1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * KFENCE guarded object allocator and fault handling.
4 *
5 * Copyright (C) 2020, Google LLC.
6 */
7
8 #define pr_fmt(fmt) "kfence: " fmt
9
10 #include <linux/atomic.h>
11 #include <linux/bug.h>
12 #include <linux/debugfs.h>
13 #include <linux/hash.h>
14 #include <linux/irq_work.h>
15 #include <linux/jhash.h>
16 #include <linux/kcsan-checks.h>
17 #include <linux/kfence.h>
18 #include <linux/kmemleak.h>
19 #include <linux/list.h>
20 #include <linux/lockdep.h>
21 #include <linux/log2.h>
22 #include <linux/memblock.h>
23 #include <linux/moduleparam.h>
24 #include <linux/notifier.h>
25 #include <linux/panic_notifier.h>
26 #include <linux/random.h>
27 #include <linux/rcupdate.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/sysctl.h>
30 #include <linux/seq_file.h>
31 #include <linux/slab.h>
32 #include <linux/spinlock.h>
33 #include <linux/string.h>
34
35 #include <asm/kfence.h>
36
37 #include "kfence.h"
38
39 /* Disables KFENCE on the first warning assuming an irrecoverable error. */
40 #define KFENCE_WARN_ON(cond) \
41 ({ \
42 const bool __cond = WARN_ON(cond); \
43 if (unlikely(__cond)) { \
44 WRITE_ONCE(kfence_enabled, false); \
45 disabled_by_warn = true; \
46 } \
47 __cond; \
48 })
49
50 /* === Data ================================================================= */
51
52 static bool kfence_enabled __read_mostly;
53 static bool disabled_by_warn __read_mostly;
54
55 unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL;
56 EXPORT_SYMBOL_GPL(kfence_sample_interval); /* Export for test modules. */
57
58 #ifdef MODULE_PARAM_PREFIX
59 #undef MODULE_PARAM_PREFIX
60 #endif
61 #define MODULE_PARAM_PREFIX "kfence."
62
63 static int kfence_enable_late(void);
param_set_sample_interval(const char * val,const struct kernel_param * kp)64 static int param_set_sample_interval(const char *val, const struct kernel_param *kp)
65 {
66 unsigned long num;
67 int ret = kstrtoul(val, 0, &num);
68
69 if (ret < 0)
70 return ret;
71
72 /* Using 0 to indicate KFENCE is disabled. */
73 if (!num && READ_ONCE(kfence_enabled)) {
74 pr_info("disabled\n");
75 WRITE_ONCE(kfence_enabled, false);
76 }
77
78 *((unsigned long *)kp->arg) = num;
79
80 if (num && !READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING)
81 return disabled_by_warn ? -EINVAL : kfence_enable_late();
82 return 0;
83 }
84
param_get_sample_interval(char * buffer,const struct kernel_param * kp)85 static int param_get_sample_interval(char *buffer, const struct kernel_param *kp)
86 {
87 if (!READ_ONCE(kfence_enabled))
88 return sprintf(buffer, "0\n");
89
90 return param_get_ulong(buffer, kp);
91 }
92
93 static const struct kernel_param_ops sample_interval_param_ops = {
94 .set = param_set_sample_interval,
95 .get = param_get_sample_interval,
96 };
97 module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600);
98
99 /* Pool usage% threshold when currently covered allocations are skipped. */
100 static unsigned long kfence_skip_covered_thresh __read_mostly = 75;
101 module_param_named(skip_covered_thresh, kfence_skip_covered_thresh, ulong, 0644);
102
103 /* If true, use a deferrable timer. */
104 static bool kfence_deferrable __read_mostly = IS_ENABLED(CONFIG_KFENCE_DEFERRABLE);
105 module_param_named(deferrable, kfence_deferrable, bool, 0444);
106
107 /* If true, check all canary bytes on panic. */
108 static bool kfence_check_on_panic __read_mostly;
109 module_param_named(check_on_panic, kfence_check_on_panic, bool, 0444);
110
111 /* The pool of pages used for guard pages and objects. */
112 char *__kfence_pool __read_mostly;
113 EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */
114
115 /*
116 * Per-object metadata, with one-to-one mapping of object metadata to
117 * backing pages (in __kfence_pool).
118 */
119 static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0);
120 struct kfence_metadata kfence_metadata[CONFIG_KFENCE_NUM_OBJECTS];
121
122 /* Freelist with available objects. */
123 static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist);
124 static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */
125
126 /*
127 * The static key to set up a KFENCE allocation; or if static keys are not used
128 * to gate allocations, to avoid a load and compare if KFENCE is disabled.
129 */
130 DEFINE_STATIC_KEY_FALSE(kfence_allocation_key);
131
132 /* Gates the allocation, ensuring only one succeeds in a given period. */
133 atomic_t kfence_allocation_gate = ATOMIC_INIT(1);
134
135 /*
136 * A Counting Bloom filter of allocation coverage: limits currently covered
137 * allocations of the same source filling up the pool.
138 *
139 * Assuming a range of 15%-85% unique allocations in the pool at any point in
140 * time, the below parameters provide a probablity of 0.02-0.33 for false
141 * positive hits respectively:
142 *
143 * P(alloc_traces) = (1 - e^(-HNUM * (alloc_traces / SIZE)) ^ HNUM
144 */
145 #define ALLOC_COVERED_HNUM 2
146 #define ALLOC_COVERED_ORDER (const_ilog2(CONFIG_KFENCE_NUM_OBJECTS) + 2)
147 #define ALLOC_COVERED_SIZE (1 << ALLOC_COVERED_ORDER)
148 #define ALLOC_COVERED_HNEXT(h) hash_32(h, ALLOC_COVERED_ORDER)
149 #define ALLOC_COVERED_MASK (ALLOC_COVERED_SIZE - 1)
150 static atomic_t alloc_covered[ALLOC_COVERED_SIZE];
151
152 /* Stack depth used to determine uniqueness of an allocation. */
153 #define UNIQUE_ALLOC_STACK_DEPTH ((size_t)8)
154
155 /*
156 * Randomness for stack hashes, making the same collisions across reboots and
157 * different machines less likely.
158 */
159 static u32 stack_hash_seed __ro_after_init;
160
161 /* Statistics counters for debugfs. */
162 enum kfence_counter_id {
163 KFENCE_COUNTER_ALLOCATED,
164 KFENCE_COUNTER_ALLOCS,
165 KFENCE_COUNTER_FREES,
166 KFENCE_COUNTER_ZOMBIES,
167 KFENCE_COUNTER_BUGS,
168 KFENCE_COUNTER_SKIP_INCOMPAT,
169 KFENCE_COUNTER_SKIP_CAPACITY,
170 KFENCE_COUNTER_SKIP_COVERED,
171 KFENCE_COUNTER_COUNT,
172 };
173 static atomic_long_t counters[KFENCE_COUNTER_COUNT];
174 static const char *const counter_names[] = {
175 [KFENCE_COUNTER_ALLOCATED] = "currently allocated",
176 [KFENCE_COUNTER_ALLOCS] = "total allocations",
177 [KFENCE_COUNTER_FREES] = "total frees",
178 [KFENCE_COUNTER_ZOMBIES] = "zombie allocations",
179 [KFENCE_COUNTER_BUGS] = "total bugs",
180 [KFENCE_COUNTER_SKIP_INCOMPAT] = "skipped allocations (incompatible)",
181 [KFENCE_COUNTER_SKIP_CAPACITY] = "skipped allocations (capacity)",
182 [KFENCE_COUNTER_SKIP_COVERED] = "skipped allocations (covered)",
183 };
184 static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT);
185
186 /* === Internals ============================================================ */
187
should_skip_covered(void)188 static inline bool should_skip_covered(void)
189 {
190 unsigned long thresh = (CONFIG_KFENCE_NUM_OBJECTS * kfence_skip_covered_thresh) / 100;
191
192 return atomic_long_read(&counters[KFENCE_COUNTER_ALLOCATED]) > thresh;
193 }
194
get_alloc_stack_hash(unsigned long * stack_entries,size_t num_entries)195 static u32 get_alloc_stack_hash(unsigned long *stack_entries, size_t num_entries)
196 {
197 num_entries = min(num_entries, UNIQUE_ALLOC_STACK_DEPTH);
198 num_entries = filter_irq_stacks(stack_entries, num_entries);
199 return jhash(stack_entries, num_entries * sizeof(stack_entries[0]), stack_hash_seed);
200 }
201
202 /*
203 * Adds (or subtracts) count @val for allocation stack trace hash
204 * @alloc_stack_hash from Counting Bloom filter.
205 */
alloc_covered_add(u32 alloc_stack_hash,int val)206 static void alloc_covered_add(u32 alloc_stack_hash, int val)
207 {
208 int i;
209
210 for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
211 atomic_add(val, &alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]);
212 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
213 }
214 }
215
216 /*
217 * Returns true if the allocation stack trace hash @alloc_stack_hash is
218 * currently contained (non-zero count) in Counting Bloom filter.
219 */
alloc_covered_contains(u32 alloc_stack_hash)220 static bool alloc_covered_contains(u32 alloc_stack_hash)
221 {
222 int i;
223
224 for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
225 if (!atomic_read(&alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]))
226 return false;
227 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
228 }
229
230 return true;
231 }
232
kfence_protect(unsigned long addr)233 static bool kfence_protect(unsigned long addr)
234 {
235 return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true));
236 }
237
kfence_unprotect(unsigned long addr)238 static bool kfence_unprotect(unsigned long addr)
239 {
240 return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false));
241 }
242
metadata_to_pageaddr(const struct kfence_metadata * meta)243 static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta)
244 {
245 unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2;
246 unsigned long pageaddr = (unsigned long)&__kfence_pool[offset];
247
248 /* The checks do not affect performance; only called from slow-paths. */
249
250 /* Only call with a pointer into kfence_metadata. */
251 if (KFENCE_WARN_ON(meta < kfence_metadata ||
252 meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS))
253 return 0;
254
255 /*
256 * This metadata object only ever maps to 1 page; verify that the stored
257 * address is in the expected range.
258 */
259 if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr))
260 return 0;
261
262 return pageaddr;
263 }
264
265 /*
266 * Update the object's metadata state, including updating the alloc/free stacks
267 * depending on the state transition.
268 */
269 static noinline void
metadata_update_state(struct kfence_metadata * meta,enum kfence_object_state next,unsigned long * stack_entries,size_t num_stack_entries)270 metadata_update_state(struct kfence_metadata *meta, enum kfence_object_state next,
271 unsigned long *stack_entries, size_t num_stack_entries)
272 {
273 struct kfence_track *track =
274 next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track;
275
276 lockdep_assert_held(&meta->lock);
277
278 if (stack_entries) {
279 memcpy(track->stack_entries, stack_entries,
280 num_stack_entries * sizeof(stack_entries[0]));
281 } else {
282 /*
283 * Skip over 1 (this) functions; noinline ensures we do not
284 * accidentally skip over the caller by never inlining.
285 */
286 num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1);
287 }
288 track->num_stack_entries = num_stack_entries;
289 track->pid = task_pid_nr(current);
290 track->cpu = raw_smp_processor_id();
291 track->ts_nsec = local_clock(); /* Same source as printk timestamps. */
292
293 /*
294 * Pairs with READ_ONCE() in
295 * kfence_shutdown_cache(),
296 * kfence_handle_page_fault().
297 */
298 WRITE_ONCE(meta->state, next);
299 }
300
301 /* Write canary byte to @addr. */
set_canary_byte(u8 * addr)302 static inline bool set_canary_byte(u8 *addr)
303 {
304 *addr = KFENCE_CANARY_PATTERN(addr);
305 return true;
306 }
307
308 /* Check canary byte at @addr. */
check_canary_byte(u8 * addr)309 static inline bool check_canary_byte(u8 *addr)
310 {
311 struct kfence_metadata *meta;
312 unsigned long flags;
313
314 if (likely(*addr == KFENCE_CANARY_PATTERN(addr)))
315 return true;
316
317 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
318
319 meta = addr_to_metadata((unsigned long)addr);
320 raw_spin_lock_irqsave(&meta->lock, flags);
321 kfence_report_error((unsigned long)addr, false, NULL, meta, KFENCE_ERROR_CORRUPTION);
322 raw_spin_unlock_irqrestore(&meta->lock, flags);
323
324 return false;
325 }
326
327 /* __always_inline this to ensure we won't do an indirect call to fn. */
for_each_canary(const struct kfence_metadata * meta,bool (* fn)(u8 *))328 static __always_inline void for_each_canary(const struct kfence_metadata *meta, bool (*fn)(u8 *))
329 {
330 const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
331 unsigned long addr;
332
333 /*
334 * We'll iterate over each canary byte per-side until fn() returns
335 * false. However, we'll still iterate over the canary bytes to the
336 * right of the object even if there was an error in the canary bytes to
337 * the left of the object. Specifically, if check_canary_byte()
338 * generates an error, showing both sides might give more clues as to
339 * what the error is about when displaying which bytes were corrupted.
340 */
341
342 /* Apply to left of object. */
343 for (addr = pageaddr; addr < meta->addr; addr++) {
344 if (!fn((u8 *)addr))
345 break;
346 }
347
348 /* Apply to right of object. */
349 for (addr = meta->addr + meta->size; addr < pageaddr + PAGE_SIZE; addr++) {
350 if (!fn((u8 *)addr))
351 break;
352 }
353 }
354
kfence_guarded_alloc(struct kmem_cache * cache,size_t size,gfp_t gfp,unsigned long * stack_entries,size_t num_stack_entries,u32 alloc_stack_hash)355 static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp,
356 unsigned long *stack_entries, size_t num_stack_entries,
357 u32 alloc_stack_hash)
358 {
359 struct kfence_metadata *meta = NULL;
360 unsigned long flags;
361 struct slab *slab;
362 void *addr;
363 const bool random_right_allocate = prandom_u32_max(2);
364 const bool random_fault = CONFIG_KFENCE_STRESS_TEST_FAULTS &&
365 !prandom_u32_max(CONFIG_KFENCE_STRESS_TEST_FAULTS);
366
367 /* Try to obtain a free object. */
368 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
369 if (!list_empty(&kfence_freelist)) {
370 meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
371 list_del_init(&meta->list);
372 }
373 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
374 if (!meta) {
375 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_CAPACITY]);
376 return NULL;
377 }
378
379 if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) {
380 /*
381 * This is extremely unlikely -- we are reporting on a
382 * use-after-free, which locked meta->lock, and the reporting
383 * code via printk calls kmalloc() which ends up in
384 * kfence_alloc() and tries to grab the same object that we're
385 * reporting on. While it has never been observed, lockdep does
386 * report that there is a possibility of deadlock. Fix it by
387 * using trylock and bailing out gracefully.
388 */
389 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
390 /* Put the object back on the freelist. */
391 list_add_tail(&meta->list, &kfence_freelist);
392 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
393
394 return NULL;
395 }
396
397 meta->addr = metadata_to_pageaddr(meta);
398 /* Unprotect if we're reusing this page. */
399 if (meta->state == KFENCE_OBJECT_FREED)
400 kfence_unprotect(meta->addr);
401
402 /*
403 * Note: for allocations made before RNG initialization, will always
404 * return zero. We still benefit from enabling KFENCE as early as
405 * possible, even when the RNG is not yet available, as this will allow
406 * KFENCE to detect bugs due to earlier allocations. The only downside
407 * is that the out-of-bounds accesses detected are deterministic for
408 * such allocations.
409 */
410 if (random_right_allocate) {
411 /* Allocate on the "right" side, re-calculate address. */
412 meta->addr += PAGE_SIZE - size;
413 meta->addr = ALIGN_DOWN(meta->addr, cache->align);
414 }
415
416 addr = (void *)meta->addr;
417
418 /* Update remaining metadata. */
419 metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED, stack_entries, num_stack_entries);
420 /* Pairs with READ_ONCE() in kfence_shutdown_cache(). */
421 WRITE_ONCE(meta->cache, cache);
422 meta->size = size;
423 meta->alloc_stack_hash = alloc_stack_hash;
424 raw_spin_unlock_irqrestore(&meta->lock, flags);
425
426 alloc_covered_add(alloc_stack_hash, 1);
427
428 /* Set required slab fields. */
429 slab = virt_to_slab((void *)meta->addr);
430 slab->slab_cache = cache;
431 #if defined(CONFIG_SLUB)
432 slab->objects = 1;
433 #elif defined(CONFIG_SLAB)
434 slab->s_mem = addr;
435 #endif
436
437 /* Memory initialization. */
438 for_each_canary(meta, set_canary_byte);
439
440 /*
441 * We check slab_want_init_on_alloc() ourselves, rather than letting
442 * SL*B do the initialization, as otherwise we might overwrite KFENCE's
443 * redzone.
444 */
445 if (unlikely(slab_want_init_on_alloc(gfp, cache)))
446 memzero_explicit(addr, size);
447 if (cache->ctor)
448 cache->ctor(addr);
449
450 if (random_fault)
451 kfence_protect(meta->addr); /* Random "faults" by protecting the object. */
452
453 atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
454 atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);
455
456 return addr;
457 }
458
kfence_guarded_free(void * addr,struct kfence_metadata * meta,bool zombie)459 static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
460 {
461 struct kcsan_scoped_access assert_page_exclusive;
462 unsigned long flags;
463 bool init;
464
465 raw_spin_lock_irqsave(&meta->lock, flags);
466
467 if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) {
468 /* Invalid or double-free, bail out. */
469 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
470 kfence_report_error((unsigned long)addr, false, NULL, meta,
471 KFENCE_ERROR_INVALID_FREE);
472 raw_spin_unlock_irqrestore(&meta->lock, flags);
473 return;
474 }
475
476 /* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */
477 kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE,
478 KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT,
479 &assert_page_exclusive);
480
481 if (CONFIG_KFENCE_STRESS_TEST_FAULTS)
482 kfence_unprotect((unsigned long)addr); /* To check canary bytes. */
483
484 /* Restore page protection if there was an OOB access. */
485 if (meta->unprotected_page) {
486 memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE);
487 kfence_protect(meta->unprotected_page);
488 meta->unprotected_page = 0;
489 }
490
491 /* Mark the object as freed. */
492 metadata_update_state(meta, KFENCE_OBJECT_FREED, NULL, 0);
493 init = slab_want_init_on_free(meta->cache);
494 raw_spin_unlock_irqrestore(&meta->lock, flags);
495
496 alloc_covered_add(meta->alloc_stack_hash, -1);
497
498 /* Check canary bytes for memory corruption. */
499 for_each_canary(meta, check_canary_byte);
500
501 /*
502 * Clear memory if init-on-free is set. While we protect the page, the
503 * data is still there, and after a use-after-free is detected, we
504 * unprotect the page, so the data is still accessible.
505 */
506 if (!zombie && unlikely(init))
507 memzero_explicit(addr, meta->size);
508
509 /* Protect to detect use-after-frees. */
510 kfence_protect((unsigned long)addr);
511
512 kcsan_end_scoped_access(&assert_page_exclusive);
513 if (!zombie) {
514 /* Add it to the tail of the freelist for reuse. */
515 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
516 KFENCE_WARN_ON(!list_empty(&meta->list));
517 list_add_tail(&meta->list, &kfence_freelist);
518 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
519
520 atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
521 atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
522 } else {
523 /* See kfence_shutdown_cache(). */
524 atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
525 }
526 }
527
rcu_guarded_free(struct rcu_head * h)528 static void rcu_guarded_free(struct rcu_head *h)
529 {
530 struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head);
531
532 kfence_guarded_free((void *)meta->addr, meta, false);
533 }
534
535 /*
536 * Initialization of the KFENCE pool after its allocation.
537 * Returns 0 on success; otherwise returns the address up to
538 * which partial initialization succeeded.
539 */
kfence_init_pool(void)540 static unsigned long kfence_init_pool(void)
541 {
542 unsigned long addr = (unsigned long)__kfence_pool;
543 struct page *pages;
544 int i;
545
546 if (!arch_kfence_init_pool())
547 return addr;
548
549 pages = virt_to_page(__kfence_pool);
550
551 /*
552 * Set up object pages: they must have PG_slab set, to avoid freeing
553 * these as real pages.
554 *
555 * We also want to avoid inserting kfence_free() in the kfree()
556 * fast-path in SLUB, and therefore need to ensure kfree() correctly
557 * enters __slab_free() slow-path.
558 */
559 for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
560 struct slab *slab = page_slab(&pages[i]);
561
562 if (!i || (i % 2))
563 continue;
564
565 /* Verify we do not have a compound head page. */
566 if (WARN_ON(compound_head(&pages[i]) != &pages[i]))
567 return addr;
568
569 __folio_set_slab(slab_folio(slab));
570 #ifdef CONFIG_MEMCG
571 slab->memcg_data = (unsigned long)&kfence_metadata[i / 2 - 1].objcg |
572 MEMCG_DATA_OBJCGS;
573 #endif
574 }
575
576 /*
577 * Protect the first 2 pages. The first page is mostly unnecessary, and
578 * merely serves as an extended guard page. However, adding one
579 * additional page in the beginning gives us an even number of pages,
580 * which simplifies the mapping of address to metadata index.
581 */
582 for (i = 0; i < 2; i++) {
583 if (unlikely(!kfence_protect(addr)))
584 return addr;
585
586 addr += PAGE_SIZE;
587 }
588
589 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
590 struct kfence_metadata *meta = &kfence_metadata[i];
591
592 /* Initialize metadata. */
593 INIT_LIST_HEAD(&meta->list);
594 raw_spin_lock_init(&meta->lock);
595 meta->state = KFENCE_OBJECT_UNUSED;
596 meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */
597 list_add_tail(&meta->list, &kfence_freelist);
598
599 /* Protect the right redzone. */
600 if (unlikely(!kfence_protect(addr + PAGE_SIZE)))
601 return addr;
602
603 addr += 2 * PAGE_SIZE;
604 }
605
606 return 0;
607 }
608
kfence_init_pool_early(void)609 static bool __init kfence_init_pool_early(void)
610 {
611 unsigned long addr;
612
613 if (!__kfence_pool)
614 return false;
615
616 addr = kfence_init_pool();
617
618 if (!addr) {
619 /*
620 * The pool is live and will never be deallocated from this point on.
621 * Ignore the pool object from the kmemleak phys object tree, as it would
622 * otherwise overlap with allocations returned by kfence_alloc(), which
623 * are registered with kmemleak through the slab post-alloc hook.
624 */
625 kmemleak_ignore_phys(__pa(__kfence_pool));
626 return true;
627 }
628
629 /*
630 * Only release unprotected pages, and do not try to go back and change
631 * page attributes due to risk of failing to do so as well. If changing
632 * page attributes for some pages fails, it is very likely that it also
633 * fails for the first page, and therefore expect addr==__kfence_pool in
634 * most failure cases.
635 */
636 for (char *p = (char *)addr; p < __kfence_pool + KFENCE_POOL_SIZE; p += PAGE_SIZE) {
637 struct slab *slab = virt_to_slab(p);
638
639 if (!slab)
640 continue;
641 #ifdef CONFIG_MEMCG
642 slab->memcg_data = 0;
643 #endif
644 __folio_clear_slab(slab_folio(slab));
645 }
646 memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool));
647 __kfence_pool = NULL;
648 return false;
649 }
650
kfence_init_pool_late(void)651 static bool kfence_init_pool_late(void)
652 {
653 unsigned long addr, free_size;
654
655 addr = kfence_init_pool();
656
657 if (!addr)
658 return true;
659
660 /* Same as above. */
661 free_size = KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool);
662 #ifdef CONFIG_CONTIG_ALLOC
663 free_contig_range(page_to_pfn(virt_to_page((void *)addr)), free_size / PAGE_SIZE);
664 #else
665 free_pages_exact((void *)addr, free_size);
666 #endif
667 __kfence_pool = NULL;
668 return false;
669 }
670
671 /* === DebugFS Interface ==================================================== */
672
stats_show(struct seq_file * seq,void * v)673 static int stats_show(struct seq_file *seq, void *v)
674 {
675 int i;
676
677 seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
678 for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
679 seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));
680
681 return 0;
682 }
683 DEFINE_SHOW_ATTRIBUTE(stats);
684
685 /*
686 * debugfs seq_file operations for /sys/kernel/debug/kfence/objects.
687 * start_object() and next_object() return the object index + 1, because NULL is used
688 * to stop iteration.
689 */
start_object(struct seq_file * seq,loff_t * pos)690 static void *start_object(struct seq_file *seq, loff_t *pos)
691 {
692 if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
693 return (void *)((long)*pos + 1);
694 return NULL;
695 }
696
stop_object(struct seq_file * seq,void * v)697 static void stop_object(struct seq_file *seq, void *v)
698 {
699 }
700
next_object(struct seq_file * seq,void * v,loff_t * pos)701 static void *next_object(struct seq_file *seq, void *v, loff_t *pos)
702 {
703 ++*pos;
704 if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
705 return (void *)((long)*pos + 1);
706 return NULL;
707 }
708
show_object(struct seq_file * seq,void * v)709 static int show_object(struct seq_file *seq, void *v)
710 {
711 struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
712 unsigned long flags;
713
714 raw_spin_lock_irqsave(&meta->lock, flags);
715 kfence_print_object(seq, meta);
716 raw_spin_unlock_irqrestore(&meta->lock, flags);
717 seq_puts(seq, "---------------------------------\n");
718
719 return 0;
720 }
721
722 static const struct seq_operations objects_sops = {
723 .start = start_object,
724 .next = next_object,
725 .stop = stop_object,
726 .show = show_object,
727 };
728 DEFINE_SEQ_ATTRIBUTE(objects);
729
kfence_debugfs_init(void)730 static int __init kfence_debugfs_init(void)
731 {
732 struct dentry *kfence_dir = debugfs_create_dir("kfence", NULL);
733
734 debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops);
735 debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops);
736 return 0;
737 }
738
739 late_initcall(kfence_debugfs_init);
740
741 /* === Panic Notifier ====================================================== */
742
kfence_check_all_canary(void)743 static void kfence_check_all_canary(void)
744 {
745 int i;
746
747 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
748 struct kfence_metadata *meta = &kfence_metadata[i];
749
750 if (meta->state == KFENCE_OBJECT_ALLOCATED)
751 for_each_canary(meta, check_canary_byte);
752 }
753 }
754
kfence_check_canary_callback(struct notifier_block * nb,unsigned long reason,void * arg)755 static int kfence_check_canary_callback(struct notifier_block *nb,
756 unsigned long reason, void *arg)
757 {
758 kfence_check_all_canary();
759 return NOTIFY_OK;
760 }
761
762 static struct notifier_block kfence_check_canary_notifier = {
763 .notifier_call = kfence_check_canary_callback,
764 };
765
766 /* === Allocation Gate Timer ================================================ */
767
768 static struct delayed_work kfence_timer;
769
770 #ifdef CONFIG_KFENCE_STATIC_KEYS
771 /* Wait queue to wake up allocation-gate timer task. */
772 static DECLARE_WAIT_QUEUE_HEAD(allocation_wait);
773
wake_up_kfence_timer(struct irq_work * work)774 static void wake_up_kfence_timer(struct irq_work *work)
775 {
776 wake_up(&allocation_wait);
777 }
778 static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer);
779 #endif
780
781 /*
782 * Set up delayed work, which will enable and disable the static key. We need to
783 * use a work queue (rather than a simple timer), since enabling and disabling a
784 * static key cannot be done from an interrupt.
785 *
786 * Note: Toggling a static branch currently causes IPIs, and here we'll end up
787 * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
788 * more aggressive sampling intervals), we could get away with a variant that
789 * avoids IPIs, at the cost of not immediately capturing allocations if the
790 * instructions remain cached.
791 */
toggle_allocation_gate(struct work_struct * work)792 static void toggle_allocation_gate(struct work_struct *work)
793 {
794 if (!READ_ONCE(kfence_enabled))
795 return;
796
797 atomic_set(&kfence_allocation_gate, 0);
798 #ifdef CONFIG_KFENCE_STATIC_KEYS
799 /* Enable static key, and await allocation to happen. */
800 static_branch_enable(&kfence_allocation_key);
801
802 if (sysctl_hung_task_timeout_secs) {
803 /*
804 * During low activity with no allocations we might wait a
805 * while; let's avoid the hung task warning.
806 */
807 wait_event_idle_timeout(allocation_wait, atomic_read(&kfence_allocation_gate),
808 sysctl_hung_task_timeout_secs * HZ / 2);
809 } else {
810 wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate));
811 }
812
813 /* Disable static key and reset timer. */
814 static_branch_disable(&kfence_allocation_key);
815 #endif
816 queue_delayed_work(system_unbound_wq, &kfence_timer,
817 msecs_to_jiffies(kfence_sample_interval));
818 }
819
820 /* === Public interface ===================================================== */
821
kfence_alloc_pool(void)822 void __init kfence_alloc_pool(void)
823 {
824 if (!kfence_sample_interval)
825 return;
826
827 __kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
828
829 if (!__kfence_pool)
830 pr_err("failed to allocate pool\n");
831 }
832
kfence_init_enable(void)833 static void kfence_init_enable(void)
834 {
835 if (!IS_ENABLED(CONFIG_KFENCE_STATIC_KEYS))
836 static_branch_enable(&kfence_allocation_key);
837
838 if (kfence_deferrable)
839 INIT_DEFERRABLE_WORK(&kfence_timer, toggle_allocation_gate);
840 else
841 INIT_DELAYED_WORK(&kfence_timer, toggle_allocation_gate);
842
843 if (kfence_check_on_panic)
844 atomic_notifier_chain_register(&panic_notifier_list, &kfence_check_canary_notifier);
845
846 WRITE_ONCE(kfence_enabled, true);
847 queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
848
849 pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE,
850 CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool,
851 (void *)(__kfence_pool + KFENCE_POOL_SIZE));
852 }
853
kfence_init(void)854 void __init kfence_init(void)
855 {
856 stack_hash_seed = get_random_u32();
857
858 /* Setting kfence_sample_interval to 0 on boot disables KFENCE. */
859 if (!kfence_sample_interval)
860 return;
861
862 if (!kfence_init_pool_early()) {
863 pr_err("%s failed\n", __func__);
864 return;
865 }
866
867 kfence_init_enable();
868 }
869
kfence_init_late(void)870 static int kfence_init_late(void)
871 {
872 const unsigned long nr_pages = KFENCE_POOL_SIZE / PAGE_SIZE;
873 #ifdef CONFIG_CONTIG_ALLOC
874 struct page *pages;
875
876 pages = alloc_contig_pages(nr_pages, GFP_KERNEL, first_online_node, NULL);
877 if (!pages)
878 return -ENOMEM;
879 __kfence_pool = page_to_virt(pages);
880 #else
881 if (nr_pages > MAX_ORDER_NR_PAGES) {
882 pr_warn("KFENCE_NUM_OBJECTS too large for buddy allocator\n");
883 return -EINVAL;
884 }
885 __kfence_pool = alloc_pages_exact(KFENCE_POOL_SIZE, GFP_KERNEL);
886 if (!__kfence_pool)
887 return -ENOMEM;
888 #endif
889
890 if (!kfence_init_pool_late()) {
891 pr_err("%s failed\n", __func__);
892 return -EBUSY;
893 }
894
895 kfence_init_enable();
896 return 0;
897 }
898
kfence_enable_late(void)899 static int kfence_enable_late(void)
900 {
901 if (!__kfence_pool)
902 return kfence_init_late();
903
904 WRITE_ONCE(kfence_enabled, true);
905 queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
906 pr_info("re-enabled\n");
907 return 0;
908 }
909
kfence_shutdown_cache(struct kmem_cache * s)910 void kfence_shutdown_cache(struct kmem_cache *s)
911 {
912 unsigned long flags;
913 struct kfence_metadata *meta;
914 int i;
915
916 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
917 bool in_use;
918
919 meta = &kfence_metadata[i];
920
921 /*
922 * If we observe some inconsistent cache and state pair where we
923 * should have returned false here, cache destruction is racing
924 * with either kmem_cache_alloc() or kmem_cache_free(). Taking
925 * the lock will not help, as different critical section
926 * serialization will have the same outcome.
927 */
928 if (READ_ONCE(meta->cache) != s ||
929 READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED)
930 continue;
931
932 raw_spin_lock_irqsave(&meta->lock, flags);
933 in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED;
934 raw_spin_unlock_irqrestore(&meta->lock, flags);
935
936 if (in_use) {
937 /*
938 * This cache still has allocations, and we should not
939 * release them back into the freelist so they can still
940 * safely be used and retain the kernel's default
941 * behaviour of keeping the allocations alive (leak the
942 * cache); however, they effectively become "zombie
943 * allocations" as the KFENCE objects are the only ones
944 * still in use and the owning cache is being destroyed.
945 *
946 * We mark them freed, so that any subsequent use shows
947 * more useful error messages that will include stack
948 * traces of the user of the object, the original
949 * allocation, and caller to shutdown_cache().
950 */
951 kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
952 }
953 }
954
955 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
956 meta = &kfence_metadata[i];
957
958 /* See above. */
959 if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
960 continue;
961
962 raw_spin_lock_irqsave(&meta->lock, flags);
963 if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
964 meta->cache = NULL;
965 raw_spin_unlock_irqrestore(&meta->lock, flags);
966 }
967 }
968
__kfence_alloc(struct kmem_cache * s,size_t size,gfp_t flags)969 void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
970 {
971 unsigned long stack_entries[KFENCE_STACK_DEPTH];
972 size_t num_stack_entries;
973 u32 alloc_stack_hash;
974
975 /*
976 * Perform size check before switching kfence_allocation_gate, so that
977 * we don't disable KFENCE without making an allocation.
978 */
979 if (size > PAGE_SIZE) {
980 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
981 return NULL;
982 }
983
984 /*
985 * Skip allocations from non-default zones, including DMA. We cannot
986 * guarantee that pages in the KFENCE pool will have the requested
987 * properties (e.g. reside in DMAable memory).
988 */
989 if ((flags & GFP_ZONEMASK) ||
990 (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) {
991 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
992 return NULL;
993 }
994
995 /*
996 * Skip allocations for this slab, if KFENCE has been disabled for
997 * this slab.
998 */
999 if (s->flags & SLAB_SKIP_KFENCE)
1000 return NULL;
1001
1002 if (atomic_inc_return(&kfence_allocation_gate) > 1)
1003 return NULL;
1004 #ifdef CONFIG_KFENCE_STATIC_KEYS
1005 /*
1006 * waitqueue_active() is fully ordered after the update of
1007 * kfence_allocation_gate per atomic_inc_return().
1008 */
1009 if (waitqueue_active(&allocation_wait)) {
1010 /*
1011 * Calling wake_up() here may deadlock when allocations happen
1012 * from within timer code. Use an irq_work to defer it.
1013 */
1014 irq_work_queue(&wake_up_kfence_timer_work);
1015 }
1016 #endif
1017
1018 if (!READ_ONCE(kfence_enabled))
1019 return NULL;
1020
1021 num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 0);
1022
1023 /*
1024 * Do expensive check for coverage of allocation in slow-path after
1025 * allocation_gate has already become non-zero, even though it might
1026 * mean not making any allocation within a given sample interval.
1027 *
1028 * This ensures reasonable allocation coverage when the pool is almost
1029 * full, including avoiding long-lived allocations of the same source
1030 * filling up the pool (e.g. pagecache allocations).
1031 */
1032 alloc_stack_hash = get_alloc_stack_hash(stack_entries, num_stack_entries);
1033 if (should_skip_covered() && alloc_covered_contains(alloc_stack_hash)) {
1034 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_COVERED]);
1035 return NULL;
1036 }
1037
1038 return kfence_guarded_alloc(s, size, flags, stack_entries, num_stack_entries,
1039 alloc_stack_hash);
1040 }
1041
kfence_ksize(const void * addr)1042 size_t kfence_ksize(const void *addr)
1043 {
1044 const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1045
1046 /*
1047 * Read locklessly -- if there is a race with __kfence_alloc(), this is
1048 * either a use-after-free or invalid access.
1049 */
1050 return meta ? meta->size : 0;
1051 }
1052
kfence_object_start(const void * addr)1053 void *kfence_object_start(const void *addr)
1054 {
1055 const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1056
1057 /*
1058 * Read locklessly -- if there is a race with __kfence_alloc(), this is
1059 * either a use-after-free or invalid access.
1060 */
1061 return meta ? (void *)meta->addr : NULL;
1062 }
1063
__kfence_free(void * addr)1064 void __kfence_free(void *addr)
1065 {
1066 struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1067
1068 #ifdef CONFIG_MEMCG
1069 KFENCE_WARN_ON(meta->objcg);
1070 #endif
1071 /*
1072 * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
1073 * the object, as the object page may be recycled for other-typed
1074 * objects once it has been freed. meta->cache may be NULL if the cache
1075 * was destroyed.
1076 */
1077 if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU)))
1078 call_rcu(&meta->rcu_head, rcu_guarded_free);
1079 else
1080 kfence_guarded_free(addr, meta, false);
1081 }
1082
kfence_handle_page_fault(unsigned long addr,bool is_write,struct pt_regs * regs)1083 bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs)
1084 {
1085 const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
1086 struct kfence_metadata *to_report = NULL;
1087 enum kfence_error_type error_type;
1088 unsigned long flags;
1089
1090 if (!is_kfence_address((void *)addr))
1091 return false;
1092
1093 if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
1094 return kfence_unprotect(addr); /* ... unprotect and proceed. */
1095
1096 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
1097
1098 if (page_index % 2) {
1099 /* This is a redzone, report a buffer overflow. */
1100 struct kfence_metadata *meta;
1101 int distance = 0;
1102
1103 meta = addr_to_metadata(addr - PAGE_SIZE);
1104 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
1105 to_report = meta;
1106 /* Data race ok; distance calculation approximate. */
1107 distance = addr - data_race(meta->addr + meta->size);
1108 }
1109
1110 meta = addr_to_metadata(addr + PAGE_SIZE);
1111 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
1112 /* Data race ok; distance calculation approximate. */
1113 if (!to_report || distance > data_race(meta->addr) - addr)
1114 to_report = meta;
1115 }
1116
1117 if (!to_report)
1118 goto out;
1119
1120 raw_spin_lock_irqsave(&to_report->lock, flags);
1121 to_report->unprotected_page = addr;
1122 error_type = KFENCE_ERROR_OOB;
1123
1124 /*
1125 * If the object was freed before we took the look we can still
1126 * report this as an OOB -- the report will simply show the
1127 * stacktrace of the free as well.
1128 */
1129 } else {
1130 to_report = addr_to_metadata(addr);
1131 if (!to_report)
1132 goto out;
1133
1134 raw_spin_lock_irqsave(&to_report->lock, flags);
1135 error_type = KFENCE_ERROR_UAF;
1136 /*
1137 * We may race with __kfence_alloc(), and it is possible that a
1138 * freed object may be reallocated. We simply report this as a
1139 * use-after-free, with the stack trace showing the place where
1140 * the object was re-allocated.
1141 */
1142 }
1143
1144 out:
1145 if (to_report) {
1146 kfence_report_error(addr, is_write, regs, to_report, error_type);
1147 raw_spin_unlock_irqrestore(&to_report->lock, flags);
1148 } else {
1149 /* This may be a UAF or OOB access, but we can't be sure. */
1150 kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID);
1151 }
1152
1153 return kfence_unprotect(addr); /* Unprotect and let access proceed. */
1154 }
1155