return -EINVAL;
97 }
98
99 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
100 return 0;
101 }
102 #else
kmem_cache_sanity_check(const char * name,unsigned int size)103 static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
104 {
105 return 0;
106 }
107 #endif
108
109 /*
110 * Figure out what the alignment of the objects will be given a set of
111 * flags, a user specified alignment and the size of the objects.
112 */
calculate_alignment(slab_flags_t flags,unsigned int align,unsigned int size)113 static unsigned int calculate_alignment(slab_flags_t flags,
114 unsigned int align, unsigned int size)
115 {
116 /*
117 * If the user wants hardware cache aligned objects then follow that
118 * suggestion if the object is sufficiently large.
119 *
120 * The hardware cache alignment cannot override the specified
121 * alignment though. If that is greater then use it.
122 */
123 if (flags & SLAB_HWCACHE_ALIGN) {
124 unsigned int ralign;
125
126 ralign = cache_line_size();
127 while (size <= ralign / 2)
128 ralign /= 2;
129 align = max(align, ralign);
130 }
131
132 align = max(align, arch_slab_minalign());
133
134 return ALIGN(align, sizeof(void *));
135 }
136
137 /*
138 * Find a mergeable slab cache
139 */
slab_unmergeable(struct kmem_cache * s)140 int slab_unmergeable(struct kmem_cache *s)
141 {
142 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
143 return 1;
144
145 if (s->ctor)
146 return 1;
147
148 #ifdef CONFIG_HARDENED_USERCOPY
149 if (s->usersize)
150 return 1;
151 #endif
152
153 /*
154 * We may have set a slab to be unmergeable during bootstrap.
155 */
156 if (s->refcount < 0)
157 return 1;
158
159 return 0;
160 }
161
find_mergeable(unsigned int size,unsigned int align,slab_flags_t flags,const char * name,void (* ctor)(void *))162 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
163 slab_flags_t flags, const char *name, void (*ctor)(void *))
164 {
165 struct kmem_cache *s;
166
167 if (slab_nomerge)
168 return NULL;
169
170 if (ctor)
171 return NULL;
172
173 size = ALIGN(size, sizeof(void *));
174 align = calculate_alignment(flags, align, size);
175 size = ALIGN(size, align);
176 flags = kmem_cache_flags(size, flags, name);
177
178 if (flags & SLAB_NEVER_MERGE)
179 return NULL;
180
181 list_for_each_entry_reverse(s, &slab_caches, list) {
182 if (slab_unmergeable(s))
183 continue;
184
185 if (size > s->size)
186 continue;
187
188 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
189 continue;
190 /*
191 * Check if alignment is compatible.
192 * Courtesy of Adrian Drzewiecki
193 */
194 if ((s->size & ~(align - 1)) != s->size)
195 continue;
196
197 if (s->size - size >= sizeof(void *))
198 continue;
199
200 if (IS_ENABLED(CONFIG_SLAB) && align &&
201 (align > s->align || s->align % align))
202 continue;
203
204 return s;
205 }
206 return NULL;
207 }
208
create_cache(const char * name,unsigned int object_size,unsigned int align,slab_flags_t flags,unsigned int useroffset,unsigned int usersize,void (* ctor)(void *),struct kmem_cache * root_cache)209 static struct kmem_cache *create_cache(const char *name,
210 unsigned int object_size, unsigned int align,
211 slab_flags_t flags, unsigned int useroffset,
212 unsigned int usersize, void (*ctor)(void *),
213 struct kmem_cache *root_cache)
214 {
215 struct kmem_cache *s;
216 int err;
217
218 if (WARN_ON(useroffset + usersize > object_size))
219 useroffset = usersize = 0;
220
221 err = -ENOMEM;
222 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
223 if (!s)
224 goto out;
225
226 s->name = name;
227 s->size = s->object_size = object_size;
228 s->align = align;
229 s->ctor = ctor;
230 #ifdef CONFIG_HARDENED_USERCOPY
231 s->useroffset = useroffset;
232 s->usersize = usersize;
233 #endif
234
235 err = __kmem_cache_create(s, flags);
236 if (err)
237 goto out_free_cache;
238
239 s->refcount = 1;
240 list_add(&s->list, &slab_caches);
241 return s;
242
243 out_free_cache:
244 kmem_cache_free(kmem_cache, s);
245 out:
246 return ERR_PTR(err);
247 }
248
249 /**
250 * kmem_cache_create_usercopy - Create a cache with a region suitable
251 * for copying to userspace
252 * @name: A string which is used in /proc/slabinfo to identify this cache.
253 * @size: The size of objects to be created in this cache.
254 * @align: The required alignment for the objects.
255 * @flags: SLAB flags
256 * @useroffset: Usercopy region offset
257 * @usersize: Usercopy region size
258 * @ctor: A constructor for the objects.
259 *
260 * Cannot be called within a interrupt, but can be interrupted.
261 * The @ctor is run when new pages are allocated by the cache.
262 *
263 * The flags are
264 *
265 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
266 * to catch references to uninitialised memory.
267 *
268 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
269 * for buffer overruns.
270 *
271 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
272 * cacheline. This can be beneficial if you're counting cycles as closely
273 * as davem.
274 *
275 * Return: a pointer to the cache on success, NULL on failure.
276 */
277 struct kmem_cache *
kmem_cache_create_usercopy(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,unsigned int useroffset,unsigned int usersize,void (* ctor)(void *))278 kmem_cache_create_usercopy(const char *name,
279 unsigned int size, unsigned int align,
280 slab_flags_t flags,
281 unsigned int useroffset, unsigned int usersize,
282 void (*ctor)(void *))
283 {
284 struct kmem_cache *s = NULL;
285 const char *cache_name;
286 int err;
287
288 #ifdef CONFIG_SLUB_DEBUG
289 /*
290 * If no slub_debug was enabled globally, the static key is not yet
291 * enabled by setup_slub_debug(). Enable it if the cache is being
292 * created with any of the debugging flags passed explicitly.
293 * It's also possible that this is the first cache created with
294 * SLAB_STORE_USER and we should init stack_depot for it.
295 */
296 if (flags & SLAB_DEBUG_FLAGS)
297 static_branch_enable(&slub_debug_enabled);
298 if (flags & SLAB_STORE_USER)
299 stack_depot_init();
300 #endif
301
302 mutex_lock(&slab_mutex);
303
304 err = kmem_cache_sanity_check(name, size);
305 if (err) {
306 goto out_unlock;
307 }
308
309 /* Refuse requests with allocator specific flags */
310 if (flags & ~SLAB_FLAGS_PERMITTED) {
311 err = -EINVAL;
312 goto out_unlock;
313 }
314
315 /*
316 * Some allocators will constraint the set of valid flags to a subset
317 * of all flags. We expect them to define CACHE_CREATE_MASK in this
318 * case, and we'll just provide them with a sanitized version of the
319 * passed flags.
320 */
321 flags &= CACHE_CREATE_MASK;
322
323 /* Fail closed on bad usersize of useroffset values. */
324 if (!IS_ENABLED(CONFIG_HARDENED_USERCOPY) ||
325 WARN_ON(!usersize && useroffset) ||
326 WARN_ON(size < usersize || size - usersize < useroffset))
327 usersize = useroffset = 0;
328
329 if (!usersize)
330 s = __kmem_cache_alias(name, size, align, flags, ctor);
331 if (s)
332 goto out_unlock;
333
334 cache_name = kstrdup_const(name, GFP_KERNEL);
335 if (!cache_name) {
336 err = -ENOMEM;
337 goto out_unlock;
338 }
339
340 s = create_cache(cache_name, size,
341 calculate_alignment(flags, align, size),
342 flags, useroffset, usersize, ctor, NULL);
343 if (IS_ERR(s)) {
344 err = PTR_ERR(s);
345 kfree_const(cache_name);
346 }
347
348 out_unlock:
349 mutex_unlock(&slab_mutex);
350
351 if (err) {
352 if (flags & SLAB_PANIC)
353 panic("%s: Failed to create slab '%s'. Error %d\n",
354 __func__, name, err);
355 else {
356 pr_warn("%s(%s) failed with error %d\n",
357 __func__, name, err);
358 dump_stack();
359 }
360 return NULL;
361 }
362 return s;
363 }
364 EXPORT_SYMBOL(kmem_cache_create_usercopy);
365
366 /**
367 * kmem_cache_create - Create a cache.
368 * @name: A string which is used in /proc/slabinfo to identify this cache.
369 * @size: The size of objects to be created in this cache.
370 * @align: The required alignment for the objects.
371 * @flags: SLAB flags
372 * @ctor: A constructor for the objects.
373 *
374 * Cannot be called within a interrupt, but can be interrupted.
375 * The @ctor is run when new pages are allocated by the cache.
376 *
377 * The flags are
378 *
379 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
380 * to catch references to uninitialised memory.
381 *
382 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
383 * for buffer overruns.
384 *
385 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
386 * cacheline. This can be beneficial if you're counting cycles as closely
387 * as davem.
388 *
389 * Return: a pointer to the cache on success, NULL on failure.
390 */
391 struct kmem_cache *
kmem_cache_create(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))392 kmem_cache_create(const char *name, unsigned int size, unsigned int align,
393 slab_flags_t flags, void (*ctor)(void *))
394 {
395 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
396 ctor);
397 }
398 EXPORT_SYMBOL(kmem_cache_create);
399
400 #ifdef SLAB_SUPPORTS_SYSFS
401 /*
402 * For a given kmem_cache, kmem_cache_destroy() should only be called
403 * once or there will be a use-after-free problem. The actual deletion
404 * and release of the kobject does not need slab_mutex or cpu_hotplug_lock
405 * protection. So they are now done without holding those locks.
406 *
407 * Note that there will be a slight delay in the deletion of sysfs files
408 * if kmem_cache_release() is called indrectly from a work function.
409 */
kmem_cache_release(struct kmem_cache * s)410 static void kmem_cache_release(struct kmem_cache *s)
411 {
412 sysfs_slab_unlink(s);
413 sysfs_slab_release(s);
414 }
415 #else
kmem_cache_release(struct kmem_cache * s)416 static void kmem_cache_release(struct kmem_cache *s)
417 {
418 slab_kmem_cache_release(s);
419 }
420 #endif
421
slab_caches_to_rcu_destroy_workfn(struct work_struct * work)422 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
423 {
424 LIST_HEAD(to_destroy);
425 struct kmem_cache *s, *s2;
426
427 /*
428 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
429 * @slab_caches_to_rcu_destroy list. The slab pages are freed
430 * through RCU and the associated kmem_cache are dereferenced
431 * while freeing the pages, so the kmem_caches should be freed only
432 * after the pending RCU operations are finished. As rcu_barrier()
433 * is a pretty slow operation, we batch all pending destructions
434 * asynchronously.
435 */
436 mutex_lock(&slab_mutex);
437 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
438 mutex_unlock(&slab_mutex);
439
440 if (list_empty(&to_destroy))
441 return;
442
443 rcu_barrier();
444
445 list_for_each_entry_safe(s, s2, &to_destroy, list) {
446 debugfs_slab_release(s);
447 kfence_shutdown_cache(s);
448 kmem_cache_release(s);
449 }
450 }
451
shutdown_cache(struct kmem_cache * s)452 static int shutdown_cache(struct kmem_cache *s)
453 {
454 /* free asan quarantined objects */
455 kasan_cache_shutdown(s);
456
457 if (__kmem_cache_shutdown(s) != 0)
458 return -EBUSY;
459
460 list_del(&s->list);
461
462 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
463 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
464 schedule_work(&slab_caches_to_rcu_destroy_work);
465 } else {
466 kfence_shutdown_cache(s);
467 debugfs_slab_release(s);
468 }
469
470 return 0;
471 }
472
slab_kmem_cache_release(struct kmem_cache * s)473 void slab_kmem_cache_release(struct kmem_cache *s)
474 {
475 __kmem_cache_release(s);
476 kfree_const(s->name);
477 kmem_cache_free(kmem_cache, s);
478 }
479
kmem_cache_destroy(struct kmem_cache * s)480 void kmem_cache_destroy(struct kmem_cache *s)
481 {
482 int err = -EBUSY;
483 bool rcu_set;
484
485 if (unlikely(!s) || !kasan_check_byte(s))
486 return;
487
488 cpus_read_lock();
489 mutex_lock(&slab_mutex);
490
491 rcu_set = s->flags & SLAB_TYPESAFE_BY_RCU;
492
493 s->refcount--;
494 if (s->refcount)
495 goto out_unlock;
496
497 err = shutdown_cache(s);
498 WARN(err, "%s %s: Slab cache still has objects when called from %pS",
499 __func__, s->name, (void *)_RET_IP_);
500 out_unlock:
501 mutex_unlock(&slab_mutex);
502 cpus_read_unlock();
503 if (!err && !rcu_set)
504 kmem_cache_release(s);
505 }
506 EXPORT_SYMBOL(kmem_cache_destroy);
507
508 /**
509 * kmem_cache_shrink - Shrink a cache.
510 * @cachep: The cache to shrink.
511 *
512 * Releases as many slabs as possible for a cache.
513 * To help debugging, a zero exit status indicates all slabs were released.
514 *
515 * Return: %0 if all slabs were released, non-zero otherwise
516 */
kmem_cache_shrink(struct kmem_cache * cachep)517 int kmem_cache_shrink(struct kmem_cache *cachep)
518 {
519 kasan_cache_shrink(cachep);
520
521 return __kmem_cache_shrink(cachep);
522 }
523 EXPORT_SYMBOL(kmem_cache_shrink);
524
slab_is_available(void)525 bool slab_is_available(void)
526 {
527 return slab_state >= UP;
528 }
529
530 #ifdef CONFIG_PRINTK
531 /**
532 * kmem_valid_obj - does the pointer reference a valid slab object?
533 * @object: pointer to query.
534 *
535 * Return: %true if the pointer is to a not-yet-freed object from
536 * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
537 * is to an already-freed object, and %false otherwise.
538 */
kmem_valid_obj(void * object)539 bool kmem_valid_obj(void *object)
540 {
541 struct folio *folio;
542
543 /* Some arches consider ZERO_SIZE_PTR to be a valid address. */
544 if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
545 return false;
546 folio = virt_to_folio(object);
547 return folio_test_slab(folio);
548 }
549 EXPORT_SYMBOL_GPL(kmem_valid_obj);
550
kmem_obj_info(struct kmem_obj_info * kpp,void * object,struct slab * slab)551 static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
552 {
553 if (__kfence_obj_info(kpp, object, slab))
554 return;
555 __kmem_obj_info(kpp, object, slab);
556 }
557
558 /**
559 * kmem_dump_obj - Print available slab provenance information
560 * @object: slab object for which to find provenance information.
561 *
562 * This function uses pr_cont(), so that the caller is expected to have
563 * printed out whatever preamble is appropriate. The provenance information
564 * depends on the type of object and on how much debugging is enabled.
565 * For a slab-cache object, the fact that it is a slab object is printed,
566 * and, if available, the slab name, return address, and stack trace from
567 * the allocation and last free path of that object.
568 *
569 * This function will splat if passed a pointer to a non-slab object.
570 * If you are not sure what type of object you have, you should instead
571 * use mem_dump_obj().
572 */
kmem_dump_obj(void * object)573 void kmem_dump_obj(void *object)
574 {
575 char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
576 int i;
577 struct slab *slab;
578 unsigned long ptroffset;
579 struct kmem_obj_info kp = { };
580
581 if (WARN_ON_ONCE(!virt_addr_valid(object)))
582 return;
583 slab = virt_to_slab(object);
584 if (WARN_ON_ONCE(!slab)) {
585 pr_cont(" non-slab memory.\n");
586 return;
587 }
588 kmem_obj_info(&kp, object, slab);
589 if (kp.kp_slab_cache)
590 pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
591 else
592 pr_cont(" slab%s", cp);
593 if (is_kfence_address(object))
594 pr_cont(" (kfence)");
595 if (kp.kp_objp)
596 pr_cont(" start %px", kp.kp_objp);
597 if (kp.kp_data_offset)
598 pr_cont(" data offset %lu", kp.kp_data_offset);
599 if (kp.kp_objp) {
600 ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
601 pr_cont(" pointer offset %lu", ptroffset);
602 }
603 if (kp.kp_slab_cache && kp.kp_slab_cache->object_size)
604 pr_cont(" size %u", kp.kp_slab_cache->object_size);
605 if (kp.kp_ret)
606 pr_cont(" allocated at %pS\n", kp.kp_ret);
607 else
608 pr_cont("\n");
609 for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
610 if (!kp.kp_stack[i])
611 break;
612 pr_info(" %pS\n", kp.kp_stack[i]);
613 }
614
615 if (kp.kp_free_stack[0])
616 pr_cont(" Free path:\n");
617
618 for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
619 if (!kp.kp_free_stack[i])
620 break;
621 pr_info(" %pS\n", kp.kp_free_stack[i]);
622 }
623
624 }
625 EXPORT_SYMBOL_GPL(kmem_dump_obj);
626 #endif
627
628 /* Create a cache during boot when no slab services are available yet */
create_boot_cache(struct kmem_cache * s,const char * name,unsigned int size,slab_flags_t flags,unsigned int useroffset,unsigned int usersize)629 void __init create_boot_cache(struct kmem_cache *s, const char *name,
630 unsigned int size, slab_flags_t flags,
631 unsigned int useroffset, unsigned int usersize)
632 {
633 int err;
634 unsigned int align = ARCH_KMALLOC_MINALIGN;
635
636 s->name = name;
637 s->size = s->object_size = size;
638
639 /*
640 * For power of two sizes, guarantee natural alignment for kmalloc
641 * caches, regardless of SL*B debugging options.
642 */
643 if (is_power_of_2(size))
644 align = max(align, size);
645 s->align = calculate_alignment(flags, align, size);
646
647 #ifdef CONFIG_HARDENED_USERCOPY
648 s->useroffset = useroffset;
649 s->usersize = usersize;
650 #endif
651
652 err = __kmem_cache_create(s, flags);
653
654 if (err)
655 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
656 name, size, err);
657
658 s->refcount = -1; /* Exempt from merging for now */
659 }
660
create_kmalloc_cache(const char * name,unsigned int size,slab_flags_t flags)661 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
662 unsigned int size,
663 slab_flags_t flags)
664 {
665 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
666
667 if (!s)
668 panic("Out of memory when creating slab %s\n", name);
669
670 create_boot_cache(s, name, size, flags | SLAB_KMALLOC, 0, size);
671 list_add(&s->list, &slab_caches);
672 s->refcount = 1;
673 return s;
674 }
675
676 struct kmem_cache *
677 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
678 { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
679 EXPORT_SYMBOL(kmalloc_caches);
680
681 #ifdef CONFIG_RANDOM_KMALLOC_CACHES
682 unsigned long random_kmalloc_seed __ro_after_init;
683 EXPORT_SYMBOL(random_kmalloc_seed);
684 #endif
685
686 /*
687 * Conversion table for small slabs sizes / 8 to the index in the
688 * kmalloc array. This is necessary for slabs < 192 since we have non power
689 * of two cache sizes there. The size of larger slabs can be determined using
690 * fls.
691 */
692 static u8 size_index[24] __ro_after_init = {
693 3, /* 8 */
694 4, /* 16 */
695 5, /* 24 */
696 5, /* 32 */
697 6, /* 40 */
698 6, /* 48 */
699 6, /* 56 */
700 6, /* 64 */
701 1, /* 72 */
702 1, /* 80 */
703 1, /* 88 */
704 1, /* 96 */
705 7, /* 104 */
706 7, /* 112 */
707 7, /* 120 */
708 7, /* 128 */
709 2, /* 136 */
710 2, /* 144 */
711 2, /* 152 */
712 2, /* 160 */
713 2, /* 168 */
714 2, /* 176 */
715 2, /* 184 */
716 2 /* 192 */
717 };
718
size_index_elem(unsigned int bytes)719 static inline unsigned int size_index_elem(unsigned int bytes)
720 {
721 return (bytes - 1) / 8;
722 }
723
724 /*
725 * Find the kmem_cache structure that serves a given size of
726 * allocation
727 */
kmalloc_slab(size_t size,gfp_t flags,unsigned long caller)728 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags, unsigned long caller)
729 {
730 unsigned int index;
731
732 if (size <= 192) {
733 if (!size)
734 return ZERO_SIZE_PTR;
735
736 index = size_index[size_index_elem(size)];
737 } else {
738 if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
739 return NULL;
740 index = fls(size - 1);
741 }
742
743 return kmalloc_caches[kmalloc_type(flags, caller)][index];
744 }
745
kmalloc_size_roundup(size_t size)746 size_t kmalloc_size_roundup(size_t size)
747 {
748 if (size && size <= KMALLOC_MAX_CACHE_SIZE) {
749 /*
750 * The flags don't matter since size_index is common to all.
751 * Neither does the caller for just getting ->object_size.
752 */
753 return kmalloc_slab(size, GFP_KERNEL, 0)->object_size;
754 }
755
756 /* Above the smaller buckets, size is a multiple of page size. */
757 if (size && size <= KMALLOC_MAX_SIZE)
758 return PAGE_SIZE << get_order(size);
759
760 /*
761 * Return 'size' for 0 - kmalloc() returns ZERO_SIZE_PTR
762 * and very large size - kmalloc() may fail.
763 */
764 return size;
765
766 }
767 EXPORT_SYMBOL(kmalloc_size_roundup);
768
769 #ifdef CONFIG_ZONE_DMA
770 #define KMALLOC_DMA_NAME(sz) .name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
771 #else
772 #define KMALLOC_DMA_NAME(sz)
773 #endif
774
775 #ifdef CONFIG_MEMCG_KMEM
776 #define KMALLOC_CGROUP_NAME(sz) .name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
777 #else
778 #define KMALLOC_CGROUP_NAME(sz)
779 #endif
780
781 #ifndef CONFIG_SLUB_TINY
782 #define KMALLOC_RCL_NAME(sz) .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #sz,
783 #else
784 #define KMALLOC_RCL_NAME(sz)
785 #endif
786
787 #ifdef CONFIG_RANDOM_KMALLOC_CACHES
788 #define __KMALLOC_RANDOM_CONCAT(a, b) a ## b
789 #define KMALLOC_RANDOM_NAME(N, sz) __KMALLOC_RANDOM_CONCAT(KMA_RAND_, N)(sz)
790 #define KMA_RAND_1(sz) .name[KMALLOC_RANDOM_START + 1] = "kmalloc-rnd-01-" #sz,
791 #define KMA_RAND_2(sz) KMA_RAND_1(sz) .name[KMALLOC_RANDOM_START + 2] = "kmalloc-rnd-02-" #sz,
792 #define KMA_RAND_3(sz) KMA_RAND_2(sz) .name[KMALLOC_RANDOM_START + 3] = "kmalloc-rnd-03-" #sz,
793 #define KMA_RAND_4(sz) KMA_RAND_3(sz) .name[KMALLOC_RANDOM_START + 4] = "kmalloc-rnd-04-" #sz,
794 #define KMA_RAND_5(sz) KMA_RAND_4(sz) .name[KMALLOC_RANDOM_START + 5] = "kmalloc-rnd-05-" #sz,
795 #define KMA_RAND_6(sz) KMA_RAND_5(sz) .name[KMALLOC_RANDOM_START + 6] = "kmalloc-rnd-06-" #sz,
796 #define KMA_RAND_7(sz) KMA_RAND_6(sz) .name[KMALLOC_RANDOM_START + 7] = "kmalloc-rnd-07-" #sz,
797 #define KMA_RAND_8(sz) KMA_RAND_7(sz) .name[KMALLOC_RANDOM_START + 8] = "kmalloc-rnd-08-" #sz,
798 #define KMA_RAND_9(sz) KMA_RAND_8(sz) .name[KMALLOC_RANDOM_START + 9] = "kmalloc-rnd-09-" #sz,
799 #define KMA_RAND_10(sz) KMA_RAND_9(sz) .name[KMALLOC_RANDOM_START + 10] = "kmalloc-rnd-10-" #sz,
800 #define KMA_RAND_11(sz) KMA_RAND_10(sz) .name[KMALLOC_RANDOM_START + 11] = "kmalloc-rnd-11-" #sz,
801 #define KMA_RAND_12(sz) KMA_RAND_11(sz) .name[KMALLOC_RANDOM_START + 12] = "kmalloc-rnd-12-" #sz,
802 #define KMA_RAND_13(sz) KMA_RAND_12(sz) .name[KMALLOC_RANDOM_START + 13] = "kmalloc-rnd-13-" #sz,
803 #define KMA_RAND_14(sz) KMA_RAND_13(sz) .name[KMALLOC_RANDOM_START + 14] = "kmalloc-rnd-14-" #sz,
804 #define KMA_RAND_15(sz) KMA_RAND_14(sz) .name[KMALLOC_RANDOM_START + 15] = "kmalloc-rnd-15-" #sz,
805 #else // CONFIG_RANDOM_KMALLOC_CACHES
806 #define KMALLOC_RANDOM_NAME(N, sz)
807 #endif
808
809 #define INIT_KMALLOC_INFO(__size, __short_size) \
810 { \
811 .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \
812 KMALLOC_RCL_NAME(__short_size) \
813 KMALLOC_CGROUP_NAME(__short_size) \
814 KMALLOC_DMA_NAME(__short_size) \
815 KMALLOC_RANDOM_NAME(RANDOM_KMALLOC_CACHES_NR, __short_size) \
816 .size = __size, \
817 }
818
819 /*
820 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
821 * kmalloc_index() supports up to 2^21=2MB, so the final entry of the table is
822 * kmalloc-2M.
823 */
824 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
825 INIT_KMALLOC_INFO(0, 0),
826 INIT_KMALLOC_INFO(96, 96),
827 INIT_KMALLOC_INFO(192, 192),
828 INIT_KMALLOC_INFO(8, 8),
829 INIT_KMALLOC_INFO(16, 16),
830 INIT_KMALLOC_INFO(32, 32),
831 INIT_KMALLOC_INFO(64, 64),
832 INIT_KMALLOC_INFO(128, 128),
833 INIT_KMALLOC_INFO(256, 256),
834 INIT_KMALLOC_INFO(512, 512),
835 INIT_KMALLOC_INFO(1024, 1k),
836 INIT_KMALLOC_INFO(2048, 2k),
837 INIT_KMALLOC_INFO(4096, 4k),
838 INIT_KMALLOC_INFO(8192, 8k),
839 INIT_KMALLOC_INFO(16384, 16k),
840 INIT_KMALLOC_INFO(32768, 32k),
841 INIT_KMALLOC_INFO(65536, 64k),
842 INIT_KMALLOC_INFO(131072, 128k),
843 INIT_KMALLOC_INFO(262144, 256k),
844 INIT_KMALLOC_INFO(524288, 512k),
845 INIT_KMALLOC_INFO(1048576, 1M),
846 INIT_KMALLOC_INFO(2097152, 2M)
847 };
848
849 /*
850 * Patch up the size_index table if we have strange large alignment
851 * requirements for the kmalloc array. This is only the case for
852 * MIPS it seems. The standard arches will not generate any code here.
853 *
854 * Largest permitted alignment is 256 bytes due to the way we
855 * handle the index determination for the smaller caches.
856 *
857 * Make sure that nothing crazy happens if someone starts tinkering
858 * around with ARCH_KMALLOC_MINALIGN
859 */
setup_kmalloc_cache_index_table(void)860 void __init setup_kmalloc_cache_index_table(void)
861 {
862 unsigned int i;
863
864 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
865 !is_power_of_2(KMALLOC_MIN_SIZE));
866
867 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
868 unsigned int elem = size_index_elem(i);
869
870 if (elem >= ARRAY_SIZE(size_index))
871 break;
872 size_index[elem] = KMALLOC_SHIFT_LOW;
873 }
874
875 if (KMALLOC_MIN_SIZE >= 64) {
876 /*
877 * The 96 byte sized cache is not used if the alignment
878 * is 64 byte.
879 */
880 for (i = 64 + 8; i <= 96; i += 8)
881 size_index[size_index_elem(i)] = 7;
882
883 }
884
885 if (KMALLOC_MIN_SIZE >= 128) {
886 /*
887 * The 192 byte sized cache is not used if the alignment
888 * is 128 byte. Redirect kmalloc to use the 256 byte cache
889 * instead.
890 */
891 for (i = 128 + 8; i <= 192; i += 8)
892 size_index[size_index_elem(i)] = 8;
893 }
894 }
895
__kmalloc_minalign(void)896 static unsigned int __kmalloc_minalign(void)
897 {
898 unsigned int minalign = dma_get_cache_alignment();
899
900 if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) &&
901 is_swiotlb_allocated())
902 minalign = ARCH_KMALLOC_MINALIGN;
903
904 return max(minalign, arch_slab_minalign());
905 }
906
907 void __init
new_kmalloc_cache(int idx,enum kmalloc_cache_type type,slab_flags_t flags)908 new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
909 {
910 unsigned int minalign = __kmalloc_minalign();
911 unsigned int aligned_size = kmalloc_info[idx].size;
912 int aligned_idx = idx;
913
914 if ((KMALLOC_RECLAIM != KMALLOC_NORMAL) && (type == KMALLOC_RECLAIM)) {
915 flags |= SLAB_RECLAIM_ACCOUNT;
916 } else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) {
917 if (mem_cgroup_kmem_disabled()) {
918 kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
919 return;
920 }
921 flags |= SLAB_ACCOUNT;
922 } else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) {
923 flags |= SLAB_CACHE_DMA;
924 }
925
926 #ifdef CONFIG_RANDOM_KMALLOC_CACHES
927 if (type >= KMALLOC_RANDOM_START && type <= KMALLOC_RANDOM_END)
928 flags |= SLAB_NO_MERGE;
929 #endif
930
931 /*
932 * If CONFIG_MEMCG_KMEM is enabled, disable cache merging for
933 * KMALLOC_NORMAL caches.
934 */
935 if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL))
936 flags |= SLAB_NO_MERGE;
937
938 if (minalign > ARCH_KMALLOC_MINALIGN) {
939 aligned_size = ALIGN(aligned_size, minalign);
940 aligned_idx = __kmalloc_index(aligned_size, false);
941 }
942
943 if (!kmalloc_caches[type][aligned_idx])
944 kmalloc_caches[type][aligned_idx] = create_kmalloc_cache(
945 kmalloc_info[aligned_idx].name[type],
946 aligned_size, flags);
947 if (idx != aligned_idx)
948 kmalloc_caches[type][idx] = kmalloc_caches[type][aligned_idx];
949 }
950
951 /*
952 * Create the kmalloc array. Some of the regular kmalloc arrays
953 * may already have been created because they were needed to
954 * enable allocations for slab creation.
955 */
create_kmalloc_caches(slab_flags_t flags)956 void __init create_kmalloc_caches(slab_flags_t flags)
957 {
958 int i;
959 enum kmalloc_cache_type type;
960
961 /*
962 * Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined
963 */
964 for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) {
965 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
966 if (!kmalloc_caches[type][i])
967 new_kmalloc_cache(i, type, flags);
968
969 /*
970 * Caches that are not of the two-to-the-power-of size.
971 * These have to be created immediately after the
972 * earlier power of two caches
973 */
974 if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
975 !kmalloc_caches[type][1])
976 new_kmalloc_cache(1, type, flags);
977 if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
978 !kmalloc_caches[type][2])
979 new_kmalloc_cache(2, type, flags);
980 }
981 }
982 #ifdef CONFIG_RANDOM_KMALLOC_CACHES
983 random_kmalloc_seed = get_random_u64();
984 #endif
985
986 /* Kmalloc array is now usable */
987 slab_state = UP;
988 }
989
free_large_kmalloc(struct folio * folio,void * object)990 void free_large_kmalloc(struct folio *folio, void *object)
991 {
992 unsigned int order = folio_order(folio);
993
994 if (WARN_ON_ONCE(order == 0))
995 pr_warn_once("object pointer: 0x%p\n", object);
996
997 kmemleak_free(object);
998 kasan_kfree_large(object);
999 kmsan_kfree_large(object);
1000
1001 mod_lruvec_page_state(folio_page(folio, 0), NR_SLAB_UNRECLAIMABLE_B,
1002 -(PAGE_SIZE << order));
1003 __free_pages(folio_page(folio, 0), order);
1004 }
1005
1006 static void *__kmalloc_large_node(size_t size, gfp_t flags, int node);
1007 static __always_inline
__do_kmalloc_node(size_t size,gfp_t flags,int node,unsigned long caller)1008 void *__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
1009 {
1010 struct kmem_cache *s;
1011 void *ret;
1012
1013 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
1014 ret = __kmalloc_large_node(size, flags, node);
1015 trace_kmalloc(caller, ret, size,
1016 PAGE_SIZE << get_order(size), flags, node);
1017 return ret;
1018 }
1019
1020 s = kmalloc_slab(size, flags, caller);
1021
1022 if (unlikely(ZERO_OR_NULL_PTR(s)))
1023 return s;
1024
1025 ret = __kmem_cache_alloc_node(s, flags, node, size, caller);
1026 ret = kasan_kmalloc(s, ret, size, flags);
1027 trace_kmalloc(caller, ret, size, s->size, flags, node);
1028 return ret;
1029 }
1030
__kmalloc_node(size_t size,gfp_t flags,int node)1031 void *__kmalloc_node(size_t size, gfp_t flags, int node)
1032 {
1033 return __do_kmalloc_node(size, flags, node, _RET_IP_);
1034 }
1035 EXPORT_SYMBOL(__kmalloc_node);
1036
__kmalloc(size_t size,gfp_t flags)1037 void *__kmalloc(size_t size, gfp_t flags)
1038 {
1039 return __do_kmalloc_node(size, flags, NUMA_NO_NODE, _RET_IP_);
1040 }
1041 EXPORT_SYMBOL(__kmalloc);
1042
__kmalloc_node_track_caller(size_t size,gfp_t flags,int node,unsigned long caller)1043 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
1044 int node, unsigned long caller)
1045 {
1046 return __do_kmalloc_node(size, flags, node, caller);
1047 }
1048 EXPORT_SYMBOL(__kmalloc_node_track_caller);
1049
1050 /**
1051 * kfree - free previously allocated memory
1052 * @object: pointer returned by kmalloc() or kmem_cache_alloc()
1053 *
1054 * If @object is NULL, no operation is performed.
1055 */
kfree(const void * object)1056 void kfree(const void *object)
1057 {
1058 struct folio *folio;
1059 struct slab *slab;
1060 struct kmem_cache *s;
1061
1062 trace_kfree(_RET_IP_, object);
1063
1064 if (unlikely(ZERO_OR_NULL_PTR(object)))
1065 return;
1066
1067 folio = virt_to_folio(object);
1068 if (unlikely(!folio_test_slab(folio))) {
1069 free_large_kmalloc(folio, (void *)object);
1070 return;
1071 }
1072
1073 slab = folio_slab(folio);
1074 s = slab->slab_cache;
1075 __kmem_cache_free(s, (void *)object, _RET_IP_);
1076 }
1077 EXPORT_SYMBOL(kfree);
1078
1079 /**
1080 * __ksize -- Report full size of underlying allocation
1081 * @object: pointer to the object
1082 *
1083 * This should only be used internally to query the true size of allocations.
1084 * It is not meant to be a way to discover the usable size of an allocation
1085 * after the fact. Instead, use kmalloc_size_roundup(). Using memory beyond
1086 * the originally requested allocation size may trigger KASAN, UBSAN_BOUNDS,
1087 * and/or FORTIFY_SOURCE.
1088 *
1089 * Return: size of the actual memory used by @object in bytes
1090 */
__ksize(const void * object)1091 size_t __ksize(const void *object)
1092 {
1093 struct folio *folio;
1094
1095 if (unlikely(object == ZERO_SIZE_PTR))
1096 return 0;
1097
1098 folio = virt_to_folio(object);
1099
1100 if (unlikely(!folio_test_slab(folio))) {
1101 if (WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE))
1102 return 0;
1103 if (WARN_ON(object != folio_address(folio)))
1104 return 0;
1105 return folio_size(folio);
1106 }
1107
1108 #ifdef CONFIG_SLUB_DEBUG
1109 skip_orig_size_check(folio_slab(folio)->slab_cache, object);
1110 #endif
1111
1112 return slab_ksize(folio_slab(folio)->slab_cache);
1113 }
1114
kmalloc_trace(struct kmem_cache * s,gfp_t gfpflags,size_t size)1115 void *kmalloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
1116 {
1117 void *ret = __kmem_cache_alloc_node(s, gfpflags, NUMA_NO_NODE,
1118 size, _RET_IP_);
1119
1120 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
1121
1122 ret = kasan_kmalloc(s, ret, size, gfpflags);
1123 return ret;
1124 }
1125 EXPORT_SYMBOL(kmalloc_trace);
1126
kmalloc_node_trace(struct kmem_cache * s,gfp_t gfpflags,int node,size_t size)1127 void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
1128 int node, size_t size)
1129 {
1130 void *ret = __kmem_cache_alloc_node(s, gfpflags, node, size, _RET_IP_);
1131
1132 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
1133
1134 ret = kasan_kmalloc(s, ret, size, gfpflags);
1135 return ret;
1136 }
1137 EXPORT_SYMBOL(kmalloc_node_trace);
1138
kmalloc_fix_flags(gfp_t flags)1139 gfp_t kmalloc_fix_flags(gfp_t flags)
1140 {
1141 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1142
1143 flags &= ~GFP_SLAB_BUG_MASK;
1144 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1145 invalid_mask, &invalid_mask, flags, &flags);
1146 dump_stack();
1147
1148 return flags;
1149 }
1150
1151 /*
1152 * To avoid unnecessary overhead, we pass through large allocation requests
1153 * directly to the page allocator. We use __GFP_COMP, because we will need to
1154 * know the allocation order to free the pages properly in kfree.
1155 */
1156
__kmalloc_large_node(size_t size,gfp_t flags,int node)1157 static void *__kmalloc_large_node(size_t size, gfp_t flags, int node)
1158 {
1159 struct page *page;
1160 void *ptr = NULL;
1161 unsigned int order = get_order(size);
1162
1163 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1164 flags = kmalloc_fix_flags(flags);
1165
1166 flags |= __GFP_COMP;
1167 page = alloc_pages_node(node, flags, order);
1168 if (page) {
1169 ptr = page_address(page);
1170 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
1171 PAGE_SIZE << order);
1172 }
1173
1174 ptr = kasan_kmalloc_large(ptr, size, flags);
1175 /* As ptr might get tagged, call kmemleak hook after KASAN. */
1176 kmemleak_alloc(ptr, size, 1, flags);
1177 kmsan_kmalloc_large(ptr, size, flags);
1178
1179 return ptr;
1180 }
1181
kmalloc_large(size_t size,gfp_t flags)1182 void *kmalloc_large(size_t size, gfp_t flags)
1183 {
1184 void *ret = __kmalloc_large_node(size, flags, NUMA_NO_NODE);
1185
1186 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
1187 flags, NUMA_NO_NODE);
1188 return ret;
1189 }
1190 EXPORT_SYMBOL(kmalloc_large);
1191
kmalloc_large_node(size_t size,gfp_t flags,int node)1192 void *kmalloc_large_node(size_t size, gfp_t flags, int node)
1193 {
1194 void *ret = __kmalloc_large_node(size, flags, node);
1195
1196 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
1197 flags, node);
1198 return ret;
1199 }
1200 EXPORT_SYMBOL(kmalloc_large_node);
1201
1202 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1203 /* Randomize a generic freelist */
freelist_randomize(unsigned int * list,unsigned int count)1204 static void freelist_randomize(unsigned int *list,
1205 unsigned int count)
1206 {
1207 unsigned int rand;
1208 unsigned int i;
1209
1210 for (i = 0; i < count; i++)
1211 list[i] = i;
1212
1213 /* Fisher-Yates shuffle */
1214 for (i = count - 1; i > 0; i--) {
1215 rand = get_random_u32_below(i + 1);
1216 swap(list[i], list[rand]);
1217 }
1218 }
1219
1220 /* Create a random sequence per cache */
cache_random_seq_create(struct kmem_cache * cachep,unsigned int count,gfp_t gfp)1221 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1222 gfp_t gfp)
1223 {
1224
1225 if (count < 2 || cachep->random_seq)
1226 return 0;
1227
1228 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1229 if (!cachep->random_seq)
1230 return -ENOMEM;
1231
1232 freelist_randomize(cachep->random_seq, count);
1233 return 0;
1234 }
1235
1236 /* Destroy the per-cache random freelist sequence */
cache_random_seq_destroy(struct kmem_cache * cachep)1237 void cache_random_seq_destroy(struct kmem_cache *cachep)
1238 {
1239 kfree(cachep->random_seq);
1240 cachep->random_seq = NULL;
1241 }
1242 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1243
1244 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1245 #ifdef CONFIG_SLAB
1246 #define SLABINFO_RIGHTS (0600)
1247 #else
1248 #define SLABINFO_RIGHTS (0400)
1249 #endif
1250
print_slabinfo_header(struct seq_file * m)1251 static void print_slabinfo_header(struct seq_file *m)
1252 {
1253 /*
1254 * Output format version, so at least we can change it
1255 * without _too_ many complaints.
1256 */
1257 #ifdef CONFIG_DEBUG_SLAB
1258 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1259 #else
1260 seq_puts(m, "slabinfo - version: 2.1\n");
1261 #endif
1262 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1263 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1264 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1265 #ifdef CONFIG_DEBUG_SLAB
1266 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1267 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1268 #endif
1269 seq_putc(m, '\n');
1270 }
1271
slab_start(struct seq_file * m,loff_t * pos)1272 static void *slab_start(struct seq_file *m, loff_t *pos)
1273 {
1274 mutex_lock(&slab_mutex);
1275 return seq_list_start(&slab_caches, *pos);
1276 }
1277
slab_next(struct seq_file * m,void * p,loff_t * pos)1278 static void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1279 {
1280 return seq_list_next(p, &slab_caches, pos);
1281 }
1282
slab_stop(struct seq_file * m,void * p)1283 static void slab_stop(struct seq_file *m, void *p)
1284 {
1285 mutex_unlock(&slab_mutex);
1286 }
1287
cache_show(struct kmem_cache * s,struct seq_file * m)1288 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1289 {
1290 struct slabinfo sinfo;
1291
1292 memset(&sinfo, 0, sizeof(sinfo));
1293 get_slabinfo(s, &sinfo);
1294
1295 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1296 s->name, sinfo.active_objs, sinfo.num_objs, s->size,
1297 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1298
1299 seq_printf(m, " : tunables %4u %4u %4u",
1300 sinfo.limit, sinfo.batchcount, sinfo.shared);
1301 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1302 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1303 slabinfo_show_stats(m, s);
1304 seq_putc(m, '\n');
1305 }
1306
slab_show(struct seq_file * m,void * p)1307 static int slab_show(struct seq_file *m, void *p)
1308 {
1309 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1310
1311 if (p == slab_caches.next)
1312 print_slabinfo_header(m);
1313 cache_show(s, m);
1314 return 0;
1315 }
1316
dump_unreclaimable_slab(void)1317 void dump_unreclaimable_slab(void)
1318 {
1319 struct kmem_cache *s;
1320 struct slabinfo sinfo;
1321
1322 /*
1323 * Here acquiring slab_mutex is risky since we don't prefer to get
1324 * sleep in oom path. But, without mutex hold, it may introduce a
1325 * risk of crash.
1326 * Use mutex_trylock to protect the list traverse, dump nothing
1327 * without acquiring the mutex.
1328 */
1329 if (!mutex_trylock(&slab_mutex)) {
1330 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1331 return;
1332 }
1333
1334 pr_info("Unreclaimable slab info:\n");
1335 pr_info("Name Used Total\n");
1336
1337 list_for_each_entry(s, &slab_caches, list) {
1338 if (s->flags & SLAB_RECLAIM_ACCOUNT)
1339 continue;
1340
1341 get_slabinfo(s, &sinfo);
1342
1343 if (sinfo.num_objs > 0)
1344 pr_info("%-17s %10luKB %10luKB\n", s->name,
1345 (sinfo.active_objs * s->size) / 1024,
1346 (sinfo.num_objs * s->size) / 1024);
1347 }
1348 mutex_unlock(&slab_mutex);
1349 }
1350
1351 /*
1352 * slabinfo_op - iterator that generates /proc/slabinfo
1353 *
1354 * Output layout:
1355 * cache-name
1356 * num-active-objs
1357 * total-objs
1358 * object size
1359 * num-active-slabs
1360 * total-slabs
1361 * num-pages-per-slab
1362 * + further values on SMP and with statistics enabled
1363 */
1364 static const struct seq_operations slabinfo_op = {
1365 .start = slab_start,
1366 .next = slab_next,
1367 .stop = slab_stop,
1368 .show = slab_show,
1369 };
1370
slabinfo_open(struct inode * inode,struct file * file)1371 static int slabinfo_open(struct inode *inode, struct file *file)
1372 {
1373 return seq_open(file, &slabinfo_op);
1374 }
1375
1376 static const struct proc_ops slabinfo_proc_ops = {
1377 .proc_flags = PROC_ENTRY_PERMANENT,
1378 .proc_open = slabinfo_open,
1379 .proc_read = seq_read,
1380 .proc_write = slabinfo_write,
1381 .proc_lseek = seq_lseek,
1382 .proc_release = seq_release,
1383 };
1384
slab_proc_init(void)1385 static int __init slab_proc_init(void)
1386 {
1387 proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1388 return 0;
1389 }
1390 module_init(slab_proc_init);
1391
1392 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1393
1394 static __always_inline __realloc_size(2) void *
__do_krealloc(const void * p,size_t new_size,gfp_t flags)1395 __do_krealloc(const void *p, size_t new_size, gfp_t flags)
1396 {
1397 void *ret;
1398 size_t ks;
1399
1400 /* Check for double-free before calling ksize. */
1401 if (likely(!ZERO_OR_NULL_PTR(p))) {
1402 if (!kasan_check_byte(p))
1403 return NULL;
1404 ks = ksize(p);
1405 } else
1406 ks = 0;
1407
1408 /* If the object still fits, repoison it precisely. */
1409 if (ks >= new_size) {
1410 p = kasan_krealloc((void *)p, new_size, flags);
1411 return (void *)p;
1412 }
1413
1414 ret = kmalloc_track_caller(new_size, flags);
1415 if (ret && p) {
1416 /* Disable KASAN checks as the object's redzone is accessed. */
1417 kasan_disable_current();
1418 memcpy(ret, kasan_reset_tag(p), ks);
1419 kasan_enable_current();
1420 }
1421
1422 return ret;
1423 }
1424
1425 /**
1426 * krealloc - reallocate memory. The contents will remain unchanged.
1427 * @p: object to reallocate memory for.
1428 * @new_size: how many bytes of memory are required.
1429 * @flags: the type of memory to allocate.
1430 *
1431 * The contents of the object pointed to are preserved up to the
1432 * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1433 * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size
1434 * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
1435 *
1436 * Return: pointer to the allocated memory or %NULL in case of error
1437 */
krealloc(const void * p,size_t new_size,gfp_t flags)1438 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1439 {
1440 void *ret;
1441
1442 if (unlikely(!new_size)) {
1443 kfree(p);
1444 return ZERO_SIZE_PTR;
1445 }
1446
1447 ret = __do_krealloc(p, new_size, flags);
1448 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1449 kfree(p);
1450
1451 return ret;
1452 }
1453 EXPORT_SYMBOL(krealloc);
1454
1455 /**
1456 * kfree_sensitive - Clear sensitive information in memory before freeing
1457 * @p: object to free memory of
1458 *
1459 * The memory of the object @p points to is zeroed before freed.
1460 * If @p is %NULL, kfree_sensitive() does nothing.
1461 *
1462 * Note: this function zeroes the whole allocated buffer which can be a good
1463 * deal bigger than the requested buffer size passed to kmalloc(). So be
1464 * careful when using this function in performance sensitive code.
1465 */
kfree_sensitive(const void * p)1466 void kfree_sensitive(const void *p)
1467 {
1468 size_t ks;
1469 void *mem = (void *)p;
1470
1471 ks = ksize(mem);
1472 if (ks) {
1473 kasan_unpoison_range(mem, ks);
1474 memzero_explicit(mem, ks);
1475 }
1476 kfree(mem);
1477 }
1478 EXPORT_SYMBOL(kfree_sensitive);
1479
ksize(const void * objp)1480 size_t ksize(const void *objp)
1481 {
1482 /*
1483 * We need to first check that the pointer to the object is valid.
1484 * The KASAN report printed from ksize() is more useful, then when
1485 * it's printed later when the behaviour could be undefined due to
1486 * a potential use-after-free or double-free.
1487 *
1488 * We use kasan_check_byte(), which is supported for the hardware
1489 * tag-based KASAN mode, unlike kasan_check_read/write().
1490 *
1491 * If the pointed to memory is invalid, we return 0 to avoid users of
1492 * ksize() writing to and potentially corrupting the memory region.
1493 *
1494 * We want to perform the check before __ksize(), to avoid potentially
1495 * crashing in __ksize() due to accessing invalid metadata.
1496 */
1497 if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
1498 return 0;
1499
1500 return kfence_ksize(objp) ?: __ksize(objp);
1501 }
1502 EXPORT_SYMBOL(ksize);
1503
1504 /* Tracepoints definitions. */
1505 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1506 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1507 EXPORT_TRACEPOINT_SYMBOL(kfree);
1508 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1509
should_failslab(struct kmem_cache * s,gfp_t gfpflags)1510 int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1511 {
1512 if (__should_failslab(s, gfpflags))
1513 return -ENOMEM;
1514 return 0;
1515 }
1516 ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
1517