1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/ratelimit.h>
26 #include <linux/tracehook.h>
27 #include <linux/capability.h>
28 #include <linux/freezer.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/nsproxy.h>
31 #include <linux/user_namespace.h>
32 #define CREATE_TRACE_POINTS
33 #include <trace/events/signal.h>
34 
35 #include <asm/param.h>
36 #include <asm/uaccess.h>
37 #include <asm/unistd.h>
38 #include <asm/siginfo.h>
39 #include <asm/cacheflush.h>
40 #include "audit.h"	/* audit_signal_info() */
41 
42 /*
43  * SLAB caches for signal bits.
44  */
45 
46 static struct kmem_cache *sigqueue_cachep;
47 
48 int print_fatal_signals __read_mostly;
49 
sig_handler(struct task_struct * t,int sig)50 static void __user *sig_handler(struct task_struct *t, int sig)
51 {
52 	return t->sighand->action[sig - 1].sa.sa_handler;
53 }
54 
sig_handler_ignored(void __user * handler,int sig)55 static int sig_handler_ignored(void __user *handler, int sig)
56 {
57 	/* Is it explicitly or implicitly ignored? */
58 	return handler == SIG_IGN ||
59 		(handler == SIG_DFL && sig_kernel_ignore(sig));
60 }
61 
sig_task_ignored(struct task_struct * t,int sig,bool force)62 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
63 {
64 	void __user *handler;
65 
66 	handler = sig_handler(t, sig);
67 
68 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
69 			handler == SIG_DFL && !force)
70 		return 1;
71 
72 	return sig_handler_ignored(handler, sig);
73 }
74 
sig_ignored(struct task_struct * t,int sig,bool force)75 static int sig_ignored(struct task_struct *t, int sig, bool force)
76 {
77 	/*
78 	 * Blocked signals are never ignored, since the
79 	 * signal handler may change by the time it is
80 	 * unblocked.
81 	 */
82 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
83 		return 0;
84 
85 	if (!sig_task_ignored(t, sig, force))
86 		return 0;
87 
88 	/*
89 	 * Tracers may want to know about even ignored signals.
90 	 */
91 	return !t->ptrace;
92 }
93 
94 /*
95  * Re-calculate pending state from the set of locally pending
96  * signals, globally pending signals, and blocked signals.
97  */
has_pending_signals(sigset_t * signal,sigset_t * blocked)98 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
99 {
100 	unsigned long ready;
101 	long i;
102 
103 	switch (_NSIG_WORDS) {
104 	default:
105 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
106 			ready |= signal->sig[i] &~ blocked->sig[i];
107 		break;
108 
109 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
110 		ready |= signal->sig[2] &~ blocked->sig[2];
111 		ready |= signal->sig[1] &~ blocked->sig[1];
112 		ready |= signal->sig[0] &~ blocked->sig[0];
113 		break;
114 
115 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
116 		ready |= signal->sig[0] &~ blocked->sig[0];
117 		break;
118 
119 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
120 	}
121 	return ready !=	0;
122 }
123 
124 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
125 
recalc_sigpending_tsk(struct task_struct * t)126 static int recalc_sigpending_tsk(struct task_struct *t)
127 {
128 	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
129 	    PENDING(&t->pending, &t->blocked) ||
130 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
131 		set_tsk_thread_flag(t, TIF_SIGPENDING);
132 		return 1;
133 	}
134 	/*
135 	 * We must never clear the flag in another thread, or in current
136 	 * when it's possible the current syscall is returning -ERESTART*.
137 	 * So we don't clear it here, and only callers who know they should do.
138 	 */
139 	return 0;
140 }
141 
142 /*
143  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
144  * This is superfluous when called on current, the wakeup is a harmless no-op.
145  */
recalc_sigpending_and_wake(struct task_struct * t)146 void recalc_sigpending_and_wake(struct task_struct *t)
147 {
148 	if (recalc_sigpending_tsk(t))
149 		signal_wake_up(t, 0);
150 }
151 
recalc_sigpending(void)152 void recalc_sigpending(void)
153 {
154 	if (!recalc_sigpending_tsk(current) && !freezing(current))
155 		clear_thread_flag(TIF_SIGPENDING);
156 
157 }
158 
159 /* Given the mask, find the first available signal that should be serviced. */
160 
161 #define SYNCHRONOUS_MASK \
162 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
163 	 sigmask(SIGTRAP) | sigmask(SIGFPE))
164 
next_signal(struct sigpending * pending,sigset_t * mask)165 int next_signal(struct sigpending *pending, sigset_t *mask)
166 {
167 	unsigned long i, *s, *m, x;
168 	int sig = 0;
169 
170 	s = pending->signal.sig;
171 	m = mask->sig;
172 
173 	/*
174 	 * Handle the first word specially: it contains the
175 	 * synchronous signals that need to be dequeued first.
176 	 */
177 	x = *s &~ *m;
178 	if (x) {
179 		if (x & SYNCHRONOUS_MASK)
180 			x &= SYNCHRONOUS_MASK;
181 		sig = ffz(~x) + 1;
182 		return sig;
183 	}
184 
185 	switch (_NSIG_WORDS) {
186 	default:
187 		for (i = 1; i < _NSIG_WORDS; ++i) {
188 			x = *++s &~ *++m;
189 			if (!x)
190 				continue;
191 			sig = ffz(~x) + i*_NSIG_BPW + 1;
192 			break;
193 		}
194 		break;
195 
196 	case 2:
197 		x = s[1] &~ m[1];
198 		if (!x)
199 			break;
200 		sig = ffz(~x) + _NSIG_BPW + 1;
201 		break;
202 
203 	case 1:
204 		/* Nothing to do */
205 		break;
206 	}
207 
208 	return sig;
209 }
210 
print_dropped_signal(int sig)211 static inline void print_dropped_signal(int sig)
212 {
213 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
214 
215 	if (!print_fatal_signals)
216 		return;
217 
218 	if (!__ratelimit(&ratelimit_state))
219 		return;
220 
221 	printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
222 				current->comm, current->pid, sig);
223 }
224 
225 /**
226  * task_set_jobctl_pending - set jobctl pending bits
227  * @task: target task
228  * @mask: pending bits to set
229  *
230  * Clear @mask from @task->jobctl.  @mask must be subset of
231  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
232  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
233  * cleared.  If @task is already being killed or exiting, this function
234  * becomes noop.
235  *
236  * CONTEXT:
237  * Must be called with @task->sighand->siglock held.
238  *
239  * RETURNS:
240  * %true if @mask is set, %false if made noop because @task was dying.
241  */
task_set_jobctl_pending(struct task_struct * task,unsigned int mask)242 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
243 {
244 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
245 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
246 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
247 
248 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
249 		return false;
250 
251 	if (mask & JOBCTL_STOP_SIGMASK)
252 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
253 
254 	task->jobctl |= mask;
255 	return true;
256 }
257 
258 /**
259  * task_clear_jobctl_trapping - clear jobctl trapping bit
260  * @task: target task
261  *
262  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
263  * Clear it and wake up the ptracer.  Note that we don't need any further
264  * locking.  @task->siglock guarantees that @task->parent points to the
265  * ptracer.
266  *
267  * CONTEXT:
268  * Must be called with @task->sighand->siglock held.
269  */
task_clear_jobctl_trapping(struct task_struct * task)270 void task_clear_jobctl_trapping(struct task_struct *task)
271 {
272 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
273 		task->jobctl &= ~JOBCTL_TRAPPING;
274 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
275 	}
276 }
277 
278 /**
279  * task_clear_jobctl_pending - clear jobctl pending bits
280  * @task: target task
281  * @mask: pending bits to clear
282  *
283  * Clear @mask from @task->jobctl.  @mask must be subset of
284  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
285  * STOP bits are cleared together.
286  *
287  * If clearing of @mask leaves no stop or trap pending, this function calls
288  * task_clear_jobctl_trapping().
289  *
290  * CONTEXT:
291  * Must be called with @task->sighand->siglock held.
292  */
task_clear_jobctl_pending(struct task_struct * task,unsigned int mask)293 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
294 {
295 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
296 
297 	if (mask & JOBCTL_STOP_PENDING)
298 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
299 
300 	task->jobctl &= ~mask;
301 
302 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
303 		task_clear_jobctl_trapping(task);
304 }
305 
306 /**
307  * task_participate_group_stop - participate in a group stop
308  * @task: task participating in a group stop
309  *
310  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
311  * Group stop states are cleared and the group stop count is consumed if
312  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
313  * stop, the appropriate %SIGNAL_* flags are set.
314  *
315  * CONTEXT:
316  * Must be called with @task->sighand->siglock held.
317  *
318  * RETURNS:
319  * %true if group stop completion should be notified to the parent, %false
320  * otherwise.
321  */
task_participate_group_stop(struct task_struct * task)322 static bool task_participate_group_stop(struct task_struct *task)
323 {
324 	struct signal_struct *sig = task->signal;
325 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
326 
327 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
328 
329 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
330 
331 	if (!consume)
332 		return false;
333 
334 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
335 		sig->group_stop_count--;
336 
337 	/*
338 	 * Tell the caller to notify completion iff we are entering into a
339 	 * fresh group stop.  Read comment in do_signal_stop() for details.
340 	 */
341 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
342 		sig->flags = SIGNAL_STOP_STOPPED;
343 		return true;
344 	}
345 	return false;
346 }
347 
348 /*
349  * allocate a new signal queue record
350  * - this may be called without locks if and only if t == current, otherwise an
351  *   appropriate lock must be held to stop the target task from exiting
352  */
353 static struct sigqueue *
__sigqueue_alloc(int sig,struct task_struct * t,gfp_t flags,int override_rlimit)354 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
355 {
356 	struct sigqueue *q = NULL;
357 	struct user_struct *user;
358 
359 	/*
360 	 * Protect access to @t credentials. This can go away when all
361 	 * callers hold rcu read lock.
362 	 */
363 	rcu_read_lock();
364 	user = get_uid(__task_cred(t)->user);
365 	atomic_inc(&user->sigpending);
366 	rcu_read_unlock();
367 
368 	if (override_rlimit ||
369 	    atomic_read(&user->sigpending) <=
370 			task_rlimit(t, RLIMIT_SIGPENDING)) {
371 		q = kmem_cache_alloc(sigqueue_cachep, flags);
372 	} else {
373 		print_dropped_signal(sig);
374 	}
375 
376 	if (unlikely(q == NULL)) {
377 		atomic_dec(&user->sigpending);
378 		free_uid(user);
379 	} else {
380 		INIT_LIST_HEAD(&q->list);
381 		q->flags = 0;
382 		q->user = user;
383 	}
384 
385 	return q;
386 }
387 
__sigqueue_free(struct sigqueue * q)388 static void __sigqueue_free(struct sigqueue *q)
389 {
390 	if (q->flags & SIGQUEUE_PREALLOC)
391 		return;
392 	atomic_dec(&q->user->sigpending);
393 	free_uid(q->user);
394 	kmem_cache_free(sigqueue_cachep, q);
395 }
396 
flush_sigqueue(struct sigpending * queue)397 void flush_sigqueue(struct sigpending *queue)
398 {
399 	struct sigqueue *q;
400 
401 	sigemptyset(&queue->signal);
402 	while (!list_empty(&queue->list)) {
403 		q = list_entry(queue->list.next, struct sigqueue , list);
404 		list_del_init(&q->list);
405 		__sigqueue_free(q);
406 	}
407 }
408 
409 /*
410  * Flush all pending signals for a task.
411  */
__flush_signals(struct task_struct * t)412 void __flush_signals(struct task_struct *t)
413 {
414 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
415 	flush_sigqueue(&t->pending);
416 	flush_sigqueue(&t->signal->shared_pending);
417 }
418 
flush_signals(struct task_struct * t)419 void flush_signals(struct task_struct *t)
420 {
421 	unsigned long flags;
422 
423 	spin_lock_irqsave(&t->sighand->siglock, flags);
424 	__flush_signals(t);
425 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
426 }
427 
__flush_itimer_signals(struct sigpending * pending)428 static void __flush_itimer_signals(struct sigpending *pending)
429 {
430 	sigset_t signal, retain;
431 	struct sigqueue *q, *n;
432 
433 	signal = pending->signal;
434 	sigemptyset(&retain);
435 
436 	list_for_each_entry_safe(q, n, &pending->list, list) {
437 		int sig = q->info.si_signo;
438 
439 		if (likely(q->info.si_code != SI_TIMER)) {
440 			sigaddset(&retain, sig);
441 		} else {
442 			sigdelset(&signal, sig);
443 			list_del_init(&q->list);
444 			__sigqueue_free(q);
445 		}
446 	}
447 
448 	sigorsets(&pending->signal, &signal, &retain);
449 }
450 
flush_itimer_signals(void)451 void flush_itimer_signals(void)
452 {
453 	struct task_struct *tsk = current;
454 	unsigned long flags;
455 
456 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
457 	__flush_itimer_signals(&tsk->pending);
458 	__flush_itimer_signals(&tsk->signal->shared_pending);
459 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
460 }
461 
ignore_signals(struct task_struct * t)462 void ignore_signals(struct task_struct *t)
463 {
464 	int i;
465 
466 	for (i = 0; i < _NSIG; ++i)
467 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
468 
469 	flush_signals(t);
470 }
471 
472 /*
473  * Flush all handlers for a task.
474  */
475 
476 void
flush_signal_handlers(struct task_struct * t,int force_default)477 flush_signal_handlers(struct task_struct *t, int force_default)
478 {
479 	int i;
480 	struct k_sigaction *ka = &t->sighand->action[0];
481 	for (i = _NSIG ; i != 0 ; i--) {
482 		if (force_default || ka->sa.sa_handler != SIG_IGN)
483 			ka->sa.sa_handler = SIG_DFL;
484 		ka->sa.sa_flags = 0;
485 #ifdef __ARCH_HAS_SA_RESTORER
486 		ka->sa.sa_restorer = NULL;
487 #endif
488 		sigemptyset(&ka->sa.sa_mask);
489 		ka++;
490 	}
491 }
492 
unhandled_signal(struct task_struct * tsk,int sig)493 int unhandled_signal(struct task_struct *tsk, int sig)
494 {
495 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
496 	if (is_global_init(tsk))
497 		return 1;
498 	if (handler != SIG_IGN && handler != SIG_DFL)
499 		return 0;
500 	/* if ptraced, let the tracer determine */
501 	return !tsk->ptrace;
502 }
503 
504 /*
505  * Notify the system that a driver wants to block all signals for this
506  * process, and wants to be notified if any signals at all were to be
507  * sent/acted upon.  If the notifier routine returns non-zero, then the
508  * signal will be acted upon after all.  If the notifier routine returns 0,
509  * then then signal will be blocked.  Only one block per process is
510  * allowed.  priv is a pointer to private data that the notifier routine
511  * can use to determine if the signal should be blocked or not.
512  */
513 void
block_all_signals(int (* notifier)(void * priv),void * priv,sigset_t * mask)514 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
515 {
516 	unsigned long flags;
517 
518 	spin_lock_irqsave(&current->sighand->siglock, flags);
519 	current->notifier_mask = mask;
520 	current->notifier_data = priv;
521 	current->notifier = notifier;
522 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
523 }
524 
525 /* Notify the system that blocking has ended. */
526 
527 void
unblock_all_signals(void)528 unblock_all_signals(void)
529 {
530 	unsigned long flags;
531 
532 	spin_lock_irqsave(&current->sighand->siglock, flags);
533 	current->notifier = NULL;
534 	current->notifier_data = NULL;
535 	recalc_sigpending();
536 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
537 }
538 
collect_signal(int sig,struct sigpending * list,siginfo_t * info)539 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
540 {
541 	struct sigqueue *q, *first = NULL;
542 
543 	/*
544 	 * Collect the siginfo appropriate to this signal.  Check if
545 	 * there is another siginfo for the same signal.
546 	*/
547 	list_for_each_entry(q, &list->list, list) {
548 		if (q->info.si_signo == sig) {
549 			if (first)
550 				goto still_pending;
551 			first = q;
552 		}
553 	}
554 
555 	sigdelset(&list->signal, sig);
556 
557 	if (first) {
558 still_pending:
559 		list_del_init(&first->list);
560 		copy_siginfo(info, &first->info);
561 		__sigqueue_free(first);
562 	} else {
563 		/*
564 		 * Ok, it wasn't in the queue.  This must be
565 		 * a fast-pathed signal or we must have been
566 		 * out of queue space.  So zero out the info.
567 		 */
568 		info->si_signo = sig;
569 		info->si_errno = 0;
570 		info->si_code = SI_USER;
571 		info->si_pid = 0;
572 		info->si_uid = 0;
573 	}
574 }
575 
__dequeue_signal(struct sigpending * pending,sigset_t * mask,siginfo_t * info)576 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
577 			siginfo_t *info)
578 {
579 	int sig = next_signal(pending, mask);
580 
581 	if (sig) {
582 		if (current->notifier) {
583 			if (sigismember(current->notifier_mask, sig)) {
584 				if (!(current->notifier)(current->notifier_data)) {
585 					clear_thread_flag(TIF_SIGPENDING);
586 					return 0;
587 				}
588 			}
589 		}
590 
591 		collect_signal(sig, pending, info);
592 	}
593 
594 	return sig;
595 }
596 
597 /*
598  * Dequeue a signal and return the element to the caller, which is
599  * expected to free it.
600  *
601  * All callers have to hold the siglock.
602  */
dequeue_signal(struct task_struct * tsk,sigset_t * mask,siginfo_t * info)603 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
604 {
605 	int signr;
606 
607 	/* We only dequeue private signals from ourselves, we don't let
608 	 * signalfd steal them
609 	 */
610 	signr = __dequeue_signal(&tsk->pending, mask, info);
611 	if (!signr) {
612 		signr = __dequeue_signal(&tsk->signal->shared_pending,
613 					 mask, info);
614 		/*
615 		 * itimer signal ?
616 		 *
617 		 * itimers are process shared and we restart periodic
618 		 * itimers in the signal delivery path to prevent DoS
619 		 * attacks in the high resolution timer case. This is
620 		 * compliant with the old way of self-restarting
621 		 * itimers, as the SIGALRM is a legacy signal and only
622 		 * queued once. Changing the restart behaviour to
623 		 * restart the timer in the signal dequeue path is
624 		 * reducing the timer noise on heavy loaded !highres
625 		 * systems too.
626 		 */
627 		if (unlikely(signr == SIGALRM)) {
628 			struct hrtimer *tmr = &tsk->signal->real_timer;
629 
630 			if (!hrtimer_is_queued(tmr) &&
631 			    tsk->signal->it_real_incr.tv64 != 0) {
632 				hrtimer_forward(tmr, tmr->base->get_time(),
633 						tsk->signal->it_real_incr);
634 				hrtimer_restart(tmr);
635 			}
636 		}
637 	}
638 
639 	recalc_sigpending();
640 	if (!signr)
641 		return 0;
642 
643 	if (unlikely(sig_kernel_stop(signr))) {
644 		/*
645 		 * Set a marker that we have dequeued a stop signal.  Our
646 		 * caller might release the siglock and then the pending
647 		 * stop signal it is about to process is no longer in the
648 		 * pending bitmasks, but must still be cleared by a SIGCONT
649 		 * (and overruled by a SIGKILL).  So those cases clear this
650 		 * shared flag after we've set it.  Note that this flag may
651 		 * remain set after the signal we return is ignored or
652 		 * handled.  That doesn't matter because its only purpose
653 		 * is to alert stop-signal processing code when another
654 		 * processor has come along and cleared the flag.
655 		 */
656 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
657 	}
658 	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
659 		/*
660 		 * Release the siglock to ensure proper locking order
661 		 * of timer locks outside of siglocks.  Note, we leave
662 		 * irqs disabled here, since the posix-timers code is
663 		 * about to disable them again anyway.
664 		 */
665 		spin_unlock(&tsk->sighand->siglock);
666 		do_schedule_next_timer(info);
667 		spin_lock(&tsk->sighand->siglock);
668 	}
669 	return signr;
670 }
671 
672 /*
673  * Tell a process that it has a new active signal..
674  *
675  * NOTE! we rely on the previous spin_lock to
676  * lock interrupts for us! We can only be called with
677  * "siglock" held, and the local interrupt must
678  * have been disabled when that got acquired!
679  *
680  * No need to set need_resched since signal event passing
681  * goes through ->blocked
682  */
signal_wake_up_state(struct task_struct * t,unsigned int state)683 void signal_wake_up_state(struct task_struct *t, unsigned int state)
684 {
685 	set_tsk_thread_flag(t, TIF_SIGPENDING);
686 	/*
687 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
688 	 * case. We don't check t->state here because there is a race with it
689 	 * executing another processor and just now entering stopped state.
690 	 * By using wake_up_state, we ensure the process will wake up and
691 	 * handle its death signal.
692 	 */
693 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
694 		kick_process(t);
695 }
696 
697 /*
698  * Remove signals in mask from the pending set and queue.
699  * Returns 1 if any signals were found.
700  *
701  * All callers must be holding the siglock.
702  *
703  * This version takes a sigset mask and looks at all signals,
704  * not just those in the first mask word.
705  */
rm_from_queue_full(sigset_t * mask,struct sigpending * s)706 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
707 {
708 	struct sigqueue *q, *n;
709 	sigset_t m;
710 
711 	sigandsets(&m, mask, &s->signal);
712 	if (sigisemptyset(&m))
713 		return 0;
714 
715 	sigandnsets(&s->signal, &s->signal, mask);
716 	list_for_each_entry_safe(q, n, &s->list, list) {
717 		if (sigismember(mask, q->info.si_signo)) {
718 			list_del_init(&q->list);
719 			__sigqueue_free(q);
720 		}
721 	}
722 	return 1;
723 }
724 /*
725  * Remove signals in mask from the pending set and queue.
726  * Returns 1 if any signals were found.
727  *
728  * All callers must be holding the siglock.
729  */
rm_from_queue(unsigned long mask,struct sigpending * s)730 static int rm_from_queue(unsigned long mask, struct sigpending *s)
731 {
732 	struct sigqueue *q, *n;
733 
734 	if (!sigtestsetmask(&s->signal, mask))
735 		return 0;
736 
737 	sigdelsetmask(&s->signal, mask);
738 	list_for_each_entry_safe(q, n, &s->list, list) {
739 		if (q->info.si_signo < SIGRTMIN &&
740 		    (mask & sigmask(q->info.si_signo))) {
741 			list_del_init(&q->list);
742 			__sigqueue_free(q);
743 		}
744 	}
745 	return 1;
746 }
747 
is_si_special(const struct siginfo * info)748 static inline int is_si_special(const struct siginfo *info)
749 {
750 	return info <= SEND_SIG_FORCED;
751 }
752 
si_fromuser(const struct siginfo * info)753 static inline bool si_fromuser(const struct siginfo *info)
754 {
755 	return info == SEND_SIG_NOINFO ||
756 		(!is_si_special(info) && SI_FROMUSER(info));
757 }
758 
759 /*
760  * called with RCU read lock from check_kill_permission()
761  */
kill_ok_by_cred(struct task_struct * t)762 static int kill_ok_by_cred(struct task_struct *t)
763 {
764 	const struct cred *cred = current_cred();
765 	const struct cred *tcred = __task_cred(t);
766 
767 	if (cred->user->user_ns == tcred->user->user_ns &&
768 	    (cred->euid == tcred->suid ||
769 	     cred->euid == tcred->uid ||
770 	     cred->uid  == tcred->suid ||
771 	     cred->uid  == tcred->uid))
772 		return 1;
773 
774 	if (ns_capable(tcred->user->user_ns, CAP_KILL))
775 		return 1;
776 
777 	return 0;
778 }
779 
780 /*
781  * Bad permissions for sending the signal
782  * - the caller must hold the RCU read lock
783  */
check_kill_permission(int sig,struct siginfo * info,struct task_struct * t)784 static int check_kill_permission(int sig, struct siginfo *info,
785 				 struct task_struct *t)
786 {
787 	struct pid *sid;
788 	int error;
789 
790 	if (!valid_signal(sig))
791 		return -EINVAL;
792 
793 	if (!si_fromuser(info))
794 		return 0;
795 
796 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
797 	if (error)
798 		return error;
799 
800 	if (!same_thread_group(current, t) &&
801 	    !kill_ok_by_cred(t)) {
802 		switch (sig) {
803 		case SIGCONT:
804 			sid = task_session(t);
805 			/*
806 			 * We don't return the error if sid == NULL. The
807 			 * task was unhashed, the caller must notice this.
808 			 */
809 			if (!sid || sid == task_session(current))
810 				break;
811 		default:
812 			return -EPERM;
813 		}
814 	}
815 
816 	return security_task_kill(t, info, sig, 0);
817 }
818 
819 /**
820  * ptrace_trap_notify - schedule trap to notify ptracer
821  * @t: tracee wanting to notify tracer
822  *
823  * This function schedules sticky ptrace trap which is cleared on the next
824  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
825  * ptracer.
826  *
827  * If @t is running, STOP trap will be taken.  If trapped for STOP and
828  * ptracer is listening for events, tracee is woken up so that it can
829  * re-trap for the new event.  If trapped otherwise, STOP trap will be
830  * eventually taken without returning to userland after the existing traps
831  * are finished by PTRACE_CONT.
832  *
833  * CONTEXT:
834  * Must be called with @task->sighand->siglock held.
835  */
ptrace_trap_notify(struct task_struct * t)836 static void ptrace_trap_notify(struct task_struct *t)
837 {
838 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
839 	assert_spin_locked(&t->sighand->siglock);
840 
841 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
842 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
843 }
844 
845 /*
846  * Handle magic process-wide effects of stop/continue signals. Unlike
847  * the signal actions, these happen immediately at signal-generation
848  * time regardless of blocking, ignoring, or handling.  This does the
849  * actual continuing for SIGCONT, but not the actual stopping for stop
850  * signals. The process stop is done as a signal action for SIG_DFL.
851  *
852  * Returns true if the signal should be actually delivered, otherwise
853  * it should be dropped.
854  */
prepare_signal(int sig,struct task_struct * p,bool force)855 static int prepare_signal(int sig, struct task_struct *p, bool force)
856 {
857 	struct signal_struct *signal = p->signal;
858 	struct task_struct *t;
859 
860 	if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
861 		/*
862 		 * The process is in the middle of dying, nothing to do.
863 		 */
864 	} else if (sig_kernel_stop(sig)) {
865 		/*
866 		 * This is a stop signal.  Remove SIGCONT from all queues.
867 		 */
868 		rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
869 		t = p;
870 		do {
871 			rm_from_queue(sigmask(SIGCONT), &t->pending);
872 		} while_each_thread(p, t);
873 	} else if (sig == SIGCONT) {
874 		unsigned int why;
875 		/*
876 		 * Remove all stop signals from all queues, wake all threads.
877 		 */
878 		rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
879 		t = p;
880 		do {
881 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
882 			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
883 			if (likely(!(t->ptrace & PT_SEIZED)))
884 				wake_up_state(t, __TASK_STOPPED);
885 			else
886 				ptrace_trap_notify(t);
887 		} while_each_thread(p, t);
888 
889 		/*
890 		 * Notify the parent with CLD_CONTINUED if we were stopped.
891 		 *
892 		 * If we were in the middle of a group stop, we pretend it
893 		 * was already finished, and then continued. Since SIGCHLD
894 		 * doesn't queue we report only CLD_STOPPED, as if the next
895 		 * CLD_CONTINUED was dropped.
896 		 */
897 		why = 0;
898 		if (signal->flags & SIGNAL_STOP_STOPPED)
899 			why |= SIGNAL_CLD_CONTINUED;
900 		else if (signal->group_stop_count)
901 			why |= SIGNAL_CLD_STOPPED;
902 
903 		if (why) {
904 			/*
905 			 * The first thread which returns from do_signal_stop()
906 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
907 			 * notify its parent. See get_signal_to_deliver().
908 			 */
909 			signal->flags = why | SIGNAL_STOP_CONTINUED;
910 			signal->group_stop_count = 0;
911 			signal->group_exit_code = 0;
912 		}
913 	}
914 
915 	return !sig_ignored(p, sig, force);
916 }
917 
918 /*
919  * Test if P wants to take SIG.  After we've checked all threads with this,
920  * it's equivalent to finding no threads not blocking SIG.  Any threads not
921  * blocking SIG were ruled out because they are not running and already
922  * have pending signals.  Such threads will dequeue from the shared queue
923  * as soon as they're available, so putting the signal on the shared queue
924  * will be equivalent to sending it to one such thread.
925  */
wants_signal(int sig,struct task_struct * p)926 static inline int wants_signal(int sig, struct task_struct *p)
927 {
928 	if (sigismember(&p->blocked, sig))
929 		return 0;
930 	if (p->flags & PF_EXITING)
931 		return 0;
932 	if (sig == SIGKILL)
933 		return 1;
934 	if (task_is_stopped_or_traced(p))
935 		return 0;
936 	return task_curr(p) || !signal_pending(p);
937 }
938 
complete_signal(int sig,struct task_struct * p,int group)939 static void complete_signal(int sig, struct task_struct *p, int group)
940 {
941 	struct signal_struct *signal = p->signal;
942 	struct task_struct *t;
943 
944 	/*
945 	 * Now find a thread we can wake up to take the signal off the queue.
946 	 *
947 	 * If the main thread wants the signal, it gets first crack.
948 	 * Probably the least surprising to the average bear.
949 	 */
950 	if (wants_signal(sig, p))
951 		t = p;
952 	else if (!group || thread_group_empty(p))
953 		/*
954 		 * There is just one thread and it does not need to be woken.
955 		 * It will dequeue unblocked signals before it runs again.
956 		 */
957 		return;
958 	else {
959 		/*
960 		 * Otherwise try to find a suitable thread.
961 		 */
962 		t = signal->curr_target;
963 		while (!wants_signal(sig, t)) {
964 			t = next_thread(t);
965 			if (t == signal->curr_target)
966 				/*
967 				 * No thread needs to be woken.
968 				 * Any eligible threads will see
969 				 * the signal in the queue soon.
970 				 */
971 				return;
972 		}
973 		signal->curr_target = t;
974 	}
975 
976 	/*
977 	 * Found a killable thread.  If the signal will be fatal,
978 	 * then start taking the whole group down immediately.
979 	 */
980 	if (sig_fatal(p, sig) &&
981 	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
982 	    !sigismember(&t->real_blocked, sig) &&
983 	    (sig == SIGKILL || !t->ptrace)) {
984 		/*
985 		 * This signal will be fatal to the whole group.
986 		 */
987 		if (!sig_kernel_coredump(sig)) {
988 			/*
989 			 * Start a group exit and wake everybody up.
990 			 * This way we don't have other threads
991 			 * running and doing things after a slower
992 			 * thread has the fatal signal pending.
993 			 */
994 			signal->flags = SIGNAL_GROUP_EXIT;
995 			signal->group_exit_code = sig;
996 			signal->group_stop_count = 0;
997 			t = p;
998 			do {
999 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1000 				sigaddset(&t->pending.signal, SIGKILL);
1001 				signal_wake_up(t, 1);
1002 			} while_each_thread(p, t);
1003 			return;
1004 		}
1005 	}
1006 
1007 	/*
1008 	 * The signal is already in the shared-pending queue.
1009 	 * Tell the chosen thread to wake up and dequeue it.
1010 	 */
1011 	signal_wake_up(t, sig == SIGKILL);
1012 	return;
1013 }
1014 
legacy_queue(struct sigpending * signals,int sig)1015 static inline int legacy_queue(struct sigpending *signals, int sig)
1016 {
1017 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1018 }
1019 
1020 /*
1021  * map the uid in struct cred into user namespace *ns
1022  */
map_cred_ns(const struct cred * cred,struct user_namespace * ns)1023 static inline uid_t map_cred_ns(const struct cred *cred,
1024 				struct user_namespace *ns)
1025 {
1026 	return user_ns_map_uid(ns, cred, cred->uid);
1027 }
1028 
1029 #ifdef CONFIG_USER_NS
userns_fixup_signal_uid(struct siginfo * info,struct task_struct * t)1030 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1031 {
1032 	if (current_user_ns() == task_cred_xxx(t, user_ns))
1033 		return;
1034 
1035 	if (SI_FROMKERNEL(info))
1036 		return;
1037 
1038 	info->si_uid = user_ns_map_uid(task_cred_xxx(t, user_ns),
1039 					current_cred(), info->si_uid);
1040 }
1041 #else
userns_fixup_signal_uid(struct siginfo * info,struct task_struct * t)1042 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1043 {
1044 	return;
1045 }
1046 #endif
1047 
__send_signal(int sig,struct siginfo * info,struct task_struct * t,int group,int from_ancestor_ns)1048 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1049 			int group, int from_ancestor_ns)
1050 {
1051 	struct sigpending *pending;
1052 	struct sigqueue *q;
1053 	int override_rlimit;
1054 	int ret = 0, result;
1055 
1056 	assert_spin_locked(&t->sighand->siglock);
1057 
1058 	result = TRACE_SIGNAL_IGNORED;
1059 	if (!prepare_signal(sig, t,
1060 			from_ancestor_ns || (info == SEND_SIG_FORCED)))
1061 		goto ret;
1062 
1063 	pending = group ? &t->signal->shared_pending : &t->pending;
1064 	/*
1065 	 * Short-circuit ignored signals and support queuing
1066 	 * exactly one non-rt signal, so that we can get more
1067 	 * detailed information about the cause of the signal.
1068 	 */
1069 	result = TRACE_SIGNAL_ALREADY_PENDING;
1070 	if (legacy_queue(pending, sig))
1071 		goto ret;
1072 
1073 	result = TRACE_SIGNAL_DELIVERED;
1074 	/*
1075 	 * fast-pathed signals for kernel-internal things like SIGSTOP
1076 	 * or SIGKILL.
1077 	 */
1078 	if (info == SEND_SIG_FORCED)
1079 		goto out_set;
1080 
1081 	/*
1082 	 * Real-time signals must be queued if sent by sigqueue, or
1083 	 * some other real-time mechanism.  It is implementation
1084 	 * defined whether kill() does so.  We attempt to do so, on
1085 	 * the principle of least surprise, but since kill is not
1086 	 * allowed to fail with EAGAIN when low on memory we just
1087 	 * make sure at least one signal gets delivered and don't
1088 	 * pass on the info struct.
1089 	 */
1090 	if (sig < SIGRTMIN)
1091 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1092 	else
1093 		override_rlimit = 0;
1094 
1095 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1096 		override_rlimit);
1097 	if (q) {
1098 		list_add_tail(&q->list, &pending->list);
1099 		switch ((unsigned long) info) {
1100 		case (unsigned long) SEND_SIG_NOINFO:
1101 			q->info.si_signo = sig;
1102 			q->info.si_errno = 0;
1103 			q->info.si_code = SI_USER;
1104 			q->info.si_pid = task_tgid_nr_ns(current,
1105 							task_active_pid_ns(t));
1106 			q->info.si_uid = current_uid();
1107 			break;
1108 		case (unsigned long) SEND_SIG_PRIV:
1109 			q->info.si_signo = sig;
1110 			q->info.si_errno = 0;
1111 			q->info.si_code = SI_KERNEL;
1112 			q->info.si_pid = 0;
1113 			q->info.si_uid = 0;
1114 			break;
1115 		default:
1116 			copy_siginfo(&q->info, info);
1117 			if (from_ancestor_ns)
1118 				q->info.si_pid = 0;
1119 			break;
1120 		}
1121 
1122 		userns_fixup_signal_uid(&q->info, t);
1123 
1124 	} else if (!is_si_special(info)) {
1125 		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1126 			/*
1127 			 * Queue overflow, abort.  We may abort if the
1128 			 * signal was rt and sent by user using something
1129 			 * other than kill().
1130 			 */
1131 			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1132 			ret = -EAGAIN;
1133 			goto ret;
1134 		} else {
1135 			/*
1136 			 * This is a silent loss of information.  We still
1137 			 * send the signal, but the *info bits are lost.
1138 			 */
1139 			result = TRACE_SIGNAL_LOSE_INFO;
1140 		}
1141 	}
1142 
1143 out_set:
1144 	signalfd_notify(t, sig);
1145 	sigaddset(&pending->signal, sig);
1146 	complete_signal(sig, t, group);
1147 ret:
1148 	trace_signal_generate(sig, info, t, group, result);
1149 	return ret;
1150 }
1151 
send_signal(int sig,struct siginfo * info,struct task_struct * t,int group)1152 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1153 			int group)
1154 {
1155 	int from_ancestor_ns = 0;
1156 
1157 #ifdef CONFIG_PID_NS
1158 	from_ancestor_ns = si_fromuser(info) &&
1159 			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1160 #endif
1161 
1162 	return __send_signal(sig, info, t, group, from_ancestor_ns);
1163 }
1164 
print_fatal_signal(struct pt_regs * regs,int signr)1165 static void print_fatal_signal(struct pt_regs *regs, int signr)
1166 {
1167 	printk("%s/%d: potentially unexpected fatal signal %d.\n",
1168 		current->comm, task_pid_nr(current), signr);
1169 
1170 #if defined(__i386__) && !defined(__arch_um__)
1171 	printk("code at %08lx: ", regs->ip);
1172 	{
1173 		int i;
1174 		for (i = 0; i < 16; i++) {
1175 			unsigned char insn;
1176 
1177 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1178 				break;
1179 			printk("%02x ", insn);
1180 		}
1181 	}
1182 #endif
1183 	printk("\n");
1184 	preempt_disable();
1185 	show_regs(regs);
1186 	preempt_enable();
1187 }
1188 
setup_print_fatal_signals(char * str)1189 static int __init setup_print_fatal_signals(char *str)
1190 {
1191 	get_option (&str, &print_fatal_signals);
1192 
1193 	return 1;
1194 }
1195 
1196 __setup("print-fatal-signals=", setup_print_fatal_signals);
1197 
1198 int
__group_send_sig_info(int sig,struct siginfo * info,struct task_struct * p)1199 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1200 {
1201 	return send_signal(sig, info, p, 1);
1202 }
1203 
1204 static int
specific_send_sig_info(int sig,struct siginfo * info,struct task_struct * t)1205 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1206 {
1207 	return send_signal(sig, info, t, 0);
1208 }
1209 
do_send_sig_info(int sig,struct siginfo * info,struct task_struct * p,bool group)1210 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1211 			bool group)
1212 {
1213 	unsigned long flags;
1214 	int ret = -ESRCH;
1215 
1216 	if (lock_task_sighand(p, &flags)) {
1217 		ret = send_signal(sig, info, p, group);
1218 		unlock_task_sighand(p, &flags);
1219 	}
1220 
1221 	return ret;
1222 }
1223 
1224 /*
1225  * Force a signal that the process can't ignore: if necessary
1226  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1227  *
1228  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1229  * since we do not want to have a signal handler that was blocked
1230  * be invoked when user space had explicitly blocked it.
1231  *
1232  * We don't want to have recursive SIGSEGV's etc, for example,
1233  * that is why we also clear SIGNAL_UNKILLABLE.
1234  */
1235 int
force_sig_info(int sig,struct siginfo * info,struct task_struct * t)1236 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1237 {
1238 	unsigned long int flags;
1239 	int ret, blocked, ignored;
1240 	struct k_sigaction *action;
1241 
1242 	spin_lock_irqsave(&t->sighand->siglock, flags);
1243 	action = &t->sighand->action[sig-1];
1244 	ignored = action->sa.sa_handler == SIG_IGN;
1245 	blocked = sigismember(&t->blocked, sig);
1246 	if (blocked || ignored) {
1247 		action->sa.sa_handler = SIG_DFL;
1248 		if (blocked) {
1249 			sigdelset(&t->blocked, sig);
1250 			recalc_sigpending_and_wake(t);
1251 		}
1252 	}
1253 	if (action->sa.sa_handler == SIG_DFL)
1254 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1255 	ret = specific_send_sig_info(sig, info, t);
1256 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1257 
1258 	return ret;
1259 }
1260 
1261 /*
1262  * Nuke all other threads in the group.
1263  */
zap_other_threads(struct task_struct * p)1264 int zap_other_threads(struct task_struct *p)
1265 {
1266 	struct task_struct *t = p;
1267 	int count = 0;
1268 
1269 	p->signal->group_stop_count = 0;
1270 
1271 	while_each_thread(p, t) {
1272 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1273 		count++;
1274 
1275 		/* Don't bother with already dead threads */
1276 		if (t->exit_state)
1277 			continue;
1278 		sigaddset(&t->pending.signal, SIGKILL);
1279 		signal_wake_up(t, 1);
1280 	}
1281 
1282 	return count;
1283 }
1284 
__lock_task_sighand(struct task_struct * tsk,unsigned long * flags)1285 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1286 					   unsigned long *flags)
1287 {
1288 	struct sighand_struct *sighand;
1289 
1290 	for (;;) {
1291 		local_irq_save(*flags);
1292 		rcu_read_lock();
1293 		sighand = rcu_dereference(tsk->sighand);
1294 		if (unlikely(sighand == NULL)) {
1295 			rcu_read_unlock();
1296 			local_irq_restore(*flags);
1297 			break;
1298 		}
1299 
1300 		spin_lock(&sighand->siglock);
1301 		if (likely(sighand == tsk->sighand)) {
1302 			rcu_read_unlock();
1303 			break;
1304 		}
1305 		spin_unlock(&sighand->siglock);
1306 		rcu_read_unlock();
1307 		local_irq_restore(*flags);
1308 	}
1309 
1310 	return sighand;
1311 }
1312 
1313 /*
1314  * send signal info to all the members of a group
1315  */
group_send_sig_info(int sig,struct siginfo * info,struct task_struct * p)1316 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1317 {
1318 	int ret;
1319 
1320 	rcu_read_lock();
1321 	ret = check_kill_permission(sig, info, p);
1322 	rcu_read_unlock();
1323 
1324 	if (!ret && sig)
1325 		ret = do_send_sig_info(sig, info, p, true);
1326 
1327 	return ret;
1328 }
1329 
1330 /*
1331  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1332  * control characters do (^C, ^Z etc)
1333  * - the caller must hold at least a readlock on tasklist_lock
1334  */
__kill_pgrp_info(int sig,struct siginfo * info,struct pid * pgrp)1335 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1336 {
1337 	struct task_struct *p = NULL;
1338 	int retval, success;
1339 
1340 	success = 0;
1341 	retval = -ESRCH;
1342 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1343 		int err = group_send_sig_info(sig, info, p);
1344 		success |= !err;
1345 		retval = err;
1346 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1347 	return success ? 0 : retval;
1348 }
1349 
kill_pid_info(int sig,struct siginfo * info,struct pid * pid)1350 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1351 {
1352 	int error = -ESRCH;
1353 	struct task_struct *p;
1354 
1355 	rcu_read_lock();
1356 retry:
1357 	p = pid_task(pid, PIDTYPE_PID);
1358 	if (p) {
1359 		error = group_send_sig_info(sig, info, p);
1360 		if (unlikely(error == -ESRCH))
1361 			/*
1362 			 * The task was unhashed in between, try again.
1363 			 * If it is dead, pid_task() will return NULL,
1364 			 * if we race with de_thread() it will find the
1365 			 * new leader.
1366 			 */
1367 			goto retry;
1368 	}
1369 	rcu_read_unlock();
1370 
1371 	return error;
1372 }
1373 
kill_proc_info(int sig,struct siginfo * info,pid_t pid)1374 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1375 {
1376 	int error;
1377 	rcu_read_lock();
1378 	error = kill_pid_info(sig, info, find_vpid(pid));
1379 	rcu_read_unlock();
1380 	return error;
1381 }
1382 
kill_as_cred_perm(const struct cred * cred,struct task_struct * target)1383 static int kill_as_cred_perm(const struct cred *cred,
1384 			     struct task_struct *target)
1385 {
1386 	const struct cred *pcred = __task_cred(target);
1387 	if (cred->user_ns != pcred->user_ns)
1388 		return 0;
1389 	if (cred->euid != pcred->suid && cred->euid != pcred->uid &&
1390 	    cred->uid  != pcred->suid && cred->uid  != pcred->uid)
1391 		return 0;
1392 	return 1;
1393 }
1394 
1395 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
kill_pid_info_as_cred(int sig,struct siginfo * info,struct pid * pid,const struct cred * cred,u32 secid)1396 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1397 			 const struct cred *cred, u32 secid)
1398 {
1399 	int ret = -EINVAL;
1400 	struct task_struct *p;
1401 	unsigned long flags;
1402 
1403 	if (!valid_signal(sig))
1404 		return ret;
1405 
1406 	rcu_read_lock();
1407 	p = pid_task(pid, PIDTYPE_PID);
1408 	if (!p) {
1409 		ret = -ESRCH;
1410 		goto out_unlock;
1411 	}
1412 	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1413 		ret = -EPERM;
1414 		goto out_unlock;
1415 	}
1416 	ret = security_task_kill(p, info, sig, secid);
1417 	if (ret)
1418 		goto out_unlock;
1419 
1420 	if (sig) {
1421 		if (lock_task_sighand(p, &flags)) {
1422 			ret = __send_signal(sig, info, p, 1, 0);
1423 			unlock_task_sighand(p, &flags);
1424 		} else
1425 			ret = -ESRCH;
1426 	}
1427 out_unlock:
1428 	rcu_read_unlock();
1429 	return ret;
1430 }
1431 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1432 
1433 /*
1434  * kill_something_info() interprets pid in interesting ways just like kill(2).
1435  *
1436  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1437  * is probably wrong.  Should make it like BSD or SYSV.
1438  */
1439 
kill_something_info(int sig,struct siginfo * info,pid_t pid)1440 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1441 {
1442 	int ret;
1443 
1444 	if (pid > 0) {
1445 		rcu_read_lock();
1446 		ret = kill_pid_info(sig, info, find_vpid(pid));
1447 		rcu_read_unlock();
1448 		return ret;
1449 	}
1450 
1451 	read_lock(&tasklist_lock);
1452 	if (pid != -1) {
1453 		ret = __kill_pgrp_info(sig, info,
1454 				pid ? find_vpid(-pid) : task_pgrp(current));
1455 	} else {
1456 		int retval = 0, count = 0;
1457 		struct task_struct * p;
1458 
1459 		for_each_process(p) {
1460 			if (task_pid_vnr(p) > 1 &&
1461 					!same_thread_group(p, current)) {
1462 				int err = group_send_sig_info(sig, info, p);
1463 				++count;
1464 				if (err != -EPERM)
1465 					retval = err;
1466 			}
1467 		}
1468 		ret = count ? retval : -ESRCH;
1469 	}
1470 	read_unlock(&tasklist_lock);
1471 
1472 	return ret;
1473 }
1474 
1475 /*
1476  * These are for backward compatibility with the rest of the kernel source.
1477  */
1478 
send_sig_info(int sig,struct siginfo * info,struct task_struct * p)1479 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1480 {
1481 	/*
1482 	 * Make sure legacy kernel users don't send in bad values
1483 	 * (normal paths check this in check_kill_permission).
1484 	 */
1485 	if (!valid_signal(sig))
1486 		return -EINVAL;
1487 
1488 	return do_send_sig_info(sig, info, p, false);
1489 }
1490 
1491 #define __si_special(priv) \
1492 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1493 
1494 int
send_sig(int sig,struct task_struct * p,int priv)1495 send_sig(int sig, struct task_struct *p, int priv)
1496 {
1497 	return send_sig_info(sig, __si_special(priv), p);
1498 }
1499 
1500 void
force_sig(int sig,struct task_struct * p)1501 force_sig(int sig, struct task_struct *p)
1502 {
1503 	force_sig_info(sig, SEND_SIG_PRIV, p);
1504 }
1505 
1506 /*
1507  * When things go south during signal handling, we
1508  * will force a SIGSEGV. And if the signal that caused
1509  * the problem was already a SIGSEGV, we'll want to
1510  * make sure we don't even try to deliver the signal..
1511  */
1512 int
force_sigsegv(int sig,struct task_struct * p)1513 force_sigsegv(int sig, struct task_struct *p)
1514 {
1515 	if (sig == SIGSEGV) {
1516 		unsigned long flags;
1517 		spin_lock_irqsave(&p->sighand->siglock, flags);
1518 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1519 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1520 	}
1521 	force_sig(SIGSEGV, p);
1522 	return 0;
1523 }
1524 
kill_pgrp(struct pid * pid,int sig,int priv)1525 int kill_pgrp(struct pid *pid, int sig, int priv)
1526 {
1527 	int ret;
1528 
1529 	read_lock(&tasklist_lock);
1530 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1531 	read_unlock(&tasklist_lock);
1532 
1533 	return ret;
1534 }
1535 EXPORT_SYMBOL(kill_pgrp);
1536 
kill_pid(struct pid * pid,int sig,int priv)1537 int kill_pid(struct pid *pid, int sig, int priv)
1538 {
1539 	return kill_pid_info(sig, __si_special(priv), pid);
1540 }
1541 EXPORT_SYMBOL(kill_pid);
1542 
1543 /*
1544  * These functions support sending signals using preallocated sigqueue
1545  * structures.  This is needed "because realtime applications cannot
1546  * afford to lose notifications of asynchronous events, like timer
1547  * expirations or I/O completions".  In the case of POSIX Timers
1548  * we allocate the sigqueue structure from the timer_create.  If this
1549  * allocation fails we are able to report the failure to the application
1550  * with an EAGAIN error.
1551  */
sigqueue_alloc(void)1552 struct sigqueue *sigqueue_alloc(void)
1553 {
1554 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1555 
1556 	if (q)
1557 		q->flags |= SIGQUEUE_PREALLOC;
1558 
1559 	return q;
1560 }
1561 
sigqueue_free(struct sigqueue * q)1562 void sigqueue_free(struct sigqueue *q)
1563 {
1564 	unsigned long flags;
1565 	spinlock_t *lock = &current->sighand->siglock;
1566 
1567 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1568 	/*
1569 	 * We must hold ->siglock while testing q->list
1570 	 * to serialize with collect_signal() or with
1571 	 * __exit_signal()->flush_sigqueue().
1572 	 */
1573 	spin_lock_irqsave(lock, flags);
1574 	q->flags &= ~SIGQUEUE_PREALLOC;
1575 	/*
1576 	 * If it is queued it will be freed when dequeued,
1577 	 * like the "regular" sigqueue.
1578 	 */
1579 	if (!list_empty(&q->list))
1580 		q = NULL;
1581 	spin_unlock_irqrestore(lock, flags);
1582 
1583 	if (q)
1584 		__sigqueue_free(q);
1585 }
1586 
send_sigqueue(struct sigqueue * q,struct task_struct * t,int group)1587 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1588 {
1589 	int sig = q->info.si_signo;
1590 	struct sigpending *pending;
1591 	unsigned long flags;
1592 	int ret, result;
1593 
1594 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1595 
1596 	ret = -1;
1597 	if (!likely(lock_task_sighand(t, &flags)))
1598 		goto ret;
1599 
1600 	ret = 1; /* the signal is ignored */
1601 	result = TRACE_SIGNAL_IGNORED;
1602 	if (!prepare_signal(sig, t, false))
1603 		goto out;
1604 
1605 	ret = 0;
1606 	if (unlikely(!list_empty(&q->list))) {
1607 		/*
1608 		 * If an SI_TIMER entry is already queue just increment
1609 		 * the overrun count.
1610 		 */
1611 		BUG_ON(q->info.si_code != SI_TIMER);
1612 		q->info.si_overrun++;
1613 		result = TRACE_SIGNAL_ALREADY_PENDING;
1614 		goto out;
1615 	}
1616 	q->info.si_overrun = 0;
1617 
1618 	signalfd_notify(t, sig);
1619 	pending = group ? &t->signal->shared_pending : &t->pending;
1620 	list_add_tail(&q->list, &pending->list);
1621 	sigaddset(&pending->signal, sig);
1622 	complete_signal(sig, t, group);
1623 	result = TRACE_SIGNAL_DELIVERED;
1624 out:
1625 	trace_signal_generate(sig, &q->info, t, group, result);
1626 	unlock_task_sighand(t, &flags);
1627 ret:
1628 	return ret;
1629 }
1630 
1631 /*
1632  * Let a parent know about the death of a child.
1633  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1634  *
1635  * Returns true if our parent ignored us and so we've switched to
1636  * self-reaping.
1637  */
do_notify_parent(struct task_struct * tsk,int sig)1638 bool do_notify_parent(struct task_struct *tsk, int sig)
1639 {
1640 	struct siginfo info;
1641 	unsigned long flags;
1642 	struct sighand_struct *psig;
1643 	bool autoreap = false;
1644 
1645 	BUG_ON(sig == -1);
1646 
1647  	/* do_notify_parent_cldstop should have been called instead.  */
1648  	BUG_ON(task_is_stopped_or_traced(tsk));
1649 
1650 	BUG_ON(!tsk->ptrace &&
1651 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1652 
1653 	if (sig != SIGCHLD) {
1654 		/*
1655 		 * This is only possible if parent == real_parent.
1656 		 * Check if it has changed security domain.
1657 		 */
1658 		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1659 			sig = SIGCHLD;
1660 	}
1661 
1662 	info.si_signo = sig;
1663 	info.si_errno = 0;
1664 	/*
1665 	 * we are under tasklist_lock here so our parent is tied to
1666 	 * us and cannot exit and release its namespace.
1667 	 *
1668 	 * the only it can is to switch its nsproxy with sys_unshare,
1669 	 * bu uncharing pid namespaces is not allowed, so we'll always
1670 	 * see relevant namespace
1671 	 *
1672 	 * write_lock() currently calls preempt_disable() which is the
1673 	 * same as rcu_read_lock(), but according to Oleg, this is not
1674 	 * correct to rely on this
1675 	 */
1676 	rcu_read_lock();
1677 	info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1678 	info.si_uid = map_cred_ns(__task_cred(tsk),
1679 			task_cred_xxx(tsk->parent, user_ns));
1680 	rcu_read_unlock();
1681 
1682 	info.si_utime = cputime_to_clock_t(tsk->utime + tsk->signal->utime);
1683 	info.si_stime = cputime_to_clock_t(tsk->stime + tsk->signal->stime);
1684 
1685 	info.si_status = tsk->exit_code & 0x7f;
1686 	if (tsk->exit_code & 0x80)
1687 		info.si_code = CLD_DUMPED;
1688 	else if (tsk->exit_code & 0x7f)
1689 		info.si_code = CLD_KILLED;
1690 	else {
1691 		info.si_code = CLD_EXITED;
1692 		info.si_status = tsk->exit_code >> 8;
1693 	}
1694 
1695 	psig = tsk->parent->sighand;
1696 	spin_lock_irqsave(&psig->siglock, flags);
1697 	if (!tsk->ptrace && sig == SIGCHLD &&
1698 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1699 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1700 		/*
1701 		 * We are exiting and our parent doesn't care.  POSIX.1
1702 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1703 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1704 		 * automatically and not left for our parent's wait4 call.
1705 		 * Rather than having the parent do it as a magic kind of
1706 		 * signal handler, we just set this to tell do_exit that we
1707 		 * can be cleaned up without becoming a zombie.  Note that
1708 		 * we still call __wake_up_parent in this case, because a
1709 		 * blocked sys_wait4 might now return -ECHILD.
1710 		 *
1711 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1712 		 * is implementation-defined: we do (if you don't want
1713 		 * it, just use SIG_IGN instead).
1714 		 */
1715 		autoreap = true;
1716 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1717 			sig = 0;
1718 	}
1719 	if (valid_signal(sig) && sig)
1720 		__group_send_sig_info(sig, &info, tsk->parent);
1721 	__wake_up_parent(tsk, tsk->parent);
1722 	spin_unlock_irqrestore(&psig->siglock, flags);
1723 
1724 	return autoreap;
1725 }
1726 
1727 /**
1728  * do_notify_parent_cldstop - notify parent of stopped/continued state change
1729  * @tsk: task reporting the state change
1730  * @for_ptracer: the notification is for ptracer
1731  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1732  *
1733  * Notify @tsk's parent that the stopped/continued state has changed.  If
1734  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1735  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1736  *
1737  * CONTEXT:
1738  * Must be called with tasklist_lock at least read locked.
1739  */
do_notify_parent_cldstop(struct task_struct * tsk,bool for_ptracer,int why)1740 static void do_notify_parent_cldstop(struct task_struct *tsk,
1741 				     bool for_ptracer, int why)
1742 {
1743 	struct siginfo info;
1744 	unsigned long flags;
1745 	struct task_struct *parent;
1746 	struct sighand_struct *sighand;
1747 
1748 	if (for_ptracer) {
1749 		parent = tsk->parent;
1750 	} else {
1751 		tsk = tsk->group_leader;
1752 		parent = tsk->real_parent;
1753 	}
1754 
1755 	info.si_signo = SIGCHLD;
1756 	info.si_errno = 0;
1757 	/*
1758 	 * see comment in do_notify_parent() about the following 4 lines
1759 	 */
1760 	rcu_read_lock();
1761 	info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
1762 	info.si_uid = map_cred_ns(__task_cred(tsk),
1763 			task_cred_xxx(parent, user_ns));
1764 	rcu_read_unlock();
1765 
1766 	info.si_utime = cputime_to_clock_t(tsk->utime);
1767 	info.si_stime = cputime_to_clock_t(tsk->stime);
1768 
1769  	info.si_code = why;
1770  	switch (why) {
1771  	case CLD_CONTINUED:
1772  		info.si_status = SIGCONT;
1773  		break;
1774  	case CLD_STOPPED:
1775  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1776  		break;
1777  	case CLD_TRAPPED:
1778  		info.si_status = tsk->exit_code & 0x7f;
1779  		break;
1780  	default:
1781  		BUG();
1782  	}
1783 
1784 	sighand = parent->sighand;
1785 	spin_lock_irqsave(&sighand->siglock, flags);
1786 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1787 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1788 		__group_send_sig_info(SIGCHLD, &info, parent);
1789 	/*
1790 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1791 	 */
1792 	__wake_up_parent(tsk, parent);
1793 	spin_unlock_irqrestore(&sighand->siglock, flags);
1794 }
1795 
may_ptrace_stop(void)1796 static inline int may_ptrace_stop(void)
1797 {
1798 	if (!likely(current->ptrace))
1799 		return 0;
1800 	/*
1801 	 * Are we in the middle of do_coredump?
1802 	 * If so and our tracer is also part of the coredump stopping
1803 	 * is a deadlock situation, and pointless because our tracer
1804 	 * is dead so don't allow us to stop.
1805 	 * If SIGKILL was already sent before the caller unlocked
1806 	 * ->siglock we must see ->core_state != NULL. Otherwise it
1807 	 * is safe to enter schedule().
1808 	 *
1809 	 * This is almost outdated, a task with the pending SIGKILL can't
1810 	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1811 	 * after SIGKILL was already dequeued.
1812 	 */
1813 	if (unlikely(current->mm->core_state) &&
1814 	    unlikely(current->mm == current->parent->mm))
1815 		return 0;
1816 
1817 	return 1;
1818 }
1819 
1820 /*
1821  * Return non-zero if there is a SIGKILL that should be waking us up.
1822  * Called with the siglock held.
1823  */
sigkill_pending(struct task_struct * tsk)1824 static int sigkill_pending(struct task_struct *tsk)
1825 {
1826 	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1827 		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1828 }
1829 
1830 /*
1831  * This must be called with current->sighand->siglock held.
1832  *
1833  * This should be the path for all ptrace stops.
1834  * We always set current->last_siginfo while stopped here.
1835  * That makes it a way to test a stopped process for
1836  * being ptrace-stopped vs being job-control-stopped.
1837  *
1838  * If we actually decide not to stop at all because the tracer
1839  * is gone, we keep current->exit_code unless clear_code.
1840  */
ptrace_stop(int exit_code,int why,int clear_code,siginfo_t * info)1841 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1842 	__releases(&current->sighand->siglock)
1843 	__acquires(&current->sighand->siglock)
1844 {
1845 	bool gstop_done = false;
1846 
1847 	if (arch_ptrace_stop_needed(exit_code, info)) {
1848 		/*
1849 		 * The arch code has something special to do before a
1850 		 * ptrace stop.  This is allowed to block, e.g. for faults
1851 		 * on user stack pages.  We can't keep the siglock while
1852 		 * calling arch_ptrace_stop, so we must release it now.
1853 		 * To preserve proper semantics, we must do this before
1854 		 * any signal bookkeeping like checking group_stop_count.
1855 		 * Meanwhile, a SIGKILL could come in before we retake the
1856 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1857 		 * So after regaining the lock, we must check for SIGKILL.
1858 		 */
1859 		spin_unlock_irq(&current->sighand->siglock);
1860 		arch_ptrace_stop(exit_code, info);
1861 		spin_lock_irq(&current->sighand->siglock);
1862 		if (sigkill_pending(current))
1863 			return;
1864 	}
1865 
1866 	/*
1867 	 * We're committing to trapping.  TRACED should be visible before
1868 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1869 	 * Also, transition to TRACED and updates to ->jobctl should be
1870 	 * atomic with respect to siglock and should be done after the arch
1871 	 * hook as siglock is released and regrabbed across it.
1872 	 */
1873 	set_current_state(TASK_TRACED);
1874 
1875 	current->last_siginfo = info;
1876 	current->exit_code = exit_code;
1877 
1878 	/*
1879 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1880 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1881 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1882 	 * could be clear now.  We act as if SIGCONT is received after
1883 	 * TASK_TRACED is entered - ignore it.
1884 	 */
1885 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1886 		gstop_done = task_participate_group_stop(current);
1887 
1888 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1889 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1890 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1891 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1892 
1893 	/* entering a trap, clear TRAPPING */
1894 	task_clear_jobctl_trapping(current);
1895 
1896 	spin_unlock_irq(&current->sighand->siglock);
1897 	read_lock(&tasklist_lock);
1898 	if (may_ptrace_stop()) {
1899 		/*
1900 		 * Notify parents of the stop.
1901 		 *
1902 		 * While ptraced, there are two parents - the ptracer and
1903 		 * the real_parent of the group_leader.  The ptracer should
1904 		 * know about every stop while the real parent is only
1905 		 * interested in the completion of group stop.  The states
1906 		 * for the two don't interact with each other.  Notify
1907 		 * separately unless they're gonna be duplicates.
1908 		 */
1909 		do_notify_parent_cldstop(current, true, why);
1910 		if (gstop_done && ptrace_reparented(current))
1911 			do_notify_parent_cldstop(current, false, why);
1912 
1913 		/*
1914 		 * Don't want to allow preemption here, because
1915 		 * sys_ptrace() needs this task to be inactive.
1916 		 *
1917 		 * XXX: implement read_unlock_no_resched().
1918 		 */
1919 		preempt_disable();
1920 		read_unlock(&tasklist_lock);
1921 		preempt_enable_no_resched();
1922 		schedule();
1923 	} else {
1924 		/*
1925 		 * By the time we got the lock, our tracer went away.
1926 		 * Don't drop the lock yet, another tracer may come.
1927 		 *
1928 		 * If @gstop_done, the ptracer went away between group stop
1929 		 * completion and here.  During detach, it would have set
1930 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1931 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1932 		 * the real parent of the group stop completion is enough.
1933 		 */
1934 		if (gstop_done)
1935 			do_notify_parent_cldstop(current, false, why);
1936 
1937 		/* tasklist protects us from ptrace_freeze_traced() */
1938 		__set_current_state(TASK_RUNNING);
1939 		if (clear_code)
1940 			current->exit_code = 0;
1941 		read_unlock(&tasklist_lock);
1942 	}
1943 
1944 	/*
1945 	 * While in TASK_TRACED, we were considered "frozen enough".
1946 	 * Now that we woke up, it's crucial if we're supposed to be
1947 	 * frozen that we freeze now before running anything substantial.
1948 	 */
1949 	try_to_freeze();
1950 
1951 	/*
1952 	 * We are back.  Now reacquire the siglock before touching
1953 	 * last_siginfo, so that we are sure to have synchronized with
1954 	 * any signal-sending on another CPU that wants to examine it.
1955 	 */
1956 	spin_lock_irq(&current->sighand->siglock);
1957 	current->last_siginfo = NULL;
1958 
1959 	/* LISTENING can be set only during STOP traps, clear it */
1960 	current->jobctl &= ~JOBCTL_LISTENING;
1961 
1962 	/*
1963 	 * Queued signals ignored us while we were stopped for tracing.
1964 	 * So check for any that we should take before resuming user mode.
1965 	 * This sets TIF_SIGPENDING, but never clears it.
1966 	 */
1967 	recalc_sigpending_tsk(current);
1968 }
1969 
ptrace_do_notify(int signr,int exit_code,int why)1970 static void ptrace_do_notify(int signr, int exit_code, int why)
1971 {
1972 	siginfo_t info;
1973 
1974 	memset(&info, 0, sizeof info);
1975 	info.si_signo = signr;
1976 	info.si_code = exit_code;
1977 	info.si_pid = task_pid_vnr(current);
1978 	info.si_uid = current_uid();
1979 
1980 	/* Let the debugger run.  */
1981 	ptrace_stop(exit_code, why, 1, &info);
1982 }
1983 
ptrace_notify(int exit_code)1984 void ptrace_notify(int exit_code)
1985 {
1986 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1987 
1988 	spin_lock_irq(&current->sighand->siglock);
1989 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1990 	spin_unlock_irq(&current->sighand->siglock);
1991 }
1992 
1993 /**
1994  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1995  * @signr: signr causing group stop if initiating
1996  *
1997  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1998  * and participate in it.  If already set, participate in the existing
1999  * group stop.  If participated in a group stop (and thus slept), %true is
2000  * returned with siglock released.
2001  *
2002  * If ptraced, this function doesn't handle stop itself.  Instead,
2003  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2004  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2005  * places afterwards.
2006  *
2007  * CONTEXT:
2008  * Must be called with @current->sighand->siglock held, which is released
2009  * on %true return.
2010  *
2011  * RETURNS:
2012  * %false if group stop is already cancelled or ptrace trap is scheduled.
2013  * %true if participated in group stop.
2014  */
do_signal_stop(int signr)2015 static bool do_signal_stop(int signr)
2016 	__releases(&current->sighand->siglock)
2017 {
2018 	struct signal_struct *sig = current->signal;
2019 
2020 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2021 		unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2022 		struct task_struct *t;
2023 
2024 		/* signr will be recorded in task->jobctl for retries */
2025 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2026 
2027 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2028 		    unlikely(signal_group_exit(sig)))
2029 			return false;
2030 		/*
2031 		 * There is no group stop already in progress.  We must
2032 		 * initiate one now.
2033 		 *
2034 		 * While ptraced, a task may be resumed while group stop is
2035 		 * still in effect and then receive a stop signal and
2036 		 * initiate another group stop.  This deviates from the
2037 		 * usual behavior as two consecutive stop signals can't
2038 		 * cause two group stops when !ptraced.  That is why we
2039 		 * also check !task_is_stopped(t) below.
2040 		 *
2041 		 * The condition can be distinguished by testing whether
2042 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2043 		 * group_exit_code in such case.
2044 		 *
2045 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2046 		 * an intervening stop signal is required to cause two
2047 		 * continued events regardless of ptrace.
2048 		 */
2049 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2050 			sig->group_exit_code = signr;
2051 
2052 		sig->group_stop_count = 0;
2053 
2054 		if (task_set_jobctl_pending(current, signr | gstop))
2055 			sig->group_stop_count++;
2056 
2057 		for (t = next_thread(current); t != current;
2058 		     t = next_thread(t)) {
2059 			/*
2060 			 * Setting state to TASK_STOPPED for a group
2061 			 * stop is always done with the siglock held,
2062 			 * so this check has no races.
2063 			 */
2064 			if (!task_is_stopped(t) &&
2065 			    task_set_jobctl_pending(t, signr | gstop)) {
2066 				sig->group_stop_count++;
2067 				if (likely(!(t->ptrace & PT_SEIZED)))
2068 					signal_wake_up(t, 0);
2069 				else
2070 					ptrace_trap_notify(t);
2071 			}
2072 		}
2073 	}
2074 
2075 	if (likely(!current->ptrace)) {
2076 		int notify = 0;
2077 
2078 		/*
2079 		 * If there are no other threads in the group, or if there
2080 		 * is a group stop in progress and we are the last to stop,
2081 		 * report to the parent.
2082 		 */
2083 		if (task_participate_group_stop(current))
2084 			notify = CLD_STOPPED;
2085 
2086 		__set_current_state(TASK_STOPPED);
2087 		spin_unlock_irq(&current->sighand->siglock);
2088 
2089 		/*
2090 		 * Notify the parent of the group stop completion.  Because
2091 		 * we're not holding either the siglock or tasklist_lock
2092 		 * here, ptracer may attach inbetween; however, this is for
2093 		 * group stop and should always be delivered to the real
2094 		 * parent of the group leader.  The new ptracer will get
2095 		 * its notification when this task transitions into
2096 		 * TASK_TRACED.
2097 		 */
2098 		if (notify) {
2099 			read_lock(&tasklist_lock);
2100 			do_notify_parent_cldstop(current, false, notify);
2101 			read_unlock(&tasklist_lock);
2102 		}
2103 
2104 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2105 		schedule();
2106 		return true;
2107 	} else {
2108 		/*
2109 		 * While ptraced, group stop is handled by STOP trap.
2110 		 * Schedule it and let the caller deal with it.
2111 		 */
2112 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2113 		return false;
2114 	}
2115 }
2116 
2117 /**
2118  * do_jobctl_trap - take care of ptrace jobctl traps
2119  *
2120  * When PT_SEIZED, it's used for both group stop and explicit
2121  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2122  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2123  * the stop signal; otherwise, %SIGTRAP.
2124  *
2125  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2126  * number as exit_code and no siginfo.
2127  *
2128  * CONTEXT:
2129  * Must be called with @current->sighand->siglock held, which may be
2130  * released and re-acquired before returning with intervening sleep.
2131  */
do_jobctl_trap(void)2132 static void do_jobctl_trap(void)
2133 {
2134 	struct signal_struct *signal = current->signal;
2135 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2136 
2137 	if (current->ptrace & PT_SEIZED) {
2138 		if (!signal->group_stop_count &&
2139 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2140 			signr = SIGTRAP;
2141 		WARN_ON_ONCE(!signr);
2142 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2143 				 CLD_STOPPED);
2144 	} else {
2145 		WARN_ON_ONCE(!signr);
2146 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2147 		current->exit_code = 0;
2148 	}
2149 }
2150 
ptrace_signal(int signr,siginfo_t * info,struct pt_regs * regs,void * cookie)2151 static int ptrace_signal(int signr, siginfo_t *info,
2152 			 struct pt_regs *regs, void *cookie)
2153 {
2154 	ptrace_signal_deliver(regs, cookie);
2155 	/*
2156 	 * We do not check sig_kernel_stop(signr) but set this marker
2157 	 * unconditionally because we do not know whether debugger will
2158 	 * change signr. This flag has no meaning unless we are going
2159 	 * to stop after return from ptrace_stop(). In this case it will
2160 	 * be checked in do_signal_stop(), we should only stop if it was
2161 	 * not cleared by SIGCONT while we were sleeping. See also the
2162 	 * comment in dequeue_signal().
2163 	 */
2164 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2165 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2166 
2167 	/* We're back.  Did the debugger cancel the sig?  */
2168 	signr = current->exit_code;
2169 	if (signr == 0)
2170 		return signr;
2171 
2172 	current->exit_code = 0;
2173 
2174 	/*
2175 	 * Update the siginfo structure if the signal has
2176 	 * changed.  If the debugger wanted something
2177 	 * specific in the siginfo structure then it should
2178 	 * have updated *info via PTRACE_SETSIGINFO.
2179 	 */
2180 	if (signr != info->si_signo) {
2181 		info->si_signo = signr;
2182 		info->si_errno = 0;
2183 		info->si_code = SI_USER;
2184 		rcu_read_lock();
2185 		info->si_pid = task_pid_vnr(current->parent);
2186 		info->si_uid = map_cred_ns(__task_cred(current->parent),
2187 				current_user_ns());
2188 		rcu_read_unlock();
2189 	}
2190 
2191 	/* If the (new) signal is now blocked, requeue it.  */
2192 	if (sigismember(&current->blocked, signr)) {
2193 		specific_send_sig_info(signr, info, current);
2194 		signr = 0;
2195 	}
2196 
2197 	return signr;
2198 }
2199 
get_signal_to_deliver(siginfo_t * info,struct k_sigaction * return_ka,struct pt_regs * regs,void * cookie)2200 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2201 			  struct pt_regs *regs, void *cookie)
2202 {
2203 	struct sighand_struct *sighand = current->sighand;
2204 	struct signal_struct *signal = current->signal;
2205 	int signr;
2206 
2207 relock:
2208 	/*
2209 	 * We'll jump back here after any time we were stopped in TASK_STOPPED.
2210 	 * While in TASK_STOPPED, we were considered "frozen enough".
2211 	 * Now that we woke up, it's crucial if we're supposed to be
2212 	 * frozen that we freeze now before running anything substantial.
2213 	 */
2214 	try_to_freeze();
2215 
2216 	spin_lock_irq(&sighand->siglock);
2217 	/*
2218 	 * Every stopped thread goes here after wakeup. Check to see if
2219 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2220 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2221 	 */
2222 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2223 		int why;
2224 
2225 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2226 			why = CLD_CONTINUED;
2227 		else
2228 			why = CLD_STOPPED;
2229 
2230 		signal->flags &= ~SIGNAL_CLD_MASK;
2231 
2232 		spin_unlock_irq(&sighand->siglock);
2233 
2234 		/*
2235 		 * Notify the parent that we're continuing.  This event is
2236 		 * always per-process and doesn't make whole lot of sense
2237 		 * for ptracers, who shouldn't consume the state via
2238 		 * wait(2) either, but, for backward compatibility, notify
2239 		 * the ptracer of the group leader too unless it's gonna be
2240 		 * a duplicate.
2241 		 */
2242 		read_lock(&tasklist_lock);
2243 		do_notify_parent_cldstop(current, false, why);
2244 
2245 		if (ptrace_reparented(current->group_leader))
2246 			do_notify_parent_cldstop(current->group_leader,
2247 						true, why);
2248 		read_unlock(&tasklist_lock);
2249 
2250 		goto relock;
2251 	}
2252 
2253 	for (;;) {
2254 		struct k_sigaction *ka;
2255 
2256 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2257 		    do_signal_stop(0))
2258 			goto relock;
2259 
2260 		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2261 			do_jobctl_trap();
2262 			spin_unlock_irq(&sighand->siglock);
2263 			goto relock;
2264 		}
2265 
2266 		signr = dequeue_signal(current, &current->blocked, info);
2267 
2268 		if (!signr)
2269 			break; /* will return 0 */
2270 
2271 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2272 			signr = ptrace_signal(signr, info,
2273 					      regs, cookie);
2274 			if (!signr)
2275 				continue;
2276 		}
2277 
2278 		ka = &sighand->action[signr-1];
2279 
2280 		/* Trace actually delivered signals. */
2281 		trace_signal_deliver(signr, info, ka);
2282 
2283 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2284 			continue;
2285 		if (ka->sa.sa_handler != SIG_DFL) {
2286 			/* Run the handler.  */
2287 			*return_ka = *ka;
2288 
2289 			if (ka->sa.sa_flags & SA_ONESHOT)
2290 				ka->sa.sa_handler = SIG_DFL;
2291 
2292 			break; /* will return non-zero "signr" value */
2293 		}
2294 
2295 		/*
2296 		 * Now we are doing the default action for this signal.
2297 		 */
2298 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2299 			continue;
2300 
2301 		/*
2302 		 * Global init gets no signals it doesn't want.
2303 		 * Container-init gets no signals it doesn't want from same
2304 		 * container.
2305 		 *
2306 		 * Note that if global/container-init sees a sig_kernel_only()
2307 		 * signal here, the signal must have been generated internally
2308 		 * or must have come from an ancestor namespace. In either
2309 		 * case, the signal cannot be dropped.
2310 		 */
2311 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2312 				!sig_kernel_only(signr))
2313 			continue;
2314 
2315 		if (sig_kernel_stop(signr)) {
2316 			/*
2317 			 * The default action is to stop all threads in
2318 			 * the thread group.  The job control signals
2319 			 * do nothing in an orphaned pgrp, but SIGSTOP
2320 			 * always works.  Note that siglock needs to be
2321 			 * dropped during the call to is_orphaned_pgrp()
2322 			 * because of lock ordering with tasklist_lock.
2323 			 * This allows an intervening SIGCONT to be posted.
2324 			 * We need to check for that and bail out if necessary.
2325 			 */
2326 			if (signr != SIGSTOP) {
2327 				spin_unlock_irq(&sighand->siglock);
2328 
2329 				/* signals can be posted during this window */
2330 
2331 				if (is_current_pgrp_orphaned())
2332 					goto relock;
2333 
2334 				spin_lock_irq(&sighand->siglock);
2335 			}
2336 
2337 			if (likely(do_signal_stop(info->si_signo))) {
2338 				/* It released the siglock.  */
2339 				goto relock;
2340 			}
2341 
2342 			/*
2343 			 * We didn't actually stop, due to a race
2344 			 * with SIGCONT or something like that.
2345 			 */
2346 			continue;
2347 		}
2348 
2349 		spin_unlock_irq(&sighand->siglock);
2350 
2351 		/*
2352 		 * Anything else is fatal, maybe with a core dump.
2353 		 */
2354 		current->flags |= PF_SIGNALED;
2355 
2356 		if (sig_kernel_coredump(signr)) {
2357 			if (print_fatal_signals)
2358 				print_fatal_signal(regs, info->si_signo);
2359 			/*
2360 			 * If it was able to dump core, this kills all
2361 			 * other threads in the group and synchronizes with
2362 			 * their demise.  If we lost the race with another
2363 			 * thread getting here, it set group_exit_code
2364 			 * first and our do_group_exit call below will use
2365 			 * that value and ignore the one we pass it.
2366 			 */
2367 			do_coredump(info->si_signo, info->si_signo, regs);
2368 		}
2369 
2370 		/*
2371 		 * Death signals, no core dump.
2372 		 */
2373 		do_group_exit(info->si_signo);
2374 		/* NOTREACHED */
2375 	}
2376 	spin_unlock_irq(&sighand->siglock);
2377 	return signr;
2378 }
2379 
2380 /**
2381  * block_sigmask - add @ka's signal mask to current->blocked
2382  * @ka: action for @signr
2383  * @signr: signal that has been successfully delivered
2384  *
2385  * This function should be called when a signal has succesfully been
2386  * delivered. It adds the mask of signals for @ka to current->blocked
2387  * so that they are blocked during the execution of the signal
2388  * handler. In addition, @signr will be blocked unless %SA_NODEFER is
2389  * set in @ka->sa.sa_flags.
2390  */
block_sigmask(struct k_sigaction * ka,int signr)2391 void block_sigmask(struct k_sigaction *ka, int signr)
2392 {
2393 	sigset_t blocked;
2394 
2395 	sigorsets(&blocked, &current->blocked, &ka->sa.sa_mask);
2396 	if (!(ka->sa.sa_flags & SA_NODEFER))
2397 		sigaddset(&blocked, signr);
2398 	set_current_blocked(&blocked);
2399 }
2400 
2401 /*
2402  * It could be that complete_signal() picked us to notify about the
2403  * group-wide signal. Other threads should be notified now to take
2404  * the shared signals in @which since we will not.
2405  */
retarget_shared_pending(struct task_struct * tsk,sigset_t * which)2406 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2407 {
2408 	sigset_t retarget;
2409 	struct task_struct *t;
2410 
2411 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2412 	if (sigisemptyset(&retarget))
2413 		return;
2414 
2415 	t = tsk;
2416 	while_each_thread(tsk, t) {
2417 		if (t->flags & PF_EXITING)
2418 			continue;
2419 
2420 		if (!has_pending_signals(&retarget, &t->blocked))
2421 			continue;
2422 		/* Remove the signals this thread can handle. */
2423 		sigandsets(&retarget, &retarget, &t->blocked);
2424 
2425 		if (!signal_pending(t))
2426 			signal_wake_up(t, 0);
2427 
2428 		if (sigisemptyset(&retarget))
2429 			break;
2430 	}
2431 }
2432 
exit_signals(struct task_struct * tsk)2433 void exit_signals(struct task_struct *tsk)
2434 {
2435 	int group_stop = 0;
2436 	sigset_t unblocked;
2437 
2438 	/*
2439 	 * @tsk is about to have PF_EXITING set - lock out users which
2440 	 * expect stable threadgroup.
2441 	 */
2442 	threadgroup_change_begin(tsk);
2443 
2444 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2445 		tsk->flags |= PF_EXITING;
2446 		threadgroup_change_end(tsk);
2447 		return;
2448 	}
2449 
2450 	spin_lock_irq(&tsk->sighand->siglock);
2451 	/*
2452 	 * From now this task is not visible for group-wide signals,
2453 	 * see wants_signal(), do_signal_stop().
2454 	 */
2455 	tsk->flags |= PF_EXITING;
2456 
2457 	threadgroup_change_end(tsk);
2458 
2459 	if (!signal_pending(tsk))
2460 		goto out;
2461 
2462 	unblocked = tsk->blocked;
2463 	signotset(&unblocked);
2464 	retarget_shared_pending(tsk, &unblocked);
2465 
2466 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2467 	    task_participate_group_stop(tsk))
2468 		group_stop = CLD_STOPPED;
2469 out:
2470 	spin_unlock_irq(&tsk->sighand->siglock);
2471 
2472 	/*
2473 	 * If group stop has completed, deliver the notification.  This
2474 	 * should always go to the real parent of the group leader.
2475 	 */
2476 	if (unlikely(group_stop)) {
2477 		read_lock(&tasklist_lock);
2478 		do_notify_parent_cldstop(tsk, false, group_stop);
2479 		read_unlock(&tasklist_lock);
2480 	}
2481 }
2482 
2483 EXPORT_SYMBOL(recalc_sigpending);
2484 EXPORT_SYMBOL_GPL(dequeue_signal);
2485 EXPORT_SYMBOL(flush_signals);
2486 EXPORT_SYMBOL(force_sig);
2487 EXPORT_SYMBOL(send_sig);
2488 EXPORT_SYMBOL(send_sig_info);
2489 EXPORT_SYMBOL(sigprocmask);
2490 EXPORT_SYMBOL(block_all_signals);
2491 EXPORT_SYMBOL(unblock_all_signals);
2492 
2493 
2494 /*
2495  * System call entry points.
2496  */
2497 
2498 /**
2499  *  sys_restart_syscall - restart a system call
2500  */
SYSCALL_DEFINE0(restart_syscall)2501 SYSCALL_DEFINE0(restart_syscall)
2502 {
2503 	struct restart_block *restart = &current_thread_info()->restart_block;
2504 	return restart->fn(restart);
2505 }
2506 
do_no_restart_syscall(struct restart_block * param)2507 long do_no_restart_syscall(struct restart_block *param)
2508 {
2509 	return -EINTR;
2510 }
2511 
__set_task_blocked(struct task_struct * tsk,const sigset_t * newset)2512 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2513 {
2514 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2515 		sigset_t newblocked;
2516 		/* A set of now blocked but previously unblocked signals. */
2517 		sigandnsets(&newblocked, newset, &current->blocked);
2518 		retarget_shared_pending(tsk, &newblocked);
2519 	}
2520 	tsk->blocked = *newset;
2521 	recalc_sigpending();
2522 }
2523 
2524 /**
2525  * set_current_blocked - change current->blocked mask
2526  * @newset: new mask
2527  *
2528  * It is wrong to change ->blocked directly, this helper should be used
2529  * to ensure the process can't miss a shared signal we are going to block.
2530  */
set_current_blocked(const sigset_t * newset)2531 void set_current_blocked(const sigset_t *newset)
2532 {
2533 	struct task_struct *tsk = current;
2534 
2535 	spin_lock_irq(&tsk->sighand->siglock);
2536 	__set_task_blocked(tsk, newset);
2537 	spin_unlock_irq(&tsk->sighand->siglock);
2538 }
2539 
2540 /*
2541  * This is also useful for kernel threads that want to temporarily
2542  * (or permanently) block certain signals.
2543  *
2544  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2545  * interface happily blocks "unblockable" signals like SIGKILL
2546  * and friends.
2547  */
sigprocmask(int how,sigset_t * set,sigset_t * oldset)2548 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2549 {
2550 	struct task_struct *tsk = current;
2551 	sigset_t newset;
2552 
2553 	/* Lockless, only current can change ->blocked, never from irq */
2554 	if (oldset)
2555 		*oldset = tsk->blocked;
2556 
2557 	switch (how) {
2558 	case SIG_BLOCK:
2559 		sigorsets(&newset, &tsk->blocked, set);
2560 		break;
2561 	case SIG_UNBLOCK:
2562 		sigandnsets(&newset, &tsk->blocked, set);
2563 		break;
2564 	case SIG_SETMASK:
2565 		newset = *set;
2566 		break;
2567 	default:
2568 		return -EINVAL;
2569 	}
2570 
2571 	set_current_blocked(&newset);
2572 	return 0;
2573 }
2574 
2575 /**
2576  *  sys_rt_sigprocmask - change the list of currently blocked signals
2577  *  @how: whether to add, remove, or set signals
2578  *  @nset: stores pending signals
2579  *  @oset: previous value of signal mask if non-null
2580  *  @sigsetsize: size of sigset_t type
2581  */
SYSCALL_DEFINE4(rt_sigprocmask,int,how,sigset_t __user *,nset,sigset_t __user *,oset,size_t,sigsetsize)2582 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2583 		sigset_t __user *, oset, size_t, sigsetsize)
2584 {
2585 	sigset_t old_set, new_set;
2586 	int error;
2587 
2588 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2589 	if (sigsetsize != sizeof(sigset_t))
2590 		return -EINVAL;
2591 
2592 	old_set = current->blocked;
2593 
2594 	if (nset) {
2595 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2596 			return -EFAULT;
2597 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2598 
2599 		error = sigprocmask(how, &new_set, NULL);
2600 		if (error)
2601 			return error;
2602 	}
2603 
2604 	if (oset) {
2605 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2606 			return -EFAULT;
2607 	}
2608 
2609 	return 0;
2610 }
2611 
do_sigpending(void __user * set,unsigned long sigsetsize)2612 long do_sigpending(void __user *set, unsigned long sigsetsize)
2613 {
2614 	long error = -EINVAL;
2615 	sigset_t pending;
2616 
2617 	if (sigsetsize > sizeof(sigset_t))
2618 		goto out;
2619 
2620 	spin_lock_irq(&current->sighand->siglock);
2621 	sigorsets(&pending, &current->pending.signal,
2622 		  &current->signal->shared_pending.signal);
2623 	spin_unlock_irq(&current->sighand->siglock);
2624 
2625 	/* Outside the lock because only this thread touches it.  */
2626 	sigandsets(&pending, &current->blocked, &pending);
2627 
2628 	error = -EFAULT;
2629 	if (!copy_to_user(set, &pending, sigsetsize))
2630 		error = 0;
2631 
2632 out:
2633 	return error;
2634 }
2635 
2636 /**
2637  *  sys_rt_sigpending - examine a pending signal that has been raised
2638  *			while blocked
2639  *  @set: stores pending signals
2640  *  @sigsetsize: size of sigset_t type or larger
2641  */
SYSCALL_DEFINE2(rt_sigpending,sigset_t __user *,set,size_t,sigsetsize)2642 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2643 {
2644 	return do_sigpending(set, sigsetsize);
2645 }
2646 
2647 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2648 
copy_siginfo_to_user(siginfo_t __user * to,siginfo_t * from)2649 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2650 {
2651 	int err;
2652 
2653 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2654 		return -EFAULT;
2655 	if (from->si_code < 0)
2656 		return __copy_to_user(to, from, sizeof(siginfo_t))
2657 			? -EFAULT : 0;
2658 	/*
2659 	 * If you change siginfo_t structure, please be sure
2660 	 * this code is fixed accordingly.
2661 	 * Please remember to update the signalfd_copyinfo() function
2662 	 * inside fs/signalfd.c too, in case siginfo_t changes.
2663 	 * It should never copy any pad contained in the structure
2664 	 * to avoid security leaks, but must copy the generic
2665 	 * 3 ints plus the relevant union member.
2666 	 */
2667 	err = __put_user(from->si_signo, &to->si_signo);
2668 	err |= __put_user(from->si_errno, &to->si_errno);
2669 	err |= __put_user((short)from->si_code, &to->si_code);
2670 	switch (from->si_code & __SI_MASK) {
2671 	case __SI_KILL:
2672 		err |= __put_user(from->si_pid, &to->si_pid);
2673 		err |= __put_user(from->si_uid, &to->si_uid);
2674 		break;
2675 	case __SI_TIMER:
2676 		 err |= __put_user(from->si_tid, &to->si_tid);
2677 		 err |= __put_user(from->si_overrun, &to->si_overrun);
2678 		 err |= __put_user(from->si_ptr, &to->si_ptr);
2679 		break;
2680 	case __SI_POLL:
2681 		err |= __put_user(from->si_band, &to->si_band);
2682 		err |= __put_user(from->si_fd, &to->si_fd);
2683 		break;
2684 	case __SI_FAULT:
2685 		err |= __put_user(from->si_addr, &to->si_addr);
2686 #ifdef __ARCH_SI_TRAPNO
2687 		err |= __put_user(from->si_trapno, &to->si_trapno);
2688 #endif
2689 #ifdef BUS_MCEERR_AO
2690 		/*
2691 		 * Other callers might not initialize the si_lsb field,
2692 		 * so check explicitly for the right codes here.
2693 		 */
2694 		if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2695 			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2696 #endif
2697 		break;
2698 	case __SI_CHLD:
2699 		err |= __put_user(from->si_pid, &to->si_pid);
2700 		err |= __put_user(from->si_uid, &to->si_uid);
2701 		err |= __put_user(from->si_status, &to->si_status);
2702 		err |= __put_user(from->si_utime, &to->si_utime);
2703 		err |= __put_user(from->si_stime, &to->si_stime);
2704 		break;
2705 	case __SI_RT: /* This is not generated by the kernel as of now. */
2706 	case __SI_MESGQ: /* But this is */
2707 		err |= __put_user(from->si_pid, &to->si_pid);
2708 		err |= __put_user(from->si_uid, &to->si_uid);
2709 		err |= __put_user(from->si_ptr, &to->si_ptr);
2710 		break;
2711 	default: /* this is just in case for now ... */
2712 		err |= __put_user(from->si_pid, &to->si_pid);
2713 		err |= __put_user(from->si_uid, &to->si_uid);
2714 		break;
2715 	}
2716 	return err;
2717 }
2718 
2719 #endif
2720 
2721 /**
2722  *  do_sigtimedwait - wait for queued signals specified in @which
2723  *  @which: queued signals to wait for
2724  *  @info: if non-null, the signal's siginfo is returned here
2725  *  @ts: upper bound on process time suspension
2726  */
do_sigtimedwait(const sigset_t * which,siginfo_t * info,const struct timespec * ts)2727 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2728 			const struct timespec *ts)
2729 {
2730 	struct task_struct *tsk = current;
2731 	long timeout = MAX_SCHEDULE_TIMEOUT;
2732 	sigset_t mask = *which;
2733 	int sig;
2734 
2735 	if (ts) {
2736 		if (!timespec_valid(ts))
2737 			return -EINVAL;
2738 		timeout = timespec_to_jiffies(ts);
2739 		/*
2740 		 * We can be close to the next tick, add another one
2741 		 * to ensure we will wait at least the time asked for.
2742 		 */
2743 		if (ts->tv_sec || ts->tv_nsec)
2744 			timeout++;
2745 	}
2746 
2747 	/*
2748 	 * Invert the set of allowed signals to get those we want to block.
2749 	 */
2750 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2751 	signotset(&mask);
2752 
2753 	spin_lock_irq(&tsk->sighand->siglock);
2754 	sig = dequeue_signal(tsk, &mask, info);
2755 	if (!sig && timeout) {
2756 		/*
2757 		 * None ready, temporarily unblock those we're interested
2758 		 * while we are sleeping in so that we'll be awakened when
2759 		 * they arrive. Unblocking is always fine, we can avoid
2760 		 * set_current_blocked().
2761 		 */
2762 		tsk->real_blocked = tsk->blocked;
2763 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2764 		recalc_sigpending();
2765 		spin_unlock_irq(&tsk->sighand->siglock);
2766 
2767 		timeout = schedule_timeout_interruptible(timeout);
2768 
2769 		spin_lock_irq(&tsk->sighand->siglock);
2770 		__set_task_blocked(tsk, &tsk->real_blocked);
2771 		siginitset(&tsk->real_blocked, 0);
2772 		sig = dequeue_signal(tsk, &mask, info);
2773 	}
2774 	spin_unlock_irq(&tsk->sighand->siglock);
2775 
2776 	if (sig)
2777 		return sig;
2778 	return timeout ? -EINTR : -EAGAIN;
2779 }
2780 
2781 /**
2782  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2783  *			in @uthese
2784  *  @uthese: queued signals to wait for
2785  *  @uinfo: if non-null, the signal's siginfo is returned here
2786  *  @uts: upper bound on process time suspension
2787  *  @sigsetsize: size of sigset_t type
2788  */
SYSCALL_DEFINE4(rt_sigtimedwait,const sigset_t __user *,uthese,siginfo_t __user *,uinfo,const struct timespec __user *,uts,size_t,sigsetsize)2789 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2790 		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2791 		size_t, sigsetsize)
2792 {
2793 	sigset_t these;
2794 	struct timespec ts;
2795 	siginfo_t info;
2796 	int ret;
2797 
2798 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2799 	if (sigsetsize != sizeof(sigset_t))
2800 		return -EINVAL;
2801 
2802 	if (copy_from_user(&these, uthese, sizeof(these)))
2803 		return -EFAULT;
2804 
2805 	if (uts) {
2806 		if (copy_from_user(&ts, uts, sizeof(ts)))
2807 			return -EFAULT;
2808 	}
2809 
2810 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2811 
2812 	if (ret > 0 && uinfo) {
2813 		if (copy_siginfo_to_user(uinfo, &info))
2814 			ret = -EFAULT;
2815 	}
2816 
2817 	return ret;
2818 }
2819 
2820 /**
2821  *  sys_kill - send a signal to a process
2822  *  @pid: the PID of the process
2823  *  @sig: signal to be sent
2824  */
SYSCALL_DEFINE2(kill,pid_t,pid,int,sig)2825 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2826 {
2827 	struct siginfo info;
2828 
2829 	info.si_signo = sig;
2830 	info.si_errno = 0;
2831 	info.si_code = SI_USER;
2832 	info.si_pid = task_tgid_vnr(current);
2833 	info.si_uid = current_uid();
2834 
2835 	return kill_something_info(sig, &info, pid);
2836 }
2837 
2838 static int
do_send_specific(pid_t tgid,pid_t pid,int sig,struct siginfo * info)2839 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2840 {
2841 	struct task_struct *p;
2842 	int error = -ESRCH;
2843 
2844 	rcu_read_lock();
2845 	p = find_task_by_vpid(pid);
2846 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2847 		error = check_kill_permission(sig, info, p);
2848 		/*
2849 		 * The null signal is a permissions and process existence
2850 		 * probe.  No signal is actually delivered.
2851 		 */
2852 		if (!error && sig) {
2853 			error = do_send_sig_info(sig, info, p, false);
2854 			/*
2855 			 * If lock_task_sighand() failed we pretend the task
2856 			 * dies after receiving the signal. The window is tiny,
2857 			 * and the signal is private anyway.
2858 			 */
2859 			if (unlikely(error == -ESRCH))
2860 				error = 0;
2861 		}
2862 	}
2863 	rcu_read_unlock();
2864 
2865 	return error;
2866 }
2867 
do_tkill(pid_t tgid,pid_t pid,int sig)2868 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2869 {
2870 	struct siginfo info = {};
2871 
2872 	info.si_signo = sig;
2873 	info.si_errno = 0;
2874 	info.si_code = SI_TKILL;
2875 	info.si_pid = task_tgid_vnr(current);
2876 	info.si_uid = current_uid();
2877 
2878 	return do_send_specific(tgid, pid, sig, &info);
2879 }
2880 
2881 /**
2882  *  sys_tgkill - send signal to one specific thread
2883  *  @tgid: the thread group ID of the thread
2884  *  @pid: the PID of the thread
2885  *  @sig: signal to be sent
2886  *
2887  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2888  *  exists but it's not belonging to the target process anymore. This
2889  *  method solves the problem of threads exiting and PIDs getting reused.
2890  */
SYSCALL_DEFINE3(tgkill,pid_t,tgid,pid_t,pid,int,sig)2891 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2892 {
2893 	/* This is only valid for single tasks */
2894 	if (pid <= 0 || tgid <= 0)
2895 		return -EINVAL;
2896 
2897 	return do_tkill(tgid, pid, sig);
2898 }
2899 
2900 /**
2901  *  sys_tkill - send signal to one specific task
2902  *  @pid: the PID of the task
2903  *  @sig: signal to be sent
2904  *
2905  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2906  */
SYSCALL_DEFINE2(tkill,pid_t,pid,int,sig)2907 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2908 {
2909 	/* This is only valid for single tasks */
2910 	if (pid <= 0)
2911 		return -EINVAL;
2912 
2913 	return do_tkill(0, pid, sig);
2914 }
2915 
2916 /**
2917  *  sys_rt_sigqueueinfo - send signal information to a signal
2918  *  @pid: the PID of the thread
2919  *  @sig: signal to be sent
2920  *  @uinfo: signal info to be sent
2921  */
SYSCALL_DEFINE3(rt_sigqueueinfo,pid_t,pid,int,sig,siginfo_t __user *,uinfo)2922 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2923 		siginfo_t __user *, uinfo)
2924 {
2925 	siginfo_t info;
2926 
2927 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2928 		return -EFAULT;
2929 
2930 	/* Not even root can pretend to send signals from the kernel.
2931 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2932 	 */
2933 	if (info.si_code >= 0 || info.si_code == SI_TKILL) {
2934 		/* We used to allow any < 0 si_code */
2935 		WARN_ON_ONCE(info.si_code < 0);
2936 		return -EPERM;
2937 	}
2938 	info.si_signo = sig;
2939 
2940 	/* POSIX.1b doesn't mention process groups.  */
2941 	return kill_proc_info(sig, &info, pid);
2942 }
2943 
do_rt_tgsigqueueinfo(pid_t tgid,pid_t pid,int sig,siginfo_t * info)2944 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2945 {
2946 	/* This is only valid for single tasks */
2947 	if (pid <= 0 || tgid <= 0)
2948 		return -EINVAL;
2949 
2950 	/* Not even root can pretend to send signals from the kernel.
2951 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2952 	 */
2953 	if (info->si_code >= 0 || info->si_code == SI_TKILL) {
2954 		/* We used to allow any < 0 si_code */
2955 		WARN_ON_ONCE(info->si_code < 0);
2956 		return -EPERM;
2957 	}
2958 	info->si_signo = sig;
2959 
2960 	return do_send_specific(tgid, pid, sig, info);
2961 }
2962 
SYSCALL_DEFINE4(rt_tgsigqueueinfo,pid_t,tgid,pid_t,pid,int,sig,siginfo_t __user *,uinfo)2963 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2964 		siginfo_t __user *, uinfo)
2965 {
2966 	siginfo_t info;
2967 
2968 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2969 		return -EFAULT;
2970 
2971 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2972 }
2973 
do_sigaction(int sig,struct k_sigaction * act,struct k_sigaction * oact)2974 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2975 {
2976 	struct task_struct *t = current;
2977 	struct k_sigaction *k;
2978 	sigset_t mask;
2979 
2980 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2981 		return -EINVAL;
2982 
2983 	k = &t->sighand->action[sig-1];
2984 
2985 	spin_lock_irq(&current->sighand->siglock);
2986 	if (oact)
2987 		*oact = *k;
2988 
2989 	if (act) {
2990 		sigdelsetmask(&act->sa.sa_mask,
2991 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
2992 		*k = *act;
2993 		/*
2994 		 * POSIX 3.3.1.3:
2995 		 *  "Setting a signal action to SIG_IGN for a signal that is
2996 		 *   pending shall cause the pending signal to be discarded,
2997 		 *   whether or not it is blocked."
2998 		 *
2999 		 *  "Setting a signal action to SIG_DFL for a signal that is
3000 		 *   pending and whose default action is to ignore the signal
3001 		 *   (for example, SIGCHLD), shall cause the pending signal to
3002 		 *   be discarded, whether or not it is blocked"
3003 		 */
3004 		if (sig_handler_ignored(sig_handler(t, sig), sig)) {
3005 			sigemptyset(&mask);
3006 			sigaddset(&mask, sig);
3007 			rm_from_queue_full(&mask, &t->signal->shared_pending);
3008 			do {
3009 				rm_from_queue_full(&mask, &t->pending);
3010 				t = next_thread(t);
3011 			} while (t != current);
3012 		}
3013 	}
3014 
3015 	spin_unlock_irq(&current->sighand->siglock);
3016 	return 0;
3017 }
3018 
3019 int
do_sigaltstack(const stack_t __user * uss,stack_t __user * uoss,unsigned long sp)3020 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3021 {
3022 	stack_t oss;
3023 	int error;
3024 
3025 	oss.ss_sp = (void __user *) current->sas_ss_sp;
3026 	oss.ss_size = current->sas_ss_size;
3027 	oss.ss_flags = sas_ss_flags(sp);
3028 
3029 	if (uss) {
3030 		void __user *ss_sp;
3031 		size_t ss_size;
3032 		int ss_flags;
3033 
3034 		error = -EFAULT;
3035 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3036 			goto out;
3037 		error = __get_user(ss_sp, &uss->ss_sp) |
3038 			__get_user(ss_flags, &uss->ss_flags) |
3039 			__get_user(ss_size, &uss->ss_size);
3040 		if (error)
3041 			goto out;
3042 
3043 		error = -EPERM;
3044 		if (on_sig_stack(sp))
3045 			goto out;
3046 
3047 		error = -EINVAL;
3048 		/*
3049 		 * Note - this code used to test ss_flags incorrectly:
3050 		 *  	  old code may have been written using ss_flags==0
3051 		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
3052 		 *	  way that worked) - this fix preserves that older
3053 		 *	  mechanism.
3054 		 */
3055 		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3056 			goto out;
3057 
3058 		if (ss_flags == SS_DISABLE) {
3059 			ss_size = 0;
3060 			ss_sp = NULL;
3061 		} else {
3062 			error = -ENOMEM;
3063 			if (ss_size < MINSIGSTKSZ)
3064 				goto out;
3065 		}
3066 
3067 		current->sas_ss_sp = (unsigned long) ss_sp;
3068 		current->sas_ss_size = ss_size;
3069 	}
3070 
3071 	error = 0;
3072 	if (uoss) {
3073 		error = -EFAULT;
3074 		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3075 			goto out;
3076 		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3077 			__put_user(oss.ss_size, &uoss->ss_size) |
3078 			__put_user(oss.ss_flags, &uoss->ss_flags);
3079 	}
3080 
3081 out:
3082 	return error;
3083 }
3084 
3085 #ifdef __ARCH_WANT_SYS_SIGPENDING
3086 
3087 /**
3088  *  sys_sigpending - examine pending signals
3089  *  @set: where mask of pending signal is returned
3090  */
SYSCALL_DEFINE1(sigpending,old_sigset_t __user *,set)3091 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3092 {
3093 	return do_sigpending(set, sizeof(*set));
3094 }
3095 
3096 #endif
3097 
3098 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3099 /**
3100  *  sys_sigprocmask - examine and change blocked signals
3101  *  @how: whether to add, remove, or set signals
3102  *  @nset: signals to add or remove (if non-null)
3103  *  @oset: previous value of signal mask if non-null
3104  *
3105  * Some platforms have their own version with special arguments;
3106  * others support only sys_rt_sigprocmask.
3107  */
3108 
SYSCALL_DEFINE3(sigprocmask,int,how,old_sigset_t __user *,nset,old_sigset_t __user *,oset)3109 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3110 		old_sigset_t __user *, oset)
3111 {
3112 	old_sigset_t old_set, new_set;
3113 	sigset_t new_blocked;
3114 
3115 	old_set = current->blocked.sig[0];
3116 
3117 	if (nset) {
3118 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3119 			return -EFAULT;
3120 		new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
3121 
3122 		new_blocked = current->blocked;
3123 
3124 		switch (how) {
3125 		case SIG_BLOCK:
3126 			sigaddsetmask(&new_blocked, new_set);
3127 			break;
3128 		case SIG_UNBLOCK:
3129 			sigdelsetmask(&new_blocked, new_set);
3130 			break;
3131 		case SIG_SETMASK:
3132 			new_blocked.sig[0] = new_set;
3133 			break;
3134 		default:
3135 			return -EINVAL;
3136 		}
3137 
3138 		set_current_blocked(&new_blocked);
3139 	}
3140 
3141 	if (oset) {
3142 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3143 			return -EFAULT;
3144 	}
3145 
3146 	return 0;
3147 }
3148 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3149 
3150 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
3151 /**
3152  *  sys_rt_sigaction - alter an action taken by a process
3153  *  @sig: signal to be sent
3154  *  @act: new sigaction
3155  *  @oact: used to save the previous sigaction
3156  *  @sigsetsize: size of sigset_t type
3157  */
SYSCALL_DEFINE4(rt_sigaction,int,sig,const struct sigaction __user *,act,struct sigaction __user *,oact,size_t,sigsetsize)3158 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3159 		const struct sigaction __user *, act,
3160 		struct sigaction __user *, oact,
3161 		size_t, sigsetsize)
3162 {
3163 	struct k_sigaction new_sa, old_sa;
3164 	int ret = -EINVAL;
3165 
3166 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3167 	if (sigsetsize != sizeof(sigset_t))
3168 		goto out;
3169 
3170 	if (act) {
3171 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3172 			return -EFAULT;
3173 	}
3174 
3175 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3176 
3177 	if (!ret && oact) {
3178 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3179 			return -EFAULT;
3180 	}
3181 out:
3182 	return ret;
3183 }
3184 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
3185 
3186 #ifdef __ARCH_WANT_SYS_SGETMASK
3187 
3188 /*
3189  * For backwards compatibility.  Functionality superseded by sigprocmask.
3190  */
SYSCALL_DEFINE0(sgetmask)3191 SYSCALL_DEFINE0(sgetmask)
3192 {
3193 	/* SMP safe */
3194 	return current->blocked.sig[0];
3195 }
3196 
SYSCALL_DEFINE1(ssetmask,int,newmask)3197 SYSCALL_DEFINE1(ssetmask, int, newmask)
3198 {
3199 	int old = current->blocked.sig[0];
3200 	sigset_t newset;
3201 
3202 	siginitset(&newset, newmask & ~(sigmask(SIGKILL) | sigmask(SIGSTOP)));
3203 	set_current_blocked(&newset);
3204 
3205 	return old;
3206 }
3207 #endif /* __ARCH_WANT_SGETMASK */
3208 
3209 #ifdef __ARCH_WANT_SYS_SIGNAL
3210 /*
3211  * For backwards compatibility.  Functionality superseded by sigaction.
3212  */
SYSCALL_DEFINE2(signal,int,sig,__sighandler_t,handler)3213 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3214 {
3215 	struct k_sigaction new_sa, old_sa;
3216 	int ret;
3217 
3218 	new_sa.sa.sa_handler = handler;
3219 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3220 	sigemptyset(&new_sa.sa.sa_mask);
3221 
3222 	ret = do_sigaction(sig, &new_sa, &old_sa);
3223 
3224 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3225 }
3226 #endif /* __ARCH_WANT_SYS_SIGNAL */
3227 
3228 #ifdef __ARCH_WANT_SYS_PAUSE
3229 
SYSCALL_DEFINE0(pause)3230 SYSCALL_DEFINE0(pause)
3231 {
3232 	while (!signal_pending(current)) {
3233 		current->state = TASK_INTERRUPTIBLE;
3234 		schedule();
3235 	}
3236 	return -ERESTARTNOHAND;
3237 }
3238 
3239 #endif
3240 
3241 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
3242 /**
3243  *  sys_rt_sigsuspend - replace the signal mask for a value with the
3244  *	@unewset value until a signal is received
3245  *  @unewset: new signal mask value
3246  *  @sigsetsize: size of sigset_t type
3247  */
SYSCALL_DEFINE2(rt_sigsuspend,sigset_t __user *,unewset,size_t,sigsetsize)3248 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3249 {
3250 	sigset_t newset;
3251 
3252 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3253 	if (sigsetsize != sizeof(sigset_t))
3254 		return -EINVAL;
3255 
3256 	if (copy_from_user(&newset, unewset, sizeof(newset)))
3257 		return -EFAULT;
3258 	sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3259 
3260 	current->saved_sigmask = current->blocked;
3261 	set_current_blocked(&newset);
3262 
3263 	current->state = TASK_INTERRUPTIBLE;
3264 	schedule();
3265 	set_restore_sigmask();
3266 	return -ERESTARTNOHAND;
3267 }
3268 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
3269 
arch_vma_name(struct vm_area_struct * vma)3270 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
3271 {
3272 	return NULL;
3273 }
3274 
signals_init(void)3275 void __init signals_init(void)
3276 {
3277 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3278 }
3279 
3280 #ifdef CONFIG_KGDB_KDB
3281 #include <linux/kdb.h>
3282 /*
3283  * kdb_send_sig_info - Allows kdb to send signals without exposing
3284  * signal internals.  This function checks if the required locks are
3285  * available before calling the main signal code, to avoid kdb
3286  * deadlocks.
3287  */
3288 void
kdb_send_sig_info(struct task_struct * t,struct siginfo * info)3289 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3290 {
3291 	static struct task_struct *kdb_prev_t;
3292 	int sig, new_t;
3293 	if (!spin_trylock(&t->sighand->siglock)) {
3294 		kdb_printf("Can't do kill command now.\n"
3295 			   "The sigmask lock is held somewhere else in "
3296 			   "kernel, try again later\n");
3297 		return;
3298 	}
3299 	spin_unlock(&t->sighand->siglock);
3300 	new_t = kdb_prev_t != t;
3301 	kdb_prev_t = t;
3302 	if (t->state != TASK_RUNNING && new_t) {
3303 		kdb_printf("Process is not RUNNING, sending a signal from "
3304 			   "kdb risks deadlock\n"
3305 			   "on the run queue locks. "
3306 			   "The signal has _not_ been sent.\n"
3307 			   "Reissue the kill command if you want to risk "
3308 			   "the deadlock.\n");
3309 		return;
3310 	}
3311 	sig = info->si_signo;
3312 	if (send_sig_info(sig, info, t))
3313 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3314 			   sig, t->pid);
3315 	else
3316 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3317 }
3318 #endif	/* CONFIG_KGDB_KDB */
3319