1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/ratelimit.h>
26 #include <linux/tracehook.h>
27 #include <linux/capability.h>
28 #include <linux/freezer.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/nsproxy.h>
31 #include <linux/user_namespace.h>
32 #define CREATE_TRACE_POINTS
33 #include <trace/events/signal.h>
34
35 #include <asm/param.h>
36 #include <asm/uaccess.h>
37 #include <asm/unistd.h>
38 #include <asm/siginfo.h>
39 #include <asm/cacheflush.h>
40 #include "audit.h" /* audit_signal_info() */
41
42 /*
43 * SLAB caches for signal bits.
44 */
45
46 static struct kmem_cache *sigqueue_cachep;
47
48 int print_fatal_signals __read_mostly;
49
sig_handler(struct task_struct * t,int sig)50 static void __user *sig_handler(struct task_struct *t, int sig)
51 {
52 return t->sighand->action[sig - 1].sa.sa_handler;
53 }
54
sig_handler_ignored(void __user * handler,int sig)55 static int sig_handler_ignored(void __user *handler, int sig)
56 {
57 /* Is it explicitly or implicitly ignored? */
58 return handler == SIG_IGN ||
59 (handler == SIG_DFL && sig_kernel_ignore(sig));
60 }
61
sig_task_ignored(struct task_struct * t,int sig,bool force)62 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
63 {
64 void __user *handler;
65
66 handler = sig_handler(t, sig);
67
68 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
69 handler == SIG_DFL && !force)
70 return 1;
71
72 return sig_handler_ignored(handler, sig);
73 }
74
sig_ignored(struct task_struct * t,int sig,bool force)75 static int sig_ignored(struct task_struct *t, int sig, bool force)
76 {
77 /*
78 * Blocked signals are never ignored, since the
79 * signal handler may change by the time it is
80 * unblocked.
81 */
82 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
83 return 0;
84
85 if (!sig_task_ignored(t, sig, force))
86 return 0;
87
88 /*
89 * Tracers may want to know about even ignored signals.
90 */
91 return !t->ptrace;
92 }
93
94 /*
95 * Re-calculate pending state from the set of locally pending
96 * signals, globally pending signals, and blocked signals.
97 */
has_pending_signals(sigset_t * signal,sigset_t * blocked)98 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
99 {
100 unsigned long ready;
101 long i;
102
103 switch (_NSIG_WORDS) {
104 default:
105 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
106 ready |= signal->sig[i] &~ blocked->sig[i];
107 break;
108
109 case 4: ready = signal->sig[3] &~ blocked->sig[3];
110 ready |= signal->sig[2] &~ blocked->sig[2];
111 ready |= signal->sig[1] &~ blocked->sig[1];
112 ready |= signal->sig[0] &~ blocked->sig[0];
113 break;
114
115 case 2: ready = signal->sig[1] &~ blocked->sig[1];
116 ready |= signal->sig[0] &~ blocked->sig[0];
117 break;
118
119 case 1: ready = signal->sig[0] &~ blocked->sig[0];
120 }
121 return ready != 0;
122 }
123
124 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
125
recalc_sigpending_tsk(struct task_struct * t)126 static int recalc_sigpending_tsk(struct task_struct *t)
127 {
128 if ((t->jobctl & JOBCTL_PENDING_MASK) ||
129 PENDING(&t->pending, &t->blocked) ||
130 PENDING(&t->signal->shared_pending, &t->blocked)) {
131 set_tsk_thread_flag(t, TIF_SIGPENDING);
132 return 1;
133 }
134 /*
135 * We must never clear the flag in another thread, or in current
136 * when it's possible the current syscall is returning -ERESTART*.
137 * So we don't clear it here, and only callers who know they should do.
138 */
139 return 0;
140 }
141
142 /*
143 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
144 * This is superfluous when called on current, the wakeup is a harmless no-op.
145 */
recalc_sigpending_and_wake(struct task_struct * t)146 void recalc_sigpending_and_wake(struct task_struct *t)
147 {
148 if (recalc_sigpending_tsk(t))
149 signal_wake_up(t, 0);
150 }
151
recalc_sigpending(void)152 void recalc_sigpending(void)
153 {
154 if (!recalc_sigpending_tsk(current) && !freezing(current))
155 clear_thread_flag(TIF_SIGPENDING);
156
157 }
158
159 /* Given the mask, find the first available signal that should be serviced. */
160
161 #define SYNCHRONOUS_MASK \
162 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
163 sigmask(SIGTRAP) | sigmask(SIGFPE))
164
next_signal(struct sigpending * pending,sigset_t * mask)165 int next_signal(struct sigpending *pending, sigset_t *mask)
166 {
167 unsigned long i, *s, *m, x;
168 int sig = 0;
169
170 s = pending->signal.sig;
171 m = mask->sig;
172
173 /*
174 * Handle the first word specially: it contains the
175 * synchronous signals that need to be dequeued first.
176 */
177 x = *s &~ *m;
178 if (x) {
179 if (x & SYNCHRONOUS_MASK)
180 x &= SYNCHRONOUS_MASK;
181 sig = ffz(~x) + 1;
182 return sig;
183 }
184
185 switch (_NSIG_WORDS) {
186 default:
187 for (i = 1; i < _NSIG_WORDS; ++i) {
188 x = *++s &~ *++m;
189 if (!x)
190 continue;
191 sig = ffz(~x) + i*_NSIG_BPW + 1;
192 break;
193 }
194 break;
195
196 case 2:
197 x = s[1] &~ m[1];
198 if (!x)
199 break;
200 sig = ffz(~x) + _NSIG_BPW + 1;
201 break;
202
203 case 1:
204 /* Nothing to do */
205 break;
206 }
207
208 return sig;
209 }
210
print_dropped_signal(int sig)211 static inline void print_dropped_signal(int sig)
212 {
213 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
214
215 if (!print_fatal_signals)
216 return;
217
218 if (!__ratelimit(&ratelimit_state))
219 return;
220
221 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
222 current->comm, current->pid, sig);
223 }
224
225 /**
226 * task_set_jobctl_pending - set jobctl pending bits
227 * @task: target task
228 * @mask: pending bits to set
229 *
230 * Clear @mask from @task->jobctl. @mask must be subset of
231 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
232 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
233 * cleared. If @task is already being killed or exiting, this function
234 * becomes noop.
235 *
236 * CONTEXT:
237 * Must be called with @task->sighand->siglock held.
238 *
239 * RETURNS:
240 * %true if @mask is set, %false if made noop because @task was dying.
241 */
task_set_jobctl_pending(struct task_struct * task,unsigned int mask)242 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
243 {
244 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
245 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
246 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
247
248 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
249 return false;
250
251 if (mask & JOBCTL_STOP_SIGMASK)
252 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
253
254 task->jobctl |= mask;
255 return true;
256 }
257
258 /**
259 * task_clear_jobctl_trapping - clear jobctl trapping bit
260 * @task: target task
261 *
262 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
263 * Clear it and wake up the ptracer. Note that we don't need any further
264 * locking. @task->siglock guarantees that @task->parent points to the
265 * ptracer.
266 *
267 * CONTEXT:
268 * Must be called with @task->sighand->siglock held.
269 */
task_clear_jobctl_trapping(struct task_struct * task)270 void task_clear_jobctl_trapping(struct task_struct *task)
271 {
272 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
273 task->jobctl &= ~JOBCTL_TRAPPING;
274 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
275 }
276 }
277
278 /**
279 * task_clear_jobctl_pending - clear jobctl pending bits
280 * @task: target task
281 * @mask: pending bits to clear
282 *
283 * Clear @mask from @task->jobctl. @mask must be subset of
284 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
285 * STOP bits are cleared together.
286 *
287 * If clearing of @mask leaves no stop or trap pending, this function calls
288 * task_clear_jobctl_trapping().
289 *
290 * CONTEXT:
291 * Must be called with @task->sighand->siglock held.
292 */
task_clear_jobctl_pending(struct task_struct * task,unsigned int mask)293 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
294 {
295 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
296
297 if (mask & JOBCTL_STOP_PENDING)
298 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
299
300 task->jobctl &= ~mask;
301
302 if (!(task->jobctl & JOBCTL_PENDING_MASK))
303 task_clear_jobctl_trapping(task);
304 }
305
306 /**
307 * task_participate_group_stop - participate in a group stop
308 * @task: task participating in a group stop
309 *
310 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
311 * Group stop states are cleared and the group stop count is consumed if
312 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
313 * stop, the appropriate %SIGNAL_* flags are set.
314 *
315 * CONTEXT:
316 * Must be called with @task->sighand->siglock held.
317 *
318 * RETURNS:
319 * %true if group stop completion should be notified to the parent, %false
320 * otherwise.
321 */
task_participate_group_stop(struct task_struct * task)322 static bool task_participate_group_stop(struct task_struct *task)
323 {
324 struct signal_struct *sig = task->signal;
325 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
326
327 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
328
329 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
330
331 if (!consume)
332 return false;
333
334 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
335 sig->group_stop_count--;
336
337 /*
338 * Tell the caller to notify completion iff we are entering into a
339 * fresh group stop. Read comment in do_signal_stop() for details.
340 */
341 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
342 sig->flags = SIGNAL_STOP_STOPPED;
343 return true;
344 }
345 return false;
346 }
347
348 /*
349 * allocate a new signal queue record
350 * - this may be called without locks if and only if t == current, otherwise an
351 * appropriate lock must be held to stop the target task from exiting
352 */
353 static struct sigqueue *
__sigqueue_alloc(int sig,struct task_struct * t,gfp_t flags,int override_rlimit)354 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
355 {
356 struct sigqueue *q = NULL;
357 struct user_struct *user;
358
359 /*
360 * Protect access to @t credentials. This can go away when all
361 * callers hold rcu read lock.
362 */
363 rcu_read_lock();
364 user = get_uid(__task_cred(t)->user);
365 atomic_inc(&user->sigpending);
366 rcu_read_unlock();
367
368 if (override_rlimit ||
369 atomic_read(&user->sigpending) <=
370 task_rlimit(t, RLIMIT_SIGPENDING)) {
371 q = kmem_cache_alloc(sigqueue_cachep, flags);
372 } else {
373 print_dropped_signal(sig);
374 }
375
376 if (unlikely(q == NULL)) {
377 atomic_dec(&user->sigpending);
378 free_uid(user);
379 } else {
380 INIT_LIST_HEAD(&q->list);
381 q->flags = 0;
382 q->user = user;
383 }
384
385 return q;
386 }
387
__sigqueue_free(struct sigqueue * q)388 static void __sigqueue_free(struct sigqueue *q)
389 {
390 if (q->flags & SIGQUEUE_PREALLOC)
391 return;
392 atomic_dec(&q->user->sigpending);
393 free_uid(q->user);
394 kmem_cache_free(sigqueue_cachep, q);
395 }
396
flush_sigqueue(struct sigpending * queue)397 void flush_sigqueue(struct sigpending *queue)
398 {
399 struct sigqueue *q;
400
401 sigemptyset(&queue->signal);
402 while (!list_empty(&queue->list)) {
403 q = list_entry(queue->list.next, struct sigqueue , list);
404 list_del_init(&q->list);
405 __sigqueue_free(q);
406 }
407 }
408
409 /*
410 * Flush all pending signals for a task.
411 */
__flush_signals(struct task_struct * t)412 void __flush_signals(struct task_struct *t)
413 {
414 clear_tsk_thread_flag(t, TIF_SIGPENDING);
415 flush_sigqueue(&t->pending);
416 flush_sigqueue(&t->signal->shared_pending);
417 }
418
flush_signals(struct task_struct * t)419 void flush_signals(struct task_struct *t)
420 {
421 unsigned long flags;
422
423 spin_lock_irqsave(&t->sighand->siglock, flags);
424 __flush_signals(t);
425 spin_unlock_irqrestore(&t->sighand->siglock, flags);
426 }
427
__flush_itimer_signals(struct sigpending * pending)428 static void __flush_itimer_signals(struct sigpending *pending)
429 {
430 sigset_t signal, retain;
431 struct sigqueue *q, *n;
432
433 signal = pending->signal;
434 sigemptyset(&retain);
435
436 list_for_each_entry_safe(q, n, &pending->list, list) {
437 int sig = q->info.si_signo;
438
439 if (likely(q->info.si_code != SI_TIMER)) {
440 sigaddset(&retain, sig);
441 } else {
442 sigdelset(&signal, sig);
443 list_del_init(&q->list);
444 __sigqueue_free(q);
445 }
446 }
447
448 sigorsets(&pending->signal, &signal, &retain);
449 }
450
flush_itimer_signals(void)451 void flush_itimer_signals(void)
452 {
453 struct task_struct *tsk = current;
454 unsigned long flags;
455
456 spin_lock_irqsave(&tsk->sighand->siglock, flags);
457 __flush_itimer_signals(&tsk->pending);
458 __flush_itimer_signals(&tsk->signal->shared_pending);
459 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
460 }
461
ignore_signals(struct task_struct * t)462 void ignore_signals(struct task_struct *t)
463 {
464 int i;
465
466 for (i = 0; i < _NSIG; ++i)
467 t->sighand->action[i].sa.sa_handler = SIG_IGN;
468
469 flush_signals(t);
470 }
471
472 /*
473 * Flush all handlers for a task.
474 */
475
476 void
flush_signal_handlers(struct task_struct * t,int force_default)477 flush_signal_handlers(struct task_struct *t, int force_default)
478 {
479 int i;
480 struct k_sigaction *ka = &t->sighand->action[0];
481 for (i = _NSIG ; i != 0 ; i--) {
482 if (force_default || ka->sa.sa_handler != SIG_IGN)
483 ka->sa.sa_handler = SIG_DFL;
484 ka->sa.sa_flags = 0;
485 #ifdef __ARCH_HAS_SA_RESTORER
486 ka->sa.sa_restorer = NULL;
487 #endif
488 sigemptyset(&ka->sa.sa_mask);
489 ka++;
490 }
491 }
492
unhandled_signal(struct task_struct * tsk,int sig)493 int unhandled_signal(struct task_struct *tsk, int sig)
494 {
495 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
496 if (is_global_init(tsk))
497 return 1;
498 if (handler != SIG_IGN && handler != SIG_DFL)
499 return 0;
500 /* if ptraced, let the tracer determine */
501 return !tsk->ptrace;
502 }
503
504 /*
505 * Notify the system that a driver wants to block all signals for this
506 * process, and wants to be notified if any signals at all were to be
507 * sent/acted upon. If the notifier routine returns non-zero, then the
508 * signal will be acted upon after all. If the notifier routine returns 0,
509 * then then signal will be blocked. Only one block per process is
510 * allowed. priv is a pointer to private data that the notifier routine
511 * can use to determine if the signal should be blocked or not.
512 */
513 void
block_all_signals(int (* notifier)(void * priv),void * priv,sigset_t * mask)514 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
515 {
516 unsigned long flags;
517
518 spin_lock_irqsave(¤t->sighand->siglock, flags);
519 current->notifier_mask = mask;
520 current->notifier_data = priv;
521 current->notifier = notifier;
522 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
523 }
524
525 /* Notify the system that blocking has ended. */
526
527 void
unblock_all_signals(void)528 unblock_all_signals(void)
529 {
530 unsigned long flags;
531
532 spin_lock_irqsave(¤t->sighand->siglock, flags);
533 current->notifier = NULL;
534 current->notifier_data = NULL;
535 recalc_sigpending();
536 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
537 }
538
collect_signal(int sig,struct sigpending * list,siginfo_t * info)539 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
540 {
541 struct sigqueue *q, *first = NULL;
542
543 /*
544 * Collect the siginfo appropriate to this signal. Check if
545 * there is another siginfo for the same signal.
546 */
547 list_for_each_entry(q, &list->list, list) {
548 if (q->info.si_signo == sig) {
549 if (first)
550 goto still_pending;
551 first = q;
552 }
553 }
554
555 sigdelset(&list->signal, sig);
556
557 if (first) {
558 still_pending:
559 list_del_init(&first->list);
560 copy_siginfo(info, &first->info);
561 __sigqueue_free(first);
562 } else {
563 /*
564 * Ok, it wasn't in the queue. This must be
565 * a fast-pathed signal or we must have been
566 * out of queue space. So zero out the info.
567 */
568 info->si_signo = sig;
569 info->si_errno = 0;
570 info->si_code = SI_USER;
571 info->si_pid = 0;
572 info->si_uid = 0;
573 }
574 }
575
__dequeue_signal(struct sigpending * pending,sigset_t * mask,siginfo_t * info)576 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
577 siginfo_t *info)
578 {
579 int sig = next_signal(pending, mask);
580
581 if (sig) {
582 if (current->notifier) {
583 if (sigismember(current->notifier_mask, sig)) {
584 if (!(current->notifier)(current->notifier_data)) {
585 clear_thread_flag(TIF_SIGPENDING);
586 return 0;
587 }
588 }
589 }
590
591 collect_signal(sig, pending, info);
592 }
593
594 return sig;
595 }
596
597 /*
598 * Dequeue a signal and return the element to the caller, which is
599 * expected to free it.
600 *
601 * All callers have to hold the siglock.
602 */
dequeue_signal(struct task_struct * tsk,sigset_t * mask,siginfo_t * info)603 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
604 {
605 int signr;
606
607 /* We only dequeue private signals from ourselves, we don't let
608 * signalfd steal them
609 */
610 signr = __dequeue_signal(&tsk->pending, mask, info);
611 if (!signr) {
612 signr = __dequeue_signal(&tsk->signal->shared_pending,
613 mask, info);
614 /*
615 * itimer signal ?
616 *
617 * itimers are process shared and we restart periodic
618 * itimers in the signal delivery path to prevent DoS
619 * attacks in the high resolution timer case. This is
620 * compliant with the old way of self-restarting
621 * itimers, as the SIGALRM is a legacy signal and only
622 * queued once. Changing the restart behaviour to
623 * restart the timer in the signal dequeue path is
624 * reducing the timer noise on heavy loaded !highres
625 * systems too.
626 */
627 if (unlikely(signr == SIGALRM)) {
628 struct hrtimer *tmr = &tsk->signal->real_timer;
629
630 if (!hrtimer_is_queued(tmr) &&
631 tsk->signal->it_real_incr.tv64 != 0) {
632 hrtimer_forward(tmr, tmr->base->get_time(),
633 tsk->signal->it_real_incr);
634 hrtimer_restart(tmr);
635 }
636 }
637 }
638
639 recalc_sigpending();
640 if (!signr)
641 return 0;
642
643 if (unlikely(sig_kernel_stop(signr))) {
644 /*
645 * Set a marker that we have dequeued a stop signal. Our
646 * caller might release the siglock and then the pending
647 * stop signal it is about to process is no longer in the
648 * pending bitmasks, but must still be cleared by a SIGCONT
649 * (and overruled by a SIGKILL). So those cases clear this
650 * shared flag after we've set it. Note that this flag may
651 * remain set after the signal we return is ignored or
652 * handled. That doesn't matter because its only purpose
653 * is to alert stop-signal processing code when another
654 * processor has come along and cleared the flag.
655 */
656 current->jobctl |= JOBCTL_STOP_DEQUEUED;
657 }
658 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
659 /*
660 * Release the siglock to ensure proper locking order
661 * of timer locks outside of siglocks. Note, we leave
662 * irqs disabled here, since the posix-timers code is
663 * about to disable them again anyway.
664 */
665 spin_unlock(&tsk->sighand->siglock);
666 do_schedule_next_timer(info);
667 spin_lock(&tsk->sighand->siglock);
668 }
669 return signr;
670 }
671
672 /*
673 * Tell a process that it has a new active signal..
674 *
675 * NOTE! we rely on the previous spin_lock to
676 * lock interrupts for us! We can only be called with
677 * "siglock" held, and the local interrupt must
678 * have been disabled when that got acquired!
679 *
680 * No need to set need_resched since signal event passing
681 * goes through ->blocked
682 */
signal_wake_up_state(struct task_struct * t,unsigned int state)683 void signal_wake_up_state(struct task_struct *t, unsigned int state)
684 {
685 set_tsk_thread_flag(t, TIF_SIGPENDING);
686 /*
687 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
688 * case. We don't check t->state here because there is a race with it
689 * executing another processor and just now entering stopped state.
690 * By using wake_up_state, we ensure the process will wake up and
691 * handle its death signal.
692 */
693 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
694 kick_process(t);
695 }
696
697 /*
698 * Remove signals in mask from the pending set and queue.
699 * Returns 1 if any signals were found.
700 *
701 * All callers must be holding the siglock.
702 *
703 * This version takes a sigset mask and looks at all signals,
704 * not just those in the first mask word.
705 */
rm_from_queue_full(sigset_t * mask,struct sigpending * s)706 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
707 {
708 struct sigqueue *q, *n;
709 sigset_t m;
710
711 sigandsets(&m, mask, &s->signal);
712 if (sigisemptyset(&m))
713 return 0;
714
715 sigandnsets(&s->signal, &s->signal, mask);
716 list_for_each_entry_safe(q, n, &s->list, list) {
717 if (sigismember(mask, q->info.si_signo)) {
718 list_del_init(&q->list);
719 __sigqueue_free(q);
720 }
721 }
722 return 1;
723 }
724 /*
725 * Remove signals in mask from the pending set and queue.
726 * Returns 1 if any signals were found.
727 *
728 * All callers must be holding the siglock.
729 */
rm_from_queue(unsigned long mask,struct sigpending * s)730 static int rm_from_queue(unsigned long mask, struct sigpending *s)
731 {
732 struct sigqueue *q, *n;
733
734 if (!sigtestsetmask(&s->signal, mask))
735 return 0;
736
737 sigdelsetmask(&s->signal, mask);
738 list_for_each_entry_safe(q, n, &s->list, list) {
739 if (q->info.si_signo < SIGRTMIN &&
740 (mask & sigmask(q->info.si_signo))) {
741 list_del_init(&q->list);
742 __sigqueue_free(q);
743 }
744 }
745 return 1;
746 }
747
is_si_special(const struct siginfo * info)748 static inline int is_si_special(const struct siginfo *info)
749 {
750 return info <= SEND_SIG_FORCED;
751 }
752
si_fromuser(const struct siginfo * info)753 static inline bool si_fromuser(const struct siginfo *info)
754 {
755 return info == SEND_SIG_NOINFO ||
756 (!is_si_special(info) && SI_FROMUSER(info));
757 }
758
759 /*
760 * called with RCU read lock from check_kill_permission()
761 */
kill_ok_by_cred(struct task_struct * t)762 static int kill_ok_by_cred(struct task_struct *t)
763 {
764 const struct cred *cred = current_cred();
765 const struct cred *tcred = __task_cred(t);
766
767 if (cred->user->user_ns == tcred->user->user_ns &&
768 (cred->euid == tcred->suid ||
769 cred->euid == tcred->uid ||
770 cred->uid == tcred->suid ||
771 cred->uid == tcred->uid))
772 return 1;
773
774 if (ns_capable(tcred->user->user_ns, CAP_KILL))
775 return 1;
776
777 return 0;
778 }
779
780 /*
781 * Bad permissions for sending the signal
782 * - the caller must hold the RCU read lock
783 */
check_kill_permission(int sig,struct siginfo * info,struct task_struct * t)784 static int check_kill_permission(int sig, struct siginfo *info,
785 struct task_struct *t)
786 {
787 struct pid *sid;
788 int error;
789
790 if (!valid_signal(sig))
791 return -EINVAL;
792
793 if (!si_fromuser(info))
794 return 0;
795
796 error = audit_signal_info(sig, t); /* Let audit system see the signal */
797 if (error)
798 return error;
799
800 if (!same_thread_group(current, t) &&
801 !kill_ok_by_cred(t)) {
802 switch (sig) {
803 case SIGCONT:
804 sid = task_session(t);
805 /*
806 * We don't return the error if sid == NULL. The
807 * task was unhashed, the caller must notice this.
808 */
809 if (!sid || sid == task_session(current))
810 break;
811 default:
812 return -EPERM;
813 }
814 }
815
816 return security_task_kill(t, info, sig, 0);
817 }
818
819 /**
820 * ptrace_trap_notify - schedule trap to notify ptracer
821 * @t: tracee wanting to notify tracer
822 *
823 * This function schedules sticky ptrace trap which is cleared on the next
824 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
825 * ptracer.
826 *
827 * If @t is running, STOP trap will be taken. If trapped for STOP and
828 * ptracer is listening for events, tracee is woken up so that it can
829 * re-trap for the new event. If trapped otherwise, STOP trap will be
830 * eventually taken without returning to userland after the existing traps
831 * are finished by PTRACE_CONT.
832 *
833 * CONTEXT:
834 * Must be called with @task->sighand->siglock held.
835 */
ptrace_trap_notify(struct task_struct * t)836 static void ptrace_trap_notify(struct task_struct *t)
837 {
838 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
839 assert_spin_locked(&t->sighand->siglock);
840
841 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
842 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
843 }
844
845 /*
846 * Handle magic process-wide effects of stop/continue signals. Unlike
847 * the signal actions, these happen immediately at signal-generation
848 * time regardless of blocking, ignoring, or handling. This does the
849 * actual continuing for SIGCONT, but not the actual stopping for stop
850 * signals. The process stop is done as a signal action for SIG_DFL.
851 *
852 * Returns true if the signal should be actually delivered, otherwise
853 * it should be dropped.
854 */
prepare_signal(int sig,struct task_struct * p,bool force)855 static int prepare_signal(int sig, struct task_struct *p, bool force)
856 {
857 struct signal_struct *signal = p->signal;
858 struct task_struct *t;
859
860 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
861 /*
862 * The process is in the middle of dying, nothing to do.
863 */
864 } else if (sig_kernel_stop(sig)) {
865 /*
866 * This is a stop signal. Remove SIGCONT from all queues.
867 */
868 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
869 t = p;
870 do {
871 rm_from_queue(sigmask(SIGCONT), &t->pending);
872 } while_each_thread(p, t);
873 } else if (sig == SIGCONT) {
874 unsigned int why;
875 /*
876 * Remove all stop signals from all queues, wake all threads.
877 */
878 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
879 t = p;
880 do {
881 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
882 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
883 if (likely(!(t->ptrace & PT_SEIZED)))
884 wake_up_state(t, __TASK_STOPPED);
885 else
886 ptrace_trap_notify(t);
887 } while_each_thread(p, t);
888
889 /*
890 * Notify the parent with CLD_CONTINUED if we were stopped.
891 *
892 * If we were in the middle of a group stop, we pretend it
893 * was already finished, and then continued. Since SIGCHLD
894 * doesn't queue we report only CLD_STOPPED, as if the next
895 * CLD_CONTINUED was dropped.
896 */
897 why = 0;
898 if (signal->flags & SIGNAL_STOP_STOPPED)
899 why |= SIGNAL_CLD_CONTINUED;
900 else if (signal->group_stop_count)
901 why |= SIGNAL_CLD_STOPPED;
902
903 if (why) {
904 /*
905 * The first thread which returns from do_signal_stop()
906 * will take ->siglock, notice SIGNAL_CLD_MASK, and
907 * notify its parent. See get_signal_to_deliver().
908 */
909 signal->flags = why | SIGNAL_STOP_CONTINUED;
910 signal->group_stop_count = 0;
911 signal->group_exit_code = 0;
912 }
913 }
914
915 return !sig_ignored(p, sig, force);
916 }
917
918 /*
919 * Test if P wants to take SIG. After we've checked all threads with this,
920 * it's equivalent to finding no threads not blocking SIG. Any threads not
921 * blocking SIG were ruled out because they are not running and already
922 * have pending signals. Such threads will dequeue from the shared queue
923 * as soon as they're available, so putting the signal on the shared queue
924 * will be equivalent to sending it to one such thread.
925 */
wants_signal(int sig,struct task_struct * p)926 static inline int wants_signal(int sig, struct task_struct *p)
927 {
928 if (sigismember(&p->blocked, sig))
929 return 0;
930 if (p->flags & PF_EXITING)
931 return 0;
932 if (sig == SIGKILL)
933 return 1;
934 if (task_is_stopped_or_traced(p))
935 return 0;
936 return task_curr(p) || !signal_pending(p);
937 }
938
complete_signal(int sig,struct task_struct * p,int group)939 static void complete_signal(int sig, struct task_struct *p, int group)
940 {
941 struct signal_struct *signal = p->signal;
942 struct task_struct *t;
943
944 /*
945 * Now find a thread we can wake up to take the signal off the queue.
946 *
947 * If the main thread wants the signal, it gets first crack.
948 * Probably the least surprising to the average bear.
949 */
950 if (wants_signal(sig, p))
951 t = p;
952 else if (!group || thread_group_empty(p))
953 /*
954 * There is just one thread and it does not need to be woken.
955 * It will dequeue unblocked signals before it runs again.
956 */
957 return;
958 else {
959 /*
960 * Otherwise try to find a suitable thread.
961 */
962 t = signal->curr_target;
963 while (!wants_signal(sig, t)) {
964 t = next_thread(t);
965 if (t == signal->curr_target)
966 /*
967 * No thread needs to be woken.
968 * Any eligible threads will see
969 * the signal in the queue soon.
970 */
971 return;
972 }
973 signal->curr_target = t;
974 }
975
976 /*
977 * Found a killable thread. If the signal will be fatal,
978 * then start taking the whole group down immediately.
979 */
980 if (sig_fatal(p, sig) &&
981 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
982 !sigismember(&t->real_blocked, sig) &&
983 (sig == SIGKILL || !t->ptrace)) {
984 /*
985 * This signal will be fatal to the whole group.
986 */
987 if (!sig_kernel_coredump(sig)) {
988 /*
989 * Start a group exit and wake everybody up.
990 * This way we don't have other threads
991 * running and doing things after a slower
992 * thread has the fatal signal pending.
993 */
994 signal->flags = SIGNAL_GROUP_EXIT;
995 signal->group_exit_code = sig;
996 signal->group_stop_count = 0;
997 t = p;
998 do {
999 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1000 sigaddset(&t->pending.signal, SIGKILL);
1001 signal_wake_up(t, 1);
1002 } while_each_thread(p, t);
1003 return;
1004 }
1005 }
1006
1007 /*
1008 * The signal is already in the shared-pending queue.
1009 * Tell the chosen thread to wake up and dequeue it.
1010 */
1011 signal_wake_up(t, sig == SIGKILL);
1012 return;
1013 }
1014
legacy_queue(struct sigpending * signals,int sig)1015 static inline int legacy_queue(struct sigpending *signals, int sig)
1016 {
1017 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1018 }
1019
1020 /*
1021 * map the uid in struct cred into user namespace *ns
1022 */
map_cred_ns(const struct cred * cred,struct user_namespace * ns)1023 static inline uid_t map_cred_ns(const struct cred *cred,
1024 struct user_namespace *ns)
1025 {
1026 return user_ns_map_uid(ns, cred, cred->uid);
1027 }
1028
1029 #ifdef CONFIG_USER_NS
userns_fixup_signal_uid(struct siginfo * info,struct task_struct * t)1030 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1031 {
1032 if (current_user_ns() == task_cred_xxx(t, user_ns))
1033 return;
1034
1035 if (SI_FROMKERNEL(info))
1036 return;
1037
1038 info->si_uid = user_ns_map_uid(task_cred_xxx(t, user_ns),
1039 current_cred(), info->si_uid);
1040 }
1041 #else
userns_fixup_signal_uid(struct siginfo * info,struct task_struct * t)1042 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1043 {
1044 return;
1045 }
1046 #endif
1047
__send_signal(int sig,struct siginfo * info,struct task_struct * t,int group,int from_ancestor_ns)1048 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1049 int group, int from_ancestor_ns)
1050 {
1051 struct sigpending *pending;
1052 struct sigqueue *q;
1053 int override_rlimit;
1054 int ret = 0, result;
1055
1056 assert_spin_locked(&t->sighand->siglock);
1057
1058 result = TRACE_SIGNAL_IGNORED;
1059 if (!prepare_signal(sig, t,
1060 from_ancestor_ns || (info == SEND_SIG_FORCED)))
1061 goto ret;
1062
1063 pending = group ? &t->signal->shared_pending : &t->pending;
1064 /*
1065 * Short-circuit ignored signals and support queuing
1066 * exactly one non-rt signal, so that we can get more
1067 * detailed information about the cause of the signal.
1068 */
1069 result = TRACE_SIGNAL_ALREADY_PENDING;
1070 if (legacy_queue(pending, sig))
1071 goto ret;
1072
1073 result = TRACE_SIGNAL_DELIVERED;
1074 /*
1075 * fast-pathed signals for kernel-internal things like SIGSTOP
1076 * or SIGKILL.
1077 */
1078 if (info == SEND_SIG_FORCED)
1079 goto out_set;
1080
1081 /*
1082 * Real-time signals must be queued if sent by sigqueue, or
1083 * some other real-time mechanism. It is implementation
1084 * defined whether kill() does so. We attempt to do so, on
1085 * the principle of least surprise, but since kill is not
1086 * allowed to fail with EAGAIN when low on memory we just
1087 * make sure at least one signal gets delivered and don't
1088 * pass on the info struct.
1089 */
1090 if (sig < SIGRTMIN)
1091 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1092 else
1093 override_rlimit = 0;
1094
1095 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1096 override_rlimit);
1097 if (q) {
1098 list_add_tail(&q->list, &pending->list);
1099 switch ((unsigned long) info) {
1100 case (unsigned long) SEND_SIG_NOINFO:
1101 q->info.si_signo = sig;
1102 q->info.si_errno = 0;
1103 q->info.si_code = SI_USER;
1104 q->info.si_pid = task_tgid_nr_ns(current,
1105 task_active_pid_ns(t));
1106 q->info.si_uid = current_uid();
1107 break;
1108 case (unsigned long) SEND_SIG_PRIV:
1109 q->info.si_signo = sig;
1110 q->info.si_errno = 0;
1111 q->info.si_code = SI_KERNEL;
1112 q->info.si_pid = 0;
1113 q->info.si_uid = 0;
1114 break;
1115 default:
1116 copy_siginfo(&q->info, info);
1117 if (from_ancestor_ns)
1118 q->info.si_pid = 0;
1119 break;
1120 }
1121
1122 userns_fixup_signal_uid(&q->info, t);
1123
1124 } else if (!is_si_special(info)) {
1125 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1126 /*
1127 * Queue overflow, abort. We may abort if the
1128 * signal was rt and sent by user using something
1129 * other than kill().
1130 */
1131 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1132 ret = -EAGAIN;
1133 goto ret;
1134 } else {
1135 /*
1136 * This is a silent loss of information. We still
1137 * send the signal, but the *info bits are lost.
1138 */
1139 result = TRACE_SIGNAL_LOSE_INFO;
1140 }
1141 }
1142
1143 out_set:
1144 signalfd_notify(t, sig);
1145 sigaddset(&pending->signal, sig);
1146 complete_signal(sig, t, group);
1147 ret:
1148 trace_signal_generate(sig, info, t, group, result);
1149 return ret;
1150 }
1151
send_signal(int sig,struct siginfo * info,struct task_struct * t,int group)1152 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1153 int group)
1154 {
1155 int from_ancestor_ns = 0;
1156
1157 #ifdef CONFIG_PID_NS
1158 from_ancestor_ns = si_fromuser(info) &&
1159 !task_pid_nr_ns(current, task_active_pid_ns(t));
1160 #endif
1161
1162 return __send_signal(sig, info, t, group, from_ancestor_ns);
1163 }
1164
print_fatal_signal(struct pt_regs * regs,int signr)1165 static void print_fatal_signal(struct pt_regs *regs, int signr)
1166 {
1167 printk("%s/%d: potentially unexpected fatal signal %d.\n",
1168 current->comm, task_pid_nr(current), signr);
1169
1170 #if defined(__i386__) && !defined(__arch_um__)
1171 printk("code at %08lx: ", regs->ip);
1172 {
1173 int i;
1174 for (i = 0; i < 16; i++) {
1175 unsigned char insn;
1176
1177 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1178 break;
1179 printk("%02x ", insn);
1180 }
1181 }
1182 #endif
1183 printk("\n");
1184 preempt_disable();
1185 show_regs(regs);
1186 preempt_enable();
1187 }
1188
setup_print_fatal_signals(char * str)1189 static int __init setup_print_fatal_signals(char *str)
1190 {
1191 get_option (&str, &print_fatal_signals);
1192
1193 return 1;
1194 }
1195
1196 __setup("print-fatal-signals=", setup_print_fatal_signals);
1197
1198 int
__group_send_sig_info(int sig,struct siginfo * info,struct task_struct * p)1199 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1200 {
1201 return send_signal(sig, info, p, 1);
1202 }
1203
1204 static int
specific_send_sig_info(int sig,struct siginfo * info,struct task_struct * t)1205 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1206 {
1207 return send_signal(sig, info, t, 0);
1208 }
1209
do_send_sig_info(int sig,struct siginfo * info,struct task_struct * p,bool group)1210 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1211 bool group)
1212 {
1213 unsigned long flags;
1214 int ret = -ESRCH;
1215
1216 if (lock_task_sighand(p, &flags)) {
1217 ret = send_signal(sig, info, p, group);
1218 unlock_task_sighand(p, &flags);
1219 }
1220
1221 return ret;
1222 }
1223
1224 /*
1225 * Force a signal that the process can't ignore: if necessary
1226 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1227 *
1228 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1229 * since we do not want to have a signal handler that was blocked
1230 * be invoked when user space had explicitly blocked it.
1231 *
1232 * We don't want to have recursive SIGSEGV's etc, for example,
1233 * that is why we also clear SIGNAL_UNKILLABLE.
1234 */
1235 int
force_sig_info(int sig,struct siginfo * info,struct task_struct * t)1236 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1237 {
1238 unsigned long int flags;
1239 int ret, blocked, ignored;
1240 struct k_sigaction *action;
1241
1242 spin_lock_irqsave(&t->sighand->siglock, flags);
1243 action = &t->sighand->action[sig-1];
1244 ignored = action->sa.sa_handler == SIG_IGN;
1245 blocked = sigismember(&t->blocked, sig);
1246 if (blocked || ignored) {
1247 action->sa.sa_handler = SIG_DFL;
1248 if (blocked) {
1249 sigdelset(&t->blocked, sig);
1250 recalc_sigpending_and_wake(t);
1251 }
1252 }
1253 if (action->sa.sa_handler == SIG_DFL)
1254 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1255 ret = specific_send_sig_info(sig, info, t);
1256 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1257
1258 return ret;
1259 }
1260
1261 /*
1262 * Nuke all other threads in the group.
1263 */
zap_other_threads(struct task_struct * p)1264 int zap_other_threads(struct task_struct *p)
1265 {
1266 struct task_struct *t = p;
1267 int count = 0;
1268
1269 p->signal->group_stop_count = 0;
1270
1271 while_each_thread(p, t) {
1272 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1273 count++;
1274
1275 /* Don't bother with already dead threads */
1276 if (t->exit_state)
1277 continue;
1278 sigaddset(&t->pending.signal, SIGKILL);
1279 signal_wake_up(t, 1);
1280 }
1281
1282 return count;
1283 }
1284
__lock_task_sighand(struct task_struct * tsk,unsigned long * flags)1285 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1286 unsigned long *flags)
1287 {
1288 struct sighand_struct *sighand;
1289
1290 for (;;) {
1291 local_irq_save(*flags);
1292 rcu_read_lock();
1293 sighand = rcu_dereference(tsk->sighand);
1294 if (unlikely(sighand == NULL)) {
1295 rcu_read_unlock();
1296 local_irq_restore(*flags);
1297 break;
1298 }
1299
1300 spin_lock(&sighand->siglock);
1301 if (likely(sighand == tsk->sighand)) {
1302 rcu_read_unlock();
1303 break;
1304 }
1305 spin_unlock(&sighand->siglock);
1306 rcu_read_unlock();
1307 local_irq_restore(*flags);
1308 }
1309
1310 return sighand;
1311 }
1312
1313 /*
1314 * send signal info to all the members of a group
1315 */
group_send_sig_info(int sig,struct siginfo * info,struct task_struct * p)1316 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1317 {
1318 int ret;
1319
1320 rcu_read_lock();
1321 ret = check_kill_permission(sig, info, p);
1322 rcu_read_unlock();
1323
1324 if (!ret && sig)
1325 ret = do_send_sig_info(sig, info, p, true);
1326
1327 return ret;
1328 }
1329
1330 /*
1331 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1332 * control characters do (^C, ^Z etc)
1333 * - the caller must hold at least a readlock on tasklist_lock
1334 */
__kill_pgrp_info(int sig,struct siginfo * info,struct pid * pgrp)1335 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1336 {
1337 struct task_struct *p = NULL;
1338 int retval, success;
1339
1340 success = 0;
1341 retval = -ESRCH;
1342 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1343 int err = group_send_sig_info(sig, info, p);
1344 success |= !err;
1345 retval = err;
1346 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1347 return success ? 0 : retval;
1348 }
1349
kill_pid_info(int sig,struct siginfo * info,struct pid * pid)1350 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1351 {
1352 int error = -ESRCH;
1353 struct task_struct *p;
1354
1355 rcu_read_lock();
1356 retry:
1357 p = pid_task(pid, PIDTYPE_PID);
1358 if (p) {
1359 error = group_send_sig_info(sig, info, p);
1360 if (unlikely(error == -ESRCH))
1361 /*
1362 * The task was unhashed in between, try again.
1363 * If it is dead, pid_task() will return NULL,
1364 * if we race with de_thread() it will find the
1365 * new leader.
1366 */
1367 goto retry;
1368 }
1369 rcu_read_unlock();
1370
1371 return error;
1372 }
1373
kill_proc_info(int sig,struct siginfo * info,pid_t pid)1374 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1375 {
1376 int error;
1377 rcu_read_lock();
1378 error = kill_pid_info(sig, info, find_vpid(pid));
1379 rcu_read_unlock();
1380 return error;
1381 }
1382
kill_as_cred_perm(const struct cred * cred,struct task_struct * target)1383 static int kill_as_cred_perm(const struct cred *cred,
1384 struct task_struct *target)
1385 {
1386 const struct cred *pcred = __task_cred(target);
1387 if (cred->user_ns != pcred->user_ns)
1388 return 0;
1389 if (cred->euid != pcred->suid && cred->euid != pcred->uid &&
1390 cred->uid != pcred->suid && cred->uid != pcred->uid)
1391 return 0;
1392 return 1;
1393 }
1394
1395 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
kill_pid_info_as_cred(int sig,struct siginfo * info,struct pid * pid,const struct cred * cred,u32 secid)1396 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1397 const struct cred *cred, u32 secid)
1398 {
1399 int ret = -EINVAL;
1400 struct task_struct *p;
1401 unsigned long flags;
1402
1403 if (!valid_signal(sig))
1404 return ret;
1405
1406 rcu_read_lock();
1407 p = pid_task(pid, PIDTYPE_PID);
1408 if (!p) {
1409 ret = -ESRCH;
1410 goto out_unlock;
1411 }
1412 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1413 ret = -EPERM;
1414 goto out_unlock;
1415 }
1416 ret = security_task_kill(p, info, sig, secid);
1417 if (ret)
1418 goto out_unlock;
1419
1420 if (sig) {
1421 if (lock_task_sighand(p, &flags)) {
1422 ret = __send_signal(sig, info, p, 1, 0);
1423 unlock_task_sighand(p, &flags);
1424 } else
1425 ret = -ESRCH;
1426 }
1427 out_unlock:
1428 rcu_read_unlock();
1429 return ret;
1430 }
1431 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1432
1433 /*
1434 * kill_something_info() interprets pid in interesting ways just like kill(2).
1435 *
1436 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1437 * is probably wrong. Should make it like BSD or SYSV.
1438 */
1439
kill_something_info(int sig,struct siginfo * info,pid_t pid)1440 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1441 {
1442 int ret;
1443
1444 if (pid > 0) {
1445 rcu_read_lock();
1446 ret = kill_pid_info(sig, info, find_vpid(pid));
1447 rcu_read_unlock();
1448 return ret;
1449 }
1450
1451 read_lock(&tasklist_lock);
1452 if (pid != -1) {
1453 ret = __kill_pgrp_info(sig, info,
1454 pid ? find_vpid(-pid) : task_pgrp(current));
1455 } else {
1456 int retval = 0, count = 0;
1457 struct task_struct * p;
1458
1459 for_each_process(p) {
1460 if (task_pid_vnr(p) > 1 &&
1461 !same_thread_group(p, current)) {
1462 int err = group_send_sig_info(sig, info, p);
1463 ++count;
1464 if (err != -EPERM)
1465 retval = err;
1466 }
1467 }
1468 ret = count ? retval : -ESRCH;
1469 }
1470 read_unlock(&tasklist_lock);
1471
1472 return ret;
1473 }
1474
1475 /*
1476 * These are for backward compatibility with the rest of the kernel source.
1477 */
1478
send_sig_info(int sig,struct siginfo * info,struct task_struct * p)1479 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1480 {
1481 /*
1482 * Make sure legacy kernel users don't send in bad values
1483 * (normal paths check this in check_kill_permission).
1484 */
1485 if (!valid_signal(sig))
1486 return -EINVAL;
1487
1488 return do_send_sig_info(sig, info, p, false);
1489 }
1490
1491 #define __si_special(priv) \
1492 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1493
1494 int
send_sig(int sig,struct task_struct * p,int priv)1495 send_sig(int sig, struct task_struct *p, int priv)
1496 {
1497 return send_sig_info(sig, __si_special(priv), p);
1498 }
1499
1500 void
force_sig(int sig,struct task_struct * p)1501 force_sig(int sig, struct task_struct *p)
1502 {
1503 force_sig_info(sig, SEND_SIG_PRIV, p);
1504 }
1505
1506 /*
1507 * When things go south during signal handling, we
1508 * will force a SIGSEGV. And if the signal that caused
1509 * the problem was already a SIGSEGV, we'll want to
1510 * make sure we don't even try to deliver the signal..
1511 */
1512 int
force_sigsegv(int sig,struct task_struct * p)1513 force_sigsegv(int sig, struct task_struct *p)
1514 {
1515 if (sig == SIGSEGV) {
1516 unsigned long flags;
1517 spin_lock_irqsave(&p->sighand->siglock, flags);
1518 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1519 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1520 }
1521 force_sig(SIGSEGV, p);
1522 return 0;
1523 }
1524
kill_pgrp(struct pid * pid,int sig,int priv)1525 int kill_pgrp(struct pid *pid, int sig, int priv)
1526 {
1527 int ret;
1528
1529 read_lock(&tasklist_lock);
1530 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1531 read_unlock(&tasklist_lock);
1532
1533 return ret;
1534 }
1535 EXPORT_SYMBOL(kill_pgrp);
1536
kill_pid(struct pid * pid,int sig,int priv)1537 int kill_pid(struct pid *pid, int sig, int priv)
1538 {
1539 return kill_pid_info(sig, __si_special(priv), pid);
1540 }
1541 EXPORT_SYMBOL(kill_pid);
1542
1543 /*
1544 * These functions support sending signals using preallocated sigqueue
1545 * structures. This is needed "because realtime applications cannot
1546 * afford to lose notifications of asynchronous events, like timer
1547 * expirations or I/O completions". In the case of POSIX Timers
1548 * we allocate the sigqueue structure from the timer_create. If this
1549 * allocation fails we are able to report the failure to the application
1550 * with an EAGAIN error.
1551 */
sigqueue_alloc(void)1552 struct sigqueue *sigqueue_alloc(void)
1553 {
1554 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1555
1556 if (q)
1557 q->flags |= SIGQUEUE_PREALLOC;
1558
1559 return q;
1560 }
1561
sigqueue_free(struct sigqueue * q)1562 void sigqueue_free(struct sigqueue *q)
1563 {
1564 unsigned long flags;
1565 spinlock_t *lock = ¤t->sighand->siglock;
1566
1567 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1568 /*
1569 * We must hold ->siglock while testing q->list
1570 * to serialize with collect_signal() or with
1571 * __exit_signal()->flush_sigqueue().
1572 */
1573 spin_lock_irqsave(lock, flags);
1574 q->flags &= ~SIGQUEUE_PREALLOC;
1575 /*
1576 * If it is queued it will be freed when dequeued,
1577 * like the "regular" sigqueue.
1578 */
1579 if (!list_empty(&q->list))
1580 q = NULL;
1581 spin_unlock_irqrestore(lock, flags);
1582
1583 if (q)
1584 __sigqueue_free(q);
1585 }
1586
send_sigqueue(struct sigqueue * q,struct task_struct * t,int group)1587 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1588 {
1589 int sig = q->info.si_signo;
1590 struct sigpending *pending;
1591 unsigned long flags;
1592 int ret, result;
1593
1594 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1595
1596 ret = -1;
1597 if (!likely(lock_task_sighand(t, &flags)))
1598 goto ret;
1599
1600 ret = 1; /* the signal is ignored */
1601 result = TRACE_SIGNAL_IGNORED;
1602 if (!prepare_signal(sig, t, false))
1603 goto out;
1604
1605 ret = 0;
1606 if (unlikely(!list_empty(&q->list))) {
1607 /*
1608 * If an SI_TIMER entry is already queue just increment
1609 * the overrun count.
1610 */
1611 BUG_ON(q->info.si_code != SI_TIMER);
1612 q->info.si_overrun++;
1613 result = TRACE_SIGNAL_ALREADY_PENDING;
1614 goto out;
1615 }
1616 q->info.si_overrun = 0;
1617
1618 signalfd_notify(t, sig);
1619 pending = group ? &t->signal->shared_pending : &t->pending;
1620 list_add_tail(&q->list, &pending->list);
1621 sigaddset(&pending->signal, sig);
1622 complete_signal(sig, t, group);
1623 result = TRACE_SIGNAL_DELIVERED;
1624 out:
1625 trace_signal_generate(sig, &q->info, t, group, result);
1626 unlock_task_sighand(t, &flags);
1627 ret:
1628 return ret;
1629 }
1630
1631 /*
1632 * Let a parent know about the death of a child.
1633 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1634 *
1635 * Returns true if our parent ignored us and so we've switched to
1636 * self-reaping.
1637 */
do_notify_parent(struct task_struct * tsk,int sig)1638 bool do_notify_parent(struct task_struct *tsk, int sig)
1639 {
1640 struct siginfo info;
1641 unsigned long flags;
1642 struct sighand_struct *psig;
1643 bool autoreap = false;
1644
1645 BUG_ON(sig == -1);
1646
1647 /* do_notify_parent_cldstop should have been called instead. */
1648 BUG_ON(task_is_stopped_or_traced(tsk));
1649
1650 BUG_ON(!tsk->ptrace &&
1651 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1652
1653 if (sig != SIGCHLD) {
1654 /*
1655 * This is only possible if parent == real_parent.
1656 * Check if it has changed security domain.
1657 */
1658 if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1659 sig = SIGCHLD;
1660 }
1661
1662 info.si_signo = sig;
1663 info.si_errno = 0;
1664 /*
1665 * we are under tasklist_lock here so our parent is tied to
1666 * us and cannot exit and release its namespace.
1667 *
1668 * the only it can is to switch its nsproxy with sys_unshare,
1669 * bu uncharing pid namespaces is not allowed, so we'll always
1670 * see relevant namespace
1671 *
1672 * write_lock() currently calls preempt_disable() which is the
1673 * same as rcu_read_lock(), but according to Oleg, this is not
1674 * correct to rely on this
1675 */
1676 rcu_read_lock();
1677 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1678 info.si_uid = map_cred_ns(__task_cred(tsk),
1679 task_cred_xxx(tsk->parent, user_ns));
1680 rcu_read_unlock();
1681
1682 info.si_utime = cputime_to_clock_t(tsk->utime + tsk->signal->utime);
1683 info.si_stime = cputime_to_clock_t(tsk->stime + tsk->signal->stime);
1684
1685 info.si_status = tsk->exit_code & 0x7f;
1686 if (tsk->exit_code & 0x80)
1687 info.si_code = CLD_DUMPED;
1688 else if (tsk->exit_code & 0x7f)
1689 info.si_code = CLD_KILLED;
1690 else {
1691 info.si_code = CLD_EXITED;
1692 info.si_status = tsk->exit_code >> 8;
1693 }
1694
1695 psig = tsk->parent->sighand;
1696 spin_lock_irqsave(&psig->siglock, flags);
1697 if (!tsk->ptrace && sig == SIGCHLD &&
1698 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1699 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1700 /*
1701 * We are exiting and our parent doesn't care. POSIX.1
1702 * defines special semantics for setting SIGCHLD to SIG_IGN
1703 * or setting the SA_NOCLDWAIT flag: we should be reaped
1704 * automatically and not left for our parent's wait4 call.
1705 * Rather than having the parent do it as a magic kind of
1706 * signal handler, we just set this to tell do_exit that we
1707 * can be cleaned up without becoming a zombie. Note that
1708 * we still call __wake_up_parent in this case, because a
1709 * blocked sys_wait4 might now return -ECHILD.
1710 *
1711 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1712 * is implementation-defined: we do (if you don't want
1713 * it, just use SIG_IGN instead).
1714 */
1715 autoreap = true;
1716 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1717 sig = 0;
1718 }
1719 if (valid_signal(sig) && sig)
1720 __group_send_sig_info(sig, &info, tsk->parent);
1721 __wake_up_parent(tsk, tsk->parent);
1722 spin_unlock_irqrestore(&psig->siglock, flags);
1723
1724 return autoreap;
1725 }
1726
1727 /**
1728 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1729 * @tsk: task reporting the state change
1730 * @for_ptracer: the notification is for ptracer
1731 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1732 *
1733 * Notify @tsk's parent that the stopped/continued state has changed. If
1734 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1735 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1736 *
1737 * CONTEXT:
1738 * Must be called with tasklist_lock at least read locked.
1739 */
do_notify_parent_cldstop(struct task_struct * tsk,bool for_ptracer,int why)1740 static void do_notify_parent_cldstop(struct task_struct *tsk,
1741 bool for_ptracer, int why)
1742 {
1743 struct siginfo info;
1744 unsigned long flags;
1745 struct task_struct *parent;
1746 struct sighand_struct *sighand;
1747
1748 if (for_ptracer) {
1749 parent = tsk->parent;
1750 } else {
1751 tsk = tsk->group_leader;
1752 parent = tsk->real_parent;
1753 }
1754
1755 info.si_signo = SIGCHLD;
1756 info.si_errno = 0;
1757 /*
1758 * see comment in do_notify_parent() about the following 4 lines
1759 */
1760 rcu_read_lock();
1761 info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
1762 info.si_uid = map_cred_ns(__task_cred(tsk),
1763 task_cred_xxx(parent, user_ns));
1764 rcu_read_unlock();
1765
1766 info.si_utime = cputime_to_clock_t(tsk->utime);
1767 info.si_stime = cputime_to_clock_t(tsk->stime);
1768
1769 info.si_code = why;
1770 switch (why) {
1771 case CLD_CONTINUED:
1772 info.si_status = SIGCONT;
1773 break;
1774 case CLD_STOPPED:
1775 info.si_status = tsk->signal->group_exit_code & 0x7f;
1776 break;
1777 case CLD_TRAPPED:
1778 info.si_status = tsk->exit_code & 0x7f;
1779 break;
1780 default:
1781 BUG();
1782 }
1783
1784 sighand = parent->sighand;
1785 spin_lock_irqsave(&sighand->siglock, flags);
1786 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1787 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1788 __group_send_sig_info(SIGCHLD, &info, parent);
1789 /*
1790 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1791 */
1792 __wake_up_parent(tsk, parent);
1793 spin_unlock_irqrestore(&sighand->siglock, flags);
1794 }
1795
may_ptrace_stop(void)1796 static inline int may_ptrace_stop(void)
1797 {
1798 if (!likely(current->ptrace))
1799 return 0;
1800 /*
1801 * Are we in the middle of do_coredump?
1802 * If so and our tracer is also part of the coredump stopping
1803 * is a deadlock situation, and pointless because our tracer
1804 * is dead so don't allow us to stop.
1805 * If SIGKILL was already sent before the caller unlocked
1806 * ->siglock we must see ->core_state != NULL. Otherwise it
1807 * is safe to enter schedule().
1808 *
1809 * This is almost outdated, a task with the pending SIGKILL can't
1810 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1811 * after SIGKILL was already dequeued.
1812 */
1813 if (unlikely(current->mm->core_state) &&
1814 unlikely(current->mm == current->parent->mm))
1815 return 0;
1816
1817 return 1;
1818 }
1819
1820 /*
1821 * Return non-zero if there is a SIGKILL that should be waking us up.
1822 * Called with the siglock held.
1823 */
sigkill_pending(struct task_struct * tsk)1824 static int sigkill_pending(struct task_struct *tsk)
1825 {
1826 return sigismember(&tsk->pending.signal, SIGKILL) ||
1827 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1828 }
1829
1830 /*
1831 * This must be called with current->sighand->siglock held.
1832 *
1833 * This should be the path for all ptrace stops.
1834 * We always set current->last_siginfo while stopped here.
1835 * That makes it a way to test a stopped process for
1836 * being ptrace-stopped vs being job-control-stopped.
1837 *
1838 * If we actually decide not to stop at all because the tracer
1839 * is gone, we keep current->exit_code unless clear_code.
1840 */
ptrace_stop(int exit_code,int why,int clear_code,siginfo_t * info)1841 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1842 __releases(¤t->sighand->siglock)
1843 __acquires(¤t->sighand->siglock)
1844 {
1845 bool gstop_done = false;
1846
1847 if (arch_ptrace_stop_needed(exit_code, info)) {
1848 /*
1849 * The arch code has something special to do before a
1850 * ptrace stop. This is allowed to block, e.g. for faults
1851 * on user stack pages. We can't keep the siglock while
1852 * calling arch_ptrace_stop, so we must release it now.
1853 * To preserve proper semantics, we must do this before
1854 * any signal bookkeeping like checking group_stop_count.
1855 * Meanwhile, a SIGKILL could come in before we retake the
1856 * siglock. That must prevent us from sleeping in TASK_TRACED.
1857 * So after regaining the lock, we must check for SIGKILL.
1858 */
1859 spin_unlock_irq(¤t->sighand->siglock);
1860 arch_ptrace_stop(exit_code, info);
1861 spin_lock_irq(¤t->sighand->siglock);
1862 if (sigkill_pending(current))
1863 return;
1864 }
1865
1866 /*
1867 * We're committing to trapping. TRACED should be visible before
1868 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1869 * Also, transition to TRACED and updates to ->jobctl should be
1870 * atomic with respect to siglock and should be done after the arch
1871 * hook as siglock is released and regrabbed across it.
1872 */
1873 set_current_state(TASK_TRACED);
1874
1875 current->last_siginfo = info;
1876 current->exit_code = exit_code;
1877
1878 /*
1879 * If @why is CLD_STOPPED, we're trapping to participate in a group
1880 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
1881 * across siglock relocks since INTERRUPT was scheduled, PENDING
1882 * could be clear now. We act as if SIGCONT is received after
1883 * TASK_TRACED is entered - ignore it.
1884 */
1885 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1886 gstop_done = task_participate_group_stop(current);
1887
1888 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1889 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1890 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1891 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1892
1893 /* entering a trap, clear TRAPPING */
1894 task_clear_jobctl_trapping(current);
1895
1896 spin_unlock_irq(¤t->sighand->siglock);
1897 read_lock(&tasklist_lock);
1898 if (may_ptrace_stop()) {
1899 /*
1900 * Notify parents of the stop.
1901 *
1902 * While ptraced, there are two parents - the ptracer and
1903 * the real_parent of the group_leader. The ptracer should
1904 * know about every stop while the real parent is only
1905 * interested in the completion of group stop. The states
1906 * for the two don't interact with each other. Notify
1907 * separately unless they're gonna be duplicates.
1908 */
1909 do_notify_parent_cldstop(current, true, why);
1910 if (gstop_done && ptrace_reparented(current))
1911 do_notify_parent_cldstop(current, false, why);
1912
1913 /*
1914 * Don't want to allow preemption here, because
1915 * sys_ptrace() needs this task to be inactive.
1916 *
1917 * XXX: implement read_unlock_no_resched().
1918 */
1919 preempt_disable();
1920 read_unlock(&tasklist_lock);
1921 preempt_enable_no_resched();
1922 schedule();
1923 } else {
1924 /*
1925 * By the time we got the lock, our tracer went away.
1926 * Don't drop the lock yet, another tracer may come.
1927 *
1928 * If @gstop_done, the ptracer went away between group stop
1929 * completion and here. During detach, it would have set
1930 * JOBCTL_STOP_PENDING on us and we'll re-enter
1931 * TASK_STOPPED in do_signal_stop() on return, so notifying
1932 * the real parent of the group stop completion is enough.
1933 */
1934 if (gstop_done)
1935 do_notify_parent_cldstop(current, false, why);
1936
1937 /* tasklist protects us from ptrace_freeze_traced() */
1938 __set_current_state(TASK_RUNNING);
1939 if (clear_code)
1940 current->exit_code = 0;
1941 read_unlock(&tasklist_lock);
1942 }
1943
1944 /*
1945 * While in TASK_TRACED, we were considered "frozen enough".
1946 * Now that we woke up, it's crucial if we're supposed to be
1947 * frozen that we freeze now before running anything substantial.
1948 */
1949 try_to_freeze();
1950
1951 /*
1952 * We are back. Now reacquire the siglock before touching
1953 * last_siginfo, so that we are sure to have synchronized with
1954 * any signal-sending on another CPU that wants to examine it.
1955 */
1956 spin_lock_irq(¤t->sighand->siglock);
1957 current->last_siginfo = NULL;
1958
1959 /* LISTENING can be set only during STOP traps, clear it */
1960 current->jobctl &= ~JOBCTL_LISTENING;
1961
1962 /*
1963 * Queued signals ignored us while we were stopped for tracing.
1964 * So check for any that we should take before resuming user mode.
1965 * This sets TIF_SIGPENDING, but never clears it.
1966 */
1967 recalc_sigpending_tsk(current);
1968 }
1969
ptrace_do_notify(int signr,int exit_code,int why)1970 static void ptrace_do_notify(int signr, int exit_code, int why)
1971 {
1972 siginfo_t info;
1973
1974 memset(&info, 0, sizeof info);
1975 info.si_signo = signr;
1976 info.si_code = exit_code;
1977 info.si_pid = task_pid_vnr(current);
1978 info.si_uid = current_uid();
1979
1980 /* Let the debugger run. */
1981 ptrace_stop(exit_code, why, 1, &info);
1982 }
1983
ptrace_notify(int exit_code)1984 void ptrace_notify(int exit_code)
1985 {
1986 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1987
1988 spin_lock_irq(¤t->sighand->siglock);
1989 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1990 spin_unlock_irq(¤t->sighand->siglock);
1991 }
1992
1993 /**
1994 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1995 * @signr: signr causing group stop if initiating
1996 *
1997 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1998 * and participate in it. If already set, participate in the existing
1999 * group stop. If participated in a group stop (and thus slept), %true is
2000 * returned with siglock released.
2001 *
2002 * If ptraced, this function doesn't handle stop itself. Instead,
2003 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2004 * untouched. The caller must ensure that INTERRUPT trap handling takes
2005 * places afterwards.
2006 *
2007 * CONTEXT:
2008 * Must be called with @current->sighand->siglock held, which is released
2009 * on %true return.
2010 *
2011 * RETURNS:
2012 * %false if group stop is already cancelled or ptrace trap is scheduled.
2013 * %true if participated in group stop.
2014 */
do_signal_stop(int signr)2015 static bool do_signal_stop(int signr)
2016 __releases(¤t->sighand->siglock)
2017 {
2018 struct signal_struct *sig = current->signal;
2019
2020 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2021 unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2022 struct task_struct *t;
2023
2024 /* signr will be recorded in task->jobctl for retries */
2025 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2026
2027 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2028 unlikely(signal_group_exit(sig)))
2029 return false;
2030 /*
2031 * There is no group stop already in progress. We must
2032 * initiate one now.
2033 *
2034 * While ptraced, a task may be resumed while group stop is
2035 * still in effect and then receive a stop signal and
2036 * initiate another group stop. This deviates from the
2037 * usual behavior as two consecutive stop signals can't
2038 * cause two group stops when !ptraced. That is why we
2039 * also check !task_is_stopped(t) below.
2040 *
2041 * The condition can be distinguished by testing whether
2042 * SIGNAL_STOP_STOPPED is already set. Don't generate
2043 * group_exit_code in such case.
2044 *
2045 * This is not necessary for SIGNAL_STOP_CONTINUED because
2046 * an intervening stop signal is required to cause two
2047 * continued events regardless of ptrace.
2048 */
2049 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2050 sig->group_exit_code = signr;
2051
2052 sig->group_stop_count = 0;
2053
2054 if (task_set_jobctl_pending(current, signr | gstop))
2055 sig->group_stop_count++;
2056
2057 for (t = next_thread(current); t != current;
2058 t = next_thread(t)) {
2059 /*
2060 * Setting state to TASK_STOPPED for a group
2061 * stop is always done with the siglock held,
2062 * so this check has no races.
2063 */
2064 if (!task_is_stopped(t) &&
2065 task_set_jobctl_pending(t, signr | gstop)) {
2066 sig->group_stop_count++;
2067 if (likely(!(t->ptrace & PT_SEIZED)))
2068 signal_wake_up(t, 0);
2069 else
2070 ptrace_trap_notify(t);
2071 }
2072 }
2073 }
2074
2075 if (likely(!current->ptrace)) {
2076 int notify = 0;
2077
2078 /*
2079 * If there are no other threads in the group, or if there
2080 * is a group stop in progress and we are the last to stop,
2081 * report to the parent.
2082 */
2083 if (task_participate_group_stop(current))
2084 notify = CLD_STOPPED;
2085
2086 __set_current_state(TASK_STOPPED);
2087 spin_unlock_irq(¤t->sighand->siglock);
2088
2089 /*
2090 * Notify the parent of the group stop completion. Because
2091 * we're not holding either the siglock or tasklist_lock
2092 * here, ptracer may attach inbetween; however, this is for
2093 * group stop and should always be delivered to the real
2094 * parent of the group leader. The new ptracer will get
2095 * its notification when this task transitions into
2096 * TASK_TRACED.
2097 */
2098 if (notify) {
2099 read_lock(&tasklist_lock);
2100 do_notify_parent_cldstop(current, false, notify);
2101 read_unlock(&tasklist_lock);
2102 }
2103
2104 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2105 schedule();
2106 return true;
2107 } else {
2108 /*
2109 * While ptraced, group stop is handled by STOP trap.
2110 * Schedule it and let the caller deal with it.
2111 */
2112 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2113 return false;
2114 }
2115 }
2116
2117 /**
2118 * do_jobctl_trap - take care of ptrace jobctl traps
2119 *
2120 * When PT_SEIZED, it's used for both group stop and explicit
2121 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2122 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2123 * the stop signal; otherwise, %SIGTRAP.
2124 *
2125 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2126 * number as exit_code and no siginfo.
2127 *
2128 * CONTEXT:
2129 * Must be called with @current->sighand->siglock held, which may be
2130 * released and re-acquired before returning with intervening sleep.
2131 */
do_jobctl_trap(void)2132 static void do_jobctl_trap(void)
2133 {
2134 struct signal_struct *signal = current->signal;
2135 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2136
2137 if (current->ptrace & PT_SEIZED) {
2138 if (!signal->group_stop_count &&
2139 !(signal->flags & SIGNAL_STOP_STOPPED))
2140 signr = SIGTRAP;
2141 WARN_ON_ONCE(!signr);
2142 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2143 CLD_STOPPED);
2144 } else {
2145 WARN_ON_ONCE(!signr);
2146 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2147 current->exit_code = 0;
2148 }
2149 }
2150
ptrace_signal(int signr,siginfo_t * info,struct pt_regs * regs,void * cookie)2151 static int ptrace_signal(int signr, siginfo_t *info,
2152 struct pt_regs *regs, void *cookie)
2153 {
2154 ptrace_signal_deliver(regs, cookie);
2155 /*
2156 * We do not check sig_kernel_stop(signr) but set this marker
2157 * unconditionally because we do not know whether debugger will
2158 * change signr. This flag has no meaning unless we are going
2159 * to stop after return from ptrace_stop(). In this case it will
2160 * be checked in do_signal_stop(), we should only stop if it was
2161 * not cleared by SIGCONT while we were sleeping. See also the
2162 * comment in dequeue_signal().
2163 */
2164 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2165 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2166
2167 /* We're back. Did the debugger cancel the sig? */
2168 signr = current->exit_code;
2169 if (signr == 0)
2170 return signr;
2171
2172 current->exit_code = 0;
2173
2174 /*
2175 * Update the siginfo structure if the signal has
2176 * changed. If the debugger wanted something
2177 * specific in the siginfo structure then it should
2178 * have updated *info via PTRACE_SETSIGINFO.
2179 */
2180 if (signr != info->si_signo) {
2181 info->si_signo = signr;
2182 info->si_errno = 0;
2183 info->si_code = SI_USER;
2184 rcu_read_lock();
2185 info->si_pid = task_pid_vnr(current->parent);
2186 info->si_uid = map_cred_ns(__task_cred(current->parent),
2187 current_user_ns());
2188 rcu_read_unlock();
2189 }
2190
2191 /* If the (new) signal is now blocked, requeue it. */
2192 if (sigismember(¤t->blocked, signr)) {
2193 specific_send_sig_info(signr, info, current);
2194 signr = 0;
2195 }
2196
2197 return signr;
2198 }
2199
get_signal_to_deliver(siginfo_t * info,struct k_sigaction * return_ka,struct pt_regs * regs,void * cookie)2200 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2201 struct pt_regs *regs, void *cookie)
2202 {
2203 struct sighand_struct *sighand = current->sighand;
2204 struct signal_struct *signal = current->signal;
2205 int signr;
2206
2207 relock:
2208 /*
2209 * We'll jump back here after any time we were stopped in TASK_STOPPED.
2210 * While in TASK_STOPPED, we were considered "frozen enough".
2211 * Now that we woke up, it's crucial if we're supposed to be
2212 * frozen that we freeze now before running anything substantial.
2213 */
2214 try_to_freeze();
2215
2216 spin_lock_irq(&sighand->siglock);
2217 /*
2218 * Every stopped thread goes here after wakeup. Check to see if
2219 * we should notify the parent, prepare_signal(SIGCONT) encodes
2220 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2221 */
2222 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2223 int why;
2224
2225 if (signal->flags & SIGNAL_CLD_CONTINUED)
2226 why = CLD_CONTINUED;
2227 else
2228 why = CLD_STOPPED;
2229
2230 signal->flags &= ~SIGNAL_CLD_MASK;
2231
2232 spin_unlock_irq(&sighand->siglock);
2233
2234 /*
2235 * Notify the parent that we're continuing. This event is
2236 * always per-process and doesn't make whole lot of sense
2237 * for ptracers, who shouldn't consume the state via
2238 * wait(2) either, but, for backward compatibility, notify
2239 * the ptracer of the group leader too unless it's gonna be
2240 * a duplicate.
2241 */
2242 read_lock(&tasklist_lock);
2243 do_notify_parent_cldstop(current, false, why);
2244
2245 if (ptrace_reparented(current->group_leader))
2246 do_notify_parent_cldstop(current->group_leader,
2247 true, why);
2248 read_unlock(&tasklist_lock);
2249
2250 goto relock;
2251 }
2252
2253 for (;;) {
2254 struct k_sigaction *ka;
2255
2256 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2257 do_signal_stop(0))
2258 goto relock;
2259
2260 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2261 do_jobctl_trap();
2262 spin_unlock_irq(&sighand->siglock);
2263 goto relock;
2264 }
2265
2266 signr = dequeue_signal(current, ¤t->blocked, info);
2267
2268 if (!signr)
2269 break; /* will return 0 */
2270
2271 if (unlikely(current->ptrace) && signr != SIGKILL) {
2272 signr = ptrace_signal(signr, info,
2273 regs, cookie);
2274 if (!signr)
2275 continue;
2276 }
2277
2278 ka = &sighand->action[signr-1];
2279
2280 /* Trace actually delivered signals. */
2281 trace_signal_deliver(signr, info, ka);
2282
2283 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2284 continue;
2285 if (ka->sa.sa_handler != SIG_DFL) {
2286 /* Run the handler. */
2287 *return_ka = *ka;
2288
2289 if (ka->sa.sa_flags & SA_ONESHOT)
2290 ka->sa.sa_handler = SIG_DFL;
2291
2292 break; /* will return non-zero "signr" value */
2293 }
2294
2295 /*
2296 * Now we are doing the default action for this signal.
2297 */
2298 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2299 continue;
2300
2301 /*
2302 * Global init gets no signals it doesn't want.
2303 * Container-init gets no signals it doesn't want from same
2304 * container.
2305 *
2306 * Note that if global/container-init sees a sig_kernel_only()
2307 * signal here, the signal must have been generated internally
2308 * or must have come from an ancestor namespace. In either
2309 * case, the signal cannot be dropped.
2310 */
2311 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2312 !sig_kernel_only(signr))
2313 continue;
2314
2315 if (sig_kernel_stop(signr)) {
2316 /*
2317 * The default action is to stop all threads in
2318 * the thread group. The job control signals
2319 * do nothing in an orphaned pgrp, but SIGSTOP
2320 * always works. Note that siglock needs to be
2321 * dropped during the call to is_orphaned_pgrp()
2322 * because of lock ordering with tasklist_lock.
2323 * This allows an intervening SIGCONT to be posted.
2324 * We need to check for that and bail out if necessary.
2325 */
2326 if (signr != SIGSTOP) {
2327 spin_unlock_irq(&sighand->siglock);
2328
2329 /* signals can be posted during this window */
2330
2331 if (is_current_pgrp_orphaned())
2332 goto relock;
2333
2334 spin_lock_irq(&sighand->siglock);
2335 }
2336
2337 if (likely(do_signal_stop(info->si_signo))) {
2338 /* It released the siglock. */
2339 goto relock;
2340 }
2341
2342 /*
2343 * We didn't actually stop, due to a race
2344 * with SIGCONT or something like that.
2345 */
2346 continue;
2347 }
2348
2349 spin_unlock_irq(&sighand->siglock);
2350
2351 /*
2352 * Anything else is fatal, maybe with a core dump.
2353 */
2354 current->flags |= PF_SIGNALED;
2355
2356 if (sig_kernel_coredump(signr)) {
2357 if (print_fatal_signals)
2358 print_fatal_signal(regs, info->si_signo);
2359 /*
2360 * If it was able to dump core, this kills all
2361 * other threads in the group and synchronizes with
2362 * their demise. If we lost the race with another
2363 * thread getting here, it set group_exit_code
2364 * first and our do_group_exit call below will use
2365 * that value and ignore the one we pass it.
2366 */
2367 do_coredump(info->si_signo, info->si_signo, regs);
2368 }
2369
2370 /*
2371 * Death signals, no core dump.
2372 */
2373 do_group_exit(info->si_signo);
2374 /* NOTREACHED */
2375 }
2376 spin_unlock_irq(&sighand->siglock);
2377 return signr;
2378 }
2379
2380 /**
2381 * block_sigmask - add @ka's signal mask to current->blocked
2382 * @ka: action for @signr
2383 * @signr: signal that has been successfully delivered
2384 *
2385 * This function should be called when a signal has succesfully been
2386 * delivered. It adds the mask of signals for @ka to current->blocked
2387 * so that they are blocked during the execution of the signal
2388 * handler. In addition, @signr will be blocked unless %SA_NODEFER is
2389 * set in @ka->sa.sa_flags.
2390 */
block_sigmask(struct k_sigaction * ka,int signr)2391 void block_sigmask(struct k_sigaction *ka, int signr)
2392 {
2393 sigset_t blocked;
2394
2395 sigorsets(&blocked, ¤t->blocked, &ka->sa.sa_mask);
2396 if (!(ka->sa.sa_flags & SA_NODEFER))
2397 sigaddset(&blocked, signr);
2398 set_current_blocked(&blocked);
2399 }
2400
2401 /*
2402 * It could be that complete_signal() picked us to notify about the
2403 * group-wide signal. Other threads should be notified now to take
2404 * the shared signals in @which since we will not.
2405 */
retarget_shared_pending(struct task_struct * tsk,sigset_t * which)2406 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2407 {
2408 sigset_t retarget;
2409 struct task_struct *t;
2410
2411 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2412 if (sigisemptyset(&retarget))
2413 return;
2414
2415 t = tsk;
2416 while_each_thread(tsk, t) {
2417 if (t->flags & PF_EXITING)
2418 continue;
2419
2420 if (!has_pending_signals(&retarget, &t->blocked))
2421 continue;
2422 /* Remove the signals this thread can handle. */
2423 sigandsets(&retarget, &retarget, &t->blocked);
2424
2425 if (!signal_pending(t))
2426 signal_wake_up(t, 0);
2427
2428 if (sigisemptyset(&retarget))
2429 break;
2430 }
2431 }
2432
exit_signals(struct task_struct * tsk)2433 void exit_signals(struct task_struct *tsk)
2434 {
2435 int group_stop = 0;
2436 sigset_t unblocked;
2437
2438 /*
2439 * @tsk is about to have PF_EXITING set - lock out users which
2440 * expect stable threadgroup.
2441 */
2442 threadgroup_change_begin(tsk);
2443
2444 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2445 tsk->flags |= PF_EXITING;
2446 threadgroup_change_end(tsk);
2447 return;
2448 }
2449
2450 spin_lock_irq(&tsk->sighand->siglock);
2451 /*
2452 * From now this task is not visible for group-wide signals,
2453 * see wants_signal(), do_signal_stop().
2454 */
2455 tsk->flags |= PF_EXITING;
2456
2457 threadgroup_change_end(tsk);
2458
2459 if (!signal_pending(tsk))
2460 goto out;
2461
2462 unblocked = tsk->blocked;
2463 signotset(&unblocked);
2464 retarget_shared_pending(tsk, &unblocked);
2465
2466 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2467 task_participate_group_stop(tsk))
2468 group_stop = CLD_STOPPED;
2469 out:
2470 spin_unlock_irq(&tsk->sighand->siglock);
2471
2472 /*
2473 * If group stop has completed, deliver the notification. This
2474 * should always go to the real parent of the group leader.
2475 */
2476 if (unlikely(group_stop)) {
2477 read_lock(&tasklist_lock);
2478 do_notify_parent_cldstop(tsk, false, group_stop);
2479 read_unlock(&tasklist_lock);
2480 }
2481 }
2482
2483 EXPORT_SYMBOL(recalc_sigpending);
2484 EXPORT_SYMBOL_GPL(dequeue_signal);
2485 EXPORT_SYMBOL(flush_signals);
2486 EXPORT_SYMBOL(force_sig);
2487 EXPORT_SYMBOL(send_sig);
2488 EXPORT_SYMBOL(send_sig_info);
2489 EXPORT_SYMBOL(sigprocmask);
2490 EXPORT_SYMBOL(block_all_signals);
2491 EXPORT_SYMBOL(unblock_all_signals);
2492
2493
2494 /*
2495 * System call entry points.
2496 */
2497
2498 /**
2499 * sys_restart_syscall - restart a system call
2500 */
SYSCALL_DEFINE0(restart_syscall)2501 SYSCALL_DEFINE0(restart_syscall)
2502 {
2503 struct restart_block *restart = ¤t_thread_info()->restart_block;
2504 return restart->fn(restart);
2505 }
2506
do_no_restart_syscall(struct restart_block * param)2507 long do_no_restart_syscall(struct restart_block *param)
2508 {
2509 return -EINTR;
2510 }
2511
__set_task_blocked(struct task_struct * tsk,const sigset_t * newset)2512 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2513 {
2514 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2515 sigset_t newblocked;
2516 /* A set of now blocked but previously unblocked signals. */
2517 sigandnsets(&newblocked, newset, ¤t->blocked);
2518 retarget_shared_pending(tsk, &newblocked);
2519 }
2520 tsk->blocked = *newset;
2521 recalc_sigpending();
2522 }
2523
2524 /**
2525 * set_current_blocked - change current->blocked mask
2526 * @newset: new mask
2527 *
2528 * It is wrong to change ->blocked directly, this helper should be used
2529 * to ensure the process can't miss a shared signal we are going to block.
2530 */
set_current_blocked(const sigset_t * newset)2531 void set_current_blocked(const sigset_t *newset)
2532 {
2533 struct task_struct *tsk = current;
2534
2535 spin_lock_irq(&tsk->sighand->siglock);
2536 __set_task_blocked(tsk, newset);
2537 spin_unlock_irq(&tsk->sighand->siglock);
2538 }
2539
2540 /*
2541 * This is also useful for kernel threads that want to temporarily
2542 * (or permanently) block certain signals.
2543 *
2544 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2545 * interface happily blocks "unblockable" signals like SIGKILL
2546 * and friends.
2547 */
sigprocmask(int how,sigset_t * set,sigset_t * oldset)2548 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2549 {
2550 struct task_struct *tsk = current;
2551 sigset_t newset;
2552
2553 /* Lockless, only current can change ->blocked, never from irq */
2554 if (oldset)
2555 *oldset = tsk->blocked;
2556
2557 switch (how) {
2558 case SIG_BLOCK:
2559 sigorsets(&newset, &tsk->blocked, set);
2560 break;
2561 case SIG_UNBLOCK:
2562 sigandnsets(&newset, &tsk->blocked, set);
2563 break;
2564 case SIG_SETMASK:
2565 newset = *set;
2566 break;
2567 default:
2568 return -EINVAL;
2569 }
2570
2571 set_current_blocked(&newset);
2572 return 0;
2573 }
2574
2575 /**
2576 * sys_rt_sigprocmask - change the list of currently blocked signals
2577 * @how: whether to add, remove, or set signals
2578 * @nset: stores pending signals
2579 * @oset: previous value of signal mask if non-null
2580 * @sigsetsize: size of sigset_t type
2581 */
SYSCALL_DEFINE4(rt_sigprocmask,int,how,sigset_t __user *,nset,sigset_t __user *,oset,size_t,sigsetsize)2582 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2583 sigset_t __user *, oset, size_t, sigsetsize)
2584 {
2585 sigset_t old_set, new_set;
2586 int error;
2587
2588 /* XXX: Don't preclude handling different sized sigset_t's. */
2589 if (sigsetsize != sizeof(sigset_t))
2590 return -EINVAL;
2591
2592 old_set = current->blocked;
2593
2594 if (nset) {
2595 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2596 return -EFAULT;
2597 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2598
2599 error = sigprocmask(how, &new_set, NULL);
2600 if (error)
2601 return error;
2602 }
2603
2604 if (oset) {
2605 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2606 return -EFAULT;
2607 }
2608
2609 return 0;
2610 }
2611
do_sigpending(void __user * set,unsigned long sigsetsize)2612 long do_sigpending(void __user *set, unsigned long sigsetsize)
2613 {
2614 long error = -EINVAL;
2615 sigset_t pending;
2616
2617 if (sigsetsize > sizeof(sigset_t))
2618 goto out;
2619
2620 spin_lock_irq(¤t->sighand->siglock);
2621 sigorsets(&pending, ¤t->pending.signal,
2622 ¤t->signal->shared_pending.signal);
2623 spin_unlock_irq(¤t->sighand->siglock);
2624
2625 /* Outside the lock because only this thread touches it. */
2626 sigandsets(&pending, ¤t->blocked, &pending);
2627
2628 error = -EFAULT;
2629 if (!copy_to_user(set, &pending, sigsetsize))
2630 error = 0;
2631
2632 out:
2633 return error;
2634 }
2635
2636 /**
2637 * sys_rt_sigpending - examine a pending signal that has been raised
2638 * while blocked
2639 * @set: stores pending signals
2640 * @sigsetsize: size of sigset_t type or larger
2641 */
SYSCALL_DEFINE2(rt_sigpending,sigset_t __user *,set,size_t,sigsetsize)2642 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2643 {
2644 return do_sigpending(set, sigsetsize);
2645 }
2646
2647 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2648
copy_siginfo_to_user(siginfo_t __user * to,siginfo_t * from)2649 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2650 {
2651 int err;
2652
2653 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2654 return -EFAULT;
2655 if (from->si_code < 0)
2656 return __copy_to_user(to, from, sizeof(siginfo_t))
2657 ? -EFAULT : 0;
2658 /*
2659 * If you change siginfo_t structure, please be sure
2660 * this code is fixed accordingly.
2661 * Please remember to update the signalfd_copyinfo() function
2662 * inside fs/signalfd.c too, in case siginfo_t changes.
2663 * It should never copy any pad contained in the structure
2664 * to avoid security leaks, but must copy the generic
2665 * 3 ints plus the relevant union member.
2666 */
2667 err = __put_user(from->si_signo, &to->si_signo);
2668 err |= __put_user(from->si_errno, &to->si_errno);
2669 err |= __put_user((short)from->si_code, &to->si_code);
2670 switch (from->si_code & __SI_MASK) {
2671 case __SI_KILL:
2672 err |= __put_user(from->si_pid, &to->si_pid);
2673 err |= __put_user(from->si_uid, &to->si_uid);
2674 break;
2675 case __SI_TIMER:
2676 err |= __put_user(from->si_tid, &to->si_tid);
2677 err |= __put_user(from->si_overrun, &to->si_overrun);
2678 err |= __put_user(from->si_ptr, &to->si_ptr);
2679 break;
2680 case __SI_POLL:
2681 err |= __put_user(from->si_band, &to->si_band);
2682 err |= __put_user(from->si_fd, &to->si_fd);
2683 break;
2684 case __SI_FAULT:
2685 err |= __put_user(from->si_addr, &to->si_addr);
2686 #ifdef __ARCH_SI_TRAPNO
2687 err |= __put_user(from->si_trapno, &to->si_trapno);
2688 #endif
2689 #ifdef BUS_MCEERR_AO
2690 /*
2691 * Other callers might not initialize the si_lsb field,
2692 * so check explicitly for the right codes here.
2693 */
2694 if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2695 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2696 #endif
2697 break;
2698 case __SI_CHLD:
2699 err |= __put_user(from->si_pid, &to->si_pid);
2700 err |= __put_user(from->si_uid, &to->si_uid);
2701 err |= __put_user(from->si_status, &to->si_status);
2702 err |= __put_user(from->si_utime, &to->si_utime);
2703 err |= __put_user(from->si_stime, &to->si_stime);
2704 break;
2705 case __SI_RT: /* This is not generated by the kernel as of now. */
2706 case __SI_MESGQ: /* But this is */
2707 err |= __put_user(from->si_pid, &to->si_pid);
2708 err |= __put_user(from->si_uid, &to->si_uid);
2709 err |= __put_user(from->si_ptr, &to->si_ptr);
2710 break;
2711 default: /* this is just in case for now ... */
2712 err |= __put_user(from->si_pid, &to->si_pid);
2713 err |= __put_user(from->si_uid, &to->si_uid);
2714 break;
2715 }
2716 return err;
2717 }
2718
2719 #endif
2720
2721 /**
2722 * do_sigtimedwait - wait for queued signals specified in @which
2723 * @which: queued signals to wait for
2724 * @info: if non-null, the signal's siginfo is returned here
2725 * @ts: upper bound on process time suspension
2726 */
do_sigtimedwait(const sigset_t * which,siginfo_t * info,const struct timespec * ts)2727 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2728 const struct timespec *ts)
2729 {
2730 struct task_struct *tsk = current;
2731 long timeout = MAX_SCHEDULE_TIMEOUT;
2732 sigset_t mask = *which;
2733 int sig;
2734
2735 if (ts) {
2736 if (!timespec_valid(ts))
2737 return -EINVAL;
2738 timeout = timespec_to_jiffies(ts);
2739 /*
2740 * We can be close to the next tick, add another one
2741 * to ensure we will wait at least the time asked for.
2742 */
2743 if (ts->tv_sec || ts->tv_nsec)
2744 timeout++;
2745 }
2746
2747 /*
2748 * Invert the set of allowed signals to get those we want to block.
2749 */
2750 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2751 signotset(&mask);
2752
2753 spin_lock_irq(&tsk->sighand->siglock);
2754 sig = dequeue_signal(tsk, &mask, info);
2755 if (!sig && timeout) {
2756 /*
2757 * None ready, temporarily unblock those we're interested
2758 * while we are sleeping in so that we'll be awakened when
2759 * they arrive. Unblocking is always fine, we can avoid
2760 * set_current_blocked().
2761 */
2762 tsk->real_blocked = tsk->blocked;
2763 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2764 recalc_sigpending();
2765 spin_unlock_irq(&tsk->sighand->siglock);
2766
2767 timeout = schedule_timeout_interruptible(timeout);
2768
2769 spin_lock_irq(&tsk->sighand->siglock);
2770 __set_task_blocked(tsk, &tsk->real_blocked);
2771 siginitset(&tsk->real_blocked, 0);
2772 sig = dequeue_signal(tsk, &mask, info);
2773 }
2774 spin_unlock_irq(&tsk->sighand->siglock);
2775
2776 if (sig)
2777 return sig;
2778 return timeout ? -EINTR : -EAGAIN;
2779 }
2780
2781 /**
2782 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
2783 * in @uthese
2784 * @uthese: queued signals to wait for
2785 * @uinfo: if non-null, the signal's siginfo is returned here
2786 * @uts: upper bound on process time suspension
2787 * @sigsetsize: size of sigset_t type
2788 */
SYSCALL_DEFINE4(rt_sigtimedwait,const sigset_t __user *,uthese,siginfo_t __user *,uinfo,const struct timespec __user *,uts,size_t,sigsetsize)2789 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2790 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2791 size_t, sigsetsize)
2792 {
2793 sigset_t these;
2794 struct timespec ts;
2795 siginfo_t info;
2796 int ret;
2797
2798 /* XXX: Don't preclude handling different sized sigset_t's. */
2799 if (sigsetsize != sizeof(sigset_t))
2800 return -EINVAL;
2801
2802 if (copy_from_user(&these, uthese, sizeof(these)))
2803 return -EFAULT;
2804
2805 if (uts) {
2806 if (copy_from_user(&ts, uts, sizeof(ts)))
2807 return -EFAULT;
2808 }
2809
2810 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2811
2812 if (ret > 0 && uinfo) {
2813 if (copy_siginfo_to_user(uinfo, &info))
2814 ret = -EFAULT;
2815 }
2816
2817 return ret;
2818 }
2819
2820 /**
2821 * sys_kill - send a signal to a process
2822 * @pid: the PID of the process
2823 * @sig: signal to be sent
2824 */
SYSCALL_DEFINE2(kill,pid_t,pid,int,sig)2825 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2826 {
2827 struct siginfo info;
2828
2829 info.si_signo = sig;
2830 info.si_errno = 0;
2831 info.si_code = SI_USER;
2832 info.si_pid = task_tgid_vnr(current);
2833 info.si_uid = current_uid();
2834
2835 return kill_something_info(sig, &info, pid);
2836 }
2837
2838 static int
do_send_specific(pid_t tgid,pid_t pid,int sig,struct siginfo * info)2839 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2840 {
2841 struct task_struct *p;
2842 int error = -ESRCH;
2843
2844 rcu_read_lock();
2845 p = find_task_by_vpid(pid);
2846 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2847 error = check_kill_permission(sig, info, p);
2848 /*
2849 * The null signal is a permissions and process existence
2850 * probe. No signal is actually delivered.
2851 */
2852 if (!error && sig) {
2853 error = do_send_sig_info(sig, info, p, false);
2854 /*
2855 * If lock_task_sighand() failed we pretend the task
2856 * dies after receiving the signal. The window is tiny,
2857 * and the signal is private anyway.
2858 */
2859 if (unlikely(error == -ESRCH))
2860 error = 0;
2861 }
2862 }
2863 rcu_read_unlock();
2864
2865 return error;
2866 }
2867
do_tkill(pid_t tgid,pid_t pid,int sig)2868 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2869 {
2870 struct siginfo info = {};
2871
2872 info.si_signo = sig;
2873 info.si_errno = 0;
2874 info.si_code = SI_TKILL;
2875 info.si_pid = task_tgid_vnr(current);
2876 info.si_uid = current_uid();
2877
2878 return do_send_specific(tgid, pid, sig, &info);
2879 }
2880
2881 /**
2882 * sys_tgkill - send signal to one specific thread
2883 * @tgid: the thread group ID of the thread
2884 * @pid: the PID of the thread
2885 * @sig: signal to be sent
2886 *
2887 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2888 * exists but it's not belonging to the target process anymore. This
2889 * method solves the problem of threads exiting and PIDs getting reused.
2890 */
SYSCALL_DEFINE3(tgkill,pid_t,tgid,pid_t,pid,int,sig)2891 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2892 {
2893 /* This is only valid for single tasks */
2894 if (pid <= 0 || tgid <= 0)
2895 return -EINVAL;
2896
2897 return do_tkill(tgid, pid, sig);
2898 }
2899
2900 /**
2901 * sys_tkill - send signal to one specific task
2902 * @pid: the PID of the task
2903 * @sig: signal to be sent
2904 *
2905 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2906 */
SYSCALL_DEFINE2(tkill,pid_t,pid,int,sig)2907 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2908 {
2909 /* This is only valid for single tasks */
2910 if (pid <= 0)
2911 return -EINVAL;
2912
2913 return do_tkill(0, pid, sig);
2914 }
2915
2916 /**
2917 * sys_rt_sigqueueinfo - send signal information to a signal
2918 * @pid: the PID of the thread
2919 * @sig: signal to be sent
2920 * @uinfo: signal info to be sent
2921 */
SYSCALL_DEFINE3(rt_sigqueueinfo,pid_t,pid,int,sig,siginfo_t __user *,uinfo)2922 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2923 siginfo_t __user *, uinfo)
2924 {
2925 siginfo_t info;
2926
2927 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2928 return -EFAULT;
2929
2930 /* Not even root can pretend to send signals from the kernel.
2931 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2932 */
2933 if (info.si_code >= 0 || info.si_code == SI_TKILL) {
2934 /* We used to allow any < 0 si_code */
2935 WARN_ON_ONCE(info.si_code < 0);
2936 return -EPERM;
2937 }
2938 info.si_signo = sig;
2939
2940 /* POSIX.1b doesn't mention process groups. */
2941 return kill_proc_info(sig, &info, pid);
2942 }
2943
do_rt_tgsigqueueinfo(pid_t tgid,pid_t pid,int sig,siginfo_t * info)2944 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2945 {
2946 /* This is only valid for single tasks */
2947 if (pid <= 0 || tgid <= 0)
2948 return -EINVAL;
2949
2950 /* Not even root can pretend to send signals from the kernel.
2951 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2952 */
2953 if (info->si_code >= 0 || info->si_code == SI_TKILL) {
2954 /* We used to allow any < 0 si_code */
2955 WARN_ON_ONCE(info->si_code < 0);
2956 return -EPERM;
2957 }
2958 info->si_signo = sig;
2959
2960 return do_send_specific(tgid, pid, sig, info);
2961 }
2962
SYSCALL_DEFINE4(rt_tgsigqueueinfo,pid_t,tgid,pid_t,pid,int,sig,siginfo_t __user *,uinfo)2963 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2964 siginfo_t __user *, uinfo)
2965 {
2966 siginfo_t info;
2967
2968 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2969 return -EFAULT;
2970
2971 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2972 }
2973
do_sigaction(int sig,struct k_sigaction * act,struct k_sigaction * oact)2974 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2975 {
2976 struct task_struct *t = current;
2977 struct k_sigaction *k;
2978 sigset_t mask;
2979
2980 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2981 return -EINVAL;
2982
2983 k = &t->sighand->action[sig-1];
2984
2985 spin_lock_irq(¤t->sighand->siglock);
2986 if (oact)
2987 *oact = *k;
2988
2989 if (act) {
2990 sigdelsetmask(&act->sa.sa_mask,
2991 sigmask(SIGKILL) | sigmask(SIGSTOP));
2992 *k = *act;
2993 /*
2994 * POSIX 3.3.1.3:
2995 * "Setting a signal action to SIG_IGN for a signal that is
2996 * pending shall cause the pending signal to be discarded,
2997 * whether or not it is blocked."
2998 *
2999 * "Setting a signal action to SIG_DFL for a signal that is
3000 * pending and whose default action is to ignore the signal
3001 * (for example, SIGCHLD), shall cause the pending signal to
3002 * be discarded, whether or not it is blocked"
3003 */
3004 if (sig_handler_ignored(sig_handler(t, sig), sig)) {
3005 sigemptyset(&mask);
3006 sigaddset(&mask, sig);
3007 rm_from_queue_full(&mask, &t->signal->shared_pending);
3008 do {
3009 rm_from_queue_full(&mask, &t->pending);
3010 t = next_thread(t);
3011 } while (t != current);
3012 }
3013 }
3014
3015 spin_unlock_irq(¤t->sighand->siglock);
3016 return 0;
3017 }
3018
3019 int
do_sigaltstack(const stack_t __user * uss,stack_t __user * uoss,unsigned long sp)3020 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3021 {
3022 stack_t oss;
3023 int error;
3024
3025 oss.ss_sp = (void __user *) current->sas_ss_sp;
3026 oss.ss_size = current->sas_ss_size;
3027 oss.ss_flags = sas_ss_flags(sp);
3028
3029 if (uss) {
3030 void __user *ss_sp;
3031 size_t ss_size;
3032 int ss_flags;
3033
3034 error = -EFAULT;
3035 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3036 goto out;
3037 error = __get_user(ss_sp, &uss->ss_sp) |
3038 __get_user(ss_flags, &uss->ss_flags) |
3039 __get_user(ss_size, &uss->ss_size);
3040 if (error)
3041 goto out;
3042
3043 error = -EPERM;
3044 if (on_sig_stack(sp))
3045 goto out;
3046
3047 error = -EINVAL;
3048 /*
3049 * Note - this code used to test ss_flags incorrectly:
3050 * old code may have been written using ss_flags==0
3051 * to mean ss_flags==SS_ONSTACK (as this was the only
3052 * way that worked) - this fix preserves that older
3053 * mechanism.
3054 */
3055 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3056 goto out;
3057
3058 if (ss_flags == SS_DISABLE) {
3059 ss_size = 0;
3060 ss_sp = NULL;
3061 } else {
3062 error = -ENOMEM;
3063 if (ss_size < MINSIGSTKSZ)
3064 goto out;
3065 }
3066
3067 current->sas_ss_sp = (unsigned long) ss_sp;
3068 current->sas_ss_size = ss_size;
3069 }
3070
3071 error = 0;
3072 if (uoss) {
3073 error = -EFAULT;
3074 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3075 goto out;
3076 error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3077 __put_user(oss.ss_size, &uoss->ss_size) |
3078 __put_user(oss.ss_flags, &uoss->ss_flags);
3079 }
3080
3081 out:
3082 return error;
3083 }
3084
3085 #ifdef __ARCH_WANT_SYS_SIGPENDING
3086
3087 /**
3088 * sys_sigpending - examine pending signals
3089 * @set: where mask of pending signal is returned
3090 */
SYSCALL_DEFINE1(sigpending,old_sigset_t __user *,set)3091 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3092 {
3093 return do_sigpending(set, sizeof(*set));
3094 }
3095
3096 #endif
3097
3098 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3099 /**
3100 * sys_sigprocmask - examine and change blocked signals
3101 * @how: whether to add, remove, or set signals
3102 * @nset: signals to add or remove (if non-null)
3103 * @oset: previous value of signal mask if non-null
3104 *
3105 * Some platforms have their own version with special arguments;
3106 * others support only sys_rt_sigprocmask.
3107 */
3108
SYSCALL_DEFINE3(sigprocmask,int,how,old_sigset_t __user *,nset,old_sigset_t __user *,oset)3109 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3110 old_sigset_t __user *, oset)
3111 {
3112 old_sigset_t old_set, new_set;
3113 sigset_t new_blocked;
3114
3115 old_set = current->blocked.sig[0];
3116
3117 if (nset) {
3118 if (copy_from_user(&new_set, nset, sizeof(*nset)))
3119 return -EFAULT;
3120 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
3121
3122 new_blocked = current->blocked;
3123
3124 switch (how) {
3125 case SIG_BLOCK:
3126 sigaddsetmask(&new_blocked, new_set);
3127 break;
3128 case SIG_UNBLOCK:
3129 sigdelsetmask(&new_blocked, new_set);
3130 break;
3131 case SIG_SETMASK:
3132 new_blocked.sig[0] = new_set;
3133 break;
3134 default:
3135 return -EINVAL;
3136 }
3137
3138 set_current_blocked(&new_blocked);
3139 }
3140
3141 if (oset) {
3142 if (copy_to_user(oset, &old_set, sizeof(*oset)))
3143 return -EFAULT;
3144 }
3145
3146 return 0;
3147 }
3148 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3149
3150 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
3151 /**
3152 * sys_rt_sigaction - alter an action taken by a process
3153 * @sig: signal to be sent
3154 * @act: new sigaction
3155 * @oact: used to save the previous sigaction
3156 * @sigsetsize: size of sigset_t type
3157 */
SYSCALL_DEFINE4(rt_sigaction,int,sig,const struct sigaction __user *,act,struct sigaction __user *,oact,size_t,sigsetsize)3158 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3159 const struct sigaction __user *, act,
3160 struct sigaction __user *, oact,
3161 size_t, sigsetsize)
3162 {
3163 struct k_sigaction new_sa, old_sa;
3164 int ret = -EINVAL;
3165
3166 /* XXX: Don't preclude handling different sized sigset_t's. */
3167 if (sigsetsize != sizeof(sigset_t))
3168 goto out;
3169
3170 if (act) {
3171 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3172 return -EFAULT;
3173 }
3174
3175 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3176
3177 if (!ret && oact) {
3178 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3179 return -EFAULT;
3180 }
3181 out:
3182 return ret;
3183 }
3184 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
3185
3186 #ifdef __ARCH_WANT_SYS_SGETMASK
3187
3188 /*
3189 * For backwards compatibility. Functionality superseded by sigprocmask.
3190 */
SYSCALL_DEFINE0(sgetmask)3191 SYSCALL_DEFINE0(sgetmask)
3192 {
3193 /* SMP safe */
3194 return current->blocked.sig[0];
3195 }
3196
SYSCALL_DEFINE1(ssetmask,int,newmask)3197 SYSCALL_DEFINE1(ssetmask, int, newmask)
3198 {
3199 int old = current->blocked.sig[0];
3200 sigset_t newset;
3201
3202 siginitset(&newset, newmask & ~(sigmask(SIGKILL) | sigmask(SIGSTOP)));
3203 set_current_blocked(&newset);
3204
3205 return old;
3206 }
3207 #endif /* __ARCH_WANT_SGETMASK */
3208
3209 #ifdef __ARCH_WANT_SYS_SIGNAL
3210 /*
3211 * For backwards compatibility. Functionality superseded by sigaction.
3212 */
SYSCALL_DEFINE2(signal,int,sig,__sighandler_t,handler)3213 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3214 {
3215 struct k_sigaction new_sa, old_sa;
3216 int ret;
3217
3218 new_sa.sa.sa_handler = handler;
3219 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3220 sigemptyset(&new_sa.sa.sa_mask);
3221
3222 ret = do_sigaction(sig, &new_sa, &old_sa);
3223
3224 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3225 }
3226 #endif /* __ARCH_WANT_SYS_SIGNAL */
3227
3228 #ifdef __ARCH_WANT_SYS_PAUSE
3229
SYSCALL_DEFINE0(pause)3230 SYSCALL_DEFINE0(pause)
3231 {
3232 while (!signal_pending(current)) {
3233 current->state = TASK_INTERRUPTIBLE;
3234 schedule();
3235 }
3236 return -ERESTARTNOHAND;
3237 }
3238
3239 #endif
3240
3241 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
3242 /**
3243 * sys_rt_sigsuspend - replace the signal mask for a value with the
3244 * @unewset value until a signal is received
3245 * @unewset: new signal mask value
3246 * @sigsetsize: size of sigset_t type
3247 */
SYSCALL_DEFINE2(rt_sigsuspend,sigset_t __user *,unewset,size_t,sigsetsize)3248 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3249 {
3250 sigset_t newset;
3251
3252 /* XXX: Don't preclude handling different sized sigset_t's. */
3253 if (sigsetsize != sizeof(sigset_t))
3254 return -EINVAL;
3255
3256 if (copy_from_user(&newset, unewset, sizeof(newset)))
3257 return -EFAULT;
3258 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3259
3260 current->saved_sigmask = current->blocked;
3261 set_current_blocked(&newset);
3262
3263 current->state = TASK_INTERRUPTIBLE;
3264 schedule();
3265 set_restore_sigmask();
3266 return -ERESTARTNOHAND;
3267 }
3268 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
3269
arch_vma_name(struct vm_area_struct * vma)3270 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
3271 {
3272 return NULL;
3273 }
3274
signals_init(void)3275 void __init signals_init(void)
3276 {
3277 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3278 }
3279
3280 #ifdef CONFIG_KGDB_KDB
3281 #include <linux/kdb.h>
3282 /*
3283 * kdb_send_sig_info - Allows kdb to send signals without exposing
3284 * signal internals. This function checks if the required locks are
3285 * available before calling the main signal code, to avoid kdb
3286 * deadlocks.
3287 */
3288 void
kdb_send_sig_info(struct task_struct * t,struct siginfo * info)3289 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3290 {
3291 static struct task_struct *kdb_prev_t;
3292 int sig, new_t;
3293 if (!spin_trylock(&t->sighand->siglock)) {
3294 kdb_printf("Can't do kill command now.\n"
3295 "The sigmask lock is held somewhere else in "
3296 "kernel, try again later\n");
3297 return;
3298 }
3299 spin_unlock(&t->sighand->siglock);
3300 new_t = kdb_prev_t != t;
3301 kdb_prev_t = t;
3302 if (t->state != TASK_RUNNING && new_t) {
3303 kdb_printf("Process is not RUNNING, sending a signal from "
3304 "kdb risks deadlock\n"
3305 "on the run queue locks. "
3306 "The signal has _not_ been sent.\n"
3307 "Reissue the kill command if you want to risk "
3308 "the deadlock.\n");
3309 return;
3310 }
3311 sig = info->si_signo;
3312 if (send_sig_info(sig, info, t))
3313 kdb_printf("Fail to deliver Signal %d to process %d.\n",
3314 sig, t->pid);
3315 else
3316 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3317 }
3318 #endif /* CONFIG_KGDB_KDB */
3319