1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #include <linux/mutex.h>
25 #include <linux/log2.h>
26 #include <linux/sched.h>
27 #include <linux/sched/mm.h>
28 #include <linux/sched/task.h>
29 #include <linux/mmu_context.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/compat.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/pm_runtime.h>
36 #include "amdgpu_amdkfd.h"
37 #include "amdgpu.h"
38
39 struct mm_struct;
40
41 #include "kfd_priv.h"
42 #include "kfd_device_queue_manager.h"
43 #include "kfd_svm.h"
44 #include "kfd_smi_events.h"
45 #include "kfd_debug.h"
46
47 /*
48 * List of struct kfd_process (field kfd_process).
49 * Unique/indexed by mm_struct*
50 */
51 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
52 DEFINE_MUTEX(kfd_processes_mutex);
53
54 DEFINE_SRCU(kfd_processes_srcu);
55
56 /* For process termination handling */
57 static struct workqueue_struct *kfd_process_wq;
58
59 /* Ordered, single-threaded workqueue for restoring evicted
60 * processes. Restoring multiple processes concurrently under memory
61 * pressure can lead to processes blocking each other from validating
62 * their BOs and result in a live-lock situation where processes
63 * remain evicted indefinitely.
64 */
65 static struct workqueue_struct *kfd_restore_wq;
66
67 static struct kfd_process *find_process(const struct task_struct *thread,
68 bool ref);
69 static void kfd_process_ref_release(struct kref *ref);
70 static struct kfd_process *create_process(const struct task_struct *thread);
71
72 static void evict_process_worker(struct work_struct *work);
73 static void restore_process_worker(struct work_struct *work);
74
75 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
76
77 struct kfd_procfs_tree {
78 struct kobject *kobj;
79 };
80
81 static struct kfd_procfs_tree procfs;
82
83 /*
84 * Structure for SDMA activity tracking
85 */
86 struct kfd_sdma_activity_handler_workarea {
87 struct work_struct sdma_activity_work;
88 struct kfd_process_device *pdd;
89 uint64_t sdma_activity_counter;
90 };
91
92 struct temp_sdma_queue_list {
93 uint64_t __user *rptr;
94 uint64_t sdma_val;
95 unsigned int queue_id;
96 struct list_head list;
97 };
98
kfd_sdma_activity_worker(struct work_struct * work)99 static void kfd_sdma_activity_worker(struct work_struct *work)
100 {
101 struct kfd_sdma_activity_handler_workarea *workarea;
102 struct kfd_process_device *pdd;
103 uint64_t val;
104 struct mm_struct *mm;
105 struct queue *q;
106 struct qcm_process_device *qpd;
107 struct device_queue_manager *dqm;
108 int ret = 0;
109 struct temp_sdma_queue_list sdma_q_list;
110 struct temp_sdma_queue_list *sdma_q, *next;
111
112 workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
113 sdma_activity_work);
114
115 pdd = workarea->pdd;
116 if (!pdd)
117 return;
118 dqm = pdd->dev->dqm;
119 qpd = &pdd->qpd;
120 if (!dqm || !qpd)
121 return;
122 /*
123 * Total SDMA activity is current SDMA activity + past SDMA activity
124 * Past SDMA count is stored in pdd.
125 * To get the current activity counters for all active SDMA queues,
126 * we loop over all SDMA queues and get their counts from user-space.
127 *
128 * We cannot call get_user() with dqm_lock held as it can cause
129 * a circular lock dependency situation. To read the SDMA stats,
130 * we need to do the following:
131 *
132 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
133 * with dqm_lock/dqm_unlock().
134 * 2. Call get_user() for each node in temporary list without dqm_lock.
135 * Save the SDMA count for each node and also add the count to the total
136 * SDMA count counter.
137 * Its possible, during this step, a few SDMA queue nodes got deleted
138 * from the qpd->queues_list.
139 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
140 * If any node got deleted, its SDMA count would be captured in the sdma
141 * past activity counter. So subtract the SDMA counter stored in step 2
142 * for this node from the total SDMA count.
143 */
144 INIT_LIST_HEAD(&sdma_q_list.list);
145
146 /*
147 * Create the temp list of all SDMA queues
148 */
149 dqm_lock(dqm);
150
151 list_for_each_entry(q, &qpd->queues_list, list) {
152 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
153 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
154 continue;
155
156 sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
157 if (!sdma_q) {
158 dqm_unlock(dqm);
159 goto cleanup;
160 }
161
162 INIT_LIST_HEAD(&sdma_q->list);
163 sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
164 sdma_q->queue_id = q->properties.queue_id;
165 list_add_tail(&sdma_q->list, &sdma_q_list.list);
166 }
167
168 /*
169 * If the temp list is empty, then no SDMA queues nodes were found in
170 * qpd->queues_list. Return the past activity count as the total sdma
171 * count
172 */
173 if (list_empty(&sdma_q_list.list)) {
174 workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
175 dqm_unlock(dqm);
176 return;
177 }
178
179 dqm_unlock(dqm);
180
181 /*
182 * Get the usage count for each SDMA queue in temp_list.
183 */
184 mm = get_task_mm(pdd->process->lead_thread);
185 if (!mm)
186 goto cleanup;
187
188 kthread_use_mm(mm);
189
190 list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
191 val = 0;
192 ret = read_sdma_queue_counter(sdma_q->rptr, &val);
193 if (ret) {
194 pr_debug("Failed to read SDMA queue active counter for queue id: %d",
195 sdma_q->queue_id);
196 } else {
197 sdma_q->sdma_val = val;
198 workarea->sdma_activity_counter += val;
199 }
200 }
201
202 kthread_unuse_mm(mm);
203 mmput(mm);
204
205 /*
206 * Do a second iteration over qpd_queues_list to check if any SDMA
207 * nodes got deleted while fetching SDMA counter.
208 */
209 dqm_lock(dqm);
210
211 workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
212
213 list_for_each_entry(q, &qpd->queues_list, list) {
214 if (list_empty(&sdma_q_list.list))
215 break;
216
217 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
218 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
219 continue;
220
221 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
222 if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
223 (sdma_q->queue_id == q->properties.queue_id)) {
224 list_del(&sdma_q->list);
225 kfree(sdma_q);
226 break;
227 }
228 }
229 }
230
231 dqm_unlock(dqm);
232
233 /*
234 * If temp list is not empty, it implies some queues got deleted
235 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
236 * count for each node from the total SDMA count.
237 */
238 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
239 workarea->sdma_activity_counter -= sdma_q->sdma_val;
240 list_del(&sdma_q->list);
241 kfree(sdma_q);
242 }
243
244 return;
245
246 cleanup:
247 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
248 list_del(&sdma_q->list);
249 kfree(sdma_q);
250 }
251 }
252
253 /**
254 * kfd_get_cu_occupancy - Collect number of waves in-flight on this device
255 * by current process. Translates acquired wave count into number of compute units
256 * that are occupied.
257 *
258 * @attr: Handle of attribute that allows reporting of wave count. The attribute
259 * handle encapsulates GPU device it is associated with, thereby allowing collection
260 * of waves in flight, etc
261 * @buffer: Handle of user provided buffer updated with wave count
262 *
263 * Return: Number of bytes written to user buffer or an error value
264 */
kfd_get_cu_occupancy(struct attribute * attr,char * buffer)265 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
266 {
267 int cu_cnt;
268 int wave_cnt;
269 int max_waves_per_cu;
270 struct kfd_node *dev = NULL;
271 struct kfd_process *proc = NULL;
272 struct kfd_process_device *pdd = NULL;
273
274 pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
275 dev = pdd->dev;
276 if (dev->kfd2kgd->get_cu_occupancy == NULL)
277 return -EINVAL;
278
279 cu_cnt = 0;
280 proc = pdd->process;
281 if (pdd->qpd.queue_count == 0) {
282 pr_debug("Gpu-Id: %d has no active queues for process %d\n",
283 dev->id, proc->pasid);
284 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
285 }
286
287 /* Collect wave count from device if it supports */
288 wave_cnt = 0;
289 max_waves_per_cu = 0;
290 dev->kfd2kgd->get_cu_occupancy(dev->adev, proc->pasid, &wave_cnt,
291 &max_waves_per_cu, 0);
292
293 /* Translate wave count to number of compute units */
294 cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
295 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
296 }
297
kfd_procfs_show(struct kobject * kobj,struct attribute * attr,char * buffer)298 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
299 char *buffer)
300 {
301 if (strcmp(attr->name, "pasid") == 0) {
302 struct kfd_process *p = container_of(attr, struct kfd_process,
303 attr_pasid);
304
305 return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
306 } else if (strncmp(attr->name, "vram_", 5) == 0) {
307 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
308 attr_vram);
309 return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
310 } else if (strncmp(attr->name, "sdma_", 5) == 0) {
311 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
312 attr_sdma);
313 struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
314
315 INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
316 kfd_sdma_activity_worker);
317
318 sdma_activity_work_handler.pdd = pdd;
319 sdma_activity_work_handler.sdma_activity_counter = 0;
320
321 schedule_work(&sdma_activity_work_handler.sdma_activity_work);
322
323 flush_work(&sdma_activity_work_handler.sdma_activity_work);
324
325 return snprintf(buffer, PAGE_SIZE, "%llu\n",
326 (sdma_activity_work_handler.sdma_activity_counter)/
327 SDMA_ACTIVITY_DIVISOR);
328 } else {
329 pr_err("Invalid attribute");
330 return -EINVAL;
331 }
332
333 return 0;
334 }
335
kfd_procfs_kobj_release(struct kobject * kobj)336 static void kfd_procfs_kobj_release(struct kobject *kobj)
337 {
338 kfree(kobj);
339 }
340
341 static const struct sysfs_ops kfd_procfs_ops = {
342 .show = kfd_procfs_show,
343 };
344
345 static const struct kobj_type procfs_type = {
346 .release = kfd_procfs_kobj_release,
347 .sysfs_ops = &kfd_procfs_ops,
348 };
349
kfd_procfs_init(void)350 void kfd_procfs_init(void)
351 {
352 int ret = 0;
353
354 procfs.kobj = kfd_alloc_struct(procfs.kobj);
355 if (!procfs.kobj)
356 return;
357
358 ret = kobject_init_and_add(procfs.kobj, &procfs_type,
359 &kfd_device->kobj, "proc");
360 if (ret) {
361 pr_warn("Could not create procfs proc folder");
362 /* If we fail to create the procfs, clean up */
363 kfd_procfs_shutdown();
364 }
365 }
366
kfd_procfs_shutdown(void)367 void kfd_procfs_shutdown(void)
368 {
369 if (procfs.kobj) {
370 kobject_del(procfs.kobj);
371 kobject_put(procfs.kobj);
372 procfs.kobj = NULL;
373 }
374 }
375
kfd_procfs_queue_show(struct kobject * kobj,struct attribute * attr,char * buffer)376 static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
377 struct attribute *attr, char *buffer)
378 {
379 struct queue *q = container_of(kobj, struct queue, kobj);
380
381 if (!strcmp(attr->name, "size"))
382 return snprintf(buffer, PAGE_SIZE, "%llu",
383 q->properties.queue_size);
384 else if (!strcmp(attr->name, "type"))
385 return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
386 else if (!strcmp(attr->name, "gpuid"))
387 return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
388 else
389 pr_err("Invalid attribute");
390
391 return 0;
392 }
393
kfd_procfs_stats_show(struct kobject * kobj,struct attribute * attr,char * buffer)394 static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
395 struct attribute *attr, char *buffer)
396 {
397 if (strcmp(attr->name, "evicted_ms") == 0) {
398 struct kfd_process_device *pdd = container_of(attr,
399 struct kfd_process_device,
400 attr_evict);
401 uint64_t evict_jiffies;
402
403 evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
404
405 return snprintf(buffer,
406 PAGE_SIZE,
407 "%llu\n",
408 jiffies64_to_msecs(evict_jiffies));
409
410 /* Sysfs handle that gets CU occupancy is per device */
411 } else if (strcmp(attr->name, "cu_occupancy") == 0) {
412 return kfd_get_cu_occupancy(attr, buffer);
413 } else {
414 pr_err("Invalid attribute");
415 }
416
417 return 0;
418 }
419
kfd_sysfs_counters_show(struct kobject * kobj,struct attribute * attr,char * buf)420 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
421 struct attribute *attr, char *buf)
422 {
423 struct kfd_process_device *pdd;
424
425 if (!strcmp(attr->name, "faults")) {
426 pdd = container_of(attr, struct kfd_process_device,
427 attr_faults);
428 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
429 }
430 if (!strcmp(attr->name, "page_in")) {
431 pdd = container_of(attr, struct kfd_process_device,
432 attr_page_in);
433 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
434 }
435 if (!strcmp(attr->name, "page_out")) {
436 pdd = container_of(attr, struct kfd_process_device,
437 attr_page_out);
438 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
439 }
440 return 0;
441 }
442
443 static struct attribute attr_queue_size = {
444 .name = "size",
445 .mode = KFD_SYSFS_FILE_MODE
446 };
447
448 static struct attribute attr_queue_type = {
449 .name = "type",
450 .mode = KFD_SYSFS_FILE_MODE
451 };
452
453 static struct attribute attr_queue_gpuid = {
454 .name = "gpuid",
455 .mode = KFD_SYSFS_FILE_MODE
456 };
457
458 static struct attribute *procfs_queue_attrs[] = {
459 &attr_queue_size,
460 &attr_queue_type,
461 &attr_queue_gpuid,
462 NULL
463 };
464 ATTRIBUTE_GROUPS(procfs_queue);
465
466 static const struct sysfs_ops procfs_queue_ops = {
467 .show = kfd_procfs_queue_show,
468 };
469
470 static const struct kobj_type procfs_queue_type = {
471 .sysfs_ops = &procfs_queue_ops,
472 .default_groups = procfs_queue_groups,
473 };
474
475 static const struct sysfs_ops procfs_stats_ops = {
476 .show = kfd_procfs_stats_show,
477 };
478
479 static const struct kobj_type procfs_stats_type = {
480 .sysfs_ops = &procfs_stats_ops,
481 .release = kfd_procfs_kobj_release,
482 };
483
484 static const struct sysfs_ops sysfs_counters_ops = {
485 .show = kfd_sysfs_counters_show,
486 };
487
488 static const struct kobj_type sysfs_counters_type = {
489 .sysfs_ops = &sysfs_counters_ops,
490 .release = kfd_procfs_kobj_release,
491 };
492
kfd_procfs_add_queue(struct queue * q)493 int kfd_procfs_add_queue(struct queue *q)
494 {
495 struct kfd_process *proc;
496 int ret;
497
498 if (!q || !q->process)
499 return -EINVAL;
500 proc = q->process;
501
502 /* Create proc/<pid>/queues/<queue id> folder */
503 if (!proc->kobj_queues)
504 return -EFAULT;
505 ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
506 proc->kobj_queues, "%u", q->properties.queue_id);
507 if (ret < 0) {
508 pr_warn("Creating proc/<pid>/queues/%u failed",
509 q->properties.queue_id);
510 kobject_put(&q->kobj);
511 return ret;
512 }
513
514 return 0;
515 }
516
kfd_sysfs_create_file(struct kobject * kobj,struct attribute * attr,char * name)517 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
518 char *name)
519 {
520 int ret;
521
522 if (!kobj || !attr || !name)
523 return;
524
525 attr->name = name;
526 attr->mode = KFD_SYSFS_FILE_MODE;
527 sysfs_attr_init(attr);
528
529 ret = sysfs_create_file(kobj, attr);
530 if (ret)
531 pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
532 }
533
kfd_procfs_add_sysfs_stats(struct kfd_process * p)534 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
535 {
536 int ret;
537 int i;
538 char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
539
540 if (!p || !p->kobj)
541 return;
542
543 /*
544 * Create sysfs files for each GPU:
545 * - proc/<pid>/stats_<gpuid>/
546 * - proc/<pid>/stats_<gpuid>/evicted_ms
547 * - proc/<pid>/stats_<gpuid>/cu_occupancy
548 */
549 for (i = 0; i < p->n_pdds; i++) {
550 struct kfd_process_device *pdd = p->pdds[i];
551
552 snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
553 "stats_%u", pdd->dev->id);
554 pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
555 if (!pdd->kobj_stats)
556 return;
557
558 ret = kobject_init_and_add(pdd->kobj_stats,
559 &procfs_stats_type,
560 p->kobj,
561 stats_dir_filename);
562
563 if (ret) {
564 pr_warn("Creating KFD proc/stats_%s folder failed",
565 stats_dir_filename);
566 kobject_put(pdd->kobj_stats);
567 pdd->kobj_stats = NULL;
568 return;
569 }
570
571 kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
572 "evicted_ms");
573 /* Add sysfs file to report compute unit occupancy */
574 if (pdd->dev->kfd2kgd->get_cu_occupancy)
575 kfd_sysfs_create_file(pdd->kobj_stats,
576 &pdd->attr_cu_occupancy,
577 "cu_occupancy");
578 }
579 }
580
kfd_procfs_add_sysfs_counters(struct kfd_process * p)581 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
582 {
583 int ret = 0;
584 int i;
585 char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
586
587 if (!p || !p->kobj)
588 return;
589
590 /*
591 * Create sysfs files for each GPU which supports SVM
592 * - proc/<pid>/counters_<gpuid>/
593 * - proc/<pid>/counters_<gpuid>/faults
594 * - proc/<pid>/counters_<gpuid>/page_in
595 * - proc/<pid>/counters_<gpuid>/page_out
596 */
597 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
598 struct kfd_process_device *pdd = p->pdds[i];
599 struct kobject *kobj_counters;
600
601 snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
602 "counters_%u", pdd->dev->id);
603 kobj_counters = kfd_alloc_struct(kobj_counters);
604 if (!kobj_counters)
605 return;
606
607 ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
608 p->kobj, counters_dir_filename);
609 if (ret) {
610 pr_warn("Creating KFD proc/%s folder failed",
611 counters_dir_filename);
612 kobject_put(kobj_counters);
613 return;
614 }
615
616 pdd->kobj_counters = kobj_counters;
617 kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
618 "faults");
619 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
620 "page_in");
621 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
622 "page_out");
623 }
624 }
625
kfd_procfs_add_sysfs_files(struct kfd_process * p)626 static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
627 {
628 int i;
629
630 if (!p || !p->kobj)
631 return;
632
633 /*
634 * Create sysfs files for each GPU:
635 * - proc/<pid>/vram_<gpuid>
636 * - proc/<pid>/sdma_<gpuid>
637 */
638 for (i = 0; i < p->n_pdds; i++) {
639 struct kfd_process_device *pdd = p->pdds[i];
640
641 snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
642 pdd->dev->id);
643 kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
644 pdd->vram_filename);
645
646 snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
647 pdd->dev->id);
648 kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
649 pdd->sdma_filename);
650 }
651 }
652
kfd_procfs_del_queue(struct queue * q)653 void kfd_procfs_del_queue(struct queue *q)
654 {
655 if (!q)
656 return;
657
658 kobject_del(&q->kobj);
659 kobject_put(&q->kobj);
660 }
661
kfd_process_create_wq(void)662 int kfd_process_create_wq(void)
663 {
664 if (!kfd_process_wq)
665 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
666 if (!kfd_restore_wq)
667 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0);
668
669 if (!kfd_process_wq || !kfd_restore_wq) {
670 kfd_process_destroy_wq();
671 return -ENOMEM;
672 }
673
674 return 0;
675 }
676
kfd_process_destroy_wq(void)677 void kfd_process_destroy_wq(void)
678 {
679 if (kfd_process_wq) {
680 destroy_workqueue(kfd_process_wq);
681 kfd_process_wq = NULL;
682 }
683 if (kfd_restore_wq) {
684 destroy_workqueue(kfd_restore_wq);
685 kfd_restore_wq = NULL;
686 }
687 }
688
kfd_process_free_gpuvm(struct kgd_mem * mem,struct kfd_process_device * pdd,void ** kptr)689 static void kfd_process_free_gpuvm(struct kgd_mem *mem,
690 struct kfd_process_device *pdd, void **kptr)
691 {
692 struct kfd_node *dev = pdd->dev;
693
694 if (kptr && *kptr) {
695 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
696 *kptr = NULL;
697 }
698
699 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
700 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
701 NULL);
702 }
703
704 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
705 * This function should be only called right after the process
706 * is created and when kfd_processes_mutex is still being held
707 * to avoid concurrency. Because of that exclusiveness, we do
708 * not need to take p->mutex.
709 */
kfd_process_alloc_gpuvm(struct kfd_process_device * pdd,uint64_t gpu_va,uint32_t size,uint32_t flags,struct kgd_mem ** mem,void ** kptr)710 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
711 uint64_t gpu_va, uint32_t size,
712 uint32_t flags, struct kgd_mem **mem, void **kptr)
713 {
714 struct kfd_node *kdev = pdd->dev;
715 int err;
716
717 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
718 pdd->drm_priv, mem, NULL,
719 flags, false);
720 if (err)
721 goto err_alloc_mem;
722
723 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
724 pdd->drm_priv);
725 if (err)
726 goto err_map_mem;
727
728 err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
729 if (err) {
730 pr_debug("Sync memory failed, wait interrupted by user signal\n");
731 goto sync_memory_failed;
732 }
733
734 if (kptr) {
735 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(
736 (struct kgd_mem *)*mem, kptr, NULL);
737 if (err) {
738 pr_debug("Map GTT BO to kernel failed\n");
739 goto sync_memory_failed;
740 }
741 }
742
743 return err;
744
745 sync_memory_failed:
746 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
747
748 err_map_mem:
749 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
750 NULL);
751 err_alloc_mem:
752 *mem = NULL;
753 *kptr = NULL;
754 return err;
755 }
756
757 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the
758 * process for IB usage The memory reserved is for KFD to submit
759 * IB to AMDGPU from kernel. If the memory is reserved
760 * successfully, ib_kaddr will have the CPU/kernel
761 * address. Check ib_kaddr before accessing the memory.
762 */
kfd_process_device_reserve_ib_mem(struct kfd_process_device * pdd)763 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
764 {
765 struct qcm_process_device *qpd = &pdd->qpd;
766 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
767 KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
768 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
769 KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
770 struct kgd_mem *mem;
771 void *kaddr;
772 int ret;
773
774 if (qpd->ib_kaddr || !qpd->ib_base)
775 return 0;
776
777 /* ib_base is only set for dGPU */
778 ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
779 &mem, &kaddr);
780 if (ret)
781 return ret;
782
783 qpd->ib_mem = mem;
784 qpd->ib_kaddr = kaddr;
785
786 return 0;
787 }
788
kfd_process_device_destroy_ib_mem(struct kfd_process_device * pdd)789 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
790 {
791 struct qcm_process_device *qpd = &pdd->qpd;
792
793 if (!qpd->ib_kaddr || !qpd->ib_base)
794 return;
795
796 kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr);
797 }
798
kfd_create_process(struct task_struct * thread)799 struct kfd_process *kfd_create_process(struct task_struct *thread)
800 {
801 struct kfd_process *process;
802 int ret;
803
804 if (!(thread->mm && mmget_not_zero(thread->mm)))
805 return ERR_PTR(-EINVAL);
806
807 /* Only the pthreads threading model is supported. */
808 if (thread->group_leader->mm != thread->mm) {
809 mmput(thread->mm);
810 return ERR_PTR(-EINVAL);
811 }
812
813 /*
814 * take kfd processes mutex before starting of process creation
815 * so there won't be a case where two threads of the same process
816 * create two kfd_process structures
817 */
818 mutex_lock(&kfd_processes_mutex);
819
820 if (kfd_is_locked()) {
821 mutex_unlock(&kfd_processes_mutex);
822 pr_debug("KFD is locked! Cannot create process");
823 return ERR_PTR(-EINVAL);
824 }
825
826 /* A prior open of /dev/kfd could have already created the process. */
827 process = find_process(thread, false);
828 if (process) {
829 pr_debug("Process already found\n");
830 } else {
831 process = create_process(thread);
832 if (IS_ERR(process))
833 goto out;
834
835 if (!procfs.kobj)
836 goto out;
837
838 process->kobj = kfd_alloc_struct(process->kobj);
839 if (!process->kobj) {
840 pr_warn("Creating procfs kobject failed");
841 goto out;
842 }
843 ret = kobject_init_and_add(process->kobj, &procfs_type,
844 procfs.kobj, "%d",
845 (int)process->lead_thread->pid);
846 if (ret) {
847 pr_warn("Creating procfs pid directory failed");
848 kobject_put(process->kobj);
849 goto out;
850 }
851
852 kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
853 "pasid");
854
855 process->kobj_queues = kobject_create_and_add("queues",
856 process->kobj);
857 if (!process->kobj_queues)
858 pr_warn("Creating KFD proc/queues folder failed");
859
860 kfd_procfs_add_sysfs_stats(process);
861 kfd_procfs_add_sysfs_files(process);
862 kfd_procfs_add_sysfs_counters(process);
863
864 init_waitqueue_head(&process->wait_irq_drain);
865 }
866 out:
867 if (!IS_ERR(process))
868 kref_get(&process->ref);
869 mutex_unlock(&kfd_processes_mutex);
870 mmput(thread->mm);
871
872 return process;
873 }
874
kfd_get_process(const struct task_struct * thread)875 struct kfd_process *kfd_get_process(const struct task_struct *thread)
876 {
877 struct kfd_process *process;
878
879 if (!thread->mm)
880 return ERR_PTR(-EINVAL);
881
882 /* Only the pthreads threading model is supported. */
883 if (thread->group_leader->mm != thread->mm)
884 return ERR_PTR(-EINVAL);
885
886 process = find_process(thread, false);
887 if (!process)
888 return ERR_PTR(-EINVAL);
889
890 return process;
891 }
892
find_process_by_mm(const struct mm_struct * mm)893 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
894 {
895 struct kfd_process *process;
896
897 hash_for_each_possible_rcu(kfd_processes_table, process,
898 kfd_processes, (uintptr_t)mm)
899 if (process->mm == mm)
900 return process;
901
902 return NULL;
903 }
904
find_process(const struct task_struct * thread,bool ref)905 static struct kfd_process *find_process(const struct task_struct *thread,
906 bool ref)
907 {
908 struct kfd_process *p;
909 int idx;
910
911 idx = srcu_read_lock(&kfd_processes_srcu);
912 p = find_process_by_mm(thread->mm);
913 if (p && ref)
914 kref_get(&p->ref);
915 srcu_read_unlock(&kfd_processes_srcu, idx);
916
917 return p;
918 }
919
kfd_unref_process(struct kfd_process * p)920 void kfd_unref_process(struct kfd_process *p)
921 {
922 kref_put(&p->ref, kfd_process_ref_release);
923 }
924
925 /* This increments the process->ref counter. */
kfd_lookup_process_by_pid(struct pid * pid)926 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
927 {
928 struct task_struct *task = NULL;
929 struct kfd_process *p = NULL;
930
931 if (!pid) {
932 task = current;
933 get_task_struct(task);
934 } else {
935 task = get_pid_task(pid, PIDTYPE_PID);
936 }
937
938 if (task) {
939 p = find_process(task, true);
940 put_task_struct(task);
941 }
942
943 return p;
944 }
945
kfd_process_device_free_bos(struct kfd_process_device * pdd)946 static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
947 {
948 struct kfd_process *p = pdd->process;
949 void *mem;
950 int id;
951 int i;
952
953 /*
954 * Remove all handles from idr and release appropriate
955 * local memory object
956 */
957 idr_for_each_entry(&pdd->alloc_idr, mem, id) {
958
959 for (i = 0; i < p->n_pdds; i++) {
960 struct kfd_process_device *peer_pdd = p->pdds[i];
961
962 if (!peer_pdd->drm_priv)
963 continue;
964 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
965 peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
966 }
967
968 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
969 pdd->drm_priv, NULL);
970 kfd_process_device_remove_obj_handle(pdd, id);
971 }
972 }
973
974 /*
975 * Just kunmap and unpin signal BO here. It will be freed in
976 * kfd_process_free_outstanding_kfd_bos()
977 */
kfd_process_kunmap_signal_bo(struct kfd_process * p)978 static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
979 {
980 struct kfd_process_device *pdd;
981 struct kfd_node *kdev;
982 void *mem;
983
984 kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
985 if (!kdev)
986 return;
987
988 mutex_lock(&p->mutex);
989
990 pdd = kfd_get_process_device_data(kdev, p);
991 if (!pdd)
992 goto out;
993
994 mem = kfd_process_device_translate_handle(
995 pdd, GET_IDR_HANDLE(p->signal_handle));
996 if (!mem)
997 goto out;
998
999 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
1000
1001 out:
1002 mutex_unlock(&p->mutex);
1003 }
1004
kfd_process_free_outstanding_kfd_bos(struct kfd_process * p)1005 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
1006 {
1007 int i;
1008
1009 for (i = 0; i < p->n_pdds; i++)
1010 kfd_process_device_free_bos(p->pdds[i]);
1011 }
1012
kfd_process_destroy_pdds(struct kfd_process * p)1013 static void kfd_process_destroy_pdds(struct kfd_process *p)
1014 {
1015 int i;
1016
1017 for (i = 0; i < p->n_pdds; i++) {
1018 struct kfd_process_device *pdd = p->pdds[i];
1019
1020 pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
1021 pdd->dev->id, p->pasid);
1022
1023 kfd_process_device_destroy_cwsr_dgpu(pdd);
1024 kfd_process_device_destroy_ib_mem(pdd);
1025
1026 if (pdd->drm_file) {
1027 amdgpu_amdkfd_gpuvm_release_process_vm(
1028 pdd->dev->adev, pdd->drm_priv);
1029 fput(pdd->drm_file);
1030 }
1031
1032 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1033 free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1034 get_order(KFD_CWSR_TBA_TMA_SIZE));
1035
1036 idr_destroy(&pdd->alloc_idr);
1037
1038 kfd_free_process_doorbells(pdd->dev->kfd, pdd);
1039
1040 if (pdd->dev->kfd->shared_resources.enable_mes)
1041 amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev,
1042 pdd->proc_ctx_bo);
1043 /*
1044 * before destroying pdd, make sure to report availability
1045 * for auto suspend
1046 */
1047 if (pdd->runtime_inuse) {
1048 pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev);
1049 pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev);
1050 pdd->runtime_inuse = false;
1051 }
1052
1053 kfree(pdd);
1054 p->pdds[i] = NULL;
1055 }
1056 p->n_pdds = 0;
1057 }
1058
kfd_process_remove_sysfs(struct kfd_process * p)1059 static void kfd_process_remove_sysfs(struct kfd_process *p)
1060 {
1061 struct kfd_process_device *pdd;
1062 int i;
1063
1064 if (!p->kobj)
1065 return;
1066
1067 sysfs_remove_file(p->kobj, &p->attr_pasid);
1068 kobject_del(p->kobj_queues);
1069 kobject_put(p->kobj_queues);
1070 p->kobj_queues = NULL;
1071
1072 for (i = 0; i < p->n_pdds; i++) {
1073 pdd = p->pdds[i];
1074
1075 sysfs_remove_file(p->kobj, &pdd->attr_vram);
1076 sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1077
1078 sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1079 if (pdd->dev->kfd2kgd->get_cu_occupancy)
1080 sysfs_remove_file(pdd->kobj_stats,
1081 &pdd->attr_cu_occupancy);
1082 kobject_del(pdd->kobj_stats);
1083 kobject_put(pdd->kobj_stats);
1084 pdd->kobj_stats = NULL;
1085 }
1086
1087 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1088 pdd = p->pdds[i];
1089
1090 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1091 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1092 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1093 kobject_del(pdd->kobj_counters);
1094 kobject_put(pdd->kobj_counters);
1095 pdd->kobj_counters = NULL;
1096 }
1097
1098 kobject_del(p->kobj);
1099 kobject_put(p->kobj);
1100 p->kobj = NULL;
1101 }
1102
1103 /* No process locking is needed in this function, because the process
1104 * is not findable any more. We must assume that no other thread is
1105 * using it any more, otherwise we couldn't safely free the process
1106 * structure in the end.
1107 */
kfd_process_wq_release(struct work_struct * work)1108 static void kfd_process_wq_release(struct work_struct *work)
1109 {
1110 struct kfd_process *p = container_of(work, struct kfd_process,
1111 release_work);
1112
1113 kfd_process_dequeue_from_all_devices(p);
1114 pqm_uninit(&p->pqm);
1115
1116 /* Signal the eviction fence after user mode queues are
1117 * destroyed. This allows any BOs to be freed without
1118 * triggering pointless evictions or waiting for fences.
1119 */
1120 dma_fence_signal(p->ef);
1121
1122 kfd_process_remove_sysfs(p);
1123
1124 kfd_process_kunmap_signal_bo(p);
1125 kfd_process_free_outstanding_kfd_bos(p);
1126 svm_range_list_fini(p);
1127
1128 kfd_process_destroy_pdds(p);
1129 dma_fence_put(p->ef);
1130
1131 kfd_event_free_process(p);
1132
1133 kfd_pasid_free(p->pasid);
1134 mutex_destroy(&p->mutex);
1135
1136 put_task_struct(p->lead_thread);
1137
1138 kfree(p);
1139 }
1140
kfd_process_ref_release(struct kref * ref)1141 static void kfd_process_ref_release(struct kref *ref)
1142 {
1143 struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1144
1145 INIT_WORK(&p->release_work, kfd_process_wq_release);
1146 queue_work(kfd_process_wq, &p->release_work);
1147 }
1148
kfd_process_alloc_notifier(struct mm_struct * mm)1149 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1150 {
1151 int idx = srcu_read_lock(&kfd_processes_srcu);
1152 struct kfd_process *p = find_process_by_mm(mm);
1153
1154 srcu_read_unlock(&kfd_processes_srcu, idx);
1155
1156 return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1157 }
1158
kfd_process_free_notifier(struct mmu_notifier * mn)1159 static void kfd_process_free_notifier(struct mmu_notifier *mn)
1160 {
1161 kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1162 }
1163
kfd_process_notifier_release_internal(struct kfd_process * p)1164 static void kfd_process_notifier_release_internal(struct kfd_process *p)
1165 {
1166 int i;
1167
1168 cancel_delayed_work_sync(&p->eviction_work);
1169 cancel_delayed_work_sync(&p->restore_work);
1170
1171 for (i = 0; i < p->n_pdds; i++) {
1172 struct kfd_process_device *pdd = p->pdds[i];
1173
1174 /* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */
1175 if (!kfd_dbg_is_rlc_restore_supported(pdd->dev) && p->runtime_info.ttmp_setup)
1176 amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
1177 }
1178
1179 /* Indicate to other users that MM is no longer valid */
1180 p->mm = NULL;
1181 kfd_dbg_trap_disable(p);
1182
1183 if (atomic_read(&p->debugged_process_count) > 0) {
1184 struct kfd_process *target;
1185 unsigned int temp;
1186 int idx = srcu_read_lock(&kfd_processes_srcu);
1187
1188 hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) {
1189 if (target->debugger_process && target->debugger_process == p) {
1190 mutex_lock_nested(&target->mutex, 1);
1191 kfd_dbg_trap_disable(target);
1192 mutex_unlock(&target->mutex);
1193 if (atomic_read(&p->debugged_process_count) == 0)
1194 break;
1195 }
1196 }
1197
1198 srcu_read_unlock(&kfd_processes_srcu, idx);
1199 }
1200
1201 mmu_notifier_put(&p->mmu_notifier);
1202 }
1203
kfd_process_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)1204 static void kfd_process_notifier_release(struct mmu_notifier *mn,
1205 struct mm_struct *mm)
1206 {
1207 struct kfd_process *p;
1208
1209 /*
1210 * The kfd_process structure can not be free because the
1211 * mmu_notifier srcu is read locked
1212 */
1213 p = container_of(mn, struct kfd_process, mmu_notifier);
1214 if (WARN_ON(p->mm != mm))
1215 return;
1216
1217 mutex_lock(&kfd_processes_mutex);
1218 /*
1219 * Do early return if table is empty.
1220 *
1221 * This could potentially happen if this function is called concurrently
1222 * by mmu_notifier and by kfd_cleanup_pocesses.
1223 *
1224 */
1225 if (hash_empty(kfd_processes_table)) {
1226 mutex_unlock(&kfd_processes_mutex);
1227 return;
1228 }
1229 hash_del_rcu(&p->kfd_processes);
1230 mutex_unlock(&kfd_processes_mutex);
1231 synchronize_srcu(&kfd_processes_srcu);
1232
1233 kfd_process_notifier_release_internal(p);
1234 }
1235
1236 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1237 .release = kfd_process_notifier_release,
1238 .alloc_notifier = kfd_process_alloc_notifier,
1239 .free_notifier = kfd_process_free_notifier,
1240 };
1241
1242 /*
1243 * This code handles the case when driver is being unloaded before all
1244 * mm_struct are released. We need to safely free the kfd_process and
1245 * avoid race conditions with mmu_notifier that might try to free them.
1246 *
1247 */
kfd_cleanup_processes(void)1248 void kfd_cleanup_processes(void)
1249 {
1250 struct kfd_process *p;
1251 struct hlist_node *p_temp;
1252 unsigned int temp;
1253 HLIST_HEAD(cleanup_list);
1254
1255 /*
1256 * Move all remaining kfd_process from the process table to a
1257 * temp list for processing. Once done, callback from mmu_notifier
1258 * release will not see the kfd_process in the table and do early return,
1259 * avoiding double free issues.
1260 */
1261 mutex_lock(&kfd_processes_mutex);
1262 hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) {
1263 hash_del_rcu(&p->kfd_processes);
1264 synchronize_srcu(&kfd_processes_srcu);
1265 hlist_add_head(&p->kfd_processes, &cleanup_list);
1266 }
1267 mutex_unlock(&kfd_processes_mutex);
1268
1269 hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes)
1270 kfd_process_notifier_release_internal(p);
1271
1272 /*
1273 * Ensures that all outstanding free_notifier get called, triggering
1274 * the release of the kfd_process struct.
1275 */
1276 mmu_notifier_synchronize();
1277 }
1278
kfd_process_init_cwsr_apu(struct kfd_process * p,struct file * filep)1279 int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1280 {
1281 unsigned long offset;
1282 int i;
1283
1284 if (p->has_cwsr)
1285 return 0;
1286
1287 for (i = 0; i < p->n_pdds; i++) {
1288 struct kfd_node *dev = p->pdds[i]->dev;
1289 struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1290
1291 if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1292 continue;
1293
1294 offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1295 qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1296 KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1297 MAP_SHARED, offset);
1298
1299 if (IS_ERR_VALUE(qpd->tba_addr)) {
1300 int err = qpd->tba_addr;
1301
1302 pr_err("Failure to set tba address. error %d.\n", err);
1303 qpd->tba_addr = 0;
1304 qpd->cwsr_kaddr = NULL;
1305 return err;
1306 }
1307
1308 memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1309
1310 kfd_process_set_trap_debug_flag(qpd, p->debug_trap_enabled);
1311
1312 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1313 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1314 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1315 }
1316
1317 p->has_cwsr = true;
1318
1319 return 0;
1320 }
1321
kfd_process_device_init_cwsr_dgpu(struct kfd_process_device * pdd)1322 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1323 {
1324 struct kfd_node *dev = pdd->dev;
1325 struct qcm_process_device *qpd = &pdd->qpd;
1326 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1327 | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1328 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1329 struct kgd_mem *mem;
1330 void *kaddr;
1331 int ret;
1332
1333 if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1334 return 0;
1335
1336 /* cwsr_base is only set for dGPU */
1337 ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1338 KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1339 if (ret)
1340 return ret;
1341
1342 qpd->cwsr_mem = mem;
1343 qpd->cwsr_kaddr = kaddr;
1344 qpd->tba_addr = qpd->cwsr_base;
1345
1346 memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1347
1348 kfd_process_set_trap_debug_flag(&pdd->qpd,
1349 pdd->process->debug_trap_enabled);
1350
1351 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1352 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1353 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1354
1355 return 0;
1356 }
1357
kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device * pdd)1358 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1359 {
1360 struct kfd_node *dev = pdd->dev;
1361 struct qcm_process_device *qpd = &pdd->qpd;
1362
1363 if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1364 return;
1365
1366 kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr);
1367 }
1368
kfd_process_set_trap_handler(struct qcm_process_device * qpd,uint64_t tba_addr,uint64_t tma_addr)1369 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1370 uint64_t tba_addr,
1371 uint64_t tma_addr)
1372 {
1373 if (qpd->cwsr_kaddr) {
1374 /* KFD trap handler is bound, record as second-level TBA/TMA
1375 * in first-level TMA. First-level trap will jump to second.
1376 */
1377 uint64_t *tma =
1378 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1379 tma[0] = tba_addr;
1380 tma[1] = tma_addr;
1381 } else {
1382 /* No trap handler bound, bind as first-level TBA/TMA. */
1383 qpd->tba_addr = tba_addr;
1384 qpd->tma_addr = tma_addr;
1385 }
1386 }
1387
kfd_process_xnack_mode(struct kfd_process * p,bool supported)1388 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1389 {
1390 int i;
1391
1392 /* On most GFXv9 GPUs, the retry mode in the SQ must match the
1393 * boot time retry setting. Mixing processes with different
1394 * XNACK/retry settings can hang the GPU.
1395 *
1396 * Different GPUs can have different noretry settings depending
1397 * on HW bugs or limitations. We need to find at least one
1398 * XNACK mode for this process that's compatible with all GPUs.
1399 * Fortunately GPUs with retry enabled (noretry=0) can run code
1400 * built for XNACK-off. On GFXv9 it may perform slower.
1401 *
1402 * Therefore applications built for XNACK-off can always be
1403 * supported and will be our fallback if any GPU does not
1404 * support retry.
1405 */
1406 for (i = 0; i < p->n_pdds; i++) {
1407 struct kfd_node *dev = p->pdds[i]->dev;
1408
1409 /* Only consider GFXv9 and higher GPUs. Older GPUs don't
1410 * support the SVM APIs and don't need to be considered
1411 * for the XNACK mode selection.
1412 */
1413 if (!KFD_IS_SOC15(dev))
1414 continue;
1415 /* Aldebaran can always support XNACK because it can support
1416 * per-process XNACK mode selection. But let the dev->noretry
1417 * setting still influence the default XNACK mode.
1418 */
1419 if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev))
1420 continue;
1421
1422 /* GFXv10 and later GPUs do not support shader preemption
1423 * during page faults. This can lead to poor QoS for queue
1424 * management and memory-manager-related preemptions or
1425 * even deadlocks.
1426 */
1427 if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
1428 return false;
1429
1430 if (dev->kfd->noretry)
1431 return false;
1432 }
1433
1434 return true;
1435 }
1436
kfd_process_set_trap_debug_flag(struct qcm_process_device * qpd,bool enabled)1437 void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd,
1438 bool enabled)
1439 {
1440 if (qpd->cwsr_kaddr) {
1441 uint64_t *tma =
1442 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1443 tma[2] = enabled;
1444 }
1445 }
1446
1447 /*
1448 * On return the kfd_process is fully operational and will be freed when the
1449 * mm is released
1450 */
create_process(const struct task_struct * thread)1451 static struct kfd_process *create_process(const struct task_struct *thread)
1452 {
1453 struct kfd_process *process;
1454 struct mmu_notifier *mn;
1455 int err = -ENOMEM;
1456
1457 process = kzalloc(sizeof(*process), GFP_KERNEL);
1458 if (!process)
1459 goto err_alloc_process;
1460
1461 kref_init(&process->ref);
1462 mutex_init(&process->mutex);
1463 process->mm = thread->mm;
1464 process->lead_thread = thread->group_leader;
1465 process->n_pdds = 0;
1466 process->queues_paused = false;
1467 INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1468 INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1469 process->last_restore_timestamp = get_jiffies_64();
1470 err = kfd_event_init_process(process);
1471 if (err)
1472 goto err_event_init;
1473 process->is_32bit_user_mode = in_compat_syscall();
1474 process->debug_trap_enabled = false;
1475 process->debugger_process = NULL;
1476 process->exception_enable_mask = 0;
1477 atomic_set(&process->debugged_process_count, 0);
1478 sema_init(&process->runtime_enable_sema, 0);
1479
1480 process->pasid = kfd_pasid_alloc();
1481 if (process->pasid == 0) {
1482 err = -ENOSPC;
1483 goto err_alloc_pasid;
1484 }
1485
1486 err = pqm_init(&process->pqm, process);
1487 if (err != 0)
1488 goto err_process_pqm_init;
1489
1490 /* init process apertures*/
1491 err = kfd_init_apertures(process);
1492 if (err != 0)
1493 goto err_init_apertures;
1494
1495 /* Check XNACK support after PDDs are created in kfd_init_apertures */
1496 process->xnack_enabled = kfd_process_xnack_mode(process, false);
1497
1498 err = svm_range_list_init(process);
1499 if (err)
1500 goto err_init_svm_range_list;
1501
1502 /* alloc_notifier needs to find the process in the hash table */
1503 hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1504 (uintptr_t)process->mm);
1505
1506 /* Avoid free_notifier to start kfd_process_wq_release if
1507 * mmu_notifier_get failed because of pending signal.
1508 */
1509 kref_get(&process->ref);
1510
1511 /* MMU notifier registration must be the last call that can fail
1512 * because after this point we cannot unwind the process creation.
1513 * After this point, mmu_notifier_put will trigger the cleanup by
1514 * dropping the last process reference in the free_notifier.
1515 */
1516 mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1517 if (IS_ERR(mn)) {
1518 err = PTR_ERR(mn);
1519 goto err_register_notifier;
1520 }
1521 BUG_ON(mn != &process->mmu_notifier);
1522
1523 kfd_unref_process(process);
1524 get_task_struct(process->lead_thread);
1525
1526 INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler);
1527
1528 return process;
1529
1530 err_register_notifier:
1531 hash_del_rcu(&process->kfd_processes);
1532 svm_range_list_fini(process);
1533 err_init_svm_range_list:
1534 kfd_process_free_outstanding_kfd_bos(process);
1535 kfd_process_destroy_pdds(process);
1536 err_init_apertures:
1537 pqm_uninit(&process->pqm);
1538 err_process_pqm_init:
1539 kfd_pasid_free(process->pasid);
1540 err_alloc_pasid:
1541 kfd_event_free_process(process);
1542 err_event_init:
1543 mutex_destroy(&process->mutex);
1544 kfree(process);
1545 err_alloc_process:
1546 return ERR_PTR(err);
1547 }
1548
kfd_get_process_device_data(struct kfd_node * dev,struct kfd_process * p)1549 struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev,
1550 struct kfd_process *p)
1551 {
1552 int i;
1553
1554 for (i = 0; i < p->n_pdds; i++)
1555 if (p->pdds[i]->dev == dev)
1556 return p->pdds[i];
1557
1558 return NULL;
1559 }
1560
kfd_create_process_device_data(struct kfd_node * dev,struct kfd_process * p)1561 struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev,
1562 struct kfd_process *p)
1563 {
1564 struct kfd_process_device *pdd = NULL;
1565 int retval = 0;
1566
1567 if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1568 return NULL;
1569 pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1570 if (!pdd)
1571 return NULL;
1572
1573 pdd->dev = dev;
1574 INIT_LIST_HEAD(&pdd->qpd.queues_list);
1575 INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1576 pdd->qpd.dqm = dev->dqm;
1577 pdd->qpd.pqm = &p->pqm;
1578 pdd->qpd.evicted = 0;
1579 pdd->qpd.mapped_gws_queue = false;
1580 pdd->process = p;
1581 pdd->bound = PDD_UNBOUND;
1582 pdd->already_dequeued = false;
1583 pdd->runtime_inuse = false;
1584 pdd->vram_usage = 0;
1585 pdd->sdma_past_activity_counter = 0;
1586 pdd->user_gpu_id = dev->id;
1587 atomic64_set(&pdd->evict_duration_counter, 0);
1588
1589 if (dev->kfd->shared_resources.enable_mes) {
1590 retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev,
1591 AMDGPU_MES_PROC_CTX_SIZE,
1592 &pdd->proc_ctx_bo,
1593 &pdd->proc_ctx_gpu_addr,
1594 &pdd->proc_ctx_cpu_ptr,
1595 false);
1596 if (retval) {
1597 pr_err("failed to allocate process context bo\n");
1598 goto err_free_pdd;
1599 }
1600 memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE);
1601 }
1602
1603 p->pdds[p->n_pdds++] = pdd;
1604 if (kfd_dbg_is_per_vmid_supported(pdd->dev))
1605 pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap(
1606 pdd->dev->adev,
1607 false,
1608 0);
1609
1610 /* Init idr used for memory handle translation */
1611 idr_init(&pdd->alloc_idr);
1612
1613 return pdd;
1614
1615 err_free_pdd:
1616 kfree(pdd);
1617 return NULL;
1618 }
1619
1620 /**
1621 * kfd_process_device_init_vm - Initialize a VM for a process-device
1622 *
1623 * @pdd: The process-device
1624 * @drm_file: Optional pointer to a DRM file descriptor
1625 *
1626 * If @drm_file is specified, it will be used to acquire the VM from
1627 * that file descriptor. If successful, the @pdd takes ownership of
1628 * the file descriptor.
1629 *
1630 * If @drm_file is NULL, a new VM is created.
1631 *
1632 * Returns 0 on success, -errno on failure.
1633 */
kfd_process_device_init_vm(struct kfd_process_device * pdd,struct file * drm_file)1634 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1635 struct file *drm_file)
1636 {
1637 struct amdgpu_fpriv *drv_priv;
1638 struct amdgpu_vm *avm;
1639 struct kfd_process *p;
1640 struct kfd_node *dev;
1641 int ret;
1642
1643 if (!drm_file)
1644 return -EINVAL;
1645
1646 if (pdd->drm_priv)
1647 return -EBUSY;
1648
1649 ret = amdgpu_file_to_fpriv(drm_file, &drv_priv);
1650 if (ret)
1651 return ret;
1652 avm = &drv_priv->vm;
1653
1654 p = pdd->process;
1655 dev = pdd->dev;
1656
1657 ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm,
1658 &p->kgd_process_info,
1659 &p->ef);
1660 if (ret) {
1661 pr_err("Failed to create process VM object\n");
1662 return ret;
1663 }
1664 pdd->drm_priv = drm_file->private_data;
1665 atomic64_set(&pdd->tlb_seq, 0);
1666
1667 ret = kfd_process_device_reserve_ib_mem(pdd);
1668 if (ret)
1669 goto err_reserve_ib_mem;
1670 ret = kfd_process_device_init_cwsr_dgpu(pdd);
1671 if (ret)
1672 goto err_init_cwsr;
1673
1674 ret = amdgpu_amdkfd_gpuvm_set_vm_pasid(dev->adev, avm, p->pasid);
1675 if (ret)
1676 goto err_set_pasid;
1677
1678 pdd->drm_file = drm_file;
1679
1680 return 0;
1681
1682 err_set_pasid:
1683 kfd_process_device_destroy_cwsr_dgpu(pdd);
1684 err_init_cwsr:
1685 kfd_process_device_destroy_ib_mem(pdd);
1686 err_reserve_ib_mem:
1687 pdd->drm_priv = NULL;
1688 amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm);
1689
1690 return ret;
1691 }
1692
1693 /*
1694 * Direct the IOMMU to bind the process (specifically the pasid->mm)
1695 * to the device.
1696 * Unbinding occurs when the process dies or the device is removed.
1697 *
1698 * Assumes that the process lock is held.
1699 */
kfd_bind_process_to_device(struct kfd_node * dev,struct kfd_process * p)1700 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev,
1701 struct kfd_process *p)
1702 {
1703 struct kfd_process_device *pdd;
1704 int err;
1705
1706 pdd = kfd_get_process_device_data(dev, p);
1707 if (!pdd) {
1708 pr_err("Process device data doesn't exist\n");
1709 return ERR_PTR(-ENOMEM);
1710 }
1711
1712 if (!pdd->drm_priv)
1713 return ERR_PTR(-ENODEV);
1714
1715 /*
1716 * signal runtime-pm system to auto resume and prevent
1717 * further runtime suspend once device pdd is created until
1718 * pdd is destroyed.
1719 */
1720 if (!pdd->runtime_inuse) {
1721 err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev);
1722 if (err < 0) {
1723 pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
1724 return ERR_PTR(err);
1725 }
1726 }
1727
1728 /*
1729 * make sure that runtime_usage counter is incremented just once
1730 * per pdd
1731 */
1732 pdd->runtime_inuse = true;
1733
1734 return pdd;
1735 }
1736
1737 /* Create specific handle mapped to mem from process local memory idr
1738 * Assumes that the process lock is held.
1739 */
kfd_process_device_create_obj_handle(struct kfd_process_device * pdd,void * mem)1740 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1741 void *mem)
1742 {
1743 return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1744 }
1745
1746 /* Translate specific handle from process local memory idr
1747 * Assumes that the process lock is held.
1748 */
kfd_process_device_translate_handle(struct kfd_process_device * pdd,int handle)1749 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1750 int handle)
1751 {
1752 if (handle < 0)
1753 return NULL;
1754
1755 return idr_find(&pdd->alloc_idr, handle);
1756 }
1757
1758 /* Remove specific handle from process local memory idr
1759 * Assumes that the process lock is held.
1760 */
kfd_process_device_remove_obj_handle(struct kfd_process_device * pdd,int handle)1761 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1762 int handle)
1763 {
1764 if (handle >= 0)
1765 idr_remove(&pdd->alloc_idr, handle);
1766 }
1767
1768 /* This increments the process->ref counter. */
kfd_lookup_process_by_pasid(u32 pasid)1769 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1770 {
1771 struct kfd_process *p, *ret_p = NULL;
1772 unsigned int temp;
1773
1774 int idx = srcu_read_lock(&kfd_processes_srcu);
1775
1776 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1777 if (p->pasid == pasid) {
1778 kref_get(&p->ref);
1779 ret_p = p;
1780 break;
1781 }
1782 }
1783
1784 srcu_read_unlock(&kfd_processes_srcu, idx);
1785
1786 return ret_p;
1787 }
1788
1789 /* This increments the process->ref counter. */
kfd_lookup_process_by_mm(const struct mm_struct * mm)1790 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1791 {
1792 struct kfd_process *p;
1793
1794 int idx = srcu_read_lock(&kfd_processes_srcu);
1795
1796 p = find_process_by_mm(mm);
1797 if (p)
1798 kref_get(&p->ref);
1799
1800 srcu_read_unlock(&kfd_processes_srcu, idx);
1801
1802 return p;
1803 }
1804
1805 /* kfd_process_evict_queues - Evict all user queues of a process
1806 *
1807 * Eviction is reference-counted per process-device. This means multiple
1808 * evictions from different sources can be nested safely.
1809 */
kfd_process_evict_queues(struct kfd_process * p,uint32_t trigger)1810 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger)
1811 {
1812 int r = 0;
1813 int i;
1814 unsigned int n_evicted = 0;
1815
1816 for (i = 0; i < p->n_pdds; i++) {
1817 struct kfd_process_device *pdd = p->pdds[i];
1818
1819 kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid,
1820 trigger);
1821
1822 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1823 &pdd->qpd);
1824 /* evict return -EIO if HWS is hang or asic is resetting, in this case
1825 * we would like to set all the queues to be in evicted state to prevent
1826 * them been add back since they actually not be saved right now.
1827 */
1828 if (r && r != -EIO) {
1829 pr_err("Failed to evict process queues\n");
1830 goto fail;
1831 }
1832 n_evicted++;
1833 }
1834
1835 return r;
1836
1837 fail:
1838 /* To keep state consistent, roll back partial eviction by
1839 * restoring queues
1840 */
1841 for (i = 0; i < p->n_pdds; i++) {
1842 struct kfd_process_device *pdd = p->pdds[i];
1843
1844 if (n_evicted == 0)
1845 break;
1846
1847 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1848
1849 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1850 &pdd->qpd))
1851 pr_err("Failed to restore queues\n");
1852
1853 n_evicted--;
1854 }
1855
1856 return r;
1857 }
1858
1859 /* kfd_process_restore_queues - Restore all user queues of a process */
kfd_process_restore_queues(struct kfd_process * p)1860 int kfd_process_restore_queues(struct kfd_process *p)
1861 {
1862 int r, ret = 0;
1863 int i;
1864
1865 for (i = 0; i < p->n_pdds; i++) {
1866 struct kfd_process_device *pdd = p->pdds[i];
1867
1868 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1869
1870 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1871 &pdd->qpd);
1872 if (r) {
1873 pr_err("Failed to restore process queues\n");
1874 if (!ret)
1875 ret = r;
1876 }
1877 }
1878
1879 return ret;
1880 }
1881
kfd_process_gpuidx_from_gpuid(struct kfd_process * p,uint32_t gpu_id)1882 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1883 {
1884 int i;
1885
1886 for (i = 0; i < p->n_pdds; i++)
1887 if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
1888 return i;
1889 return -EINVAL;
1890 }
1891
1892 int
kfd_process_gpuid_from_node(struct kfd_process * p,struct kfd_node * node,uint32_t * gpuid,uint32_t * gpuidx)1893 kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node,
1894 uint32_t *gpuid, uint32_t *gpuidx)
1895 {
1896 int i;
1897
1898 for (i = 0; i < p->n_pdds; i++)
1899 if (p->pdds[i] && p->pdds[i]->dev == node) {
1900 *gpuid = p->pdds[i]->user_gpu_id;
1901 *gpuidx = i;
1902 return 0;
1903 }
1904 return -EINVAL;
1905 }
1906
evict_process_worker(struct work_struct * work)1907 static void evict_process_worker(struct work_struct *work)
1908 {
1909 int ret;
1910 struct kfd_process *p;
1911 struct delayed_work *dwork;
1912
1913 dwork = to_delayed_work(work);
1914
1915 /* Process termination destroys this worker thread. So during the
1916 * lifetime of this thread, kfd_process p will be valid
1917 */
1918 p = container_of(dwork, struct kfd_process, eviction_work);
1919 WARN_ONCE(p->last_eviction_seqno != p->ef->seqno,
1920 "Eviction fence mismatch\n");
1921
1922 /* Narrow window of overlap between restore and evict work
1923 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos
1924 * unreserves KFD BOs, it is possible to evicted again. But
1925 * restore has few more steps of finish. So lets wait for any
1926 * previous restore work to complete
1927 */
1928 flush_delayed_work(&p->restore_work);
1929
1930 pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1931 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM);
1932 if (!ret) {
1933 dma_fence_signal(p->ef);
1934 dma_fence_put(p->ef);
1935 p->ef = NULL;
1936 queue_delayed_work(kfd_restore_wq, &p->restore_work,
1937 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
1938
1939 pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1940 } else
1941 pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1942 }
1943
restore_process_worker(struct work_struct * work)1944 static void restore_process_worker(struct work_struct *work)
1945 {
1946 struct delayed_work *dwork;
1947 struct kfd_process *p;
1948 int ret = 0;
1949
1950 dwork = to_delayed_work(work);
1951
1952 /* Process termination destroys this worker thread. So during the
1953 * lifetime of this thread, kfd_process p will be valid
1954 */
1955 p = container_of(dwork, struct kfd_process, restore_work);
1956 pr_debug("Started restoring pasid 0x%x\n", p->pasid);
1957
1958 /* Setting last_restore_timestamp before successful restoration.
1959 * Otherwise this would have to be set by KGD (restore_process_bos)
1960 * before KFD BOs are unreserved. If not, the process can be evicted
1961 * again before the timestamp is set.
1962 * If restore fails, the timestamp will be set again in the next
1963 * attempt. This would mean that the minimum GPU quanta would be
1964 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
1965 * functions)
1966 */
1967
1968 p->last_restore_timestamp = get_jiffies_64();
1969 /* VMs may not have been acquired yet during debugging. */
1970 if (p->kgd_process_info)
1971 ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info,
1972 &p->ef);
1973 if (ret) {
1974 pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
1975 p->pasid, PROCESS_BACK_OFF_TIME_MS);
1976 ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
1977 msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
1978 WARN(!ret, "reschedule restore work failed\n");
1979 return;
1980 }
1981
1982 ret = kfd_process_restore_queues(p);
1983 if (!ret)
1984 pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1985 else
1986 pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1987 }
1988
kfd_suspend_all_processes(void)1989 void kfd_suspend_all_processes(void)
1990 {
1991 struct kfd_process *p;
1992 unsigned int temp;
1993 int idx = srcu_read_lock(&kfd_processes_srcu);
1994
1995 WARN(debug_evictions, "Evicting all processes");
1996 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1997 cancel_delayed_work_sync(&p->eviction_work);
1998 flush_delayed_work(&p->restore_work);
1999
2000 if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND))
2001 pr_err("Failed to suspend process 0x%x\n", p->pasid);
2002 dma_fence_signal(p->ef);
2003 dma_fence_put(p->ef);
2004 p->ef = NULL;
2005 }
2006 srcu_read_unlock(&kfd_processes_srcu, idx);
2007 }
2008
kfd_resume_all_processes(void)2009 int kfd_resume_all_processes(void)
2010 {
2011 struct kfd_process *p;
2012 unsigned int temp;
2013 int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
2014
2015 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2016 if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) {
2017 pr_err("Restore process %d failed during resume\n",
2018 p->pasid);
2019 ret = -EFAULT;
2020 }
2021 }
2022 srcu_read_unlock(&kfd_processes_srcu, idx);
2023 return ret;
2024 }
2025
kfd_reserved_mem_mmap(struct kfd_node * dev,struct kfd_process * process,struct vm_area_struct * vma)2026 int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process,
2027 struct vm_area_struct *vma)
2028 {
2029 struct kfd_process_device *pdd;
2030 struct qcm_process_device *qpd;
2031
2032 if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
2033 pr_err("Incorrect CWSR mapping size.\n");
2034 return -EINVAL;
2035 }
2036
2037 pdd = kfd_get_process_device_data(dev, process);
2038 if (!pdd)
2039 return -EINVAL;
2040 qpd = &pdd->qpd;
2041
2042 qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2043 get_order(KFD_CWSR_TBA_TMA_SIZE));
2044 if (!qpd->cwsr_kaddr) {
2045 pr_err("Error allocating per process CWSR buffer.\n");
2046 return -ENOMEM;
2047 }
2048
2049 vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND
2050 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP);
2051 /* Mapping pages to user process */
2052 return remap_pfn_range(vma, vma->vm_start,
2053 PFN_DOWN(__pa(qpd->cwsr_kaddr)),
2054 KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
2055 }
2056
kfd_flush_tlb(struct kfd_process_device * pdd,enum TLB_FLUSH_TYPE type)2057 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type)
2058 {
2059 struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
2060 uint64_t tlb_seq = amdgpu_vm_tlb_seq(vm);
2061 struct kfd_node *dev = pdd->dev;
2062 uint32_t xcc_mask = dev->xcc_mask;
2063 int xcc = 0;
2064
2065 /*
2066 * It can be that we race and lose here, but that is extremely unlikely
2067 * and the worst thing which could happen is that we flush the changes
2068 * into the TLB once more which is harmless.
2069 */
2070 if (atomic64_xchg(&pdd->tlb_seq, tlb_seq) == tlb_seq)
2071 return;
2072
2073 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
2074 /* Nothing to flush until a VMID is assigned, which
2075 * only happens when the first queue is created.
2076 */
2077 if (pdd->qpd.vmid)
2078 amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->adev,
2079 pdd->qpd.vmid);
2080 } else {
2081 for_each_inst(xcc, xcc_mask)
2082 amdgpu_amdkfd_flush_gpu_tlb_pasid(
2083 dev->adev, pdd->process->pasid, type, xcc);
2084 }
2085 }
2086
2087 /* assumes caller holds process lock. */
kfd_process_drain_interrupts(struct kfd_process_device * pdd)2088 int kfd_process_drain_interrupts(struct kfd_process_device *pdd)
2089 {
2090 uint32_t irq_drain_fence[8];
2091 uint8_t node_id = 0;
2092 int r = 0;
2093
2094 if (!KFD_IS_SOC15(pdd->dev))
2095 return 0;
2096
2097 pdd->process->irq_drain_is_open = true;
2098
2099 memset(irq_drain_fence, 0, sizeof(irq_drain_fence));
2100 irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) |
2101 KFD_IRQ_FENCE_CLIENTID;
2102 irq_drain_fence[3] = pdd->process->pasid;
2103
2104 /*
2105 * For GFX 9.4.3, send the NodeId also in IH cookie DW[3]
2106 */
2107 if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3)) {
2108 node_id = ffs(pdd->dev->interrupt_bitmap) - 1;
2109 irq_drain_fence[3] |= node_id << 16;
2110 }
2111
2112 /* ensure stale irqs scheduled KFD interrupts and send drain fence. */
2113 if (amdgpu_amdkfd_send_close_event_drain_irq(pdd->dev->adev,
2114 irq_drain_fence)) {
2115 pdd->process->irq_drain_is_open = false;
2116 return 0;
2117 }
2118
2119 r = wait_event_interruptible(pdd->process->wait_irq_drain,
2120 !READ_ONCE(pdd->process->irq_drain_is_open));
2121 if (r)
2122 pdd->process->irq_drain_is_open = false;
2123
2124 return r;
2125 }
2126
kfd_process_close_interrupt_drain(unsigned int pasid)2127 void kfd_process_close_interrupt_drain(unsigned int pasid)
2128 {
2129 struct kfd_process *p;
2130
2131 p = kfd_lookup_process_by_pasid(pasid);
2132
2133 if (!p)
2134 return;
2135
2136 WRITE_ONCE(p->irq_drain_is_open, false);
2137 wake_up_all(&p->wait_irq_drain);
2138 kfd_unref_process(p);
2139 }
2140
2141 struct send_exception_work_handler_workarea {
2142 struct work_struct work;
2143 struct kfd_process *p;
2144 unsigned int queue_id;
2145 uint64_t error_reason;
2146 };
2147
send_exception_work_handler(struct work_struct * work)2148 static void send_exception_work_handler(struct work_struct *work)
2149 {
2150 struct send_exception_work_handler_workarea *workarea;
2151 struct kfd_process *p;
2152 struct queue *q;
2153 struct mm_struct *mm;
2154 struct kfd_context_save_area_header __user *csa_header;
2155 uint64_t __user *err_payload_ptr;
2156 uint64_t cur_err;
2157 uint32_t ev_id;
2158
2159 workarea = container_of(work,
2160 struct send_exception_work_handler_workarea,
2161 work);
2162 p = workarea->p;
2163
2164 mm = get_task_mm(p->lead_thread);
2165
2166 if (!mm)
2167 return;
2168
2169 kthread_use_mm(mm);
2170
2171 q = pqm_get_user_queue(&p->pqm, workarea->queue_id);
2172
2173 if (!q)
2174 goto out;
2175
2176 csa_header = (void __user *)q->properties.ctx_save_restore_area_address;
2177
2178 get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr);
2179 get_user(cur_err, err_payload_ptr);
2180 cur_err |= workarea->error_reason;
2181 put_user(cur_err, err_payload_ptr);
2182 get_user(ev_id, &csa_header->err_event_id);
2183
2184 kfd_set_event(p, ev_id);
2185
2186 out:
2187 kthread_unuse_mm(mm);
2188 mmput(mm);
2189 }
2190
kfd_send_exception_to_runtime(struct kfd_process * p,unsigned int queue_id,uint64_t error_reason)2191 int kfd_send_exception_to_runtime(struct kfd_process *p,
2192 unsigned int queue_id,
2193 uint64_t error_reason)
2194 {
2195 struct send_exception_work_handler_workarea worker;
2196
2197 INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler);
2198
2199 worker.p = p;
2200 worker.queue_id = queue_id;
2201 worker.error_reason = error_reason;
2202
2203 schedule_work(&worker.work);
2204 flush_work(&worker.work);
2205 destroy_work_on_stack(&worker.work);
2206
2207 return 0;
2208 }
2209
kfd_process_device_data_by_id(struct kfd_process * p,uint32_t gpu_id)2210 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
2211 {
2212 int i;
2213
2214 if (gpu_id) {
2215 for (i = 0; i < p->n_pdds; i++) {
2216 struct kfd_process_device *pdd = p->pdds[i];
2217
2218 if (pdd->user_gpu_id == gpu_id)
2219 return pdd;
2220 }
2221 }
2222 return NULL;
2223 }
2224
kfd_process_get_user_gpu_id(struct kfd_process * p,uint32_t actual_gpu_id)2225 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
2226 {
2227 int i;
2228
2229 if (!actual_gpu_id)
2230 return 0;
2231
2232 for (i = 0; i < p->n_pdds; i++) {
2233 struct kfd_process_device *pdd = p->pdds[i];
2234
2235 if (pdd->dev->id == actual_gpu_id)
2236 return pdd->user_gpu_id;
2237 }
2238 return -EINVAL;
2239 }
2240
2241 #if defined(CONFIG_DEBUG_FS)
2242
kfd_debugfs_mqds_by_process(struct seq_file * m,void * data)2243 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
2244 {
2245 struct kfd_process *p;
2246 unsigned int temp;
2247 int r = 0;
2248
2249 int idx = srcu_read_lock(&kfd_processes_srcu);
2250
2251 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2252 seq_printf(m, "Process %d PASID 0x%x:\n",
2253 p->lead_thread->tgid, p->pasid);
2254
2255 mutex_lock(&p->mutex);
2256 r = pqm_debugfs_mqds(m, &p->pqm);
2257 mutex_unlock(&p->mutex);
2258
2259 if (r)
2260 break;
2261 }
2262
2263 srcu_read_unlock(&kfd_processes_srcu, idx);
2264
2265 return r;
2266 }
2267
2268 #endif
2269