1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 *
23 */
24
25 #include <linux/ratelimit.h>
26 #include <linux/printk.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/types.h>
30 #include <linux/bitops.h>
31 #include <linux/sched.h>
32 #include "kfd_priv.h"
33 #include "kfd_device_queue_manager.h"
34 #include "kfd_mqd_manager.h"
35 #include "cik_regs.h"
36 #include "kfd_kernel_queue.h"
37 #include "amdgpu_amdkfd.h"
38 #include "mes_api_def.h"
39
40 /* Size of the per-pipe EOP queue */
41 #define CIK_HPD_EOP_BYTES_LOG2 11
42 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
43
44 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
45 u32 pasid, unsigned int vmid);
46
47 static int execute_queues_cpsch(struct device_queue_manager *dqm,
48 enum kfd_unmap_queues_filter filter,
49 uint32_t filter_param);
50 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
51 enum kfd_unmap_queues_filter filter,
52 uint32_t filter_param, bool reset);
53
54 static int map_queues_cpsch(struct device_queue_manager *dqm);
55
56 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
57 struct queue *q);
58
59 static inline void deallocate_hqd(struct device_queue_manager *dqm,
60 struct queue *q);
61 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q);
62 static int allocate_sdma_queue(struct device_queue_manager *dqm,
63 struct queue *q, const uint32_t *restore_sdma_id);
64 static void kfd_process_hw_exception(struct work_struct *work);
65
66 static inline
get_mqd_type_from_queue_type(enum kfd_queue_type type)67 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
68 {
69 if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI)
70 return KFD_MQD_TYPE_SDMA;
71 return KFD_MQD_TYPE_CP;
72 }
73
is_pipe_enabled(struct device_queue_manager * dqm,int mec,int pipe)74 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe)
75 {
76 int i;
77 int pipe_offset = (mec * dqm->dev->shared_resources.num_pipe_per_mec
78 + pipe) * dqm->dev->shared_resources.num_queue_per_pipe;
79
80 /* queue is available for KFD usage if bit is 1 */
81 for (i = 0; i < dqm->dev->shared_resources.num_queue_per_pipe; ++i)
82 if (test_bit(pipe_offset + i,
83 dqm->dev->shared_resources.cp_queue_bitmap))
84 return true;
85 return false;
86 }
87
get_cp_queues_num(struct device_queue_manager * dqm)88 unsigned int get_cp_queues_num(struct device_queue_manager *dqm)
89 {
90 return bitmap_weight(dqm->dev->shared_resources.cp_queue_bitmap,
91 KGD_MAX_QUEUES);
92 }
93
get_queues_per_pipe(struct device_queue_manager * dqm)94 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm)
95 {
96 return dqm->dev->shared_resources.num_queue_per_pipe;
97 }
98
get_pipes_per_mec(struct device_queue_manager * dqm)99 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm)
100 {
101 return dqm->dev->shared_resources.num_pipe_per_mec;
102 }
103
get_num_all_sdma_engines(struct device_queue_manager * dqm)104 static unsigned int get_num_all_sdma_engines(struct device_queue_manager *dqm)
105 {
106 return kfd_get_num_sdma_engines(dqm->dev) +
107 kfd_get_num_xgmi_sdma_engines(dqm->dev);
108 }
109
get_num_sdma_queues(struct device_queue_manager * dqm)110 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm)
111 {
112 return kfd_get_num_sdma_engines(dqm->dev) *
113 dqm->dev->device_info.num_sdma_queues_per_engine;
114 }
115
get_num_xgmi_sdma_queues(struct device_queue_manager * dqm)116 unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm)
117 {
118 return kfd_get_num_xgmi_sdma_engines(dqm->dev) *
119 dqm->dev->device_info.num_sdma_queues_per_engine;
120 }
121
get_reserved_sdma_queues_bitmap(struct device_queue_manager * dqm)122 static inline uint64_t get_reserved_sdma_queues_bitmap(struct device_queue_manager *dqm)
123 {
124 return dqm->dev->device_info.reserved_sdma_queues_bitmap;
125 }
126
program_sh_mem_settings(struct device_queue_manager * dqm,struct qcm_process_device * qpd)127 void program_sh_mem_settings(struct device_queue_manager *dqm,
128 struct qcm_process_device *qpd)
129 {
130 return dqm->dev->kfd2kgd->program_sh_mem_settings(
131 dqm->dev->adev, qpd->vmid,
132 qpd->sh_mem_config,
133 qpd->sh_mem_ape1_base,
134 qpd->sh_mem_ape1_limit,
135 qpd->sh_mem_bases);
136 }
137
kfd_hws_hang(struct device_queue_manager * dqm)138 static void kfd_hws_hang(struct device_queue_manager *dqm)
139 {
140 /*
141 * Issue a GPU reset if HWS is unresponsive
142 */
143 dqm->is_hws_hang = true;
144
145 /* It's possible we're detecting a HWS hang in the
146 * middle of a GPU reset. No need to schedule another
147 * reset in this case.
148 */
149 if (!dqm->is_resetting)
150 schedule_work(&dqm->hw_exception_work);
151 }
152
convert_to_mes_queue_type(int queue_type)153 static int convert_to_mes_queue_type(int queue_type)
154 {
155 int mes_queue_type;
156
157 switch (queue_type) {
158 case KFD_QUEUE_TYPE_COMPUTE:
159 mes_queue_type = MES_QUEUE_TYPE_COMPUTE;
160 break;
161 case KFD_QUEUE_TYPE_SDMA:
162 mes_queue_type = MES_QUEUE_TYPE_SDMA;
163 break;
164 default:
165 WARN(1, "Invalid queue type %d", queue_type);
166 mes_queue_type = -EINVAL;
167 break;
168 }
169
170 return mes_queue_type;
171 }
172
add_queue_mes(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)173 static int add_queue_mes(struct device_queue_manager *dqm, struct queue *q,
174 struct qcm_process_device *qpd)
175 {
176 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
177 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
178 struct mes_add_queue_input queue_input;
179 int r, queue_type;
180 uint64_t wptr_addr_off;
181
182 if (dqm->is_hws_hang)
183 return -EIO;
184
185 memset(&queue_input, 0x0, sizeof(struct mes_add_queue_input));
186 queue_input.process_id = qpd->pqm->process->pasid;
187 queue_input.page_table_base_addr = qpd->page_table_base;
188 queue_input.process_va_start = 0;
189 queue_input.process_va_end = adev->vm_manager.max_pfn - 1;
190 /* MES unit for quantum is 100ns */
191 queue_input.process_quantum = KFD_MES_PROCESS_QUANTUM; /* Equivalent to 10ms. */
192 queue_input.process_context_addr = pdd->proc_ctx_gpu_addr;
193 queue_input.gang_quantum = KFD_MES_GANG_QUANTUM; /* Equivalent to 1ms */
194 queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
195 queue_input.inprocess_gang_priority = q->properties.priority;
196 queue_input.gang_global_priority_level =
197 AMDGPU_MES_PRIORITY_LEVEL_NORMAL;
198 queue_input.doorbell_offset = q->properties.doorbell_off;
199 queue_input.mqd_addr = q->gart_mqd_addr;
200 queue_input.wptr_addr = (uint64_t)q->properties.write_ptr;
201
202 if (q->wptr_bo) {
203 wptr_addr_off = (uint64_t)q->properties.write_ptr & (PAGE_SIZE - 1);
204 queue_input.wptr_mc_addr = ((uint64_t)q->wptr_bo->tbo.resource->start << PAGE_SHIFT) + wptr_addr_off;
205 }
206
207 queue_input.is_kfd_process = 1;
208 queue_input.is_aql_queue = (q->properties.format == KFD_QUEUE_FORMAT_AQL);
209 queue_input.queue_size = q->properties.queue_size >> 2;
210
211 queue_input.paging = false;
212 queue_input.tba_addr = qpd->tba_addr;
213 queue_input.tma_addr = qpd->tma_addr;
214
215 queue_type = convert_to_mes_queue_type(q->properties.type);
216 if (queue_type < 0) {
217 pr_err("Queue type not supported with MES, queue:%d\n",
218 q->properties.type);
219 return -EINVAL;
220 }
221 queue_input.queue_type = (uint32_t)queue_type;
222
223 if (q->gws) {
224 queue_input.gws_base = 0;
225 queue_input.gws_size = qpd->num_gws;
226 }
227
228 amdgpu_mes_lock(&adev->mes);
229 r = adev->mes.funcs->add_hw_queue(&adev->mes, &queue_input);
230 amdgpu_mes_unlock(&adev->mes);
231 if (r) {
232 pr_err("failed to add hardware queue to MES, doorbell=0x%x\n",
233 q->properties.doorbell_off);
234 pr_err("MES might be in unrecoverable state, issue a GPU reset\n");
235 kfd_hws_hang(dqm);
236 }
237
238 return r;
239 }
240
remove_queue_mes(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)241 static int remove_queue_mes(struct device_queue_manager *dqm, struct queue *q,
242 struct qcm_process_device *qpd)
243 {
244 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
245 int r;
246 struct mes_remove_queue_input queue_input;
247
248 if (dqm->is_hws_hang)
249 return -EIO;
250
251 memset(&queue_input, 0x0, sizeof(struct mes_remove_queue_input));
252 queue_input.doorbell_offset = q->properties.doorbell_off;
253 queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
254
255 amdgpu_mes_lock(&adev->mes);
256 r = adev->mes.funcs->remove_hw_queue(&adev->mes, &queue_input);
257 amdgpu_mes_unlock(&adev->mes);
258
259 if (r) {
260 pr_err("failed to remove hardware queue from MES, doorbell=0x%x\n",
261 q->properties.doorbell_off);
262 pr_err("MES might be in unrecoverable state, issue a GPU reset\n");
263 kfd_hws_hang(dqm);
264 }
265
266 return r;
267 }
268
remove_all_queues_mes(struct device_queue_manager * dqm)269 static int remove_all_queues_mes(struct device_queue_manager *dqm)
270 {
271 struct device_process_node *cur;
272 struct qcm_process_device *qpd;
273 struct queue *q;
274 int retval = 0;
275
276 list_for_each_entry(cur, &dqm->queues, list) {
277 qpd = cur->qpd;
278 list_for_each_entry(q, &qpd->queues_list, list) {
279 if (q->properties.is_active) {
280 retval = remove_queue_mes(dqm, q, qpd);
281 if (retval) {
282 pr_err("%s: Failed to remove queue %d for dev %d",
283 __func__,
284 q->properties.queue_id,
285 dqm->dev->id);
286 return retval;
287 }
288 }
289 }
290 }
291
292 return retval;
293 }
294
increment_queue_count(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)295 static void increment_queue_count(struct device_queue_manager *dqm,
296 struct qcm_process_device *qpd,
297 struct queue *q)
298 {
299 dqm->active_queue_count++;
300 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
301 q->properties.type == KFD_QUEUE_TYPE_DIQ)
302 dqm->active_cp_queue_count++;
303
304 if (q->properties.is_gws) {
305 dqm->gws_queue_count++;
306 qpd->mapped_gws_queue = true;
307 }
308 }
309
decrement_queue_count(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)310 static void decrement_queue_count(struct device_queue_manager *dqm,
311 struct qcm_process_device *qpd,
312 struct queue *q)
313 {
314 dqm->active_queue_count--;
315 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
316 q->properties.type == KFD_QUEUE_TYPE_DIQ)
317 dqm->active_cp_queue_count--;
318
319 if (q->properties.is_gws) {
320 dqm->gws_queue_count--;
321 qpd->mapped_gws_queue = false;
322 }
323 }
324
325 /*
326 * Allocate a doorbell ID to this queue.
327 * If doorbell_id is passed in, make sure requested ID is valid then allocate it.
328 */
allocate_doorbell(struct qcm_process_device * qpd,struct queue * q,uint32_t const * restore_id)329 static int allocate_doorbell(struct qcm_process_device *qpd,
330 struct queue *q,
331 uint32_t const *restore_id)
332 {
333 struct kfd_dev *dev = qpd->dqm->dev;
334
335 if (!KFD_IS_SOC15(dev)) {
336 /* On pre-SOC15 chips we need to use the queue ID to
337 * preserve the user mode ABI.
338 */
339
340 if (restore_id && *restore_id != q->properties.queue_id)
341 return -EINVAL;
342
343 q->doorbell_id = q->properties.queue_id;
344 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
345 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
346 /* For SDMA queues on SOC15 with 8-byte doorbell, use static
347 * doorbell assignments based on the engine and queue id.
348 * The doobell index distance between RLC (2*i) and (2*i+1)
349 * for a SDMA engine is 512.
350 */
351
352 uint32_t *idx_offset = dev->shared_resources.sdma_doorbell_idx;
353 uint32_t valid_id = idx_offset[q->properties.sdma_engine_id]
354 + (q->properties.sdma_queue_id & 1)
355 * KFD_QUEUE_DOORBELL_MIRROR_OFFSET
356 + (q->properties.sdma_queue_id >> 1);
357
358 if (restore_id && *restore_id != valid_id)
359 return -EINVAL;
360 q->doorbell_id = valid_id;
361 } else {
362 /* For CP queues on SOC15 */
363 if (restore_id) {
364 /* make sure that ID is free */
365 if (__test_and_set_bit(*restore_id, qpd->doorbell_bitmap))
366 return -EINVAL;
367
368 q->doorbell_id = *restore_id;
369 } else {
370 /* or reserve a free doorbell ID */
371 unsigned int found;
372
373 found = find_first_zero_bit(qpd->doorbell_bitmap,
374 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
375 if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) {
376 pr_debug("No doorbells available");
377 return -EBUSY;
378 }
379 set_bit(found, qpd->doorbell_bitmap);
380 q->doorbell_id = found;
381 }
382 }
383
384 q->properties.doorbell_off =
385 kfd_get_doorbell_dw_offset_in_bar(dev, qpd_to_pdd(qpd),
386 q->doorbell_id);
387 return 0;
388 }
389
deallocate_doorbell(struct qcm_process_device * qpd,struct queue * q)390 static void deallocate_doorbell(struct qcm_process_device *qpd,
391 struct queue *q)
392 {
393 unsigned int old;
394 struct kfd_dev *dev = qpd->dqm->dev;
395
396 if (!KFD_IS_SOC15(dev) ||
397 q->properties.type == KFD_QUEUE_TYPE_SDMA ||
398 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
399 return;
400
401 old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap);
402 WARN_ON(!old);
403 }
404
program_trap_handler_settings(struct device_queue_manager * dqm,struct qcm_process_device * qpd)405 static void program_trap_handler_settings(struct device_queue_manager *dqm,
406 struct qcm_process_device *qpd)
407 {
408 if (dqm->dev->kfd2kgd->program_trap_handler_settings)
409 dqm->dev->kfd2kgd->program_trap_handler_settings(
410 dqm->dev->adev, qpd->vmid,
411 qpd->tba_addr, qpd->tma_addr);
412 }
413
allocate_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)414 static int allocate_vmid(struct device_queue_manager *dqm,
415 struct qcm_process_device *qpd,
416 struct queue *q)
417 {
418 int allocated_vmid = -1, i;
419
420 for (i = dqm->dev->vm_info.first_vmid_kfd;
421 i <= dqm->dev->vm_info.last_vmid_kfd; i++) {
422 if (!dqm->vmid_pasid[i]) {
423 allocated_vmid = i;
424 break;
425 }
426 }
427
428 if (allocated_vmid < 0) {
429 pr_err("no more vmid to allocate\n");
430 return -ENOSPC;
431 }
432
433 pr_debug("vmid allocated: %d\n", allocated_vmid);
434
435 dqm->vmid_pasid[allocated_vmid] = q->process->pasid;
436
437 set_pasid_vmid_mapping(dqm, q->process->pasid, allocated_vmid);
438
439 qpd->vmid = allocated_vmid;
440 q->properties.vmid = allocated_vmid;
441
442 program_sh_mem_settings(dqm, qpd);
443
444 if (KFD_IS_SOC15(dqm->dev) && dqm->dev->cwsr_enabled)
445 program_trap_handler_settings(dqm, qpd);
446
447 /* qpd->page_table_base is set earlier when register_process()
448 * is called, i.e. when the first queue is created.
449 */
450 dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->adev,
451 qpd->vmid,
452 qpd->page_table_base);
453 /* invalidate the VM context after pasid and vmid mapping is set up */
454 kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
455
456 if (dqm->dev->kfd2kgd->set_scratch_backing_va)
457 dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->adev,
458 qpd->sh_hidden_private_base, qpd->vmid);
459
460 return 0;
461 }
462
flush_texture_cache_nocpsch(struct kfd_dev * kdev,struct qcm_process_device * qpd)463 static int flush_texture_cache_nocpsch(struct kfd_dev *kdev,
464 struct qcm_process_device *qpd)
465 {
466 const struct packet_manager_funcs *pmf = qpd->dqm->packet_mgr.pmf;
467 int ret;
468
469 if (!qpd->ib_kaddr)
470 return -ENOMEM;
471
472 ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr);
473 if (ret)
474 return ret;
475
476 return amdgpu_amdkfd_submit_ib(kdev->adev, KGD_ENGINE_MEC1, qpd->vmid,
477 qpd->ib_base, (uint32_t *)qpd->ib_kaddr,
478 pmf->release_mem_size / sizeof(uint32_t));
479 }
480
deallocate_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)481 static void deallocate_vmid(struct device_queue_manager *dqm,
482 struct qcm_process_device *qpd,
483 struct queue *q)
484 {
485 /* On GFX v7, CP doesn't flush TC at dequeue */
486 if (q->device->adev->asic_type == CHIP_HAWAII)
487 if (flush_texture_cache_nocpsch(q->device, qpd))
488 pr_err("Failed to flush TC\n");
489
490 kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
491
492 /* Release the vmid mapping */
493 set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
494 dqm->vmid_pasid[qpd->vmid] = 0;
495
496 qpd->vmid = 0;
497 q->properties.vmid = 0;
498 }
499
create_queue_nocpsch(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd,const struct kfd_criu_queue_priv_data * qd,const void * restore_mqd,const void * restore_ctl_stack)500 static int create_queue_nocpsch(struct device_queue_manager *dqm,
501 struct queue *q,
502 struct qcm_process_device *qpd,
503 const struct kfd_criu_queue_priv_data *qd,
504 const void *restore_mqd, const void *restore_ctl_stack)
505 {
506 struct mqd_manager *mqd_mgr;
507 int retval;
508
509 dqm_lock(dqm);
510
511 if (dqm->total_queue_count >= max_num_of_queues_per_device) {
512 pr_warn("Can't create new usermode queue because %d queues were already created\n",
513 dqm->total_queue_count);
514 retval = -EPERM;
515 goto out_unlock;
516 }
517
518 if (list_empty(&qpd->queues_list)) {
519 retval = allocate_vmid(dqm, qpd, q);
520 if (retval)
521 goto out_unlock;
522 }
523 q->properties.vmid = qpd->vmid;
524 /*
525 * Eviction state logic: mark all queues as evicted, even ones
526 * not currently active. Restoring inactive queues later only
527 * updates the is_evicted flag but is a no-op otherwise.
528 */
529 q->properties.is_evicted = !!qpd->evicted;
530
531 q->properties.tba_addr = qpd->tba_addr;
532 q->properties.tma_addr = qpd->tma_addr;
533
534 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
535 q->properties.type)];
536 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
537 retval = allocate_hqd(dqm, q);
538 if (retval)
539 goto deallocate_vmid;
540 pr_debug("Loading mqd to hqd on pipe %d, queue %d\n",
541 q->pipe, q->queue);
542 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
543 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
544 retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
545 if (retval)
546 goto deallocate_vmid;
547 dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
548 }
549
550 retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
551 if (retval)
552 goto out_deallocate_hqd;
553
554 /* Temporarily release dqm lock to avoid a circular lock dependency */
555 dqm_unlock(dqm);
556 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
557 dqm_lock(dqm);
558
559 if (!q->mqd_mem_obj) {
560 retval = -ENOMEM;
561 goto out_deallocate_doorbell;
562 }
563
564 if (qd)
565 mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
566 &q->properties, restore_mqd, restore_ctl_stack,
567 qd->ctl_stack_size);
568 else
569 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
570 &q->gart_mqd_addr, &q->properties);
571
572 if (q->properties.is_active) {
573 if (!dqm->sched_running) {
574 WARN_ONCE(1, "Load non-HWS mqd while stopped\n");
575 goto add_queue_to_list;
576 }
577
578 if (WARN(q->process->mm != current->mm,
579 "should only run in user thread"))
580 retval = -EFAULT;
581 else
582 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
583 q->queue, &q->properties, current->mm);
584 if (retval)
585 goto out_free_mqd;
586 }
587
588 add_queue_to_list:
589 list_add(&q->list, &qpd->queues_list);
590 qpd->queue_count++;
591 if (q->properties.is_active)
592 increment_queue_count(dqm, qpd, q);
593
594 /*
595 * Unconditionally increment this counter, regardless of the queue's
596 * type or whether the queue is active.
597 */
598 dqm->total_queue_count++;
599 pr_debug("Total of %d queues are accountable so far\n",
600 dqm->total_queue_count);
601 goto out_unlock;
602
603 out_free_mqd:
604 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
605 out_deallocate_doorbell:
606 deallocate_doorbell(qpd, q);
607 out_deallocate_hqd:
608 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
609 deallocate_hqd(dqm, q);
610 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
611 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
612 deallocate_sdma_queue(dqm, q);
613 deallocate_vmid:
614 if (list_empty(&qpd->queues_list))
615 deallocate_vmid(dqm, qpd, q);
616 out_unlock:
617 dqm_unlock(dqm);
618 return retval;
619 }
620
allocate_hqd(struct device_queue_manager * dqm,struct queue * q)621 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
622 {
623 bool set;
624 int pipe, bit, i;
625
626 set = false;
627
628 for (pipe = dqm->next_pipe_to_allocate, i = 0;
629 i < get_pipes_per_mec(dqm);
630 pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) {
631
632 if (!is_pipe_enabled(dqm, 0, pipe))
633 continue;
634
635 if (dqm->allocated_queues[pipe] != 0) {
636 bit = ffs(dqm->allocated_queues[pipe]) - 1;
637 dqm->allocated_queues[pipe] &= ~(1 << bit);
638 q->pipe = pipe;
639 q->queue = bit;
640 set = true;
641 break;
642 }
643 }
644
645 if (!set)
646 return -EBUSY;
647
648 pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue);
649 /* horizontal hqd allocation */
650 dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm);
651
652 return 0;
653 }
654
deallocate_hqd(struct device_queue_manager * dqm,struct queue * q)655 static inline void deallocate_hqd(struct device_queue_manager *dqm,
656 struct queue *q)
657 {
658 dqm->allocated_queues[q->pipe] |= (1 << q->queue);
659 }
660
661 #define SQ_IND_CMD_CMD_KILL 0x00000003
662 #define SQ_IND_CMD_MODE_BROADCAST 0x00000001
663
dbgdev_wave_reset_wavefronts(struct kfd_dev * dev,struct kfd_process * p)664 static int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p)
665 {
666 int status = 0;
667 unsigned int vmid;
668 uint16_t queried_pasid;
669 union SQ_CMD_BITS reg_sq_cmd;
670 union GRBM_GFX_INDEX_BITS reg_gfx_index;
671 struct kfd_process_device *pdd;
672 int first_vmid_to_scan = dev->vm_info.first_vmid_kfd;
673 int last_vmid_to_scan = dev->vm_info.last_vmid_kfd;
674
675 reg_sq_cmd.u32All = 0;
676 reg_gfx_index.u32All = 0;
677
678 pr_debug("Killing all process wavefronts\n");
679
680 if (!dev->kfd2kgd->get_atc_vmid_pasid_mapping_info) {
681 pr_err("no vmid pasid mapping supported \n");
682 return -EOPNOTSUPP;
683 }
684
685 /* Scan all registers in the range ATC_VMID8_PASID_MAPPING ..
686 * ATC_VMID15_PASID_MAPPING
687 * to check which VMID the current process is mapped to.
688 */
689
690 for (vmid = first_vmid_to_scan; vmid <= last_vmid_to_scan; vmid++) {
691 status = dev->kfd2kgd->get_atc_vmid_pasid_mapping_info
692 (dev->adev, vmid, &queried_pasid);
693
694 if (status && queried_pasid == p->pasid) {
695 pr_debug("Killing wave fronts of vmid %d and pasid 0x%x\n",
696 vmid, p->pasid);
697 break;
698 }
699 }
700
701 if (vmid > last_vmid_to_scan) {
702 pr_err("Didn't find vmid for pasid 0x%x\n", p->pasid);
703 return -EFAULT;
704 }
705
706 /* taking the VMID for that process on the safe way using PDD */
707 pdd = kfd_get_process_device_data(dev, p);
708 if (!pdd)
709 return -EFAULT;
710
711 reg_gfx_index.bits.sh_broadcast_writes = 1;
712 reg_gfx_index.bits.se_broadcast_writes = 1;
713 reg_gfx_index.bits.instance_broadcast_writes = 1;
714 reg_sq_cmd.bits.mode = SQ_IND_CMD_MODE_BROADCAST;
715 reg_sq_cmd.bits.cmd = SQ_IND_CMD_CMD_KILL;
716 reg_sq_cmd.bits.vm_id = vmid;
717
718 dev->kfd2kgd->wave_control_execute(dev->adev,
719 reg_gfx_index.u32All,
720 reg_sq_cmd.u32All);
721
722 return 0;
723 }
724
725 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked
726 * to avoid asynchronized access
727 */
destroy_queue_nocpsch_locked(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)728 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm,
729 struct qcm_process_device *qpd,
730 struct queue *q)
731 {
732 int retval;
733 struct mqd_manager *mqd_mgr;
734
735 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
736 q->properties.type)];
737
738 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
739 deallocate_hqd(dqm, q);
740 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
741 deallocate_sdma_queue(dqm, q);
742 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
743 deallocate_sdma_queue(dqm, q);
744 else {
745 pr_debug("q->properties.type %d is invalid\n",
746 q->properties.type);
747 return -EINVAL;
748 }
749 dqm->total_queue_count--;
750
751 deallocate_doorbell(qpd, q);
752
753 if (!dqm->sched_running) {
754 WARN_ONCE(1, "Destroy non-HWS queue while stopped\n");
755 return 0;
756 }
757
758 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
759 KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
760 KFD_UNMAP_LATENCY_MS,
761 q->pipe, q->queue);
762 if (retval == -ETIME)
763 qpd->reset_wavefronts = true;
764
765 list_del(&q->list);
766 if (list_empty(&qpd->queues_list)) {
767 if (qpd->reset_wavefronts) {
768 pr_warn("Resetting wave fronts (nocpsch) on dev %p\n",
769 dqm->dev);
770 /* dbgdev_wave_reset_wavefronts has to be called before
771 * deallocate_vmid(), i.e. when vmid is still in use.
772 */
773 dbgdev_wave_reset_wavefronts(dqm->dev,
774 qpd->pqm->process);
775 qpd->reset_wavefronts = false;
776 }
777
778 deallocate_vmid(dqm, qpd, q);
779 }
780 qpd->queue_count--;
781 if (q->properties.is_active)
782 decrement_queue_count(dqm, qpd, q);
783
784 return retval;
785 }
786
destroy_queue_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)787 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
788 struct qcm_process_device *qpd,
789 struct queue *q)
790 {
791 int retval;
792 uint64_t sdma_val = 0;
793 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
794 struct mqd_manager *mqd_mgr =
795 dqm->mqd_mgrs[get_mqd_type_from_queue_type(q->properties.type)];
796
797 /* Get the SDMA queue stats */
798 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
799 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
800 retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
801 &sdma_val);
802 if (retval)
803 pr_err("Failed to read SDMA queue counter for queue: %d\n",
804 q->properties.queue_id);
805 }
806
807 dqm_lock(dqm);
808 retval = destroy_queue_nocpsch_locked(dqm, qpd, q);
809 if (!retval)
810 pdd->sdma_past_activity_counter += sdma_val;
811 dqm_unlock(dqm);
812
813 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
814
815 return retval;
816 }
817
update_queue(struct device_queue_manager * dqm,struct queue * q,struct mqd_update_info * minfo)818 static int update_queue(struct device_queue_manager *dqm, struct queue *q,
819 struct mqd_update_info *minfo)
820 {
821 int retval = 0;
822 struct mqd_manager *mqd_mgr;
823 struct kfd_process_device *pdd;
824 bool prev_active = false;
825
826 dqm_lock(dqm);
827 pdd = kfd_get_process_device_data(q->device, q->process);
828 if (!pdd) {
829 retval = -ENODEV;
830 goto out_unlock;
831 }
832 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
833 q->properties.type)];
834
835 /* Save previous activity state for counters */
836 prev_active = q->properties.is_active;
837
838 /* Make sure the queue is unmapped before updating the MQD */
839 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
840 if (!dqm->dev->shared_resources.enable_mes)
841 retval = unmap_queues_cpsch(dqm,
842 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, false);
843 else if (prev_active)
844 retval = remove_queue_mes(dqm, q, &pdd->qpd);
845
846 if (retval) {
847 pr_err("unmap queue failed\n");
848 goto out_unlock;
849 }
850 } else if (prev_active &&
851 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
852 q->properties.type == KFD_QUEUE_TYPE_SDMA ||
853 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
854
855 if (!dqm->sched_running) {
856 WARN_ONCE(1, "Update non-HWS queue while stopped\n");
857 goto out_unlock;
858 }
859
860 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
861 (dqm->dev->cwsr_enabled ?
862 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
863 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
864 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
865 if (retval) {
866 pr_err("destroy mqd failed\n");
867 goto out_unlock;
868 }
869 }
870
871 mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties, minfo);
872
873 /*
874 * check active state vs. the previous state and modify
875 * counter accordingly. map_queues_cpsch uses the
876 * dqm->active_queue_count to determine whether a new runlist must be
877 * uploaded.
878 */
879 if (q->properties.is_active && !prev_active) {
880 increment_queue_count(dqm, &pdd->qpd, q);
881 } else if (!q->properties.is_active && prev_active) {
882 decrement_queue_count(dqm, &pdd->qpd, q);
883 } else if (q->gws && !q->properties.is_gws) {
884 if (q->properties.is_active) {
885 dqm->gws_queue_count++;
886 pdd->qpd.mapped_gws_queue = true;
887 }
888 q->properties.is_gws = true;
889 } else if (!q->gws && q->properties.is_gws) {
890 if (q->properties.is_active) {
891 dqm->gws_queue_count--;
892 pdd->qpd.mapped_gws_queue = false;
893 }
894 q->properties.is_gws = false;
895 }
896
897 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
898 if (!dqm->dev->shared_resources.enable_mes)
899 retval = map_queues_cpsch(dqm);
900 else if (q->properties.is_active)
901 retval = add_queue_mes(dqm, q, &pdd->qpd);
902 } else if (q->properties.is_active &&
903 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
904 q->properties.type == KFD_QUEUE_TYPE_SDMA ||
905 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
906 if (WARN(q->process->mm != current->mm,
907 "should only run in user thread"))
908 retval = -EFAULT;
909 else
910 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd,
911 q->pipe, q->queue,
912 &q->properties, current->mm);
913 }
914
915 out_unlock:
916 dqm_unlock(dqm);
917 return retval;
918 }
919
evict_process_queues_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)920 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm,
921 struct qcm_process_device *qpd)
922 {
923 struct queue *q;
924 struct mqd_manager *mqd_mgr;
925 struct kfd_process_device *pdd;
926 int retval, ret = 0;
927
928 dqm_lock(dqm);
929 if (qpd->evicted++ > 0) /* already evicted, do nothing */
930 goto out;
931
932 pdd = qpd_to_pdd(qpd);
933 pr_debug_ratelimited("Evicting PASID 0x%x queues\n",
934 pdd->process->pasid);
935
936 pdd->last_evict_timestamp = get_jiffies_64();
937 /* Mark all queues as evicted. Deactivate all active queues on
938 * the qpd.
939 */
940 list_for_each_entry(q, &qpd->queues_list, list) {
941 q->properties.is_evicted = true;
942 if (!q->properties.is_active)
943 continue;
944
945 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
946 q->properties.type)];
947 q->properties.is_active = false;
948 decrement_queue_count(dqm, qpd, q);
949
950 if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n"))
951 continue;
952
953 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
954 (dqm->dev->cwsr_enabled ?
955 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
956 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
957 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
958 if (retval && !ret)
959 /* Return the first error, but keep going to
960 * maintain a consistent eviction state
961 */
962 ret = retval;
963 }
964
965 out:
966 dqm_unlock(dqm);
967 return ret;
968 }
969
evict_process_queues_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)970 static int evict_process_queues_cpsch(struct device_queue_manager *dqm,
971 struct qcm_process_device *qpd)
972 {
973 struct queue *q;
974 struct kfd_process_device *pdd;
975 int retval = 0;
976
977 dqm_lock(dqm);
978 if (qpd->evicted++ > 0) /* already evicted, do nothing */
979 goto out;
980
981 pdd = qpd_to_pdd(qpd);
982 pr_debug_ratelimited("Evicting PASID 0x%x queues\n",
983 pdd->process->pasid);
984
985 /* Mark all queues as evicted. Deactivate all active queues on
986 * the qpd.
987 */
988 list_for_each_entry(q, &qpd->queues_list, list) {
989 q->properties.is_evicted = true;
990 if (!q->properties.is_active)
991 continue;
992
993 q->properties.is_active = false;
994 decrement_queue_count(dqm, qpd, q);
995
996 if (dqm->dev->shared_resources.enable_mes) {
997 retval = remove_queue_mes(dqm, q, qpd);
998 if (retval) {
999 pr_err("Failed to evict queue %d\n",
1000 q->properties.queue_id);
1001 goto out;
1002 }
1003 }
1004 }
1005 pdd->last_evict_timestamp = get_jiffies_64();
1006 if (!dqm->dev->shared_resources.enable_mes)
1007 retval = execute_queues_cpsch(dqm,
1008 qpd->is_debug ?
1009 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES :
1010 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1011
1012 out:
1013 dqm_unlock(dqm);
1014 return retval;
1015 }
1016
restore_process_queues_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1017 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm,
1018 struct qcm_process_device *qpd)
1019 {
1020 struct mm_struct *mm = NULL;
1021 struct queue *q;
1022 struct mqd_manager *mqd_mgr;
1023 struct kfd_process_device *pdd;
1024 uint64_t pd_base;
1025 uint64_t eviction_duration;
1026 int retval, ret = 0;
1027
1028 pdd = qpd_to_pdd(qpd);
1029 /* Retrieve PD base */
1030 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1031
1032 dqm_lock(dqm);
1033 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1034 goto out;
1035 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1036 qpd->evicted--;
1037 goto out;
1038 }
1039
1040 pr_debug_ratelimited("Restoring PASID 0x%x queues\n",
1041 pdd->process->pasid);
1042
1043 /* Update PD Base in QPD */
1044 qpd->page_table_base = pd_base;
1045 pr_debug("Updated PD address to 0x%llx\n", pd_base);
1046
1047 if (!list_empty(&qpd->queues_list)) {
1048 dqm->dev->kfd2kgd->set_vm_context_page_table_base(
1049 dqm->dev->adev,
1050 qpd->vmid,
1051 qpd->page_table_base);
1052 kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1053 }
1054
1055 /* Take a safe reference to the mm_struct, which may otherwise
1056 * disappear even while the kfd_process is still referenced.
1057 */
1058 mm = get_task_mm(pdd->process->lead_thread);
1059 if (!mm) {
1060 ret = -EFAULT;
1061 goto out;
1062 }
1063
1064 /* Remove the eviction flags. Activate queues that are not
1065 * inactive for other reasons.
1066 */
1067 list_for_each_entry(q, &qpd->queues_list, list) {
1068 q->properties.is_evicted = false;
1069 if (!QUEUE_IS_ACTIVE(q->properties))
1070 continue;
1071
1072 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1073 q->properties.type)];
1074 q->properties.is_active = true;
1075 increment_queue_count(dqm, qpd, q);
1076
1077 if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n"))
1078 continue;
1079
1080 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
1081 q->queue, &q->properties, mm);
1082 if (retval && !ret)
1083 /* Return the first error, but keep going to
1084 * maintain a consistent eviction state
1085 */
1086 ret = retval;
1087 }
1088 qpd->evicted = 0;
1089 eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1090 atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1091 out:
1092 if (mm)
1093 mmput(mm);
1094 dqm_unlock(dqm);
1095 return ret;
1096 }
1097
restore_process_queues_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1098 static int restore_process_queues_cpsch(struct device_queue_manager *dqm,
1099 struct qcm_process_device *qpd)
1100 {
1101 struct queue *q;
1102 struct kfd_process_device *pdd;
1103 uint64_t pd_base;
1104 uint64_t eviction_duration;
1105 int retval = 0;
1106
1107 pdd = qpd_to_pdd(qpd);
1108 /* Retrieve PD base */
1109 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1110
1111 dqm_lock(dqm);
1112 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1113 goto out;
1114 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1115 qpd->evicted--;
1116 goto out;
1117 }
1118
1119 pr_debug_ratelimited("Restoring PASID 0x%x queues\n",
1120 pdd->process->pasid);
1121
1122 /* Update PD Base in QPD */
1123 qpd->page_table_base = pd_base;
1124 pr_debug("Updated PD address to 0x%llx\n", pd_base);
1125
1126 /* activate all active queues on the qpd */
1127 list_for_each_entry(q, &qpd->queues_list, list) {
1128 q->properties.is_evicted = false;
1129 if (!QUEUE_IS_ACTIVE(q->properties))
1130 continue;
1131
1132 q->properties.is_active = true;
1133 increment_queue_count(dqm, &pdd->qpd, q);
1134
1135 if (dqm->dev->shared_resources.enable_mes) {
1136 retval = add_queue_mes(dqm, q, qpd);
1137 if (retval) {
1138 pr_err("Failed to restore queue %d\n",
1139 q->properties.queue_id);
1140 goto out;
1141 }
1142 }
1143 }
1144 if (!dqm->dev->shared_resources.enable_mes)
1145 retval = execute_queues_cpsch(dqm,
1146 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1147 qpd->evicted = 0;
1148 eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1149 atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1150 out:
1151 dqm_unlock(dqm);
1152 return retval;
1153 }
1154
register_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1155 static int register_process(struct device_queue_manager *dqm,
1156 struct qcm_process_device *qpd)
1157 {
1158 struct device_process_node *n;
1159 struct kfd_process_device *pdd;
1160 uint64_t pd_base;
1161 int retval;
1162
1163 n = kzalloc(sizeof(*n), GFP_KERNEL);
1164 if (!n)
1165 return -ENOMEM;
1166
1167 n->qpd = qpd;
1168
1169 pdd = qpd_to_pdd(qpd);
1170 /* Retrieve PD base */
1171 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1172
1173 dqm_lock(dqm);
1174 list_add(&n->list, &dqm->queues);
1175
1176 /* Update PD Base in QPD */
1177 qpd->page_table_base = pd_base;
1178 pr_debug("Updated PD address to 0x%llx\n", pd_base);
1179
1180 retval = dqm->asic_ops.update_qpd(dqm, qpd);
1181
1182 dqm->processes_count++;
1183
1184 dqm_unlock(dqm);
1185
1186 /* Outside the DQM lock because under the DQM lock we can't do
1187 * reclaim or take other locks that others hold while reclaiming.
1188 */
1189 kfd_inc_compute_active(dqm->dev);
1190
1191 return retval;
1192 }
1193
unregister_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1194 static int unregister_process(struct device_queue_manager *dqm,
1195 struct qcm_process_device *qpd)
1196 {
1197 int retval;
1198 struct device_process_node *cur, *next;
1199
1200 pr_debug("qpd->queues_list is %s\n",
1201 list_empty(&qpd->queues_list) ? "empty" : "not empty");
1202
1203 retval = 0;
1204 dqm_lock(dqm);
1205
1206 list_for_each_entry_safe(cur, next, &dqm->queues, list) {
1207 if (qpd == cur->qpd) {
1208 list_del(&cur->list);
1209 kfree(cur);
1210 dqm->processes_count--;
1211 goto out;
1212 }
1213 }
1214 /* qpd not found in dqm list */
1215 retval = 1;
1216 out:
1217 dqm_unlock(dqm);
1218
1219 /* Outside the DQM lock because under the DQM lock we can't do
1220 * reclaim or take other locks that others hold while reclaiming.
1221 */
1222 if (!retval)
1223 kfd_dec_compute_active(dqm->dev);
1224
1225 return retval;
1226 }
1227
1228 static int
set_pasid_vmid_mapping(struct device_queue_manager * dqm,u32 pasid,unsigned int vmid)1229 set_pasid_vmid_mapping(struct device_queue_manager *dqm, u32 pasid,
1230 unsigned int vmid)
1231 {
1232 return dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
1233 dqm->dev->adev, pasid, vmid);
1234 }
1235
init_interrupts(struct device_queue_manager * dqm)1236 static void init_interrupts(struct device_queue_manager *dqm)
1237 {
1238 unsigned int i;
1239
1240 for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++)
1241 if (is_pipe_enabled(dqm, 0, i))
1242 dqm->dev->kfd2kgd->init_interrupts(dqm->dev->adev, i);
1243 }
1244
init_sdma_bitmaps(struct device_queue_manager * dqm)1245 static void init_sdma_bitmaps(struct device_queue_manager *dqm)
1246 {
1247 unsigned int num_sdma_queues =
1248 min_t(unsigned int, sizeof(dqm->sdma_bitmap)*8,
1249 get_num_sdma_queues(dqm));
1250 unsigned int num_xgmi_sdma_queues =
1251 min_t(unsigned int, sizeof(dqm->xgmi_sdma_bitmap)*8,
1252 get_num_xgmi_sdma_queues(dqm));
1253
1254 if (num_sdma_queues)
1255 dqm->sdma_bitmap = GENMASK_ULL(num_sdma_queues-1, 0);
1256 if (num_xgmi_sdma_queues)
1257 dqm->xgmi_sdma_bitmap = GENMASK_ULL(num_xgmi_sdma_queues-1, 0);
1258
1259 dqm->sdma_bitmap &= ~get_reserved_sdma_queues_bitmap(dqm);
1260 pr_info("sdma_bitmap: %llx\n", dqm->sdma_bitmap);
1261 }
1262
initialize_nocpsch(struct device_queue_manager * dqm)1263 static int initialize_nocpsch(struct device_queue_manager *dqm)
1264 {
1265 int pipe, queue;
1266
1267 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1268
1269 dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm),
1270 sizeof(unsigned int), GFP_KERNEL);
1271 if (!dqm->allocated_queues)
1272 return -ENOMEM;
1273
1274 mutex_init(&dqm->lock_hidden);
1275 INIT_LIST_HEAD(&dqm->queues);
1276 dqm->active_queue_count = dqm->next_pipe_to_allocate = 0;
1277 dqm->active_cp_queue_count = 0;
1278 dqm->gws_queue_count = 0;
1279
1280 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
1281 int pipe_offset = pipe * get_queues_per_pipe(dqm);
1282
1283 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++)
1284 if (test_bit(pipe_offset + queue,
1285 dqm->dev->shared_resources.cp_queue_bitmap))
1286 dqm->allocated_queues[pipe] |= 1 << queue;
1287 }
1288
1289 memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid));
1290
1291 init_sdma_bitmaps(dqm);
1292
1293 return 0;
1294 }
1295
uninitialize(struct device_queue_manager * dqm)1296 static void uninitialize(struct device_queue_manager *dqm)
1297 {
1298 int i;
1299
1300 WARN_ON(dqm->active_queue_count > 0 || dqm->processes_count > 0);
1301
1302 kfree(dqm->allocated_queues);
1303 for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
1304 kfree(dqm->mqd_mgrs[i]);
1305 mutex_destroy(&dqm->lock_hidden);
1306 }
1307
start_nocpsch(struct device_queue_manager * dqm)1308 static int start_nocpsch(struct device_queue_manager *dqm)
1309 {
1310 int r = 0;
1311
1312 pr_info("SW scheduler is used");
1313 init_interrupts(dqm);
1314
1315 if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1316 r = pm_init(&dqm->packet_mgr, dqm);
1317 if (!r)
1318 dqm->sched_running = true;
1319
1320 return r;
1321 }
1322
stop_nocpsch(struct device_queue_manager * dqm)1323 static int stop_nocpsch(struct device_queue_manager *dqm)
1324 {
1325 if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1326 pm_uninit(&dqm->packet_mgr, false);
1327 dqm->sched_running = false;
1328
1329 return 0;
1330 }
1331
pre_reset(struct device_queue_manager * dqm)1332 static void pre_reset(struct device_queue_manager *dqm)
1333 {
1334 dqm_lock(dqm);
1335 dqm->is_resetting = true;
1336 dqm_unlock(dqm);
1337 }
1338
allocate_sdma_queue(struct device_queue_manager * dqm,struct queue * q,const uint32_t * restore_sdma_id)1339 static int allocate_sdma_queue(struct device_queue_manager *dqm,
1340 struct queue *q, const uint32_t *restore_sdma_id)
1341 {
1342 int bit;
1343
1344 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1345 if (dqm->sdma_bitmap == 0) {
1346 pr_err("No more SDMA queue to allocate\n");
1347 return -ENOMEM;
1348 }
1349
1350 if (restore_sdma_id) {
1351 /* Re-use existing sdma_id */
1352 if (!(dqm->sdma_bitmap & (1ULL << *restore_sdma_id))) {
1353 pr_err("SDMA queue already in use\n");
1354 return -EBUSY;
1355 }
1356 dqm->sdma_bitmap &= ~(1ULL << *restore_sdma_id);
1357 q->sdma_id = *restore_sdma_id;
1358 } else {
1359 /* Find first available sdma_id */
1360 bit = __ffs64(dqm->sdma_bitmap);
1361 dqm->sdma_bitmap &= ~(1ULL << bit);
1362 q->sdma_id = bit;
1363 }
1364
1365 q->properties.sdma_engine_id = q->sdma_id %
1366 kfd_get_num_sdma_engines(dqm->dev);
1367 q->properties.sdma_queue_id = q->sdma_id /
1368 kfd_get_num_sdma_engines(dqm->dev);
1369 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1370 if (dqm->xgmi_sdma_bitmap == 0) {
1371 pr_err("No more XGMI SDMA queue to allocate\n");
1372 return -ENOMEM;
1373 }
1374 if (restore_sdma_id) {
1375 /* Re-use existing sdma_id */
1376 if (!(dqm->xgmi_sdma_bitmap & (1ULL << *restore_sdma_id))) {
1377 pr_err("SDMA queue already in use\n");
1378 return -EBUSY;
1379 }
1380 dqm->xgmi_sdma_bitmap &= ~(1ULL << *restore_sdma_id);
1381 q->sdma_id = *restore_sdma_id;
1382 } else {
1383 bit = __ffs64(dqm->xgmi_sdma_bitmap);
1384 dqm->xgmi_sdma_bitmap &= ~(1ULL << bit);
1385 q->sdma_id = bit;
1386 }
1387 /* sdma_engine_id is sdma id including
1388 * both PCIe-optimized SDMAs and XGMI-
1389 * optimized SDMAs. The calculation below
1390 * assumes the first N engines are always
1391 * PCIe-optimized ones
1392 */
1393 q->properties.sdma_engine_id =
1394 kfd_get_num_sdma_engines(dqm->dev) +
1395 q->sdma_id % kfd_get_num_xgmi_sdma_engines(dqm->dev);
1396 q->properties.sdma_queue_id = q->sdma_id /
1397 kfd_get_num_xgmi_sdma_engines(dqm->dev);
1398 }
1399
1400 pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id);
1401 pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id);
1402
1403 return 0;
1404 }
1405
deallocate_sdma_queue(struct device_queue_manager * dqm,struct queue * q)1406 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
1407 struct queue *q)
1408 {
1409 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1410 if (q->sdma_id >= get_num_sdma_queues(dqm))
1411 return;
1412 dqm->sdma_bitmap |= (1ULL << q->sdma_id);
1413 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1414 if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm))
1415 return;
1416 dqm->xgmi_sdma_bitmap |= (1ULL << q->sdma_id);
1417 }
1418 }
1419
1420 /*
1421 * Device Queue Manager implementation for cp scheduler
1422 */
1423
set_sched_resources(struct device_queue_manager * dqm)1424 static int set_sched_resources(struct device_queue_manager *dqm)
1425 {
1426 int i, mec;
1427 struct scheduling_resources res;
1428
1429 res.vmid_mask = dqm->dev->shared_resources.compute_vmid_bitmap;
1430
1431 res.queue_mask = 0;
1432 for (i = 0; i < KGD_MAX_QUEUES; ++i) {
1433 mec = (i / dqm->dev->shared_resources.num_queue_per_pipe)
1434 / dqm->dev->shared_resources.num_pipe_per_mec;
1435
1436 if (!test_bit(i, dqm->dev->shared_resources.cp_queue_bitmap))
1437 continue;
1438
1439 /* only acquire queues from the first MEC */
1440 if (mec > 0)
1441 continue;
1442
1443 /* This situation may be hit in the future if a new HW
1444 * generation exposes more than 64 queues. If so, the
1445 * definition of res.queue_mask needs updating
1446 */
1447 if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) {
1448 pr_err("Invalid queue enabled by amdgpu: %d\n", i);
1449 break;
1450 }
1451
1452 res.queue_mask |= 1ull
1453 << amdgpu_queue_mask_bit_to_set_resource_bit(
1454 dqm->dev->adev, i);
1455 }
1456 res.gws_mask = ~0ull;
1457 res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0;
1458
1459 pr_debug("Scheduling resources:\n"
1460 "vmid mask: 0x%8X\n"
1461 "queue mask: 0x%8llX\n",
1462 res.vmid_mask, res.queue_mask);
1463
1464 return pm_send_set_resources(&dqm->packet_mgr, &res);
1465 }
1466
initialize_cpsch(struct device_queue_manager * dqm)1467 static int initialize_cpsch(struct device_queue_manager *dqm)
1468 {
1469 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1470
1471 mutex_init(&dqm->lock_hidden);
1472 INIT_LIST_HEAD(&dqm->queues);
1473 dqm->active_queue_count = dqm->processes_count = 0;
1474 dqm->active_cp_queue_count = 0;
1475 dqm->gws_queue_count = 0;
1476 dqm->active_runlist = false;
1477 INIT_WORK(&dqm->hw_exception_work, kfd_process_hw_exception);
1478
1479 init_sdma_bitmaps(dqm);
1480
1481 return 0;
1482 }
1483
start_cpsch(struct device_queue_manager * dqm)1484 static int start_cpsch(struct device_queue_manager *dqm)
1485 {
1486 int retval;
1487
1488 retval = 0;
1489
1490 dqm_lock(dqm);
1491
1492 if (!dqm->dev->shared_resources.enable_mes) {
1493 retval = pm_init(&dqm->packet_mgr, dqm);
1494 if (retval)
1495 goto fail_packet_manager_init;
1496
1497 retval = set_sched_resources(dqm);
1498 if (retval)
1499 goto fail_set_sched_resources;
1500 }
1501 pr_debug("Allocating fence memory\n");
1502
1503 /* allocate fence memory on the gart */
1504 retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
1505 &dqm->fence_mem);
1506
1507 if (retval)
1508 goto fail_allocate_vidmem;
1509
1510 dqm->fence_addr = (uint64_t *)dqm->fence_mem->cpu_ptr;
1511 dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
1512
1513 init_interrupts(dqm);
1514
1515 /* clear hang status when driver try to start the hw scheduler */
1516 dqm->is_hws_hang = false;
1517 dqm->is_resetting = false;
1518 dqm->sched_running = true;
1519 if (!dqm->dev->shared_resources.enable_mes)
1520 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1521 dqm_unlock(dqm);
1522
1523 return 0;
1524 fail_allocate_vidmem:
1525 fail_set_sched_resources:
1526 if (!dqm->dev->shared_resources.enable_mes)
1527 pm_uninit(&dqm->packet_mgr, false);
1528 fail_packet_manager_init:
1529 dqm_unlock(dqm);
1530 return retval;
1531 }
1532
stop_cpsch(struct device_queue_manager * dqm)1533 static int stop_cpsch(struct device_queue_manager *dqm)
1534 {
1535 bool hanging;
1536
1537 dqm_lock(dqm);
1538 if (!dqm->sched_running) {
1539 dqm_unlock(dqm);
1540 return 0;
1541 }
1542
1543 if (!dqm->is_hws_hang) {
1544 if (!dqm->dev->shared_resources.enable_mes)
1545 unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, false);
1546 else
1547 remove_all_queues_mes(dqm);
1548 }
1549
1550 hanging = dqm->is_hws_hang || dqm->is_resetting;
1551 dqm->sched_running = false;
1552
1553 if (!dqm->dev->shared_resources.enable_mes)
1554 pm_release_ib(&dqm->packet_mgr);
1555
1556 kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1557 if (!dqm->dev->shared_resources.enable_mes)
1558 pm_uninit(&dqm->packet_mgr, hanging);
1559 dqm_unlock(dqm);
1560
1561 return 0;
1562 }
1563
create_kernel_queue_cpsch(struct device_queue_manager * dqm,struct kernel_queue * kq,struct qcm_process_device * qpd)1564 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
1565 struct kernel_queue *kq,
1566 struct qcm_process_device *qpd)
1567 {
1568 dqm_lock(dqm);
1569 if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1570 pr_warn("Can't create new kernel queue because %d queues were already created\n",
1571 dqm->total_queue_count);
1572 dqm_unlock(dqm);
1573 return -EPERM;
1574 }
1575
1576 /*
1577 * Unconditionally increment this counter, regardless of the queue's
1578 * type or whether the queue is active.
1579 */
1580 dqm->total_queue_count++;
1581 pr_debug("Total of %d queues are accountable so far\n",
1582 dqm->total_queue_count);
1583
1584 list_add(&kq->list, &qpd->priv_queue_list);
1585 increment_queue_count(dqm, qpd, kq->queue);
1586 qpd->is_debug = true;
1587 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1588 dqm_unlock(dqm);
1589
1590 return 0;
1591 }
1592
destroy_kernel_queue_cpsch(struct device_queue_manager * dqm,struct kernel_queue * kq,struct qcm_process_device * qpd)1593 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
1594 struct kernel_queue *kq,
1595 struct qcm_process_device *qpd)
1596 {
1597 dqm_lock(dqm);
1598 list_del(&kq->list);
1599 decrement_queue_count(dqm, qpd, kq->queue);
1600 qpd->is_debug = false;
1601 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
1602 /*
1603 * Unconditionally decrement this counter, regardless of the queue's
1604 * type.
1605 */
1606 dqm->total_queue_count--;
1607 pr_debug("Total of %d queues are accountable so far\n",
1608 dqm->total_queue_count);
1609 dqm_unlock(dqm);
1610 }
1611
create_queue_cpsch(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd,const struct kfd_criu_queue_priv_data * qd,const void * restore_mqd,const void * restore_ctl_stack)1612 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
1613 struct qcm_process_device *qpd,
1614 const struct kfd_criu_queue_priv_data *qd,
1615 const void *restore_mqd, const void *restore_ctl_stack)
1616 {
1617 int retval;
1618 struct mqd_manager *mqd_mgr;
1619
1620 if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1621 pr_warn("Can't create new usermode queue because %d queues were already created\n",
1622 dqm->total_queue_count);
1623 retval = -EPERM;
1624 goto out;
1625 }
1626
1627 if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1628 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1629 dqm_lock(dqm);
1630 retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
1631 dqm_unlock(dqm);
1632 if (retval)
1633 goto out;
1634 }
1635
1636 retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
1637 if (retval)
1638 goto out_deallocate_sdma_queue;
1639
1640 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1641 q->properties.type)];
1642
1643 if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1644 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
1645 dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
1646 q->properties.tba_addr = qpd->tba_addr;
1647 q->properties.tma_addr = qpd->tma_addr;
1648 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
1649 if (!q->mqd_mem_obj) {
1650 retval = -ENOMEM;
1651 goto out_deallocate_doorbell;
1652 }
1653
1654 dqm_lock(dqm);
1655 /*
1656 * Eviction state logic: mark all queues as evicted, even ones
1657 * not currently active. Restoring inactive queues later only
1658 * updates the is_evicted flag but is a no-op otherwise.
1659 */
1660 q->properties.is_evicted = !!qpd->evicted;
1661
1662 if (qd)
1663 mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
1664 &q->properties, restore_mqd, restore_ctl_stack,
1665 qd->ctl_stack_size);
1666 else
1667 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
1668 &q->gart_mqd_addr, &q->properties);
1669
1670 list_add(&q->list, &qpd->queues_list);
1671 qpd->queue_count++;
1672
1673 if (q->properties.is_active) {
1674 increment_queue_count(dqm, qpd, q);
1675
1676 if (!dqm->dev->shared_resources.enable_mes)
1677 retval = execute_queues_cpsch(dqm,
1678 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1679 else
1680 retval = add_queue_mes(dqm, q, qpd);
1681 if (retval)
1682 goto cleanup_queue;
1683 }
1684
1685 /*
1686 * Unconditionally increment this counter, regardless of the queue's
1687 * type or whether the queue is active.
1688 */
1689 dqm->total_queue_count++;
1690
1691 pr_debug("Total of %d queues are accountable so far\n",
1692 dqm->total_queue_count);
1693
1694 dqm_unlock(dqm);
1695 return retval;
1696
1697 cleanup_queue:
1698 qpd->queue_count--;
1699 list_del(&q->list);
1700 if (q->properties.is_active)
1701 decrement_queue_count(dqm, qpd, q);
1702 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
1703 dqm_unlock(dqm);
1704 out_deallocate_doorbell:
1705 deallocate_doorbell(qpd, q);
1706 out_deallocate_sdma_queue:
1707 if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1708 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1709 dqm_lock(dqm);
1710 deallocate_sdma_queue(dqm, q);
1711 dqm_unlock(dqm);
1712 }
1713 out:
1714 return retval;
1715 }
1716
amdkfd_fence_wait_timeout(uint64_t * fence_addr,uint64_t fence_value,unsigned int timeout_ms)1717 int amdkfd_fence_wait_timeout(uint64_t *fence_addr,
1718 uint64_t fence_value,
1719 unsigned int timeout_ms)
1720 {
1721 unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies;
1722
1723 while (*fence_addr != fence_value) {
1724 if (time_after(jiffies, end_jiffies)) {
1725 pr_err("qcm fence wait loop timeout expired\n");
1726 /* In HWS case, this is used to halt the driver thread
1727 * in order not to mess up CP states before doing
1728 * scandumps for FW debugging.
1729 */
1730 while (halt_if_hws_hang)
1731 schedule();
1732
1733 return -ETIME;
1734 }
1735 schedule();
1736 }
1737
1738 return 0;
1739 }
1740
1741 /* dqm->lock mutex has to be locked before calling this function */
map_queues_cpsch(struct device_queue_manager * dqm)1742 static int map_queues_cpsch(struct device_queue_manager *dqm)
1743 {
1744 int retval;
1745
1746 if (!dqm->sched_running)
1747 return 0;
1748 if (dqm->active_queue_count <= 0 || dqm->processes_count <= 0)
1749 return 0;
1750 if (dqm->active_runlist)
1751 return 0;
1752
1753 retval = pm_send_runlist(&dqm->packet_mgr, &dqm->queues);
1754 pr_debug("%s sent runlist\n", __func__);
1755 if (retval) {
1756 pr_err("failed to execute runlist\n");
1757 return retval;
1758 }
1759 dqm->active_runlist = true;
1760
1761 return retval;
1762 }
1763
1764 /* dqm->lock mutex has to be locked before calling this function */
unmap_queues_cpsch(struct device_queue_manager * dqm,enum kfd_unmap_queues_filter filter,uint32_t filter_param,bool reset)1765 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
1766 enum kfd_unmap_queues_filter filter,
1767 uint32_t filter_param, bool reset)
1768 {
1769 int retval = 0;
1770 struct mqd_manager *mqd_mgr;
1771
1772 if (!dqm->sched_running)
1773 return 0;
1774 if (dqm->is_hws_hang || dqm->is_resetting)
1775 return -EIO;
1776 if (!dqm->active_runlist)
1777 return retval;
1778
1779 retval = pm_send_unmap_queue(&dqm->packet_mgr, filter, filter_param, reset);
1780 if (retval)
1781 return retval;
1782
1783 *dqm->fence_addr = KFD_FENCE_INIT;
1784 pm_send_query_status(&dqm->packet_mgr, dqm->fence_gpu_addr,
1785 KFD_FENCE_COMPLETED);
1786 /* should be timed out */
1787 retval = amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
1788 queue_preemption_timeout_ms);
1789 if (retval) {
1790 pr_err("The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n");
1791 kfd_hws_hang(dqm);
1792 return retval;
1793 }
1794
1795 /* In the current MEC firmware implementation, if compute queue
1796 * doesn't response to the preemption request in time, HIQ will
1797 * abandon the unmap request without returning any timeout error
1798 * to driver. Instead, MEC firmware will log the doorbell of the
1799 * unresponding compute queue to HIQ.MQD.queue_doorbell_id fields.
1800 * To make sure the queue unmap was successful, driver need to
1801 * check those fields
1802 */
1803 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ];
1804 if (mqd_mgr->read_doorbell_id(dqm->packet_mgr.priv_queue->queue->mqd)) {
1805 pr_err("HIQ MQD's queue_doorbell_id0 is not 0, Queue preemption time out\n");
1806 while (halt_if_hws_hang)
1807 schedule();
1808 return -ETIME;
1809 }
1810
1811 pm_release_ib(&dqm->packet_mgr);
1812 dqm->active_runlist = false;
1813
1814 return retval;
1815 }
1816
1817 /* only for compute queue */
reset_queues_cpsch(struct device_queue_manager * dqm,uint16_t pasid)1818 static int reset_queues_cpsch(struct device_queue_manager *dqm,
1819 uint16_t pasid)
1820 {
1821 int retval;
1822
1823 dqm_lock(dqm);
1824
1825 retval = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_BY_PASID,
1826 pasid, true);
1827
1828 dqm_unlock(dqm);
1829 return retval;
1830 }
1831
1832 /* dqm->lock mutex has to be locked before calling this function */
execute_queues_cpsch(struct device_queue_manager * dqm,enum kfd_unmap_queues_filter filter,uint32_t filter_param)1833 static int execute_queues_cpsch(struct device_queue_manager *dqm,
1834 enum kfd_unmap_queues_filter filter,
1835 uint32_t filter_param)
1836 {
1837 int retval;
1838
1839 if (dqm->is_hws_hang)
1840 return -EIO;
1841 retval = unmap_queues_cpsch(dqm, filter, filter_param, false);
1842 if (retval)
1843 return retval;
1844
1845 return map_queues_cpsch(dqm);
1846 }
1847
destroy_queue_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)1848 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
1849 struct qcm_process_device *qpd,
1850 struct queue *q)
1851 {
1852 int retval;
1853 struct mqd_manager *mqd_mgr;
1854 uint64_t sdma_val = 0;
1855 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
1856
1857 /* Get the SDMA queue stats */
1858 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
1859 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
1860 retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
1861 &sdma_val);
1862 if (retval)
1863 pr_err("Failed to read SDMA queue counter for queue: %d\n",
1864 q->properties.queue_id);
1865 }
1866
1867 retval = 0;
1868
1869 /* remove queue from list to prevent rescheduling after preemption */
1870 dqm_lock(dqm);
1871
1872 if (qpd->is_debug) {
1873 /*
1874 * error, currently we do not allow to destroy a queue
1875 * of a currently debugged process
1876 */
1877 retval = -EBUSY;
1878 goto failed_try_destroy_debugged_queue;
1879
1880 }
1881
1882 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1883 q->properties.type)];
1884
1885 deallocate_doorbell(qpd, q);
1886
1887 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
1888 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
1889 deallocate_sdma_queue(dqm, q);
1890 pdd->sdma_past_activity_counter += sdma_val;
1891 }
1892
1893 list_del(&q->list);
1894 qpd->queue_count--;
1895 if (q->properties.is_active) {
1896 if (!dqm->dev->shared_resources.enable_mes) {
1897 decrement_queue_count(dqm, qpd, q);
1898 retval = execute_queues_cpsch(dqm,
1899 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1900 if (retval == -ETIME)
1901 qpd->reset_wavefronts = true;
1902 } else {
1903 retval = remove_queue_mes(dqm, q, qpd);
1904 }
1905 }
1906
1907 /*
1908 * Unconditionally decrement this counter, regardless of the queue's
1909 * type
1910 */
1911 dqm->total_queue_count--;
1912 pr_debug("Total of %d queues are accountable so far\n",
1913 dqm->total_queue_count);
1914
1915 dqm_unlock(dqm);
1916
1917 /* Do free_mqd after dqm_unlock(dqm) to avoid circular locking */
1918 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
1919
1920 return retval;
1921
1922 failed_try_destroy_debugged_queue:
1923
1924 dqm_unlock(dqm);
1925 return retval;
1926 }
1927
1928 /*
1929 * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
1930 * stay in user mode.
1931 */
1932 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
1933 /* APE1 limit is inclusive and 64K aligned. */
1934 #define APE1_LIMIT_ALIGNMENT 0xFFFF
1935
set_cache_memory_policy(struct device_queue_manager * dqm,struct qcm_process_device * qpd,enum cache_policy default_policy,enum cache_policy alternate_policy,void __user * alternate_aperture_base,uint64_t alternate_aperture_size)1936 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
1937 struct qcm_process_device *qpd,
1938 enum cache_policy default_policy,
1939 enum cache_policy alternate_policy,
1940 void __user *alternate_aperture_base,
1941 uint64_t alternate_aperture_size)
1942 {
1943 bool retval = true;
1944
1945 if (!dqm->asic_ops.set_cache_memory_policy)
1946 return retval;
1947
1948 dqm_lock(dqm);
1949
1950 if (alternate_aperture_size == 0) {
1951 /* base > limit disables APE1 */
1952 qpd->sh_mem_ape1_base = 1;
1953 qpd->sh_mem_ape1_limit = 0;
1954 } else {
1955 /*
1956 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
1957 * SH_MEM_APE1_BASE[31:0], 0x0000 }
1958 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
1959 * SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
1960 * Verify that the base and size parameters can be
1961 * represented in this format and convert them.
1962 * Additionally restrict APE1 to user-mode addresses.
1963 */
1964
1965 uint64_t base = (uintptr_t)alternate_aperture_base;
1966 uint64_t limit = base + alternate_aperture_size - 1;
1967
1968 if (limit <= base || (base & APE1_FIXED_BITS_MASK) != 0 ||
1969 (limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) {
1970 retval = false;
1971 goto out;
1972 }
1973
1974 qpd->sh_mem_ape1_base = base >> 16;
1975 qpd->sh_mem_ape1_limit = limit >> 16;
1976 }
1977
1978 retval = dqm->asic_ops.set_cache_memory_policy(
1979 dqm,
1980 qpd,
1981 default_policy,
1982 alternate_policy,
1983 alternate_aperture_base,
1984 alternate_aperture_size);
1985
1986 if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
1987 program_sh_mem_settings(dqm, qpd);
1988
1989 pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
1990 qpd->sh_mem_config, qpd->sh_mem_ape1_base,
1991 qpd->sh_mem_ape1_limit);
1992
1993 out:
1994 dqm_unlock(dqm);
1995 return retval;
1996 }
1997
process_termination_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1998 static int process_termination_nocpsch(struct device_queue_manager *dqm,
1999 struct qcm_process_device *qpd)
2000 {
2001 struct queue *q;
2002 struct device_process_node *cur, *next_dpn;
2003 int retval = 0;
2004 bool found = false;
2005
2006 dqm_lock(dqm);
2007
2008 /* Clear all user mode queues */
2009 while (!list_empty(&qpd->queues_list)) {
2010 struct mqd_manager *mqd_mgr;
2011 int ret;
2012
2013 q = list_first_entry(&qpd->queues_list, struct queue, list);
2014 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2015 q->properties.type)];
2016 ret = destroy_queue_nocpsch_locked(dqm, qpd, q);
2017 if (ret)
2018 retval = ret;
2019 dqm_unlock(dqm);
2020 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2021 dqm_lock(dqm);
2022 }
2023
2024 /* Unregister process */
2025 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2026 if (qpd == cur->qpd) {
2027 list_del(&cur->list);
2028 kfree(cur);
2029 dqm->processes_count--;
2030 found = true;
2031 break;
2032 }
2033 }
2034
2035 dqm_unlock(dqm);
2036
2037 /* Outside the DQM lock because under the DQM lock we can't do
2038 * reclaim or take other locks that others hold while reclaiming.
2039 */
2040 if (found)
2041 kfd_dec_compute_active(dqm->dev);
2042
2043 return retval;
2044 }
2045
get_wave_state(struct device_queue_manager * dqm,struct queue * q,void __user * ctl_stack,u32 * ctl_stack_used_size,u32 * save_area_used_size)2046 static int get_wave_state(struct device_queue_manager *dqm,
2047 struct queue *q,
2048 void __user *ctl_stack,
2049 u32 *ctl_stack_used_size,
2050 u32 *save_area_used_size)
2051 {
2052 struct mqd_manager *mqd_mgr;
2053
2054 dqm_lock(dqm);
2055
2056 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
2057
2058 if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE ||
2059 q->properties.is_active || !q->device->cwsr_enabled ||
2060 !mqd_mgr->get_wave_state) {
2061 dqm_unlock(dqm);
2062 return -EINVAL;
2063 }
2064
2065 dqm_unlock(dqm);
2066
2067 /*
2068 * get_wave_state is outside the dqm lock to prevent circular locking
2069 * and the queue should be protected against destruction by the process
2070 * lock.
2071 */
2072 return mqd_mgr->get_wave_state(mqd_mgr, q->mqd, ctl_stack,
2073 ctl_stack_used_size, save_area_used_size);
2074 }
2075
get_queue_checkpoint_info(struct device_queue_manager * dqm,const struct queue * q,u32 * mqd_size,u32 * ctl_stack_size)2076 static void get_queue_checkpoint_info(struct device_queue_manager *dqm,
2077 const struct queue *q,
2078 u32 *mqd_size,
2079 u32 *ctl_stack_size)
2080 {
2081 struct mqd_manager *mqd_mgr;
2082 enum KFD_MQD_TYPE mqd_type =
2083 get_mqd_type_from_queue_type(q->properties.type);
2084
2085 dqm_lock(dqm);
2086 mqd_mgr = dqm->mqd_mgrs[mqd_type];
2087 *mqd_size = mqd_mgr->mqd_size;
2088 *ctl_stack_size = 0;
2089
2090 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE && mqd_mgr->get_checkpoint_info)
2091 mqd_mgr->get_checkpoint_info(mqd_mgr, q->mqd, ctl_stack_size);
2092
2093 dqm_unlock(dqm);
2094 }
2095
checkpoint_mqd(struct device_queue_manager * dqm,const struct queue * q,void * mqd,void * ctl_stack)2096 static int checkpoint_mqd(struct device_queue_manager *dqm,
2097 const struct queue *q,
2098 void *mqd,
2099 void *ctl_stack)
2100 {
2101 struct mqd_manager *mqd_mgr;
2102 int r = 0;
2103 enum KFD_MQD_TYPE mqd_type =
2104 get_mqd_type_from_queue_type(q->properties.type);
2105
2106 dqm_lock(dqm);
2107
2108 if (q->properties.is_active || !q->device->cwsr_enabled) {
2109 r = -EINVAL;
2110 goto dqm_unlock;
2111 }
2112
2113 mqd_mgr = dqm->mqd_mgrs[mqd_type];
2114 if (!mqd_mgr->checkpoint_mqd) {
2115 r = -EOPNOTSUPP;
2116 goto dqm_unlock;
2117 }
2118
2119 mqd_mgr->checkpoint_mqd(mqd_mgr, q->mqd, mqd, ctl_stack);
2120
2121 dqm_unlock:
2122 dqm_unlock(dqm);
2123 return r;
2124 }
2125
process_termination_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)2126 static int process_termination_cpsch(struct device_queue_manager *dqm,
2127 struct qcm_process_device *qpd)
2128 {
2129 int retval;
2130 struct queue *q;
2131 struct kernel_queue *kq, *kq_next;
2132 struct mqd_manager *mqd_mgr;
2133 struct device_process_node *cur, *next_dpn;
2134 enum kfd_unmap_queues_filter filter =
2135 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES;
2136 bool found = false;
2137
2138 retval = 0;
2139
2140 dqm_lock(dqm);
2141
2142 /* Clean all kernel queues */
2143 list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) {
2144 list_del(&kq->list);
2145 decrement_queue_count(dqm, qpd, kq->queue);
2146 qpd->is_debug = false;
2147 dqm->total_queue_count--;
2148 filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES;
2149 }
2150
2151 /* Clear all user mode queues */
2152 list_for_each_entry(q, &qpd->queues_list, list) {
2153 if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
2154 deallocate_sdma_queue(dqm, q);
2155 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
2156 deallocate_sdma_queue(dqm, q);
2157
2158 if (q->properties.is_active) {
2159 decrement_queue_count(dqm, qpd, q);
2160
2161 if (dqm->dev->shared_resources.enable_mes) {
2162 retval = remove_queue_mes(dqm, q, qpd);
2163 if (retval)
2164 pr_err("Failed to remove queue %d\n",
2165 q->properties.queue_id);
2166 }
2167 }
2168
2169 dqm->total_queue_count--;
2170 }
2171
2172 /* Unregister process */
2173 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2174 if (qpd == cur->qpd) {
2175 list_del(&cur->list);
2176 kfree(cur);
2177 dqm->processes_count--;
2178 found = true;
2179 break;
2180 }
2181 }
2182
2183 if (!dqm->dev->shared_resources.enable_mes)
2184 retval = execute_queues_cpsch(dqm, filter, 0);
2185
2186 if ((!dqm->is_hws_hang) && (retval || qpd->reset_wavefronts)) {
2187 pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev);
2188 dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process);
2189 qpd->reset_wavefronts = false;
2190 }
2191
2192 /* Lastly, free mqd resources.
2193 * Do free_mqd() after dqm_unlock to avoid circular locking.
2194 */
2195 while (!list_empty(&qpd->queues_list)) {
2196 q = list_first_entry(&qpd->queues_list, struct queue, list);
2197 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2198 q->properties.type)];
2199 list_del(&q->list);
2200 qpd->queue_count--;
2201 dqm_unlock(dqm);
2202 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2203 dqm_lock(dqm);
2204 }
2205 dqm_unlock(dqm);
2206
2207 /* Outside the DQM lock because under the DQM lock we can't do
2208 * reclaim or take other locks that others hold while reclaiming.
2209 */
2210 if (found)
2211 kfd_dec_compute_active(dqm->dev);
2212
2213 return retval;
2214 }
2215
init_mqd_managers(struct device_queue_manager * dqm)2216 static int init_mqd_managers(struct device_queue_manager *dqm)
2217 {
2218 int i, j;
2219 struct mqd_manager *mqd_mgr;
2220
2221 for (i = 0; i < KFD_MQD_TYPE_MAX; i++) {
2222 mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev);
2223 if (!mqd_mgr) {
2224 pr_err("mqd manager [%d] initialization failed\n", i);
2225 goto out_free;
2226 }
2227 dqm->mqd_mgrs[i] = mqd_mgr;
2228 }
2229
2230 return 0;
2231
2232 out_free:
2233 for (j = 0; j < i; j++) {
2234 kfree(dqm->mqd_mgrs[j]);
2235 dqm->mqd_mgrs[j] = NULL;
2236 }
2237
2238 return -ENOMEM;
2239 }
2240
2241 /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/
allocate_hiq_sdma_mqd(struct device_queue_manager * dqm)2242 static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm)
2243 {
2244 int retval;
2245 struct kfd_dev *dev = dqm->dev;
2246 struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd;
2247 uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size *
2248 get_num_all_sdma_engines(dqm) *
2249 dev->device_info.num_sdma_queues_per_engine +
2250 dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size;
2251
2252 retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev, size,
2253 &(mem_obj->gtt_mem), &(mem_obj->gpu_addr),
2254 (void *)&(mem_obj->cpu_ptr), false);
2255
2256 return retval;
2257 }
2258
device_queue_manager_init(struct kfd_dev * dev)2259 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
2260 {
2261 struct device_queue_manager *dqm;
2262
2263 pr_debug("Loading device queue manager\n");
2264
2265 dqm = kzalloc(sizeof(*dqm), GFP_KERNEL);
2266 if (!dqm)
2267 return NULL;
2268
2269 switch (dev->adev->asic_type) {
2270 /* HWS is not available on Hawaii. */
2271 case CHIP_HAWAII:
2272 /* HWS depends on CWSR for timely dequeue. CWSR is not
2273 * available on Tonga.
2274 *
2275 * FIXME: This argument also applies to Kaveri.
2276 */
2277 case CHIP_TONGA:
2278 dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS;
2279 break;
2280 default:
2281 dqm->sched_policy = sched_policy;
2282 break;
2283 }
2284
2285 dqm->dev = dev;
2286 switch (dqm->sched_policy) {
2287 case KFD_SCHED_POLICY_HWS:
2288 case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
2289 /* initialize dqm for cp scheduling */
2290 dqm->ops.create_queue = create_queue_cpsch;
2291 dqm->ops.initialize = initialize_cpsch;
2292 dqm->ops.start = start_cpsch;
2293 dqm->ops.stop = stop_cpsch;
2294 dqm->ops.pre_reset = pre_reset;
2295 dqm->ops.destroy_queue = destroy_queue_cpsch;
2296 dqm->ops.update_queue = update_queue;
2297 dqm->ops.register_process = register_process;
2298 dqm->ops.unregister_process = unregister_process;
2299 dqm->ops.uninitialize = uninitialize;
2300 dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
2301 dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
2302 dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2303 dqm->ops.process_termination = process_termination_cpsch;
2304 dqm->ops.evict_process_queues = evict_process_queues_cpsch;
2305 dqm->ops.restore_process_queues = restore_process_queues_cpsch;
2306 dqm->ops.get_wave_state = get_wave_state;
2307 dqm->ops.reset_queues = reset_queues_cpsch;
2308 dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2309 dqm->ops.checkpoint_mqd = checkpoint_mqd;
2310 break;
2311 case KFD_SCHED_POLICY_NO_HWS:
2312 /* initialize dqm for no cp scheduling */
2313 dqm->ops.start = start_nocpsch;
2314 dqm->ops.stop = stop_nocpsch;
2315 dqm->ops.pre_reset = pre_reset;
2316 dqm->ops.create_queue = create_queue_nocpsch;
2317 dqm->ops.destroy_queue = destroy_queue_nocpsch;
2318 dqm->ops.update_queue = update_queue;
2319 dqm->ops.register_process = register_process;
2320 dqm->ops.unregister_process = unregister_process;
2321 dqm->ops.initialize = initialize_nocpsch;
2322 dqm->ops.uninitialize = uninitialize;
2323 dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2324 dqm->ops.process_termination = process_termination_nocpsch;
2325 dqm->ops.evict_process_queues = evict_process_queues_nocpsch;
2326 dqm->ops.restore_process_queues =
2327 restore_process_queues_nocpsch;
2328 dqm->ops.get_wave_state = get_wave_state;
2329 dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2330 dqm->ops.checkpoint_mqd = checkpoint_mqd;
2331 break;
2332 default:
2333 pr_err("Invalid scheduling policy %d\n", dqm->sched_policy);
2334 goto out_free;
2335 }
2336
2337 switch (dev->adev->asic_type) {
2338 case CHIP_CARRIZO:
2339 device_queue_manager_init_vi(&dqm->asic_ops);
2340 break;
2341
2342 case CHIP_KAVERI:
2343 device_queue_manager_init_cik(&dqm->asic_ops);
2344 break;
2345
2346 case CHIP_HAWAII:
2347 device_queue_manager_init_cik_hawaii(&dqm->asic_ops);
2348 break;
2349
2350 case CHIP_TONGA:
2351 case CHIP_FIJI:
2352 case CHIP_POLARIS10:
2353 case CHIP_POLARIS11:
2354 case CHIP_POLARIS12:
2355 case CHIP_VEGAM:
2356 device_queue_manager_init_vi_tonga(&dqm->asic_ops);
2357 break;
2358
2359 default:
2360 if (KFD_GC_VERSION(dev) >= IP_VERSION(11, 0, 0))
2361 device_queue_manager_init_v11(&dqm->asic_ops);
2362 else if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
2363 device_queue_manager_init_v10_navi10(&dqm->asic_ops);
2364 else if (KFD_GC_VERSION(dev) >= IP_VERSION(9, 0, 1))
2365 device_queue_manager_init_v9(&dqm->asic_ops);
2366 else {
2367 WARN(1, "Unexpected ASIC family %u",
2368 dev->adev->asic_type);
2369 goto out_free;
2370 }
2371 }
2372
2373 if (init_mqd_managers(dqm))
2374 goto out_free;
2375
2376 if (allocate_hiq_sdma_mqd(dqm)) {
2377 pr_err("Failed to allocate hiq sdma mqd trunk buffer\n");
2378 goto out_free;
2379 }
2380
2381 if (!dqm->ops.initialize(dqm))
2382 return dqm;
2383
2384 out_free:
2385 kfree(dqm);
2386 return NULL;
2387 }
2388
deallocate_hiq_sdma_mqd(struct kfd_dev * dev,struct kfd_mem_obj * mqd)2389 static void deallocate_hiq_sdma_mqd(struct kfd_dev *dev,
2390 struct kfd_mem_obj *mqd)
2391 {
2392 WARN(!mqd, "No hiq sdma mqd trunk to free");
2393
2394 amdgpu_amdkfd_free_gtt_mem(dev->adev, mqd->gtt_mem);
2395 }
2396
device_queue_manager_uninit(struct device_queue_manager * dqm)2397 void device_queue_manager_uninit(struct device_queue_manager *dqm)
2398 {
2399 dqm->ops.uninitialize(dqm);
2400 deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd);
2401 kfree(dqm);
2402 }
2403
kfd_dqm_evict_pasid(struct device_queue_manager * dqm,u32 pasid)2404 int kfd_dqm_evict_pasid(struct device_queue_manager *dqm, u32 pasid)
2405 {
2406 struct kfd_process_device *pdd;
2407 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
2408 int ret = 0;
2409
2410 if (!p)
2411 return -EINVAL;
2412 WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
2413 pdd = kfd_get_process_device_data(dqm->dev, p);
2414 if (pdd)
2415 ret = dqm->ops.evict_process_queues(dqm, &pdd->qpd);
2416 kfd_unref_process(p);
2417
2418 return ret;
2419 }
2420
kfd_process_hw_exception(struct work_struct * work)2421 static void kfd_process_hw_exception(struct work_struct *work)
2422 {
2423 struct device_queue_manager *dqm = container_of(work,
2424 struct device_queue_manager, hw_exception_work);
2425 amdgpu_amdkfd_gpu_reset(dqm->dev->adev);
2426 }
2427
2428 #if defined(CONFIG_DEBUG_FS)
2429
seq_reg_dump(struct seq_file * m,uint32_t (* dump)[2],uint32_t n_regs)2430 static void seq_reg_dump(struct seq_file *m,
2431 uint32_t (*dump)[2], uint32_t n_regs)
2432 {
2433 uint32_t i, count;
2434
2435 for (i = 0, count = 0; i < n_regs; i++) {
2436 if (count == 0 ||
2437 dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) {
2438 seq_printf(m, "%s %08x: %08x",
2439 i ? "\n" : "",
2440 dump[i][0], dump[i][1]);
2441 count = 7;
2442 } else {
2443 seq_printf(m, " %08x", dump[i][1]);
2444 count--;
2445 }
2446 }
2447
2448 seq_puts(m, "\n");
2449 }
2450
dqm_debugfs_hqds(struct seq_file * m,void * data)2451 int dqm_debugfs_hqds(struct seq_file *m, void *data)
2452 {
2453 struct device_queue_manager *dqm = data;
2454 uint32_t (*dump)[2], n_regs;
2455 int pipe, queue;
2456 int r = 0;
2457
2458 if (!dqm->sched_running) {
2459 seq_puts(m, " Device is stopped\n");
2460 return 0;
2461 }
2462
2463 r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
2464 KFD_CIK_HIQ_PIPE, KFD_CIK_HIQ_QUEUE,
2465 &dump, &n_regs);
2466 if (!r) {
2467 seq_printf(m, " HIQ on MEC %d Pipe %d Queue %d\n",
2468 KFD_CIK_HIQ_PIPE/get_pipes_per_mec(dqm)+1,
2469 KFD_CIK_HIQ_PIPE%get_pipes_per_mec(dqm),
2470 KFD_CIK_HIQ_QUEUE);
2471 seq_reg_dump(m, dump, n_regs);
2472
2473 kfree(dump);
2474 }
2475
2476 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
2477 int pipe_offset = pipe * get_queues_per_pipe(dqm);
2478
2479 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) {
2480 if (!test_bit(pipe_offset + queue,
2481 dqm->dev->shared_resources.cp_queue_bitmap))
2482 continue;
2483
2484 r = dqm->dev->kfd2kgd->hqd_dump(
2485 dqm->dev->adev, pipe, queue, &dump, &n_regs);
2486 if (r)
2487 break;
2488
2489 seq_printf(m, " CP Pipe %d, Queue %d\n",
2490 pipe, queue);
2491 seq_reg_dump(m, dump, n_regs);
2492
2493 kfree(dump);
2494 }
2495 }
2496
2497 for (pipe = 0; pipe < get_num_all_sdma_engines(dqm); pipe++) {
2498 for (queue = 0;
2499 queue < dqm->dev->device_info.num_sdma_queues_per_engine;
2500 queue++) {
2501 r = dqm->dev->kfd2kgd->hqd_sdma_dump(
2502 dqm->dev->adev, pipe, queue, &dump, &n_regs);
2503 if (r)
2504 break;
2505
2506 seq_printf(m, " SDMA Engine %d, RLC %d\n",
2507 pipe, queue);
2508 seq_reg_dump(m, dump, n_regs);
2509
2510 kfree(dump);
2511 }
2512 }
2513
2514 return r;
2515 }
2516
dqm_debugfs_hang_hws(struct device_queue_manager * dqm)2517 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm)
2518 {
2519 int r = 0;
2520
2521 dqm_lock(dqm);
2522 r = pm_debugfs_hang_hws(&dqm->packet_mgr);
2523 if (r) {
2524 dqm_unlock(dqm);
2525 return r;
2526 }
2527 dqm->active_runlist = true;
2528 r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
2529 dqm_unlock(dqm);
2530
2531 return r;
2532 }
2533
2534 #endif
2535