1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #include <linux/mutex.h>
25 #include <linux/log2.h>
26 #include <linux/sched.h>
27 #include <linux/sched/mm.h>
28 #include <linux/sched/task.h>
29 #include <linux/mmu_context.h>
30 #include <linux/slab.h>
31 #include <linux/amd-iommu.h>
32 #include <linux/notifier.h>
33 #include <linux/compat.h>
34 #include <linux/mman.h>
35 #include <linux/file.h>
36 #include <linux/pm_runtime.h>
37 #include "amdgpu_amdkfd.h"
38 #include "amdgpu.h"
39
40 struct mm_struct;
41
42 #include "kfd_priv.h"
43 #include "kfd_device_queue_manager.h"
44 #include "kfd_iommu.h"
45 #include "kfd_svm.h"
46
47 /*
48 * List of struct kfd_process (field kfd_process).
49 * Unique/indexed by mm_struct*
50 */
51 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
52 static DEFINE_MUTEX(kfd_processes_mutex);
53
54 DEFINE_SRCU(kfd_processes_srcu);
55
56 /* For process termination handling */
57 static struct workqueue_struct *kfd_process_wq;
58
59 /* Ordered, single-threaded workqueue for restoring evicted
60 * processes. Restoring multiple processes concurrently under memory
61 * pressure can lead to processes blocking each other from validating
62 * their BOs and result in a live-lock situation where processes
63 * remain evicted indefinitely.
64 */
65 static struct workqueue_struct *kfd_restore_wq;
66
67 static struct kfd_process *find_process(const struct task_struct *thread,
68 bool ref);
69 static void kfd_process_ref_release(struct kref *ref);
70 static struct kfd_process *create_process(const struct task_struct *thread);
71 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep);
72
73 static void evict_process_worker(struct work_struct *work);
74 static void restore_process_worker(struct work_struct *work);
75
76 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
77
78 struct kfd_procfs_tree {
79 struct kobject *kobj;
80 };
81
82 static struct kfd_procfs_tree procfs;
83
84 /*
85 * Structure for SDMA activity tracking
86 */
87 struct kfd_sdma_activity_handler_workarea {
88 struct work_struct sdma_activity_work;
89 struct kfd_process_device *pdd;
90 uint64_t sdma_activity_counter;
91 };
92
93 struct temp_sdma_queue_list {
94 uint64_t __user *rptr;
95 uint64_t sdma_val;
96 unsigned int queue_id;
97 struct list_head list;
98 };
99
kfd_sdma_activity_worker(struct work_struct * work)100 static void kfd_sdma_activity_worker(struct work_struct *work)
101 {
102 struct kfd_sdma_activity_handler_workarea *workarea;
103 struct kfd_process_device *pdd;
104 uint64_t val;
105 struct mm_struct *mm;
106 struct queue *q;
107 struct qcm_process_device *qpd;
108 struct device_queue_manager *dqm;
109 int ret = 0;
110 struct temp_sdma_queue_list sdma_q_list;
111 struct temp_sdma_queue_list *sdma_q, *next;
112
113 workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
114 sdma_activity_work);
115
116 pdd = workarea->pdd;
117 if (!pdd)
118 return;
119 dqm = pdd->dev->dqm;
120 qpd = &pdd->qpd;
121 if (!dqm || !qpd)
122 return;
123 /*
124 * Total SDMA activity is current SDMA activity + past SDMA activity
125 * Past SDMA count is stored in pdd.
126 * To get the current activity counters for all active SDMA queues,
127 * we loop over all SDMA queues and get their counts from user-space.
128 *
129 * We cannot call get_user() with dqm_lock held as it can cause
130 * a circular lock dependency situation. To read the SDMA stats,
131 * we need to do the following:
132 *
133 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
134 * with dqm_lock/dqm_unlock().
135 * 2. Call get_user() for each node in temporary list without dqm_lock.
136 * Save the SDMA count for each node and also add the count to the total
137 * SDMA count counter.
138 * Its possible, during this step, a few SDMA queue nodes got deleted
139 * from the qpd->queues_list.
140 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
141 * If any node got deleted, its SDMA count would be captured in the sdma
142 * past activity counter. So subtract the SDMA counter stored in step 2
143 * for this node from the total SDMA count.
144 */
145 INIT_LIST_HEAD(&sdma_q_list.list);
146
147 /*
148 * Create the temp list of all SDMA queues
149 */
150 dqm_lock(dqm);
151
152 list_for_each_entry(q, &qpd->queues_list, list) {
153 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
154 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
155 continue;
156
157 sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
158 if (!sdma_q) {
159 dqm_unlock(dqm);
160 goto cleanup;
161 }
162
163 INIT_LIST_HEAD(&sdma_q->list);
164 sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
165 sdma_q->queue_id = q->properties.queue_id;
166 list_add_tail(&sdma_q->list, &sdma_q_list.list);
167 }
168
169 /*
170 * If the temp list is empty, then no SDMA queues nodes were found in
171 * qpd->queues_list. Return the past activity count as the total sdma
172 * count
173 */
174 if (list_empty(&sdma_q_list.list)) {
175 workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
176 dqm_unlock(dqm);
177 return;
178 }
179
180 dqm_unlock(dqm);
181
182 /*
183 * Get the usage count for each SDMA queue in temp_list.
184 */
185 mm = get_task_mm(pdd->process->lead_thread);
186 if (!mm)
187 goto cleanup;
188
189 kthread_use_mm(mm);
190
191 list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
192 val = 0;
193 ret = read_sdma_queue_counter(sdma_q->rptr, &val);
194 if (ret) {
195 pr_debug("Failed to read SDMA queue active counter for queue id: %d",
196 sdma_q->queue_id);
197 } else {
198 sdma_q->sdma_val = val;
199 workarea->sdma_activity_counter += val;
200 }
201 }
202
203 kthread_unuse_mm(mm);
204 mmput(mm);
205
206 /*
207 * Do a second iteration over qpd_queues_list to check if any SDMA
208 * nodes got deleted while fetching SDMA counter.
209 */
210 dqm_lock(dqm);
211
212 workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
213
214 list_for_each_entry(q, &qpd->queues_list, list) {
215 if (list_empty(&sdma_q_list.list))
216 break;
217
218 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
219 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
220 continue;
221
222 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
223 if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
224 (sdma_q->queue_id == q->properties.queue_id)) {
225 list_del(&sdma_q->list);
226 kfree(sdma_q);
227 break;
228 }
229 }
230 }
231
232 dqm_unlock(dqm);
233
234 /*
235 * If temp list is not empty, it implies some queues got deleted
236 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
237 * count for each node from the total SDMA count.
238 */
239 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
240 workarea->sdma_activity_counter -= sdma_q->sdma_val;
241 list_del(&sdma_q->list);
242 kfree(sdma_q);
243 }
244
245 return;
246
247 cleanup:
248 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
249 list_del(&sdma_q->list);
250 kfree(sdma_q);
251 }
252 }
253
254 /**
255 * kfd_get_cu_occupancy - Collect number of waves in-flight on this device
256 * by current process. Translates acquired wave count into number of compute units
257 * that are occupied.
258 *
259 * @attr: Handle of attribute that allows reporting of wave count. The attribute
260 * handle encapsulates GPU device it is associated with, thereby allowing collection
261 * of waves in flight, etc
262 * @buffer: Handle of user provided buffer updated with wave count
263 *
264 * Return: Number of bytes written to user buffer or an error value
265 */
kfd_get_cu_occupancy(struct attribute * attr,char * buffer)266 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
267 {
268 int cu_cnt;
269 int wave_cnt;
270 int max_waves_per_cu;
271 struct kfd_dev *dev = NULL;
272 struct kfd_process *proc = NULL;
273 struct kfd_process_device *pdd = NULL;
274
275 pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
276 dev = pdd->dev;
277 if (dev->kfd2kgd->get_cu_occupancy == NULL)
278 return -EINVAL;
279
280 cu_cnt = 0;
281 proc = pdd->process;
282 if (pdd->qpd.queue_count == 0) {
283 pr_debug("Gpu-Id: %d has no active queues for process %d\n",
284 dev->id, proc->pasid);
285 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
286 }
287
288 /* Collect wave count from device if it supports */
289 wave_cnt = 0;
290 max_waves_per_cu = 0;
291 dev->kfd2kgd->get_cu_occupancy(dev->adev, proc->pasid, &wave_cnt,
292 &max_waves_per_cu);
293
294 /* Translate wave count to number of compute units */
295 cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
296 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
297 }
298
kfd_procfs_show(struct kobject * kobj,struct attribute * attr,char * buffer)299 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
300 char *buffer)
301 {
302 if (strcmp(attr->name, "pasid") == 0) {
303 struct kfd_process *p = container_of(attr, struct kfd_process,
304 attr_pasid);
305
306 return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
307 } else if (strncmp(attr->name, "vram_", 5) == 0) {
308 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
309 attr_vram);
310 return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
311 } else if (strncmp(attr->name, "sdma_", 5) == 0) {
312 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
313 attr_sdma);
314 struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
315
316 INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
317 kfd_sdma_activity_worker);
318
319 sdma_activity_work_handler.pdd = pdd;
320 sdma_activity_work_handler.sdma_activity_counter = 0;
321
322 schedule_work(&sdma_activity_work_handler.sdma_activity_work);
323
324 flush_work(&sdma_activity_work_handler.sdma_activity_work);
325
326 return snprintf(buffer, PAGE_SIZE, "%llu\n",
327 (sdma_activity_work_handler.sdma_activity_counter)/
328 SDMA_ACTIVITY_DIVISOR);
329 } else {
330 pr_err("Invalid attribute");
331 return -EINVAL;
332 }
333
334 return 0;
335 }
336
kfd_procfs_kobj_release(struct kobject * kobj)337 static void kfd_procfs_kobj_release(struct kobject *kobj)
338 {
339 kfree(kobj);
340 }
341
342 static const struct sysfs_ops kfd_procfs_ops = {
343 .show = kfd_procfs_show,
344 };
345
346 static struct kobj_type procfs_type = {
347 .release = kfd_procfs_kobj_release,
348 .sysfs_ops = &kfd_procfs_ops,
349 };
350
kfd_procfs_init(void)351 void kfd_procfs_init(void)
352 {
353 int ret = 0;
354
355 procfs.kobj = kfd_alloc_struct(procfs.kobj);
356 if (!procfs.kobj)
357 return;
358
359 ret = kobject_init_and_add(procfs.kobj, &procfs_type,
360 &kfd_device->kobj, "proc");
361 if (ret) {
362 pr_warn("Could not create procfs proc folder");
363 /* If we fail to create the procfs, clean up */
364 kfd_procfs_shutdown();
365 }
366 }
367
kfd_procfs_shutdown(void)368 void kfd_procfs_shutdown(void)
369 {
370 if (procfs.kobj) {
371 kobject_del(procfs.kobj);
372 kobject_put(procfs.kobj);
373 procfs.kobj = NULL;
374 }
375 }
376
kfd_procfs_queue_show(struct kobject * kobj,struct attribute * attr,char * buffer)377 static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
378 struct attribute *attr, char *buffer)
379 {
380 struct queue *q = container_of(kobj, struct queue, kobj);
381
382 if (!strcmp(attr->name, "size"))
383 return snprintf(buffer, PAGE_SIZE, "%llu",
384 q->properties.queue_size);
385 else if (!strcmp(attr->name, "type"))
386 return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
387 else if (!strcmp(attr->name, "gpuid"))
388 return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
389 else
390 pr_err("Invalid attribute");
391
392 return 0;
393 }
394
kfd_procfs_stats_show(struct kobject * kobj,struct attribute * attr,char * buffer)395 static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
396 struct attribute *attr, char *buffer)
397 {
398 if (strcmp(attr->name, "evicted_ms") == 0) {
399 struct kfd_process_device *pdd = container_of(attr,
400 struct kfd_process_device,
401 attr_evict);
402 uint64_t evict_jiffies;
403
404 evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
405
406 return snprintf(buffer,
407 PAGE_SIZE,
408 "%llu\n",
409 jiffies64_to_msecs(evict_jiffies));
410
411 /* Sysfs handle that gets CU occupancy is per device */
412 } else if (strcmp(attr->name, "cu_occupancy") == 0) {
413 return kfd_get_cu_occupancy(attr, buffer);
414 } else {
415 pr_err("Invalid attribute");
416 }
417
418 return 0;
419 }
420
kfd_sysfs_counters_show(struct kobject * kobj,struct attribute * attr,char * buf)421 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
422 struct attribute *attr, char *buf)
423 {
424 struct kfd_process_device *pdd;
425
426 if (!strcmp(attr->name, "faults")) {
427 pdd = container_of(attr, struct kfd_process_device,
428 attr_faults);
429 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
430 }
431 if (!strcmp(attr->name, "page_in")) {
432 pdd = container_of(attr, struct kfd_process_device,
433 attr_page_in);
434 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
435 }
436 if (!strcmp(attr->name, "page_out")) {
437 pdd = container_of(attr, struct kfd_process_device,
438 attr_page_out);
439 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
440 }
441 return 0;
442 }
443
444 static struct attribute attr_queue_size = {
445 .name = "size",
446 .mode = KFD_SYSFS_FILE_MODE
447 };
448
449 static struct attribute attr_queue_type = {
450 .name = "type",
451 .mode = KFD_SYSFS_FILE_MODE
452 };
453
454 static struct attribute attr_queue_gpuid = {
455 .name = "gpuid",
456 .mode = KFD_SYSFS_FILE_MODE
457 };
458
459 static struct attribute *procfs_queue_attrs[] = {
460 &attr_queue_size,
461 &attr_queue_type,
462 &attr_queue_gpuid,
463 NULL
464 };
465 ATTRIBUTE_GROUPS(procfs_queue);
466
467 static const struct sysfs_ops procfs_queue_ops = {
468 .show = kfd_procfs_queue_show,
469 };
470
471 static struct kobj_type procfs_queue_type = {
472 .sysfs_ops = &procfs_queue_ops,
473 .default_groups = procfs_queue_groups,
474 };
475
476 static const struct sysfs_ops procfs_stats_ops = {
477 .show = kfd_procfs_stats_show,
478 };
479
480 static struct kobj_type procfs_stats_type = {
481 .sysfs_ops = &procfs_stats_ops,
482 .release = kfd_procfs_kobj_release,
483 };
484
485 static const struct sysfs_ops sysfs_counters_ops = {
486 .show = kfd_sysfs_counters_show,
487 };
488
489 static struct kobj_type sysfs_counters_type = {
490 .sysfs_ops = &sysfs_counters_ops,
491 .release = kfd_procfs_kobj_release,
492 };
493
kfd_procfs_add_queue(struct queue * q)494 int kfd_procfs_add_queue(struct queue *q)
495 {
496 struct kfd_process *proc;
497 int ret;
498
499 if (!q || !q->process)
500 return -EINVAL;
501 proc = q->process;
502
503 /* Create proc/<pid>/queues/<queue id> folder */
504 if (!proc->kobj_queues)
505 return -EFAULT;
506 ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
507 proc->kobj_queues, "%u", q->properties.queue_id);
508 if (ret < 0) {
509 pr_warn("Creating proc/<pid>/queues/%u failed",
510 q->properties.queue_id);
511 kobject_put(&q->kobj);
512 return ret;
513 }
514
515 return 0;
516 }
517
kfd_sysfs_create_file(struct kobject * kobj,struct attribute * attr,char * name)518 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
519 char *name)
520 {
521 int ret;
522
523 if (!kobj || !attr || !name)
524 return;
525
526 attr->name = name;
527 attr->mode = KFD_SYSFS_FILE_MODE;
528 sysfs_attr_init(attr);
529
530 ret = sysfs_create_file(kobj, attr);
531 if (ret)
532 pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
533 }
534
kfd_procfs_add_sysfs_stats(struct kfd_process * p)535 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
536 {
537 int ret;
538 int i;
539 char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
540
541 if (!p || !p->kobj)
542 return;
543
544 /*
545 * Create sysfs files for each GPU:
546 * - proc/<pid>/stats_<gpuid>/
547 * - proc/<pid>/stats_<gpuid>/evicted_ms
548 * - proc/<pid>/stats_<gpuid>/cu_occupancy
549 */
550 for (i = 0; i < p->n_pdds; i++) {
551 struct kfd_process_device *pdd = p->pdds[i];
552
553 snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
554 "stats_%u", pdd->dev->id);
555 pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
556 if (!pdd->kobj_stats)
557 return;
558
559 ret = kobject_init_and_add(pdd->kobj_stats,
560 &procfs_stats_type,
561 p->kobj,
562 stats_dir_filename);
563
564 if (ret) {
565 pr_warn("Creating KFD proc/stats_%s folder failed",
566 stats_dir_filename);
567 kobject_put(pdd->kobj_stats);
568 pdd->kobj_stats = NULL;
569 return;
570 }
571
572 kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
573 "evicted_ms");
574 /* Add sysfs file to report compute unit occupancy */
575 if (pdd->dev->kfd2kgd->get_cu_occupancy)
576 kfd_sysfs_create_file(pdd->kobj_stats,
577 &pdd->attr_cu_occupancy,
578 "cu_occupancy");
579 }
580 }
581
kfd_procfs_add_sysfs_counters(struct kfd_process * p)582 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
583 {
584 int ret = 0;
585 int i;
586 char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
587
588 if (!p || !p->kobj)
589 return;
590
591 /*
592 * Create sysfs files for each GPU which supports SVM
593 * - proc/<pid>/counters_<gpuid>/
594 * - proc/<pid>/counters_<gpuid>/faults
595 * - proc/<pid>/counters_<gpuid>/page_in
596 * - proc/<pid>/counters_<gpuid>/page_out
597 */
598 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
599 struct kfd_process_device *pdd = p->pdds[i];
600 struct kobject *kobj_counters;
601
602 snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
603 "counters_%u", pdd->dev->id);
604 kobj_counters = kfd_alloc_struct(kobj_counters);
605 if (!kobj_counters)
606 return;
607
608 ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
609 p->kobj, counters_dir_filename);
610 if (ret) {
611 pr_warn("Creating KFD proc/%s folder failed",
612 counters_dir_filename);
613 kobject_put(kobj_counters);
614 return;
615 }
616
617 pdd->kobj_counters = kobj_counters;
618 kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
619 "faults");
620 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
621 "page_in");
622 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
623 "page_out");
624 }
625 }
626
kfd_procfs_add_sysfs_files(struct kfd_process * p)627 static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
628 {
629 int i;
630
631 if (!p || !p->kobj)
632 return;
633
634 /*
635 * Create sysfs files for each GPU:
636 * - proc/<pid>/vram_<gpuid>
637 * - proc/<pid>/sdma_<gpuid>
638 */
639 for (i = 0; i < p->n_pdds; i++) {
640 struct kfd_process_device *pdd = p->pdds[i];
641
642 snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
643 pdd->dev->id);
644 kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
645 pdd->vram_filename);
646
647 snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
648 pdd->dev->id);
649 kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
650 pdd->sdma_filename);
651 }
652 }
653
kfd_procfs_del_queue(struct queue * q)654 void kfd_procfs_del_queue(struct queue *q)
655 {
656 if (!q)
657 return;
658
659 kobject_del(&q->kobj);
660 kobject_put(&q->kobj);
661 }
662
kfd_process_create_wq(void)663 int kfd_process_create_wq(void)
664 {
665 if (!kfd_process_wq)
666 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
667 if (!kfd_restore_wq)
668 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0);
669
670 if (!kfd_process_wq || !kfd_restore_wq) {
671 kfd_process_destroy_wq();
672 return -ENOMEM;
673 }
674
675 return 0;
676 }
677
kfd_process_destroy_wq(void)678 void kfd_process_destroy_wq(void)
679 {
680 if (kfd_process_wq) {
681 destroy_workqueue(kfd_process_wq);
682 kfd_process_wq = NULL;
683 }
684 if (kfd_restore_wq) {
685 destroy_workqueue(kfd_restore_wq);
686 kfd_restore_wq = NULL;
687 }
688 }
689
kfd_process_free_gpuvm(struct kgd_mem * mem,struct kfd_process_device * pdd,void * kptr)690 static void kfd_process_free_gpuvm(struct kgd_mem *mem,
691 struct kfd_process_device *pdd, void *kptr)
692 {
693 struct kfd_dev *dev = pdd->dev;
694
695 if (kptr) {
696 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(dev->adev, mem);
697 kptr = NULL;
698 }
699
700 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
701 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
702 NULL);
703 }
704
705 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
706 * This function should be only called right after the process
707 * is created and when kfd_processes_mutex is still being held
708 * to avoid concurrency. Because of that exclusiveness, we do
709 * not need to take p->mutex.
710 */
kfd_process_alloc_gpuvm(struct kfd_process_device * pdd,uint64_t gpu_va,uint32_t size,uint32_t flags,struct kgd_mem ** mem,void ** kptr)711 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
712 uint64_t gpu_va, uint32_t size,
713 uint32_t flags, struct kgd_mem **mem, void **kptr)
714 {
715 struct kfd_dev *kdev = pdd->dev;
716 int err;
717
718 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
719 pdd->drm_priv, mem, NULL,
720 flags, false);
721 if (err)
722 goto err_alloc_mem;
723
724 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
725 pdd->drm_priv);
726 if (err)
727 goto err_map_mem;
728
729 err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
730 if (err) {
731 pr_debug("Sync memory failed, wait interrupted by user signal\n");
732 goto sync_memory_failed;
733 }
734
735 if (kptr) {
736 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kdev->adev,
737 (struct kgd_mem *)*mem, kptr, NULL);
738 if (err) {
739 pr_debug("Map GTT BO to kernel failed\n");
740 goto sync_memory_failed;
741 }
742 }
743
744 return err;
745
746 sync_memory_failed:
747 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
748
749 err_map_mem:
750 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
751 NULL);
752 err_alloc_mem:
753 *mem = NULL;
754 *kptr = NULL;
755 return err;
756 }
757
758 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the
759 * process for IB usage The memory reserved is for KFD to submit
760 * IB to AMDGPU from kernel. If the memory is reserved
761 * successfully, ib_kaddr will have the CPU/kernel
762 * address. Check ib_kaddr before accessing the memory.
763 */
kfd_process_device_reserve_ib_mem(struct kfd_process_device * pdd)764 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
765 {
766 struct qcm_process_device *qpd = &pdd->qpd;
767 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
768 KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
769 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
770 KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
771 struct kgd_mem *mem;
772 void *kaddr;
773 int ret;
774
775 if (qpd->ib_kaddr || !qpd->ib_base)
776 return 0;
777
778 /* ib_base is only set for dGPU */
779 ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
780 &mem, &kaddr);
781 if (ret)
782 return ret;
783
784 qpd->ib_mem = mem;
785 qpd->ib_kaddr = kaddr;
786
787 return 0;
788 }
789
kfd_process_device_destroy_ib_mem(struct kfd_process_device * pdd)790 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
791 {
792 struct qcm_process_device *qpd = &pdd->qpd;
793
794 if (!qpd->ib_kaddr || !qpd->ib_base)
795 return;
796
797 kfd_process_free_gpuvm(qpd->ib_mem, pdd, qpd->ib_kaddr);
798 }
799
kfd_create_process(struct file * filep)800 struct kfd_process *kfd_create_process(struct file *filep)
801 {
802 struct kfd_process *process;
803 struct task_struct *thread = current;
804 int ret;
805
806 if (!thread->mm)
807 return ERR_PTR(-EINVAL);
808
809 /* Only the pthreads threading model is supported. */
810 if (thread->group_leader->mm != thread->mm)
811 return ERR_PTR(-EINVAL);
812
813 /*
814 * take kfd processes mutex before starting of process creation
815 * so there won't be a case where two threads of the same process
816 * create two kfd_process structures
817 */
818 mutex_lock(&kfd_processes_mutex);
819
820 /* A prior open of /dev/kfd could have already created the process. */
821 process = find_process(thread, false);
822 if (process) {
823 pr_debug("Process already found\n");
824 } else {
825 process = create_process(thread);
826 if (IS_ERR(process))
827 goto out;
828
829 ret = kfd_process_init_cwsr_apu(process, filep);
830 if (ret)
831 goto out_destroy;
832
833 if (!procfs.kobj)
834 goto out;
835
836 process->kobj = kfd_alloc_struct(process->kobj);
837 if (!process->kobj) {
838 pr_warn("Creating procfs kobject failed");
839 goto out;
840 }
841 ret = kobject_init_and_add(process->kobj, &procfs_type,
842 procfs.kobj, "%d",
843 (int)process->lead_thread->pid);
844 if (ret) {
845 pr_warn("Creating procfs pid directory failed");
846 kobject_put(process->kobj);
847 goto out;
848 }
849
850 kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
851 "pasid");
852
853 process->kobj_queues = kobject_create_and_add("queues",
854 process->kobj);
855 if (!process->kobj_queues)
856 pr_warn("Creating KFD proc/queues folder failed");
857
858 kfd_procfs_add_sysfs_stats(process);
859 kfd_procfs_add_sysfs_files(process);
860 kfd_procfs_add_sysfs_counters(process);
861 }
862 out:
863 if (!IS_ERR(process))
864 kref_get(&process->ref);
865 mutex_unlock(&kfd_processes_mutex);
866
867 return process;
868
869 out_destroy:
870 hash_del_rcu(&process->kfd_processes);
871 mutex_unlock(&kfd_processes_mutex);
872 synchronize_srcu(&kfd_processes_srcu);
873 /* kfd_process_free_notifier will trigger the cleanup */
874 mmu_notifier_put(&process->mmu_notifier);
875 return ERR_PTR(ret);
876 }
877
kfd_get_process(const struct task_struct * thread)878 struct kfd_process *kfd_get_process(const struct task_struct *thread)
879 {
880 struct kfd_process *process;
881
882 if (!thread->mm)
883 return ERR_PTR(-EINVAL);
884
885 /* Only the pthreads threading model is supported. */
886 if (thread->group_leader->mm != thread->mm)
887 return ERR_PTR(-EINVAL);
888
889 process = find_process(thread, false);
890 if (!process)
891 return ERR_PTR(-EINVAL);
892
893 return process;
894 }
895
find_process_by_mm(const struct mm_struct * mm)896 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
897 {
898 struct kfd_process *process;
899
900 hash_for_each_possible_rcu(kfd_processes_table, process,
901 kfd_processes, (uintptr_t)mm)
902 if (process->mm == mm)
903 return process;
904
905 return NULL;
906 }
907
find_process(const struct task_struct * thread,bool ref)908 static struct kfd_process *find_process(const struct task_struct *thread,
909 bool ref)
910 {
911 struct kfd_process *p;
912 int idx;
913
914 idx = srcu_read_lock(&kfd_processes_srcu);
915 p = find_process_by_mm(thread->mm);
916 if (p && ref)
917 kref_get(&p->ref);
918 srcu_read_unlock(&kfd_processes_srcu, idx);
919
920 return p;
921 }
922
kfd_unref_process(struct kfd_process * p)923 void kfd_unref_process(struct kfd_process *p)
924 {
925 kref_put(&p->ref, kfd_process_ref_release);
926 }
927
928 /* This increments the process->ref counter. */
kfd_lookup_process_by_pid(struct pid * pid)929 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
930 {
931 struct task_struct *task = NULL;
932 struct kfd_process *p = NULL;
933
934 if (!pid) {
935 task = current;
936 get_task_struct(task);
937 } else {
938 task = get_pid_task(pid, PIDTYPE_PID);
939 }
940
941 if (task) {
942 p = find_process(task, true);
943 put_task_struct(task);
944 }
945
946 return p;
947 }
948
kfd_process_device_free_bos(struct kfd_process_device * pdd)949 static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
950 {
951 struct kfd_process *p = pdd->process;
952 void *mem;
953 int id;
954 int i;
955
956 /*
957 * Remove all handles from idr and release appropriate
958 * local memory object
959 */
960 idr_for_each_entry(&pdd->alloc_idr, mem, id) {
961
962 for (i = 0; i < p->n_pdds; i++) {
963 struct kfd_process_device *peer_pdd = p->pdds[i];
964
965 if (!peer_pdd->drm_priv)
966 continue;
967 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
968 peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
969 }
970
971 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
972 pdd->drm_priv, NULL);
973 kfd_process_device_remove_obj_handle(pdd, id);
974 }
975 }
976
977 /*
978 * Just kunmap and unpin signal BO here. It will be freed in
979 * kfd_process_free_outstanding_kfd_bos()
980 */
kfd_process_kunmap_signal_bo(struct kfd_process * p)981 static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
982 {
983 struct kfd_process_device *pdd;
984 struct kfd_dev *kdev;
985 void *mem;
986
987 kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
988 if (!kdev)
989 return;
990
991 mutex_lock(&p->mutex);
992
993 pdd = kfd_get_process_device_data(kdev, p);
994 if (!pdd)
995 goto out;
996
997 mem = kfd_process_device_translate_handle(
998 pdd, GET_IDR_HANDLE(p->signal_handle));
999 if (!mem)
1000 goto out;
1001
1002 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(kdev->adev, mem);
1003
1004 out:
1005 mutex_unlock(&p->mutex);
1006 }
1007
kfd_process_free_outstanding_kfd_bos(struct kfd_process * p)1008 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
1009 {
1010 int i;
1011
1012 for (i = 0; i < p->n_pdds; i++)
1013 kfd_process_device_free_bos(p->pdds[i]);
1014 }
1015
kfd_process_destroy_pdds(struct kfd_process * p)1016 static void kfd_process_destroy_pdds(struct kfd_process *p)
1017 {
1018 int i;
1019
1020 for (i = 0; i < p->n_pdds; i++) {
1021 struct kfd_process_device *pdd = p->pdds[i];
1022
1023 pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
1024 pdd->dev->id, p->pasid);
1025
1026 kfd_process_device_destroy_cwsr_dgpu(pdd);
1027 kfd_process_device_destroy_ib_mem(pdd);
1028
1029 if (pdd->drm_file) {
1030 amdgpu_amdkfd_gpuvm_release_process_vm(
1031 pdd->dev->adev, pdd->drm_priv);
1032 fput(pdd->drm_file);
1033 }
1034
1035 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1036 free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1037 get_order(KFD_CWSR_TBA_TMA_SIZE));
1038
1039 bitmap_free(pdd->qpd.doorbell_bitmap);
1040 idr_destroy(&pdd->alloc_idr);
1041
1042 kfd_free_process_doorbells(pdd->dev, pdd->doorbell_index);
1043
1044 if (pdd->dev->shared_resources.enable_mes)
1045 amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev,
1046 pdd->proc_ctx_bo);
1047 /*
1048 * before destroying pdd, make sure to report availability
1049 * for auto suspend
1050 */
1051 if (pdd->runtime_inuse) {
1052 pm_runtime_mark_last_busy(pdd->dev->ddev->dev);
1053 pm_runtime_put_autosuspend(pdd->dev->ddev->dev);
1054 pdd->runtime_inuse = false;
1055 }
1056
1057 kfree(pdd);
1058 p->pdds[i] = NULL;
1059 }
1060 p->n_pdds = 0;
1061 }
1062
kfd_process_remove_sysfs(struct kfd_process * p)1063 static void kfd_process_remove_sysfs(struct kfd_process *p)
1064 {
1065 struct kfd_process_device *pdd;
1066 int i;
1067
1068 if (!p->kobj)
1069 return;
1070
1071 sysfs_remove_file(p->kobj, &p->attr_pasid);
1072 kobject_del(p->kobj_queues);
1073 kobject_put(p->kobj_queues);
1074 p->kobj_queues = NULL;
1075
1076 for (i = 0; i < p->n_pdds; i++) {
1077 pdd = p->pdds[i];
1078
1079 sysfs_remove_file(p->kobj, &pdd->attr_vram);
1080 sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1081
1082 sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1083 if (pdd->dev->kfd2kgd->get_cu_occupancy)
1084 sysfs_remove_file(pdd->kobj_stats,
1085 &pdd->attr_cu_occupancy);
1086 kobject_del(pdd->kobj_stats);
1087 kobject_put(pdd->kobj_stats);
1088 pdd->kobj_stats = NULL;
1089 }
1090
1091 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1092 pdd = p->pdds[i];
1093
1094 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1095 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1096 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1097 kobject_del(pdd->kobj_counters);
1098 kobject_put(pdd->kobj_counters);
1099 pdd->kobj_counters = NULL;
1100 }
1101
1102 kobject_del(p->kobj);
1103 kobject_put(p->kobj);
1104 p->kobj = NULL;
1105 }
1106
1107 /* No process locking is needed in this function, because the process
1108 * is not findable any more. We must assume that no other thread is
1109 * using it any more, otherwise we couldn't safely free the process
1110 * structure in the end.
1111 */
kfd_process_wq_release(struct work_struct * work)1112 static void kfd_process_wq_release(struct work_struct *work)
1113 {
1114 struct kfd_process *p = container_of(work, struct kfd_process,
1115 release_work);
1116
1117 kfd_process_remove_sysfs(p);
1118 kfd_iommu_unbind_process(p);
1119
1120 kfd_process_kunmap_signal_bo(p);
1121 kfd_process_free_outstanding_kfd_bos(p);
1122 svm_range_list_fini(p);
1123
1124 kfd_process_destroy_pdds(p);
1125 dma_fence_put(p->ef);
1126
1127 kfd_event_free_process(p);
1128
1129 kfd_pasid_free(p->pasid);
1130 mutex_destroy(&p->mutex);
1131
1132 put_task_struct(p->lead_thread);
1133
1134 kfree(p);
1135 }
1136
kfd_process_ref_release(struct kref * ref)1137 static void kfd_process_ref_release(struct kref *ref)
1138 {
1139 struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1140
1141 INIT_WORK(&p->release_work, kfd_process_wq_release);
1142 queue_work(kfd_process_wq, &p->release_work);
1143 }
1144
kfd_process_alloc_notifier(struct mm_struct * mm)1145 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1146 {
1147 int idx = srcu_read_lock(&kfd_processes_srcu);
1148 struct kfd_process *p = find_process_by_mm(mm);
1149
1150 srcu_read_unlock(&kfd_processes_srcu, idx);
1151
1152 return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1153 }
1154
kfd_process_free_notifier(struct mmu_notifier * mn)1155 static void kfd_process_free_notifier(struct mmu_notifier *mn)
1156 {
1157 kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1158 }
1159
kfd_process_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)1160 static void kfd_process_notifier_release(struct mmu_notifier *mn,
1161 struct mm_struct *mm)
1162 {
1163 struct kfd_process *p;
1164
1165 /*
1166 * The kfd_process structure can not be free because the
1167 * mmu_notifier srcu is read locked
1168 */
1169 p = container_of(mn, struct kfd_process, mmu_notifier);
1170 if (WARN_ON(p->mm != mm))
1171 return;
1172
1173 mutex_lock(&kfd_processes_mutex);
1174 hash_del_rcu(&p->kfd_processes);
1175 mutex_unlock(&kfd_processes_mutex);
1176 synchronize_srcu(&kfd_processes_srcu);
1177
1178 cancel_delayed_work_sync(&p->eviction_work);
1179 cancel_delayed_work_sync(&p->restore_work);
1180
1181 mutex_lock(&p->mutex);
1182
1183 kfd_process_dequeue_from_all_devices(p);
1184 pqm_uninit(&p->pqm);
1185
1186 /* Indicate to other users that MM is no longer valid */
1187 p->mm = NULL;
1188 /* Signal the eviction fence after user mode queues are
1189 * destroyed. This allows any BOs to be freed without
1190 * triggering pointless evictions or waiting for fences.
1191 */
1192 dma_fence_signal(p->ef);
1193
1194 mutex_unlock(&p->mutex);
1195
1196 mmu_notifier_put(&p->mmu_notifier);
1197 }
1198
1199 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1200 .release = kfd_process_notifier_release,
1201 .alloc_notifier = kfd_process_alloc_notifier,
1202 .free_notifier = kfd_process_free_notifier,
1203 };
1204
kfd_process_init_cwsr_apu(struct kfd_process * p,struct file * filep)1205 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1206 {
1207 unsigned long offset;
1208 int i;
1209
1210 for (i = 0; i < p->n_pdds; i++) {
1211 struct kfd_dev *dev = p->pdds[i]->dev;
1212 struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1213
1214 if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1215 continue;
1216
1217 offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1218 qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1219 KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1220 MAP_SHARED, offset);
1221
1222 if (IS_ERR_VALUE(qpd->tba_addr)) {
1223 int err = qpd->tba_addr;
1224
1225 pr_err("Failure to set tba address. error %d.\n", err);
1226 qpd->tba_addr = 0;
1227 qpd->cwsr_kaddr = NULL;
1228 return err;
1229 }
1230
1231 memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
1232
1233 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1234 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1235 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1236 }
1237
1238 return 0;
1239 }
1240
kfd_process_device_init_cwsr_dgpu(struct kfd_process_device * pdd)1241 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1242 {
1243 struct kfd_dev *dev = pdd->dev;
1244 struct qcm_process_device *qpd = &pdd->qpd;
1245 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1246 | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1247 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1248 struct kgd_mem *mem;
1249 void *kaddr;
1250 int ret;
1251
1252 if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1253 return 0;
1254
1255 /* cwsr_base is only set for dGPU */
1256 ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1257 KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1258 if (ret)
1259 return ret;
1260
1261 qpd->cwsr_mem = mem;
1262 qpd->cwsr_kaddr = kaddr;
1263 qpd->tba_addr = qpd->cwsr_base;
1264
1265 memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
1266
1267 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1268 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1269 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1270
1271 return 0;
1272 }
1273
kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device * pdd)1274 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1275 {
1276 struct kfd_dev *dev = pdd->dev;
1277 struct qcm_process_device *qpd = &pdd->qpd;
1278
1279 if (!dev->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1280 return;
1281
1282 kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, qpd->cwsr_kaddr);
1283 }
1284
kfd_process_set_trap_handler(struct qcm_process_device * qpd,uint64_t tba_addr,uint64_t tma_addr)1285 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1286 uint64_t tba_addr,
1287 uint64_t tma_addr)
1288 {
1289 if (qpd->cwsr_kaddr) {
1290 /* KFD trap handler is bound, record as second-level TBA/TMA
1291 * in first-level TMA. First-level trap will jump to second.
1292 */
1293 uint64_t *tma =
1294 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1295 tma[0] = tba_addr;
1296 tma[1] = tma_addr;
1297 } else {
1298 /* No trap handler bound, bind as first-level TBA/TMA. */
1299 qpd->tba_addr = tba_addr;
1300 qpd->tma_addr = tma_addr;
1301 }
1302 }
1303
kfd_process_xnack_mode(struct kfd_process * p,bool supported)1304 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1305 {
1306 int i;
1307
1308 /* On most GFXv9 GPUs, the retry mode in the SQ must match the
1309 * boot time retry setting. Mixing processes with different
1310 * XNACK/retry settings can hang the GPU.
1311 *
1312 * Different GPUs can have different noretry settings depending
1313 * on HW bugs or limitations. We need to find at least one
1314 * XNACK mode for this process that's compatible with all GPUs.
1315 * Fortunately GPUs with retry enabled (noretry=0) can run code
1316 * built for XNACK-off. On GFXv9 it may perform slower.
1317 *
1318 * Therefore applications built for XNACK-off can always be
1319 * supported and will be our fallback if any GPU does not
1320 * support retry.
1321 */
1322 for (i = 0; i < p->n_pdds; i++) {
1323 struct kfd_dev *dev = p->pdds[i]->dev;
1324
1325 /* Only consider GFXv9 and higher GPUs. Older GPUs don't
1326 * support the SVM APIs and don't need to be considered
1327 * for the XNACK mode selection.
1328 */
1329 if (!KFD_IS_SOC15(dev))
1330 continue;
1331 /* Aldebaran can always support XNACK because it can support
1332 * per-process XNACK mode selection. But let the dev->noretry
1333 * setting still influence the default XNACK mode.
1334 */
1335 if (supported && KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2))
1336 continue;
1337
1338 /* GFXv10 and later GPUs do not support shader preemption
1339 * during page faults. This can lead to poor QoS for queue
1340 * management and memory-manager-related preemptions or
1341 * even deadlocks.
1342 */
1343 if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
1344 return false;
1345
1346 if (dev->noretry)
1347 return false;
1348 }
1349
1350 return true;
1351 }
1352
1353 /*
1354 * On return the kfd_process is fully operational and will be freed when the
1355 * mm is released
1356 */
create_process(const struct task_struct * thread)1357 static struct kfd_process *create_process(const struct task_struct *thread)
1358 {
1359 struct kfd_process *process;
1360 struct mmu_notifier *mn;
1361 int err = -ENOMEM;
1362
1363 process = kzalloc(sizeof(*process), GFP_KERNEL);
1364 if (!process)
1365 goto err_alloc_process;
1366
1367 kref_init(&process->ref);
1368 mutex_init(&process->mutex);
1369 process->mm = thread->mm;
1370 process->lead_thread = thread->group_leader;
1371 process->n_pdds = 0;
1372 process->queues_paused = false;
1373 INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1374 INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1375 process->last_restore_timestamp = get_jiffies_64();
1376 err = kfd_event_init_process(process);
1377 if (err)
1378 goto err_event_init;
1379 process->is_32bit_user_mode = in_compat_syscall();
1380
1381 process->pasid = kfd_pasid_alloc();
1382 if (process->pasid == 0) {
1383 err = -ENOSPC;
1384 goto err_alloc_pasid;
1385 }
1386
1387 err = pqm_init(&process->pqm, process);
1388 if (err != 0)
1389 goto err_process_pqm_init;
1390
1391 /* init process apertures*/
1392 err = kfd_init_apertures(process);
1393 if (err != 0)
1394 goto err_init_apertures;
1395
1396 /* Check XNACK support after PDDs are created in kfd_init_apertures */
1397 process->xnack_enabled = kfd_process_xnack_mode(process, false);
1398
1399 err = svm_range_list_init(process);
1400 if (err)
1401 goto err_init_svm_range_list;
1402
1403 /* alloc_notifier needs to find the process in the hash table */
1404 hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1405 (uintptr_t)process->mm);
1406
1407 /* MMU notifier registration must be the last call that can fail
1408 * because after this point we cannot unwind the process creation.
1409 * After this point, mmu_notifier_put will trigger the cleanup by
1410 * dropping the last process reference in the free_notifier.
1411 */
1412 mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1413 if (IS_ERR(mn)) {
1414 err = PTR_ERR(mn);
1415 goto err_register_notifier;
1416 }
1417 BUG_ON(mn != &process->mmu_notifier);
1418
1419 get_task_struct(process->lead_thread);
1420
1421 return process;
1422
1423 err_register_notifier:
1424 hash_del_rcu(&process->kfd_processes);
1425 svm_range_list_fini(process);
1426 err_init_svm_range_list:
1427 kfd_process_free_outstanding_kfd_bos(process);
1428 kfd_process_destroy_pdds(process);
1429 err_init_apertures:
1430 pqm_uninit(&process->pqm);
1431 err_process_pqm_init:
1432 kfd_pasid_free(process->pasid);
1433 err_alloc_pasid:
1434 kfd_event_free_process(process);
1435 err_event_init:
1436 mutex_destroy(&process->mutex);
1437 kfree(process);
1438 err_alloc_process:
1439 return ERR_PTR(err);
1440 }
1441
init_doorbell_bitmap(struct qcm_process_device * qpd,struct kfd_dev * dev)1442 static int init_doorbell_bitmap(struct qcm_process_device *qpd,
1443 struct kfd_dev *dev)
1444 {
1445 unsigned int i;
1446 int range_start = dev->shared_resources.non_cp_doorbells_start;
1447 int range_end = dev->shared_resources.non_cp_doorbells_end;
1448
1449 if (!KFD_IS_SOC15(dev))
1450 return 0;
1451
1452 qpd->doorbell_bitmap = bitmap_zalloc(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS,
1453 GFP_KERNEL);
1454 if (!qpd->doorbell_bitmap)
1455 return -ENOMEM;
1456
1457 /* Mask out doorbells reserved for SDMA, IH, and VCN on SOC15. */
1458 pr_debug("reserved doorbell 0x%03x - 0x%03x\n", range_start, range_end);
1459 pr_debug("reserved doorbell 0x%03x - 0x%03x\n",
1460 range_start + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1461 range_end + KFD_QUEUE_DOORBELL_MIRROR_OFFSET);
1462
1463 for (i = 0; i < KFD_MAX_NUM_OF_QUEUES_PER_PROCESS / 2; i++) {
1464 if (i >= range_start && i <= range_end) {
1465 __set_bit(i, qpd->doorbell_bitmap);
1466 __set_bit(i + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1467 qpd->doorbell_bitmap);
1468 }
1469 }
1470
1471 return 0;
1472 }
1473
kfd_get_process_device_data(struct kfd_dev * dev,struct kfd_process * p)1474 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
1475 struct kfd_process *p)
1476 {
1477 int i;
1478
1479 for (i = 0; i < p->n_pdds; i++)
1480 if (p->pdds[i]->dev == dev)
1481 return p->pdds[i];
1482
1483 return NULL;
1484 }
1485
kfd_create_process_device_data(struct kfd_dev * dev,struct kfd_process * p)1486 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
1487 struct kfd_process *p)
1488 {
1489 struct kfd_process_device *pdd = NULL;
1490 int retval = 0;
1491
1492 if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1493 return NULL;
1494 pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1495 if (!pdd)
1496 return NULL;
1497
1498 if (kfd_alloc_process_doorbells(dev, &pdd->doorbell_index) < 0) {
1499 pr_err("Failed to alloc doorbell for pdd\n");
1500 goto err_free_pdd;
1501 }
1502
1503 if (init_doorbell_bitmap(&pdd->qpd, dev)) {
1504 pr_err("Failed to init doorbell for process\n");
1505 goto err_free_pdd;
1506 }
1507
1508 pdd->dev = dev;
1509 INIT_LIST_HEAD(&pdd->qpd.queues_list);
1510 INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1511 pdd->qpd.dqm = dev->dqm;
1512 pdd->qpd.pqm = &p->pqm;
1513 pdd->qpd.evicted = 0;
1514 pdd->qpd.mapped_gws_queue = false;
1515 pdd->process = p;
1516 pdd->bound = PDD_UNBOUND;
1517 pdd->already_dequeued = false;
1518 pdd->runtime_inuse = false;
1519 pdd->vram_usage = 0;
1520 pdd->sdma_past_activity_counter = 0;
1521 pdd->user_gpu_id = dev->id;
1522 atomic64_set(&pdd->evict_duration_counter, 0);
1523
1524 if (dev->shared_resources.enable_mes) {
1525 retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev,
1526 AMDGPU_MES_PROC_CTX_SIZE,
1527 &pdd->proc_ctx_bo,
1528 &pdd->proc_ctx_gpu_addr,
1529 &pdd->proc_ctx_cpu_ptr,
1530 false);
1531 if (retval) {
1532 pr_err("failed to allocate process context bo\n");
1533 goto err_free_pdd;
1534 }
1535 memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE);
1536 }
1537
1538 p->pdds[p->n_pdds++] = pdd;
1539
1540 /* Init idr used for memory handle translation */
1541 idr_init(&pdd->alloc_idr);
1542
1543 return pdd;
1544
1545 err_free_pdd:
1546 kfree(pdd);
1547 return NULL;
1548 }
1549
1550 /**
1551 * kfd_process_device_init_vm - Initialize a VM for a process-device
1552 *
1553 * @pdd: The process-device
1554 * @drm_file: Optional pointer to a DRM file descriptor
1555 *
1556 * If @drm_file is specified, it will be used to acquire the VM from
1557 * that file descriptor. If successful, the @pdd takes ownership of
1558 * the file descriptor.
1559 *
1560 * If @drm_file is NULL, a new VM is created.
1561 *
1562 * Returns 0 on success, -errno on failure.
1563 */
kfd_process_device_init_vm(struct kfd_process_device * pdd,struct file * drm_file)1564 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1565 struct file *drm_file)
1566 {
1567 struct kfd_process *p;
1568 struct kfd_dev *dev;
1569 int ret;
1570
1571 if (!drm_file)
1572 return -EINVAL;
1573
1574 if (pdd->drm_priv)
1575 return -EBUSY;
1576
1577 p = pdd->process;
1578 dev = pdd->dev;
1579
1580 ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(
1581 dev->adev, drm_file, p->pasid,
1582 &p->kgd_process_info, &p->ef);
1583 if (ret) {
1584 pr_err("Failed to create process VM object\n");
1585 return ret;
1586 }
1587 pdd->drm_priv = drm_file->private_data;
1588 atomic64_set(&pdd->tlb_seq, 0);
1589
1590 ret = kfd_process_device_reserve_ib_mem(pdd);
1591 if (ret)
1592 goto err_reserve_ib_mem;
1593 ret = kfd_process_device_init_cwsr_dgpu(pdd);
1594 if (ret)
1595 goto err_init_cwsr;
1596
1597 pdd->drm_file = drm_file;
1598
1599 return 0;
1600
1601 err_init_cwsr:
1602 err_reserve_ib_mem:
1603 kfd_process_device_free_bos(pdd);
1604 pdd->drm_priv = NULL;
1605
1606 return ret;
1607 }
1608
1609 /*
1610 * Direct the IOMMU to bind the process (specifically the pasid->mm)
1611 * to the device.
1612 * Unbinding occurs when the process dies or the device is removed.
1613 *
1614 * Assumes that the process lock is held.
1615 */
kfd_bind_process_to_device(struct kfd_dev * dev,struct kfd_process * p)1616 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
1617 struct kfd_process *p)
1618 {
1619 struct kfd_process_device *pdd;
1620 int err;
1621
1622 pdd = kfd_get_process_device_data(dev, p);
1623 if (!pdd) {
1624 pr_err("Process device data doesn't exist\n");
1625 return ERR_PTR(-ENOMEM);
1626 }
1627
1628 if (!pdd->drm_priv)
1629 return ERR_PTR(-ENODEV);
1630
1631 /*
1632 * signal runtime-pm system to auto resume and prevent
1633 * further runtime suspend once device pdd is created until
1634 * pdd is destroyed.
1635 */
1636 if (!pdd->runtime_inuse) {
1637 err = pm_runtime_get_sync(dev->ddev->dev);
1638 if (err < 0) {
1639 pm_runtime_put_autosuspend(dev->ddev->dev);
1640 return ERR_PTR(err);
1641 }
1642 }
1643
1644 err = kfd_iommu_bind_process_to_device(pdd);
1645 if (err)
1646 goto out;
1647
1648 /*
1649 * make sure that runtime_usage counter is incremented just once
1650 * per pdd
1651 */
1652 pdd->runtime_inuse = true;
1653
1654 return pdd;
1655
1656 out:
1657 /* balance runpm reference count and exit with error */
1658 if (!pdd->runtime_inuse) {
1659 pm_runtime_mark_last_busy(dev->ddev->dev);
1660 pm_runtime_put_autosuspend(dev->ddev->dev);
1661 }
1662
1663 return ERR_PTR(err);
1664 }
1665
1666 /* Create specific handle mapped to mem from process local memory idr
1667 * Assumes that the process lock is held.
1668 */
kfd_process_device_create_obj_handle(struct kfd_process_device * pdd,void * mem)1669 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1670 void *mem)
1671 {
1672 return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1673 }
1674
1675 /* Translate specific handle from process local memory idr
1676 * Assumes that the process lock is held.
1677 */
kfd_process_device_translate_handle(struct kfd_process_device * pdd,int handle)1678 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1679 int handle)
1680 {
1681 if (handle < 0)
1682 return NULL;
1683
1684 return idr_find(&pdd->alloc_idr, handle);
1685 }
1686
1687 /* Remove specific handle from process local memory idr
1688 * Assumes that the process lock is held.
1689 */
kfd_process_device_remove_obj_handle(struct kfd_process_device * pdd,int handle)1690 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1691 int handle)
1692 {
1693 if (handle >= 0)
1694 idr_remove(&pdd->alloc_idr, handle);
1695 }
1696
1697 /* This increments the process->ref counter. */
kfd_lookup_process_by_pasid(u32 pasid)1698 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1699 {
1700 struct kfd_process *p, *ret_p = NULL;
1701 unsigned int temp;
1702
1703 int idx = srcu_read_lock(&kfd_processes_srcu);
1704
1705 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1706 if (p->pasid == pasid) {
1707 kref_get(&p->ref);
1708 ret_p = p;
1709 break;
1710 }
1711 }
1712
1713 srcu_read_unlock(&kfd_processes_srcu, idx);
1714
1715 return ret_p;
1716 }
1717
1718 /* This increments the process->ref counter. */
kfd_lookup_process_by_mm(const struct mm_struct * mm)1719 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1720 {
1721 struct kfd_process *p;
1722
1723 int idx = srcu_read_lock(&kfd_processes_srcu);
1724
1725 p = find_process_by_mm(mm);
1726 if (p)
1727 kref_get(&p->ref);
1728
1729 srcu_read_unlock(&kfd_processes_srcu, idx);
1730
1731 return p;
1732 }
1733
1734 /* kfd_process_evict_queues - Evict all user queues of a process
1735 *
1736 * Eviction is reference-counted per process-device. This means multiple
1737 * evictions from different sources can be nested safely.
1738 */
kfd_process_evict_queues(struct kfd_process * p)1739 int kfd_process_evict_queues(struct kfd_process *p)
1740 {
1741 int r = 0;
1742 int i;
1743 unsigned int n_evicted = 0;
1744
1745 for (i = 0; i < p->n_pdds; i++) {
1746 struct kfd_process_device *pdd = p->pdds[i];
1747
1748 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1749 &pdd->qpd);
1750 /* evict return -EIO if HWS is hang or asic is resetting, in this case
1751 * we would like to set all the queues to be in evicted state to prevent
1752 * them been add back since they actually not be saved right now.
1753 */
1754 if (r && r != -EIO) {
1755 pr_err("Failed to evict process queues\n");
1756 goto fail;
1757 }
1758 n_evicted++;
1759 }
1760
1761 return r;
1762
1763 fail:
1764 /* To keep state consistent, roll back partial eviction by
1765 * restoring queues
1766 */
1767 for (i = 0; i < p->n_pdds; i++) {
1768 struct kfd_process_device *pdd = p->pdds[i];
1769
1770 if (n_evicted == 0)
1771 break;
1772 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1773 &pdd->qpd))
1774 pr_err("Failed to restore queues\n");
1775
1776 n_evicted--;
1777 }
1778
1779 return r;
1780 }
1781
1782 /* kfd_process_restore_queues - Restore all user queues of a process */
kfd_process_restore_queues(struct kfd_process * p)1783 int kfd_process_restore_queues(struct kfd_process *p)
1784 {
1785 int r, ret = 0;
1786 int i;
1787
1788 for (i = 0; i < p->n_pdds; i++) {
1789 struct kfd_process_device *pdd = p->pdds[i];
1790
1791 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1792 &pdd->qpd);
1793 if (r) {
1794 pr_err("Failed to restore process queues\n");
1795 if (!ret)
1796 ret = r;
1797 }
1798 }
1799
1800 return ret;
1801 }
1802
kfd_process_gpuidx_from_gpuid(struct kfd_process * p,uint32_t gpu_id)1803 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1804 {
1805 int i;
1806
1807 for (i = 0; i < p->n_pdds; i++)
1808 if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
1809 return i;
1810 return -EINVAL;
1811 }
1812
1813 int
kfd_process_gpuid_from_adev(struct kfd_process * p,struct amdgpu_device * adev,uint32_t * gpuid,uint32_t * gpuidx)1814 kfd_process_gpuid_from_adev(struct kfd_process *p, struct amdgpu_device *adev,
1815 uint32_t *gpuid, uint32_t *gpuidx)
1816 {
1817 int i;
1818
1819 for (i = 0; i < p->n_pdds; i++)
1820 if (p->pdds[i] && p->pdds[i]->dev->adev == adev) {
1821 *gpuid = p->pdds[i]->user_gpu_id;
1822 *gpuidx = i;
1823 return 0;
1824 }
1825 return -EINVAL;
1826 }
1827
evict_process_worker(struct work_struct * work)1828 static void evict_process_worker(struct work_struct *work)
1829 {
1830 int ret;
1831 struct kfd_process *p;
1832 struct delayed_work *dwork;
1833
1834 dwork = to_delayed_work(work);
1835
1836 /* Process termination destroys this worker thread. So during the
1837 * lifetime of this thread, kfd_process p will be valid
1838 */
1839 p = container_of(dwork, struct kfd_process, eviction_work);
1840 WARN_ONCE(p->last_eviction_seqno != p->ef->seqno,
1841 "Eviction fence mismatch\n");
1842
1843 /* Narrow window of overlap between restore and evict work
1844 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos
1845 * unreserves KFD BOs, it is possible to evicted again. But
1846 * restore has few more steps of finish. So lets wait for any
1847 * previous restore work to complete
1848 */
1849 flush_delayed_work(&p->restore_work);
1850
1851 pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1852 ret = kfd_process_evict_queues(p);
1853 if (!ret) {
1854 dma_fence_signal(p->ef);
1855 dma_fence_put(p->ef);
1856 p->ef = NULL;
1857 queue_delayed_work(kfd_restore_wq, &p->restore_work,
1858 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
1859
1860 pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1861 } else
1862 pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1863 }
1864
restore_process_worker(struct work_struct * work)1865 static void restore_process_worker(struct work_struct *work)
1866 {
1867 struct delayed_work *dwork;
1868 struct kfd_process *p;
1869 int ret = 0;
1870
1871 dwork = to_delayed_work(work);
1872
1873 /* Process termination destroys this worker thread. So during the
1874 * lifetime of this thread, kfd_process p will be valid
1875 */
1876 p = container_of(dwork, struct kfd_process, restore_work);
1877 pr_debug("Started restoring pasid 0x%x\n", p->pasid);
1878
1879 /* Setting last_restore_timestamp before successful restoration.
1880 * Otherwise this would have to be set by KGD (restore_process_bos)
1881 * before KFD BOs are unreserved. If not, the process can be evicted
1882 * again before the timestamp is set.
1883 * If restore fails, the timestamp will be set again in the next
1884 * attempt. This would mean that the minimum GPU quanta would be
1885 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
1886 * functions)
1887 */
1888
1889 p->last_restore_timestamp = get_jiffies_64();
1890 ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info,
1891 &p->ef);
1892 if (ret) {
1893 pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
1894 p->pasid, PROCESS_BACK_OFF_TIME_MS);
1895 ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
1896 msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
1897 WARN(!ret, "reschedule restore work failed\n");
1898 return;
1899 }
1900
1901 ret = kfd_process_restore_queues(p);
1902 if (!ret)
1903 pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1904 else
1905 pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1906 }
1907
kfd_suspend_all_processes(void)1908 void kfd_suspend_all_processes(void)
1909 {
1910 struct kfd_process *p;
1911 unsigned int temp;
1912 int idx = srcu_read_lock(&kfd_processes_srcu);
1913
1914 WARN(debug_evictions, "Evicting all processes");
1915 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1916 cancel_delayed_work_sync(&p->eviction_work);
1917 cancel_delayed_work_sync(&p->restore_work);
1918
1919 if (kfd_process_evict_queues(p))
1920 pr_err("Failed to suspend process 0x%x\n", p->pasid);
1921 dma_fence_signal(p->ef);
1922 dma_fence_put(p->ef);
1923 p->ef = NULL;
1924 }
1925 srcu_read_unlock(&kfd_processes_srcu, idx);
1926 }
1927
kfd_resume_all_processes(void)1928 int kfd_resume_all_processes(void)
1929 {
1930 struct kfd_process *p;
1931 unsigned int temp;
1932 int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
1933
1934 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1935 if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) {
1936 pr_err("Restore process %d failed during resume\n",
1937 p->pasid);
1938 ret = -EFAULT;
1939 }
1940 }
1941 srcu_read_unlock(&kfd_processes_srcu, idx);
1942 return ret;
1943 }
1944
kfd_reserved_mem_mmap(struct kfd_dev * dev,struct kfd_process * process,struct vm_area_struct * vma)1945 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
1946 struct vm_area_struct *vma)
1947 {
1948 struct kfd_process_device *pdd;
1949 struct qcm_process_device *qpd;
1950
1951 if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
1952 pr_err("Incorrect CWSR mapping size.\n");
1953 return -EINVAL;
1954 }
1955
1956 pdd = kfd_get_process_device_data(dev, process);
1957 if (!pdd)
1958 return -EINVAL;
1959 qpd = &pdd->qpd;
1960
1961 qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1962 get_order(KFD_CWSR_TBA_TMA_SIZE));
1963 if (!qpd->cwsr_kaddr) {
1964 pr_err("Error allocating per process CWSR buffer.\n");
1965 return -ENOMEM;
1966 }
1967
1968 vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND
1969 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP;
1970 /* Mapping pages to user process */
1971 return remap_pfn_range(vma, vma->vm_start,
1972 PFN_DOWN(__pa(qpd->cwsr_kaddr)),
1973 KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
1974 }
1975
kfd_flush_tlb(struct kfd_process_device * pdd,enum TLB_FLUSH_TYPE type)1976 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type)
1977 {
1978 struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
1979 uint64_t tlb_seq = amdgpu_vm_tlb_seq(vm);
1980 struct kfd_dev *dev = pdd->dev;
1981
1982 /*
1983 * It can be that we race and lose here, but that is extremely unlikely
1984 * and the worst thing which could happen is that we flush the changes
1985 * into the TLB once more which is harmless.
1986 */
1987 if (atomic64_xchg(&pdd->tlb_seq, tlb_seq) == tlb_seq)
1988 return;
1989
1990 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1991 /* Nothing to flush until a VMID is assigned, which
1992 * only happens when the first queue is created.
1993 */
1994 if (pdd->qpd.vmid)
1995 amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->adev,
1996 pdd->qpd.vmid);
1997 } else {
1998 amdgpu_amdkfd_flush_gpu_tlb_pasid(dev->adev,
1999 pdd->process->pasid, type);
2000 }
2001 }
2002
kfd_process_device_data_by_id(struct kfd_process * p,uint32_t gpu_id)2003 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
2004 {
2005 int i;
2006
2007 if (gpu_id) {
2008 for (i = 0; i < p->n_pdds; i++) {
2009 struct kfd_process_device *pdd = p->pdds[i];
2010
2011 if (pdd->user_gpu_id == gpu_id)
2012 return pdd;
2013 }
2014 }
2015 return NULL;
2016 }
2017
kfd_process_get_user_gpu_id(struct kfd_process * p,uint32_t actual_gpu_id)2018 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
2019 {
2020 int i;
2021
2022 if (!actual_gpu_id)
2023 return 0;
2024
2025 for (i = 0; i < p->n_pdds; i++) {
2026 struct kfd_process_device *pdd = p->pdds[i];
2027
2028 if (pdd->dev->id == actual_gpu_id)
2029 return pdd->user_gpu_id;
2030 }
2031 return -EINVAL;
2032 }
2033
2034 #if defined(CONFIG_DEBUG_FS)
2035
kfd_debugfs_mqds_by_process(struct seq_file * m,void * data)2036 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
2037 {
2038 struct kfd_process *p;
2039 unsigned int temp;
2040 int r = 0;
2041
2042 int idx = srcu_read_lock(&kfd_processes_srcu);
2043
2044 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2045 seq_printf(m, "Process %d PASID 0x%x:\n",
2046 p->lead_thread->tgid, p->pasid);
2047
2048 mutex_lock(&p->mutex);
2049 r = pqm_debugfs_mqds(m, &p->pqm);
2050 mutex_unlock(&p->mutex);
2051
2052 if (r)
2053 break;
2054 }
2055
2056 srcu_read_unlock(&kfd_processes_srcu, idx);
2057
2058 return r;
2059 }
2060
2061 #endif
2062
2063