1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #include <linux/device.h>
25 #include <linux/export.h>
26 #include <linux/err.h>
27 #include <linux/fs.h>
28 #include <linux/file.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/uaccess.h>
32 #include <linux/compat.h>
33 #include <uapi/linux/kfd_ioctl.h>
34 #include <linux/time.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/ptrace.h>
38 #include <linux/dma-buf.h>
39 #include <linux/fdtable.h>
40 #include <linux/processor.h>
41 #include "kfd_priv.h"
42 #include "kfd_device_queue_manager.h"
43 #include "kfd_svm.h"
44 #include "amdgpu_amdkfd.h"
45 #include "kfd_smi_events.h"
46 #include "amdgpu_dma_buf.h"
47
48 static long kfd_ioctl(struct file *, unsigned int, unsigned long);
49 static int kfd_open(struct inode *, struct file *);
50 static int kfd_release(struct inode *, struct file *);
51 static int kfd_mmap(struct file *, struct vm_area_struct *);
52
53 static const char kfd_dev_name[] = "kfd";
54
55 static const struct file_operations kfd_fops = {
56 .owner = THIS_MODULE,
57 .unlocked_ioctl = kfd_ioctl,
58 .compat_ioctl = compat_ptr_ioctl,
59 .open = kfd_open,
60 .release = kfd_release,
61 .mmap = kfd_mmap,
62 };
63
64 static int kfd_char_dev_major = -1;
65 static struct class *kfd_class;
66 struct device *kfd_device;
67
kfd_lock_pdd_by_id(struct kfd_process * p,__u32 gpu_id)68 static inline struct kfd_process_device *kfd_lock_pdd_by_id(struct kfd_process *p, __u32 gpu_id)
69 {
70 struct kfd_process_device *pdd;
71
72 mutex_lock(&p->mutex);
73 pdd = kfd_process_device_data_by_id(p, gpu_id);
74
75 if (pdd)
76 return pdd;
77
78 mutex_unlock(&p->mutex);
79 return NULL;
80 }
81
kfd_unlock_pdd(struct kfd_process_device * pdd)82 static inline void kfd_unlock_pdd(struct kfd_process_device *pdd)
83 {
84 mutex_unlock(&pdd->process->mutex);
85 }
86
kfd_chardev_init(void)87 int kfd_chardev_init(void)
88 {
89 int err = 0;
90
91 kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
92 err = kfd_char_dev_major;
93 if (err < 0)
94 goto err_register_chrdev;
95
96 kfd_class = class_create(THIS_MODULE, kfd_dev_name);
97 err = PTR_ERR(kfd_class);
98 if (IS_ERR(kfd_class))
99 goto err_class_create;
100
101 kfd_device = device_create(kfd_class, NULL,
102 MKDEV(kfd_char_dev_major, 0),
103 NULL, kfd_dev_name);
104 err = PTR_ERR(kfd_device);
105 if (IS_ERR(kfd_device))
106 goto err_device_create;
107
108 return 0;
109
110 err_device_create:
111 class_destroy(kfd_class);
112 err_class_create:
113 unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
114 err_register_chrdev:
115 return err;
116 }
117
kfd_chardev_exit(void)118 void kfd_chardev_exit(void)
119 {
120 device_destroy(kfd_class, MKDEV(kfd_char_dev_major, 0));
121 class_destroy(kfd_class);
122 unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
123 kfd_device = NULL;
124 }
125
126
kfd_open(struct inode * inode,struct file * filep)127 static int kfd_open(struct inode *inode, struct file *filep)
128 {
129 struct kfd_process *process;
130 bool is_32bit_user_mode;
131
132 if (iminor(inode) != 0)
133 return -ENODEV;
134
135 is_32bit_user_mode = in_compat_syscall();
136
137 if (is_32bit_user_mode) {
138 dev_warn(kfd_device,
139 "Process %d (32-bit) failed to open /dev/kfd\n"
140 "32-bit processes are not supported by amdkfd\n",
141 current->pid);
142 return -EPERM;
143 }
144
145 process = kfd_create_process(filep);
146 if (IS_ERR(process))
147 return PTR_ERR(process);
148
149 if (kfd_is_locked()) {
150 dev_dbg(kfd_device, "kfd is locked!\n"
151 "process %d unreferenced", process->pasid);
152 kfd_unref_process(process);
153 return -EAGAIN;
154 }
155
156 /* filep now owns the reference returned by kfd_create_process */
157 filep->private_data = process;
158
159 dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n",
160 process->pasid, process->is_32bit_user_mode);
161
162 return 0;
163 }
164
kfd_release(struct inode * inode,struct file * filep)165 static int kfd_release(struct inode *inode, struct file *filep)
166 {
167 struct kfd_process *process = filep->private_data;
168
169 if (process)
170 kfd_unref_process(process);
171
172 return 0;
173 }
174
kfd_ioctl_get_version(struct file * filep,struct kfd_process * p,void * data)175 static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
176 void *data)
177 {
178 struct kfd_ioctl_get_version_args *args = data;
179
180 args->major_version = KFD_IOCTL_MAJOR_VERSION;
181 args->minor_version = KFD_IOCTL_MINOR_VERSION;
182
183 return 0;
184 }
185
set_queue_properties_from_user(struct queue_properties * q_properties,struct kfd_ioctl_create_queue_args * args)186 static int set_queue_properties_from_user(struct queue_properties *q_properties,
187 struct kfd_ioctl_create_queue_args *args)
188 {
189 if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
190 pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
191 return -EINVAL;
192 }
193
194 if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
195 pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
196 return -EINVAL;
197 }
198
199 if ((args->ring_base_address) &&
200 (!access_ok((const void __user *) args->ring_base_address,
201 sizeof(uint64_t)))) {
202 pr_err("Can't access ring base address\n");
203 return -EFAULT;
204 }
205
206 if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
207 pr_err("Ring size must be a power of 2 or 0\n");
208 return -EINVAL;
209 }
210
211 if (!access_ok((const void __user *) args->read_pointer_address,
212 sizeof(uint32_t))) {
213 pr_err("Can't access read pointer\n");
214 return -EFAULT;
215 }
216
217 if (!access_ok((const void __user *) args->write_pointer_address,
218 sizeof(uint32_t))) {
219 pr_err("Can't access write pointer\n");
220 return -EFAULT;
221 }
222
223 if (args->eop_buffer_address &&
224 !access_ok((const void __user *) args->eop_buffer_address,
225 sizeof(uint32_t))) {
226 pr_debug("Can't access eop buffer");
227 return -EFAULT;
228 }
229
230 if (args->ctx_save_restore_address &&
231 !access_ok((const void __user *) args->ctx_save_restore_address,
232 sizeof(uint32_t))) {
233 pr_debug("Can't access ctx save restore buffer");
234 return -EFAULT;
235 }
236
237 q_properties->is_interop = false;
238 q_properties->is_gws = false;
239 q_properties->queue_percent = args->queue_percentage;
240 q_properties->priority = args->queue_priority;
241 q_properties->queue_address = args->ring_base_address;
242 q_properties->queue_size = args->ring_size;
243 q_properties->read_ptr = (uint32_t *) args->read_pointer_address;
244 q_properties->write_ptr = (uint32_t *) args->write_pointer_address;
245 q_properties->eop_ring_buffer_address = args->eop_buffer_address;
246 q_properties->eop_ring_buffer_size = args->eop_buffer_size;
247 q_properties->ctx_save_restore_area_address =
248 args->ctx_save_restore_address;
249 q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
250 q_properties->ctl_stack_size = args->ctl_stack_size;
251 if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
252 args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
253 q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
254 else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
255 q_properties->type = KFD_QUEUE_TYPE_SDMA;
256 else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI)
257 q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI;
258 else
259 return -ENOTSUPP;
260
261 if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
262 q_properties->format = KFD_QUEUE_FORMAT_AQL;
263 else
264 q_properties->format = KFD_QUEUE_FORMAT_PM4;
265
266 pr_debug("Queue Percentage: %d, %d\n",
267 q_properties->queue_percent, args->queue_percentage);
268
269 pr_debug("Queue Priority: %d, %d\n",
270 q_properties->priority, args->queue_priority);
271
272 pr_debug("Queue Address: 0x%llX, 0x%llX\n",
273 q_properties->queue_address, args->ring_base_address);
274
275 pr_debug("Queue Size: 0x%llX, %u\n",
276 q_properties->queue_size, args->ring_size);
277
278 pr_debug("Queue r/w Pointers: %px, %px\n",
279 q_properties->read_ptr,
280 q_properties->write_ptr);
281
282 pr_debug("Queue Format: %d\n", q_properties->format);
283
284 pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
285
286 pr_debug("Queue CTX save area: 0x%llX\n",
287 q_properties->ctx_save_restore_area_address);
288
289 return 0;
290 }
291
kfd_ioctl_create_queue(struct file * filep,struct kfd_process * p,void * data)292 static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
293 void *data)
294 {
295 struct kfd_ioctl_create_queue_args *args = data;
296 struct kfd_dev *dev;
297 int err = 0;
298 unsigned int queue_id;
299 struct kfd_process_device *pdd;
300 struct queue_properties q_properties;
301 uint32_t doorbell_offset_in_process = 0;
302 struct amdgpu_bo *wptr_bo = NULL;
303
304 memset(&q_properties, 0, sizeof(struct queue_properties));
305
306 pr_debug("Creating queue ioctl\n");
307
308 err = set_queue_properties_from_user(&q_properties, args);
309 if (err)
310 return err;
311
312 pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
313
314 mutex_lock(&p->mutex);
315
316 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
317 if (!pdd) {
318 pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
319 err = -EINVAL;
320 goto err_pdd;
321 }
322 dev = pdd->dev;
323
324 pdd = kfd_bind_process_to_device(dev, p);
325 if (IS_ERR(pdd)) {
326 err = -ESRCH;
327 goto err_bind_process;
328 }
329
330 if (!pdd->doorbell_index &&
331 kfd_alloc_process_doorbells(dev, &pdd->doorbell_index) < 0) {
332 err = -ENOMEM;
333 goto err_alloc_doorbells;
334 }
335
336 /* Starting with GFX11, wptr BOs must be mapped to GART for MES to determine work
337 * on unmapped queues for usermode queue oversubscription (no aggregated doorbell)
338 */
339 if (dev->shared_resources.enable_mes &&
340 ((dev->adev->mes.sched_version & AMDGPU_MES_API_VERSION_MASK)
341 >> AMDGPU_MES_API_VERSION_SHIFT) >= 2) {
342 struct amdgpu_bo_va_mapping *wptr_mapping;
343 struct amdgpu_vm *wptr_vm;
344
345 wptr_vm = drm_priv_to_vm(pdd->drm_priv);
346 err = amdgpu_bo_reserve(wptr_vm->root.bo, false);
347 if (err)
348 goto err_wptr_map_gart;
349
350 wptr_mapping = amdgpu_vm_bo_lookup_mapping(
351 wptr_vm, args->write_pointer_address >> PAGE_SHIFT);
352 amdgpu_bo_unreserve(wptr_vm->root.bo);
353 if (!wptr_mapping) {
354 pr_err("Failed to lookup wptr bo\n");
355 err = -EINVAL;
356 goto err_wptr_map_gart;
357 }
358
359 wptr_bo = wptr_mapping->bo_va->base.bo;
360 if (wptr_bo->tbo.base.size > PAGE_SIZE) {
361 pr_err("Requested GART mapping for wptr bo larger than one page\n");
362 err = -EINVAL;
363 goto err_wptr_map_gart;
364 }
365
366 err = amdgpu_amdkfd_map_gtt_bo_to_gart(dev->adev, wptr_bo);
367 if (err) {
368 pr_err("Failed to map wptr bo to GART\n");
369 goto err_wptr_map_gart;
370 }
371 }
372
373 pr_debug("Creating queue for PASID 0x%x on gpu 0x%x\n",
374 p->pasid,
375 dev->id);
376
377 err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, &queue_id, wptr_bo,
378 NULL, NULL, NULL, &doorbell_offset_in_process);
379 if (err != 0)
380 goto err_create_queue;
381
382 args->queue_id = queue_id;
383
384
385 /* Return gpu_id as doorbell offset for mmap usage */
386 args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL;
387 args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id);
388 if (KFD_IS_SOC15(dev))
389 /* On SOC15 ASICs, include the doorbell offset within the
390 * process doorbell frame, which is 2 pages.
391 */
392 args->doorbell_offset |= doorbell_offset_in_process;
393
394 mutex_unlock(&p->mutex);
395
396 pr_debug("Queue id %d was created successfully\n", args->queue_id);
397
398 pr_debug("Ring buffer address == 0x%016llX\n",
399 args->ring_base_address);
400
401 pr_debug("Read ptr address == 0x%016llX\n",
402 args->read_pointer_address);
403
404 pr_debug("Write ptr address == 0x%016llX\n",
405 args->write_pointer_address);
406
407 return 0;
408
409 err_create_queue:
410 if (wptr_bo)
411 amdgpu_amdkfd_free_gtt_mem(dev->adev, wptr_bo);
412 err_wptr_map_gart:
413 err_alloc_doorbells:
414 err_bind_process:
415 err_pdd:
416 mutex_unlock(&p->mutex);
417 return err;
418 }
419
kfd_ioctl_destroy_queue(struct file * filp,struct kfd_process * p,void * data)420 static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
421 void *data)
422 {
423 int retval;
424 struct kfd_ioctl_destroy_queue_args *args = data;
425
426 pr_debug("Destroying queue id %d for pasid 0x%x\n",
427 args->queue_id,
428 p->pasid);
429
430 mutex_lock(&p->mutex);
431
432 retval = pqm_destroy_queue(&p->pqm, args->queue_id);
433
434 mutex_unlock(&p->mutex);
435 return retval;
436 }
437
kfd_ioctl_update_queue(struct file * filp,struct kfd_process * p,void * data)438 static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
439 void *data)
440 {
441 int retval;
442 struct kfd_ioctl_update_queue_args *args = data;
443 struct queue_properties properties;
444
445 if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
446 pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
447 return -EINVAL;
448 }
449
450 if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
451 pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
452 return -EINVAL;
453 }
454
455 if ((args->ring_base_address) &&
456 (!access_ok((const void __user *) args->ring_base_address,
457 sizeof(uint64_t)))) {
458 pr_err("Can't access ring base address\n");
459 return -EFAULT;
460 }
461
462 if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
463 pr_err("Ring size must be a power of 2 or 0\n");
464 return -EINVAL;
465 }
466
467 properties.queue_address = args->ring_base_address;
468 properties.queue_size = args->ring_size;
469 properties.queue_percent = args->queue_percentage;
470 properties.priority = args->queue_priority;
471
472 pr_debug("Updating queue id %d for pasid 0x%x\n",
473 args->queue_id, p->pasid);
474
475 mutex_lock(&p->mutex);
476
477 retval = pqm_update_queue_properties(&p->pqm, args->queue_id, &properties);
478
479 mutex_unlock(&p->mutex);
480
481 return retval;
482 }
483
kfd_ioctl_set_cu_mask(struct file * filp,struct kfd_process * p,void * data)484 static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p,
485 void *data)
486 {
487 int retval;
488 const int max_num_cus = 1024;
489 struct kfd_ioctl_set_cu_mask_args *args = data;
490 struct mqd_update_info minfo = {0};
491 uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr;
492 size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32);
493
494 if ((args->num_cu_mask % 32) != 0) {
495 pr_debug("num_cu_mask 0x%x must be a multiple of 32",
496 args->num_cu_mask);
497 return -EINVAL;
498 }
499
500 minfo.cu_mask.count = args->num_cu_mask;
501 if (minfo.cu_mask.count == 0) {
502 pr_debug("CU mask cannot be 0");
503 return -EINVAL;
504 }
505
506 /* To prevent an unreasonably large CU mask size, set an arbitrary
507 * limit of max_num_cus bits. We can then just drop any CU mask bits
508 * past max_num_cus bits and just use the first max_num_cus bits.
509 */
510 if (minfo.cu_mask.count > max_num_cus) {
511 pr_debug("CU mask cannot be greater than 1024 bits");
512 minfo.cu_mask.count = max_num_cus;
513 cu_mask_size = sizeof(uint32_t) * (max_num_cus/32);
514 }
515
516 minfo.cu_mask.ptr = kzalloc(cu_mask_size, GFP_KERNEL);
517 if (!minfo.cu_mask.ptr)
518 return -ENOMEM;
519
520 retval = copy_from_user(minfo.cu_mask.ptr, cu_mask_ptr, cu_mask_size);
521 if (retval) {
522 pr_debug("Could not copy CU mask from userspace");
523 retval = -EFAULT;
524 goto out;
525 }
526
527 minfo.update_flag = UPDATE_FLAG_CU_MASK;
528
529 mutex_lock(&p->mutex);
530
531 retval = pqm_update_mqd(&p->pqm, args->queue_id, &minfo);
532
533 mutex_unlock(&p->mutex);
534
535 out:
536 kfree(minfo.cu_mask.ptr);
537 return retval;
538 }
539
kfd_ioctl_get_queue_wave_state(struct file * filep,struct kfd_process * p,void * data)540 static int kfd_ioctl_get_queue_wave_state(struct file *filep,
541 struct kfd_process *p, void *data)
542 {
543 struct kfd_ioctl_get_queue_wave_state_args *args = data;
544 int r;
545
546 mutex_lock(&p->mutex);
547
548 r = pqm_get_wave_state(&p->pqm, args->queue_id,
549 (void __user *)args->ctl_stack_address,
550 &args->ctl_stack_used_size,
551 &args->save_area_used_size);
552
553 mutex_unlock(&p->mutex);
554
555 return r;
556 }
557
kfd_ioctl_set_memory_policy(struct file * filep,struct kfd_process * p,void * data)558 static int kfd_ioctl_set_memory_policy(struct file *filep,
559 struct kfd_process *p, void *data)
560 {
561 struct kfd_ioctl_set_memory_policy_args *args = data;
562 int err = 0;
563 struct kfd_process_device *pdd;
564 enum cache_policy default_policy, alternate_policy;
565
566 if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
567 && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
568 return -EINVAL;
569 }
570
571 if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
572 && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
573 return -EINVAL;
574 }
575
576 mutex_lock(&p->mutex);
577 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
578 if (!pdd) {
579 pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
580 err = -EINVAL;
581 goto err_pdd;
582 }
583
584 pdd = kfd_bind_process_to_device(pdd->dev, p);
585 if (IS_ERR(pdd)) {
586 err = -ESRCH;
587 goto out;
588 }
589
590 default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
591 ? cache_policy_coherent : cache_policy_noncoherent;
592
593 alternate_policy =
594 (args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
595 ? cache_policy_coherent : cache_policy_noncoherent;
596
597 if (!pdd->dev->dqm->ops.set_cache_memory_policy(pdd->dev->dqm,
598 &pdd->qpd,
599 default_policy,
600 alternate_policy,
601 (void __user *)args->alternate_aperture_base,
602 args->alternate_aperture_size))
603 err = -EINVAL;
604
605 out:
606 err_pdd:
607 mutex_unlock(&p->mutex);
608
609 return err;
610 }
611
kfd_ioctl_set_trap_handler(struct file * filep,struct kfd_process * p,void * data)612 static int kfd_ioctl_set_trap_handler(struct file *filep,
613 struct kfd_process *p, void *data)
614 {
615 struct kfd_ioctl_set_trap_handler_args *args = data;
616 int err = 0;
617 struct kfd_process_device *pdd;
618
619 mutex_lock(&p->mutex);
620
621 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
622 if (!pdd) {
623 err = -EINVAL;
624 goto err_pdd;
625 }
626
627 pdd = kfd_bind_process_to_device(pdd->dev, p);
628 if (IS_ERR(pdd)) {
629 err = -ESRCH;
630 goto out;
631 }
632
633 kfd_process_set_trap_handler(&pdd->qpd, args->tba_addr, args->tma_addr);
634
635 out:
636 err_pdd:
637 mutex_unlock(&p->mutex);
638
639 return err;
640 }
641
kfd_ioctl_dbg_register(struct file * filep,struct kfd_process * p,void * data)642 static int kfd_ioctl_dbg_register(struct file *filep,
643 struct kfd_process *p, void *data)
644 {
645 return -EPERM;
646 }
647
kfd_ioctl_dbg_unregister(struct file * filep,struct kfd_process * p,void * data)648 static int kfd_ioctl_dbg_unregister(struct file *filep,
649 struct kfd_process *p, void *data)
650 {
651 return -EPERM;
652 }
653
kfd_ioctl_dbg_address_watch(struct file * filep,struct kfd_process * p,void * data)654 static int kfd_ioctl_dbg_address_watch(struct file *filep,
655 struct kfd_process *p, void *data)
656 {
657 return -EPERM;
658 }
659
660 /* Parse and generate fixed size data structure for wave control */
kfd_ioctl_dbg_wave_control(struct file * filep,struct kfd_process * p,void * data)661 static int kfd_ioctl_dbg_wave_control(struct file *filep,
662 struct kfd_process *p, void *data)
663 {
664 return -EPERM;
665 }
666
kfd_ioctl_get_clock_counters(struct file * filep,struct kfd_process * p,void * data)667 static int kfd_ioctl_get_clock_counters(struct file *filep,
668 struct kfd_process *p, void *data)
669 {
670 struct kfd_ioctl_get_clock_counters_args *args = data;
671 struct kfd_process_device *pdd;
672
673 mutex_lock(&p->mutex);
674 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
675 mutex_unlock(&p->mutex);
676 if (pdd)
677 /* Reading GPU clock counter from KGD */
678 args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(pdd->dev->adev);
679 else
680 /* Node without GPU resource */
681 args->gpu_clock_counter = 0;
682
683 /* No access to rdtsc. Using raw monotonic time */
684 args->cpu_clock_counter = ktime_get_raw_ns();
685 args->system_clock_counter = ktime_get_boottime_ns();
686
687 /* Since the counter is in nano-seconds we use 1GHz frequency */
688 args->system_clock_freq = 1000000000;
689
690 return 0;
691 }
692
693
kfd_ioctl_get_process_apertures(struct file * filp,struct kfd_process * p,void * data)694 static int kfd_ioctl_get_process_apertures(struct file *filp,
695 struct kfd_process *p, void *data)
696 {
697 struct kfd_ioctl_get_process_apertures_args *args = data;
698 struct kfd_process_device_apertures *pAperture;
699 int i;
700
701 dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
702
703 args->num_of_nodes = 0;
704
705 mutex_lock(&p->mutex);
706 /* Run over all pdd of the process */
707 for (i = 0; i < p->n_pdds; i++) {
708 struct kfd_process_device *pdd = p->pdds[i];
709
710 pAperture =
711 &args->process_apertures[args->num_of_nodes];
712 pAperture->gpu_id = pdd->dev->id;
713 pAperture->lds_base = pdd->lds_base;
714 pAperture->lds_limit = pdd->lds_limit;
715 pAperture->gpuvm_base = pdd->gpuvm_base;
716 pAperture->gpuvm_limit = pdd->gpuvm_limit;
717 pAperture->scratch_base = pdd->scratch_base;
718 pAperture->scratch_limit = pdd->scratch_limit;
719
720 dev_dbg(kfd_device,
721 "node id %u\n", args->num_of_nodes);
722 dev_dbg(kfd_device,
723 "gpu id %u\n", pdd->dev->id);
724 dev_dbg(kfd_device,
725 "lds_base %llX\n", pdd->lds_base);
726 dev_dbg(kfd_device,
727 "lds_limit %llX\n", pdd->lds_limit);
728 dev_dbg(kfd_device,
729 "gpuvm_base %llX\n", pdd->gpuvm_base);
730 dev_dbg(kfd_device,
731 "gpuvm_limit %llX\n", pdd->gpuvm_limit);
732 dev_dbg(kfd_device,
733 "scratch_base %llX\n", pdd->scratch_base);
734 dev_dbg(kfd_device,
735 "scratch_limit %llX\n", pdd->scratch_limit);
736
737 if (++args->num_of_nodes >= NUM_OF_SUPPORTED_GPUS)
738 break;
739 }
740 mutex_unlock(&p->mutex);
741
742 return 0;
743 }
744
kfd_ioctl_get_process_apertures_new(struct file * filp,struct kfd_process * p,void * data)745 static int kfd_ioctl_get_process_apertures_new(struct file *filp,
746 struct kfd_process *p, void *data)
747 {
748 struct kfd_ioctl_get_process_apertures_new_args *args = data;
749 struct kfd_process_device_apertures *pa;
750 int ret;
751 int i;
752
753 dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
754
755 if (args->num_of_nodes == 0) {
756 /* Return number of nodes, so that user space can alloacate
757 * sufficient memory
758 */
759 mutex_lock(&p->mutex);
760 args->num_of_nodes = p->n_pdds;
761 goto out_unlock;
762 }
763
764 /* Fill in process-aperture information for all available
765 * nodes, but not more than args->num_of_nodes as that is
766 * the amount of memory allocated by user
767 */
768 pa = kzalloc((sizeof(struct kfd_process_device_apertures) *
769 args->num_of_nodes), GFP_KERNEL);
770 if (!pa)
771 return -ENOMEM;
772
773 mutex_lock(&p->mutex);
774
775 if (!p->n_pdds) {
776 args->num_of_nodes = 0;
777 kfree(pa);
778 goto out_unlock;
779 }
780
781 /* Run over all pdd of the process */
782 for (i = 0; i < min(p->n_pdds, args->num_of_nodes); i++) {
783 struct kfd_process_device *pdd = p->pdds[i];
784
785 pa[i].gpu_id = pdd->dev->id;
786 pa[i].lds_base = pdd->lds_base;
787 pa[i].lds_limit = pdd->lds_limit;
788 pa[i].gpuvm_base = pdd->gpuvm_base;
789 pa[i].gpuvm_limit = pdd->gpuvm_limit;
790 pa[i].scratch_base = pdd->scratch_base;
791 pa[i].scratch_limit = pdd->scratch_limit;
792
793 dev_dbg(kfd_device,
794 "gpu id %u\n", pdd->dev->id);
795 dev_dbg(kfd_device,
796 "lds_base %llX\n", pdd->lds_base);
797 dev_dbg(kfd_device,
798 "lds_limit %llX\n", pdd->lds_limit);
799 dev_dbg(kfd_device,
800 "gpuvm_base %llX\n", pdd->gpuvm_base);
801 dev_dbg(kfd_device,
802 "gpuvm_limit %llX\n", pdd->gpuvm_limit);
803 dev_dbg(kfd_device,
804 "scratch_base %llX\n", pdd->scratch_base);
805 dev_dbg(kfd_device,
806 "scratch_limit %llX\n", pdd->scratch_limit);
807 }
808 mutex_unlock(&p->mutex);
809
810 args->num_of_nodes = i;
811 ret = copy_to_user(
812 (void __user *)args->kfd_process_device_apertures_ptr,
813 pa,
814 (i * sizeof(struct kfd_process_device_apertures)));
815 kfree(pa);
816 return ret ? -EFAULT : 0;
817
818 out_unlock:
819 mutex_unlock(&p->mutex);
820 return 0;
821 }
822
kfd_ioctl_create_event(struct file * filp,struct kfd_process * p,void * data)823 static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
824 void *data)
825 {
826 struct kfd_ioctl_create_event_args *args = data;
827 int err;
828
829 /* For dGPUs the event page is allocated in user mode. The
830 * handle is passed to KFD with the first call to this IOCTL
831 * through the event_page_offset field.
832 */
833 if (args->event_page_offset) {
834 mutex_lock(&p->mutex);
835 err = kfd_kmap_event_page(p, args->event_page_offset);
836 mutex_unlock(&p->mutex);
837 if (err)
838 return err;
839 }
840
841 err = kfd_event_create(filp, p, args->event_type,
842 args->auto_reset != 0, args->node_id,
843 &args->event_id, &args->event_trigger_data,
844 &args->event_page_offset,
845 &args->event_slot_index);
846
847 pr_debug("Created event (id:0x%08x) (%s)\n", args->event_id, __func__);
848 return err;
849 }
850
kfd_ioctl_destroy_event(struct file * filp,struct kfd_process * p,void * data)851 static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
852 void *data)
853 {
854 struct kfd_ioctl_destroy_event_args *args = data;
855
856 return kfd_event_destroy(p, args->event_id);
857 }
858
kfd_ioctl_set_event(struct file * filp,struct kfd_process * p,void * data)859 static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
860 void *data)
861 {
862 struct kfd_ioctl_set_event_args *args = data;
863
864 return kfd_set_event(p, args->event_id);
865 }
866
kfd_ioctl_reset_event(struct file * filp,struct kfd_process * p,void * data)867 static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
868 void *data)
869 {
870 struct kfd_ioctl_reset_event_args *args = data;
871
872 return kfd_reset_event(p, args->event_id);
873 }
874
kfd_ioctl_wait_events(struct file * filp,struct kfd_process * p,void * data)875 static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
876 void *data)
877 {
878 struct kfd_ioctl_wait_events_args *args = data;
879
880 return kfd_wait_on_events(p, args->num_events,
881 (void __user *)args->events_ptr,
882 (args->wait_for_all != 0),
883 &args->timeout, &args->wait_result);
884 }
kfd_ioctl_set_scratch_backing_va(struct file * filep,struct kfd_process * p,void * data)885 static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
886 struct kfd_process *p, void *data)
887 {
888 struct kfd_ioctl_set_scratch_backing_va_args *args = data;
889 struct kfd_process_device *pdd;
890 struct kfd_dev *dev;
891 long err;
892
893 mutex_lock(&p->mutex);
894 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
895 if (!pdd) {
896 err = -EINVAL;
897 goto err_pdd;
898 }
899 dev = pdd->dev;
900
901 pdd = kfd_bind_process_to_device(dev, p);
902 if (IS_ERR(pdd)) {
903 err = PTR_ERR(pdd);
904 goto bind_process_to_device_fail;
905 }
906
907 pdd->qpd.sh_hidden_private_base = args->va_addr;
908
909 mutex_unlock(&p->mutex);
910
911 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS &&
912 pdd->qpd.vmid != 0 && dev->kfd2kgd->set_scratch_backing_va)
913 dev->kfd2kgd->set_scratch_backing_va(
914 dev->adev, args->va_addr, pdd->qpd.vmid);
915
916 return 0;
917
918 bind_process_to_device_fail:
919 err_pdd:
920 mutex_unlock(&p->mutex);
921 return err;
922 }
923
kfd_ioctl_get_tile_config(struct file * filep,struct kfd_process * p,void * data)924 static int kfd_ioctl_get_tile_config(struct file *filep,
925 struct kfd_process *p, void *data)
926 {
927 struct kfd_ioctl_get_tile_config_args *args = data;
928 struct kfd_process_device *pdd;
929 struct tile_config config;
930 int err = 0;
931
932 mutex_lock(&p->mutex);
933 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
934 mutex_unlock(&p->mutex);
935 if (!pdd)
936 return -EINVAL;
937
938 amdgpu_amdkfd_get_tile_config(pdd->dev->adev, &config);
939
940 args->gb_addr_config = config.gb_addr_config;
941 args->num_banks = config.num_banks;
942 args->num_ranks = config.num_ranks;
943
944 if (args->num_tile_configs > config.num_tile_configs)
945 args->num_tile_configs = config.num_tile_configs;
946 err = copy_to_user((void __user *)args->tile_config_ptr,
947 config.tile_config_ptr,
948 args->num_tile_configs * sizeof(uint32_t));
949 if (err) {
950 args->num_tile_configs = 0;
951 return -EFAULT;
952 }
953
954 if (args->num_macro_tile_configs > config.num_macro_tile_configs)
955 args->num_macro_tile_configs =
956 config.num_macro_tile_configs;
957 err = copy_to_user((void __user *)args->macro_tile_config_ptr,
958 config.macro_tile_config_ptr,
959 args->num_macro_tile_configs * sizeof(uint32_t));
960 if (err) {
961 args->num_macro_tile_configs = 0;
962 return -EFAULT;
963 }
964
965 return 0;
966 }
967
kfd_ioctl_acquire_vm(struct file * filep,struct kfd_process * p,void * data)968 static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p,
969 void *data)
970 {
971 struct kfd_ioctl_acquire_vm_args *args = data;
972 struct kfd_process_device *pdd;
973 struct file *drm_file;
974 int ret;
975
976 drm_file = fget(args->drm_fd);
977 if (!drm_file)
978 return -EINVAL;
979
980 mutex_lock(&p->mutex);
981 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
982 if (!pdd) {
983 ret = -EINVAL;
984 goto err_pdd;
985 }
986
987 if (pdd->drm_file) {
988 ret = pdd->drm_file == drm_file ? 0 : -EBUSY;
989 goto err_drm_file;
990 }
991
992 ret = kfd_process_device_init_vm(pdd, drm_file);
993 if (ret)
994 goto err_unlock;
995
996 /* On success, the PDD keeps the drm_file reference */
997 mutex_unlock(&p->mutex);
998
999 return 0;
1000
1001 err_unlock:
1002 err_pdd:
1003 err_drm_file:
1004 mutex_unlock(&p->mutex);
1005 fput(drm_file);
1006 return ret;
1007 }
1008
kfd_dev_is_large_bar(struct kfd_dev * dev)1009 bool kfd_dev_is_large_bar(struct kfd_dev *dev)
1010 {
1011 if (debug_largebar) {
1012 pr_debug("Simulate large-bar allocation on non large-bar machine\n");
1013 return true;
1014 }
1015
1016 if (dev->use_iommu_v2)
1017 return false;
1018
1019 if (dev->local_mem_info.local_mem_size_private == 0 &&
1020 dev->local_mem_info.local_mem_size_public > 0)
1021 return true;
1022 return false;
1023 }
1024
kfd_ioctl_get_available_memory(struct file * filep,struct kfd_process * p,void * data)1025 static int kfd_ioctl_get_available_memory(struct file *filep,
1026 struct kfd_process *p, void *data)
1027 {
1028 struct kfd_ioctl_get_available_memory_args *args = data;
1029 struct kfd_process_device *pdd = kfd_lock_pdd_by_id(p, args->gpu_id);
1030
1031 if (!pdd)
1032 return -EINVAL;
1033 args->available = amdgpu_amdkfd_get_available_memory(pdd->dev->adev);
1034 kfd_unlock_pdd(pdd);
1035 return 0;
1036 }
1037
kfd_ioctl_alloc_memory_of_gpu(struct file * filep,struct kfd_process * p,void * data)1038 static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep,
1039 struct kfd_process *p, void *data)
1040 {
1041 struct kfd_ioctl_alloc_memory_of_gpu_args *args = data;
1042 struct kfd_process_device *pdd;
1043 void *mem;
1044 struct kfd_dev *dev;
1045 int idr_handle;
1046 long err;
1047 uint64_t offset = args->mmap_offset;
1048 uint32_t flags = args->flags;
1049
1050 if (args->size == 0)
1051 return -EINVAL;
1052
1053 #if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1054 /* Flush pending deferred work to avoid racing with deferred actions
1055 * from previous memory map changes (e.g. munmap).
1056 */
1057 svm_range_list_lock_and_flush_work(&p->svms, current->mm);
1058 mutex_lock(&p->svms.lock);
1059 mmap_write_unlock(current->mm);
1060 if (interval_tree_iter_first(&p->svms.objects,
1061 args->va_addr >> PAGE_SHIFT,
1062 (args->va_addr + args->size - 1) >> PAGE_SHIFT)) {
1063 pr_err("Address: 0x%llx already allocated by SVM\n",
1064 args->va_addr);
1065 mutex_unlock(&p->svms.lock);
1066 return -EADDRINUSE;
1067 }
1068 mutex_unlock(&p->svms.lock);
1069 #endif
1070 mutex_lock(&p->mutex);
1071 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1072 if (!pdd) {
1073 err = -EINVAL;
1074 goto err_pdd;
1075 }
1076
1077 dev = pdd->dev;
1078
1079 if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) &&
1080 (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) &&
1081 !kfd_dev_is_large_bar(dev)) {
1082 pr_err("Alloc host visible vram on small bar is not allowed\n");
1083 err = -EINVAL;
1084 goto err_large_bar;
1085 }
1086
1087 pdd = kfd_bind_process_to_device(dev, p);
1088 if (IS_ERR(pdd)) {
1089 err = PTR_ERR(pdd);
1090 goto err_unlock;
1091 }
1092
1093 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
1094 if (args->size != kfd_doorbell_process_slice(dev)) {
1095 err = -EINVAL;
1096 goto err_unlock;
1097 }
1098 offset = kfd_get_process_doorbells(pdd);
1099 if (!offset) {
1100 err = -ENOMEM;
1101 goto err_unlock;
1102 }
1103 } else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
1104 if (args->size != PAGE_SIZE) {
1105 err = -EINVAL;
1106 goto err_unlock;
1107 }
1108 offset = dev->adev->rmmio_remap.bus_addr;
1109 if (!offset) {
1110 err = -ENOMEM;
1111 goto err_unlock;
1112 }
1113 }
1114
1115 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1116 dev->adev, args->va_addr, args->size,
1117 pdd->drm_priv, (struct kgd_mem **) &mem, &offset,
1118 flags, false);
1119
1120 if (err)
1121 goto err_unlock;
1122
1123 idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1124 if (idr_handle < 0) {
1125 err = -EFAULT;
1126 goto err_free;
1127 }
1128
1129 /* Update the VRAM usage count */
1130 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM)
1131 WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + args->size);
1132
1133 mutex_unlock(&p->mutex);
1134
1135 args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1136 args->mmap_offset = offset;
1137
1138 /* MMIO is mapped through kfd device
1139 * Generate a kfd mmap offset
1140 */
1141 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1142 args->mmap_offset = KFD_MMAP_TYPE_MMIO
1143 | KFD_MMAP_GPU_ID(args->gpu_id);
1144
1145 return 0;
1146
1147 err_free:
1148 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, (struct kgd_mem *)mem,
1149 pdd->drm_priv, NULL);
1150 err_unlock:
1151 err_pdd:
1152 err_large_bar:
1153 mutex_unlock(&p->mutex);
1154 return err;
1155 }
1156
kfd_ioctl_free_memory_of_gpu(struct file * filep,struct kfd_process * p,void * data)1157 static int kfd_ioctl_free_memory_of_gpu(struct file *filep,
1158 struct kfd_process *p, void *data)
1159 {
1160 struct kfd_ioctl_free_memory_of_gpu_args *args = data;
1161 struct kfd_process_device *pdd;
1162 void *mem;
1163 int ret;
1164 uint64_t size = 0;
1165
1166 mutex_lock(&p->mutex);
1167 /*
1168 * Safeguard to prevent user space from freeing signal BO.
1169 * It will be freed at process termination.
1170 */
1171 if (p->signal_handle && (p->signal_handle == args->handle)) {
1172 pr_err("Free signal BO is not allowed\n");
1173 ret = -EPERM;
1174 goto err_unlock;
1175 }
1176
1177 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1178 if (!pdd) {
1179 pr_err("Process device data doesn't exist\n");
1180 ret = -EINVAL;
1181 goto err_pdd;
1182 }
1183
1184 mem = kfd_process_device_translate_handle(
1185 pdd, GET_IDR_HANDLE(args->handle));
1186 if (!mem) {
1187 ret = -EINVAL;
1188 goto err_unlock;
1189 }
1190
1191 ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev,
1192 (struct kgd_mem *)mem, pdd->drm_priv, &size);
1193
1194 /* If freeing the buffer failed, leave the handle in place for
1195 * clean-up during process tear-down.
1196 */
1197 if (!ret)
1198 kfd_process_device_remove_obj_handle(
1199 pdd, GET_IDR_HANDLE(args->handle));
1200
1201 WRITE_ONCE(pdd->vram_usage, pdd->vram_usage - size);
1202
1203 err_unlock:
1204 err_pdd:
1205 mutex_unlock(&p->mutex);
1206 return ret;
1207 }
1208
kfd_ioctl_map_memory_to_gpu(struct file * filep,struct kfd_process * p,void * data)1209 static int kfd_ioctl_map_memory_to_gpu(struct file *filep,
1210 struct kfd_process *p, void *data)
1211 {
1212 struct kfd_ioctl_map_memory_to_gpu_args *args = data;
1213 struct kfd_process_device *pdd, *peer_pdd;
1214 void *mem;
1215 struct kfd_dev *dev;
1216 long err = 0;
1217 int i;
1218 uint32_t *devices_arr = NULL;
1219
1220 if (!args->n_devices) {
1221 pr_debug("Device IDs array empty\n");
1222 return -EINVAL;
1223 }
1224 if (args->n_success > args->n_devices) {
1225 pr_debug("n_success exceeds n_devices\n");
1226 return -EINVAL;
1227 }
1228
1229 devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1230 GFP_KERNEL);
1231 if (!devices_arr)
1232 return -ENOMEM;
1233
1234 err = copy_from_user(devices_arr,
1235 (void __user *)args->device_ids_array_ptr,
1236 args->n_devices * sizeof(*devices_arr));
1237 if (err != 0) {
1238 err = -EFAULT;
1239 goto copy_from_user_failed;
1240 }
1241
1242 mutex_lock(&p->mutex);
1243 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1244 if (!pdd) {
1245 err = -EINVAL;
1246 goto get_process_device_data_failed;
1247 }
1248 dev = pdd->dev;
1249
1250 pdd = kfd_bind_process_to_device(dev, p);
1251 if (IS_ERR(pdd)) {
1252 err = PTR_ERR(pdd);
1253 goto bind_process_to_device_failed;
1254 }
1255
1256 mem = kfd_process_device_translate_handle(pdd,
1257 GET_IDR_HANDLE(args->handle));
1258 if (!mem) {
1259 err = -ENOMEM;
1260 goto get_mem_obj_from_handle_failed;
1261 }
1262
1263 for (i = args->n_success; i < args->n_devices; i++) {
1264 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1265 if (!peer_pdd) {
1266 pr_debug("Getting device by id failed for 0x%x\n",
1267 devices_arr[i]);
1268 err = -EINVAL;
1269 goto get_mem_obj_from_handle_failed;
1270 }
1271
1272 peer_pdd = kfd_bind_process_to_device(peer_pdd->dev, p);
1273 if (IS_ERR(peer_pdd)) {
1274 err = PTR_ERR(peer_pdd);
1275 goto get_mem_obj_from_handle_failed;
1276 }
1277
1278 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1279 peer_pdd->dev->adev, (struct kgd_mem *)mem,
1280 peer_pdd->drm_priv);
1281 if (err) {
1282 struct pci_dev *pdev = peer_pdd->dev->adev->pdev;
1283
1284 dev_err(dev->adev->dev,
1285 "Failed to map peer:%04x:%02x:%02x.%d mem_domain:%d\n",
1286 pci_domain_nr(pdev->bus),
1287 pdev->bus->number,
1288 PCI_SLOT(pdev->devfn),
1289 PCI_FUNC(pdev->devfn),
1290 ((struct kgd_mem *)mem)->domain);
1291 goto map_memory_to_gpu_failed;
1292 }
1293 args->n_success = i+1;
1294 }
1295
1296 mutex_unlock(&p->mutex);
1297
1298 err = amdgpu_amdkfd_gpuvm_sync_memory(dev->adev, (struct kgd_mem *) mem, true);
1299 if (err) {
1300 pr_debug("Sync memory failed, wait interrupted by user signal\n");
1301 goto sync_memory_failed;
1302 }
1303
1304 /* Flush TLBs after waiting for the page table updates to complete */
1305 for (i = 0; i < args->n_devices; i++) {
1306 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1307 if (WARN_ON_ONCE(!peer_pdd))
1308 continue;
1309 kfd_flush_tlb(peer_pdd, TLB_FLUSH_LEGACY);
1310 }
1311 kfree(devices_arr);
1312
1313 return err;
1314
1315 get_process_device_data_failed:
1316 bind_process_to_device_failed:
1317 get_mem_obj_from_handle_failed:
1318 map_memory_to_gpu_failed:
1319 mutex_unlock(&p->mutex);
1320 copy_from_user_failed:
1321 sync_memory_failed:
1322 kfree(devices_arr);
1323
1324 return err;
1325 }
1326
kfd_ioctl_unmap_memory_from_gpu(struct file * filep,struct kfd_process * p,void * data)1327 static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep,
1328 struct kfd_process *p, void *data)
1329 {
1330 struct kfd_ioctl_unmap_memory_from_gpu_args *args = data;
1331 struct kfd_process_device *pdd, *peer_pdd;
1332 void *mem;
1333 long err = 0;
1334 uint32_t *devices_arr = NULL, i;
1335
1336 if (!args->n_devices) {
1337 pr_debug("Device IDs array empty\n");
1338 return -EINVAL;
1339 }
1340 if (args->n_success > args->n_devices) {
1341 pr_debug("n_success exceeds n_devices\n");
1342 return -EINVAL;
1343 }
1344
1345 devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1346 GFP_KERNEL);
1347 if (!devices_arr)
1348 return -ENOMEM;
1349
1350 err = copy_from_user(devices_arr,
1351 (void __user *)args->device_ids_array_ptr,
1352 args->n_devices * sizeof(*devices_arr));
1353 if (err != 0) {
1354 err = -EFAULT;
1355 goto copy_from_user_failed;
1356 }
1357
1358 mutex_lock(&p->mutex);
1359 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1360 if (!pdd) {
1361 err = -EINVAL;
1362 goto bind_process_to_device_failed;
1363 }
1364
1365 mem = kfd_process_device_translate_handle(pdd,
1366 GET_IDR_HANDLE(args->handle));
1367 if (!mem) {
1368 err = -ENOMEM;
1369 goto get_mem_obj_from_handle_failed;
1370 }
1371
1372 for (i = args->n_success; i < args->n_devices; i++) {
1373 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1374 if (!peer_pdd) {
1375 err = -EINVAL;
1376 goto get_mem_obj_from_handle_failed;
1377 }
1378 err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1379 peer_pdd->dev->adev, (struct kgd_mem *)mem, peer_pdd->drm_priv);
1380 if (err) {
1381 pr_err("Failed to unmap from gpu %d/%d\n",
1382 i, args->n_devices);
1383 goto unmap_memory_from_gpu_failed;
1384 }
1385 args->n_success = i+1;
1386 }
1387 mutex_unlock(&p->mutex);
1388
1389 if (kfd_flush_tlb_after_unmap(pdd->dev)) {
1390 err = amdgpu_amdkfd_gpuvm_sync_memory(pdd->dev->adev,
1391 (struct kgd_mem *) mem, true);
1392 if (err) {
1393 pr_debug("Sync memory failed, wait interrupted by user signal\n");
1394 goto sync_memory_failed;
1395 }
1396
1397 /* Flush TLBs after waiting for the page table updates to complete */
1398 for (i = 0; i < args->n_devices; i++) {
1399 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1400 if (WARN_ON_ONCE(!peer_pdd))
1401 continue;
1402 kfd_flush_tlb(peer_pdd, TLB_FLUSH_HEAVYWEIGHT);
1403 }
1404 }
1405 kfree(devices_arr);
1406
1407 return 0;
1408
1409 bind_process_to_device_failed:
1410 get_mem_obj_from_handle_failed:
1411 unmap_memory_from_gpu_failed:
1412 mutex_unlock(&p->mutex);
1413 copy_from_user_failed:
1414 sync_memory_failed:
1415 kfree(devices_arr);
1416 return err;
1417 }
1418
kfd_ioctl_alloc_queue_gws(struct file * filep,struct kfd_process * p,void * data)1419 static int kfd_ioctl_alloc_queue_gws(struct file *filep,
1420 struct kfd_process *p, void *data)
1421 {
1422 int retval;
1423 struct kfd_ioctl_alloc_queue_gws_args *args = data;
1424 struct queue *q;
1425 struct kfd_dev *dev;
1426
1427 mutex_lock(&p->mutex);
1428 q = pqm_get_user_queue(&p->pqm, args->queue_id);
1429
1430 if (q) {
1431 dev = q->device;
1432 } else {
1433 retval = -EINVAL;
1434 goto out_unlock;
1435 }
1436
1437 if (!dev->gws) {
1438 retval = -ENODEV;
1439 goto out_unlock;
1440 }
1441
1442 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1443 retval = -ENODEV;
1444 goto out_unlock;
1445 }
1446
1447 retval = pqm_set_gws(&p->pqm, args->queue_id, args->num_gws ? dev->gws : NULL);
1448 mutex_unlock(&p->mutex);
1449
1450 args->first_gws = 0;
1451 return retval;
1452
1453 out_unlock:
1454 mutex_unlock(&p->mutex);
1455 return retval;
1456 }
1457
kfd_ioctl_get_dmabuf_info(struct file * filep,struct kfd_process * p,void * data)1458 static int kfd_ioctl_get_dmabuf_info(struct file *filep,
1459 struct kfd_process *p, void *data)
1460 {
1461 struct kfd_ioctl_get_dmabuf_info_args *args = data;
1462 struct kfd_dev *dev = NULL;
1463 struct amdgpu_device *dmabuf_adev;
1464 void *metadata_buffer = NULL;
1465 uint32_t flags;
1466 unsigned int i;
1467 int r;
1468
1469 /* Find a KFD GPU device that supports the get_dmabuf_info query */
1470 for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++)
1471 if (dev)
1472 break;
1473 if (!dev)
1474 return -EINVAL;
1475
1476 if (args->metadata_ptr) {
1477 metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL);
1478 if (!metadata_buffer)
1479 return -ENOMEM;
1480 }
1481
1482 /* Get dmabuf info from KGD */
1483 r = amdgpu_amdkfd_get_dmabuf_info(dev->adev, args->dmabuf_fd,
1484 &dmabuf_adev, &args->size,
1485 metadata_buffer, args->metadata_size,
1486 &args->metadata_size, &flags);
1487 if (r)
1488 goto exit;
1489
1490 /* Reverse-lookup gpu_id from kgd pointer */
1491 dev = kfd_device_by_adev(dmabuf_adev);
1492 if (!dev) {
1493 r = -EINVAL;
1494 goto exit;
1495 }
1496 args->gpu_id = dev->id;
1497 args->flags = flags;
1498
1499 /* Copy metadata buffer to user mode */
1500 if (metadata_buffer) {
1501 r = copy_to_user((void __user *)args->metadata_ptr,
1502 metadata_buffer, args->metadata_size);
1503 if (r != 0)
1504 r = -EFAULT;
1505 }
1506
1507 exit:
1508 kfree(metadata_buffer);
1509
1510 return r;
1511 }
1512
kfd_ioctl_import_dmabuf(struct file * filep,struct kfd_process * p,void * data)1513 static int kfd_ioctl_import_dmabuf(struct file *filep,
1514 struct kfd_process *p, void *data)
1515 {
1516 struct kfd_ioctl_import_dmabuf_args *args = data;
1517 struct kfd_process_device *pdd;
1518 struct dma_buf *dmabuf;
1519 int idr_handle;
1520 uint64_t size;
1521 void *mem;
1522 int r;
1523
1524 dmabuf = dma_buf_get(args->dmabuf_fd);
1525 if (IS_ERR(dmabuf))
1526 return PTR_ERR(dmabuf);
1527
1528 mutex_lock(&p->mutex);
1529 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1530 if (!pdd) {
1531 r = -EINVAL;
1532 goto err_unlock;
1533 }
1534
1535 pdd = kfd_bind_process_to_device(pdd->dev, p);
1536 if (IS_ERR(pdd)) {
1537 r = PTR_ERR(pdd);
1538 goto err_unlock;
1539 }
1540
1541 r = amdgpu_amdkfd_gpuvm_import_dmabuf(pdd->dev->adev, dmabuf,
1542 args->va_addr, pdd->drm_priv,
1543 (struct kgd_mem **)&mem, &size,
1544 NULL);
1545 if (r)
1546 goto err_unlock;
1547
1548 idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1549 if (idr_handle < 0) {
1550 r = -EFAULT;
1551 goto err_free;
1552 }
1553
1554 mutex_unlock(&p->mutex);
1555 dma_buf_put(dmabuf);
1556
1557 args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1558
1559 return 0;
1560
1561 err_free:
1562 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, (struct kgd_mem *)mem,
1563 pdd->drm_priv, NULL);
1564 err_unlock:
1565 mutex_unlock(&p->mutex);
1566 dma_buf_put(dmabuf);
1567 return r;
1568 }
1569
1570 /* Handle requests for watching SMI events */
kfd_ioctl_smi_events(struct file * filep,struct kfd_process * p,void * data)1571 static int kfd_ioctl_smi_events(struct file *filep,
1572 struct kfd_process *p, void *data)
1573 {
1574 struct kfd_ioctl_smi_events_args *args = data;
1575 struct kfd_process_device *pdd;
1576
1577 mutex_lock(&p->mutex);
1578
1579 pdd = kfd_process_device_data_by_id(p, args->gpuid);
1580 mutex_unlock(&p->mutex);
1581 if (!pdd)
1582 return -EINVAL;
1583
1584 return kfd_smi_event_open(pdd->dev, &args->anon_fd);
1585 }
1586
1587 #if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1588
kfd_ioctl_set_xnack_mode(struct file * filep,struct kfd_process * p,void * data)1589 static int kfd_ioctl_set_xnack_mode(struct file *filep,
1590 struct kfd_process *p, void *data)
1591 {
1592 struct kfd_ioctl_set_xnack_mode_args *args = data;
1593 int r = 0;
1594
1595 mutex_lock(&p->mutex);
1596 if (args->xnack_enabled >= 0) {
1597 if (!list_empty(&p->pqm.queues)) {
1598 pr_debug("Process has user queues running\n");
1599 r = -EBUSY;
1600 goto out_unlock;
1601 }
1602
1603 if (p->xnack_enabled == args->xnack_enabled)
1604 goto out_unlock;
1605
1606 if (args->xnack_enabled && !kfd_process_xnack_mode(p, true)) {
1607 r = -EPERM;
1608 goto out_unlock;
1609 }
1610
1611 r = svm_range_switch_xnack_reserve_mem(p, args->xnack_enabled);
1612 } else {
1613 args->xnack_enabled = p->xnack_enabled;
1614 }
1615
1616 out_unlock:
1617 mutex_unlock(&p->mutex);
1618
1619 return r;
1620 }
1621
kfd_ioctl_svm(struct file * filep,struct kfd_process * p,void * data)1622 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1623 {
1624 struct kfd_ioctl_svm_args *args = data;
1625 int r = 0;
1626
1627 pr_debug("start 0x%llx size 0x%llx op 0x%x nattr 0x%x\n",
1628 args->start_addr, args->size, args->op, args->nattr);
1629
1630 if ((args->start_addr & ~PAGE_MASK) || (args->size & ~PAGE_MASK))
1631 return -EINVAL;
1632 if (!args->start_addr || !args->size)
1633 return -EINVAL;
1634
1635 r = svm_ioctl(p, args->op, args->start_addr, args->size, args->nattr,
1636 args->attrs);
1637
1638 return r;
1639 }
1640 #else
kfd_ioctl_set_xnack_mode(struct file * filep,struct kfd_process * p,void * data)1641 static int kfd_ioctl_set_xnack_mode(struct file *filep,
1642 struct kfd_process *p, void *data)
1643 {
1644 return -EPERM;
1645 }
kfd_ioctl_svm(struct file * filep,struct kfd_process * p,void * data)1646 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1647 {
1648 return -EPERM;
1649 }
1650 #endif
1651
criu_checkpoint_process(struct kfd_process * p,uint8_t __user * user_priv_data,uint64_t * priv_offset)1652 static int criu_checkpoint_process(struct kfd_process *p,
1653 uint8_t __user *user_priv_data,
1654 uint64_t *priv_offset)
1655 {
1656 struct kfd_criu_process_priv_data process_priv;
1657 int ret;
1658
1659 memset(&process_priv, 0, sizeof(process_priv));
1660
1661 process_priv.version = KFD_CRIU_PRIV_VERSION;
1662 /* For CR, we don't consider negative xnack mode which is used for
1663 * querying without changing it, here 0 simply means disabled and 1
1664 * means enabled so retry for finding a valid PTE.
1665 */
1666 process_priv.xnack_mode = p->xnack_enabled ? 1 : 0;
1667
1668 ret = copy_to_user(user_priv_data + *priv_offset,
1669 &process_priv, sizeof(process_priv));
1670
1671 if (ret) {
1672 pr_err("Failed to copy process information to user\n");
1673 ret = -EFAULT;
1674 }
1675
1676 *priv_offset += sizeof(process_priv);
1677 return ret;
1678 }
1679
criu_checkpoint_devices(struct kfd_process * p,uint32_t num_devices,uint8_t __user * user_addr,uint8_t __user * user_priv_data,uint64_t * priv_offset)1680 static int criu_checkpoint_devices(struct kfd_process *p,
1681 uint32_t num_devices,
1682 uint8_t __user *user_addr,
1683 uint8_t __user *user_priv_data,
1684 uint64_t *priv_offset)
1685 {
1686 struct kfd_criu_device_priv_data *device_priv = NULL;
1687 struct kfd_criu_device_bucket *device_buckets = NULL;
1688 int ret = 0, i;
1689
1690 device_buckets = kvzalloc(num_devices * sizeof(*device_buckets), GFP_KERNEL);
1691 if (!device_buckets) {
1692 ret = -ENOMEM;
1693 goto exit;
1694 }
1695
1696 device_priv = kvzalloc(num_devices * sizeof(*device_priv), GFP_KERNEL);
1697 if (!device_priv) {
1698 ret = -ENOMEM;
1699 goto exit;
1700 }
1701
1702 for (i = 0; i < num_devices; i++) {
1703 struct kfd_process_device *pdd = p->pdds[i];
1704
1705 device_buckets[i].user_gpu_id = pdd->user_gpu_id;
1706 device_buckets[i].actual_gpu_id = pdd->dev->id;
1707
1708 /*
1709 * priv_data does not contain useful information for now and is reserved for
1710 * future use, so we do not set its contents.
1711 */
1712 }
1713
1714 ret = copy_to_user(user_addr, device_buckets, num_devices * sizeof(*device_buckets));
1715 if (ret) {
1716 pr_err("Failed to copy device information to user\n");
1717 ret = -EFAULT;
1718 goto exit;
1719 }
1720
1721 ret = copy_to_user(user_priv_data + *priv_offset,
1722 device_priv,
1723 num_devices * sizeof(*device_priv));
1724 if (ret) {
1725 pr_err("Failed to copy device information to user\n");
1726 ret = -EFAULT;
1727 }
1728 *priv_offset += num_devices * sizeof(*device_priv);
1729
1730 exit:
1731 kvfree(device_buckets);
1732 kvfree(device_priv);
1733 return ret;
1734 }
1735
get_process_num_bos(struct kfd_process * p)1736 static uint32_t get_process_num_bos(struct kfd_process *p)
1737 {
1738 uint32_t num_of_bos = 0;
1739 int i;
1740
1741 /* Run over all PDDs of the process */
1742 for (i = 0; i < p->n_pdds; i++) {
1743 struct kfd_process_device *pdd = p->pdds[i];
1744 void *mem;
1745 int id;
1746
1747 idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1748 struct kgd_mem *kgd_mem = (struct kgd_mem *)mem;
1749
1750 if ((uint64_t)kgd_mem->va > pdd->gpuvm_base)
1751 num_of_bos++;
1752 }
1753 }
1754 return num_of_bos;
1755 }
1756
criu_get_prime_handle(struct drm_gem_object * gobj,int flags,u32 * shared_fd)1757 static int criu_get_prime_handle(struct drm_gem_object *gobj, int flags,
1758 u32 *shared_fd)
1759 {
1760 struct dma_buf *dmabuf;
1761 int ret;
1762
1763 dmabuf = amdgpu_gem_prime_export(gobj, flags);
1764 if (IS_ERR(dmabuf)) {
1765 ret = PTR_ERR(dmabuf);
1766 pr_err("dmabuf export failed for the BO\n");
1767 return ret;
1768 }
1769
1770 ret = dma_buf_fd(dmabuf, flags);
1771 if (ret < 0) {
1772 pr_err("dmabuf create fd failed, ret:%d\n", ret);
1773 goto out_free_dmabuf;
1774 }
1775
1776 *shared_fd = ret;
1777 return 0;
1778
1779 out_free_dmabuf:
1780 dma_buf_put(dmabuf);
1781 return ret;
1782 }
1783
criu_checkpoint_bos(struct kfd_process * p,uint32_t num_bos,uint8_t __user * user_bos,uint8_t __user * user_priv_data,uint64_t * priv_offset)1784 static int criu_checkpoint_bos(struct kfd_process *p,
1785 uint32_t num_bos,
1786 uint8_t __user *user_bos,
1787 uint8_t __user *user_priv_data,
1788 uint64_t *priv_offset)
1789 {
1790 struct kfd_criu_bo_bucket *bo_buckets;
1791 struct kfd_criu_bo_priv_data *bo_privs;
1792 int ret = 0, pdd_index, bo_index = 0, id;
1793 void *mem;
1794
1795 bo_buckets = kvzalloc(num_bos * sizeof(*bo_buckets), GFP_KERNEL);
1796 if (!bo_buckets)
1797 return -ENOMEM;
1798
1799 bo_privs = kvzalloc(num_bos * sizeof(*bo_privs), GFP_KERNEL);
1800 if (!bo_privs) {
1801 ret = -ENOMEM;
1802 goto exit;
1803 }
1804
1805 for (pdd_index = 0; pdd_index < p->n_pdds; pdd_index++) {
1806 struct kfd_process_device *pdd = p->pdds[pdd_index];
1807 struct amdgpu_bo *dumper_bo;
1808 struct kgd_mem *kgd_mem;
1809
1810 idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1811 struct kfd_criu_bo_bucket *bo_bucket;
1812 struct kfd_criu_bo_priv_data *bo_priv;
1813 int i, dev_idx = 0;
1814
1815 if (!mem) {
1816 ret = -ENOMEM;
1817 goto exit;
1818 }
1819
1820 kgd_mem = (struct kgd_mem *)mem;
1821 dumper_bo = kgd_mem->bo;
1822
1823 if ((uint64_t)kgd_mem->va <= pdd->gpuvm_base)
1824 continue;
1825
1826 bo_bucket = &bo_buckets[bo_index];
1827 bo_priv = &bo_privs[bo_index];
1828
1829 bo_bucket->gpu_id = pdd->user_gpu_id;
1830 bo_bucket->addr = (uint64_t)kgd_mem->va;
1831 bo_bucket->size = amdgpu_bo_size(dumper_bo);
1832 bo_bucket->alloc_flags = (uint32_t)kgd_mem->alloc_flags;
1833 bo_priv->idr_handle = id;
1834
1835 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
1836 ret = amdgpu_ttm_tt_get_userptr(&dumper_bo->tbo,
1837 &bo_priv->user_addr);
1838 if (ret) {
1839 pr_err("Failed to obtain user address for user-pointer bo\n");
1840 goto exit;
1841 }
1842 }
1843 if (bo_bucket->alloc_flags
1844 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
1845 ret = criu_get_prime_handle(&dumper_bo->tbo.base,
1846 bo_bucket->alloc_flags &
1847 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? DRM_RDWR : 0,
1848 &bo_bucket->dmabuf_fd);
1849 if (ret)
1850 goto exit;
1851 } else {
1852 bo_bucket->dmabuf_fd = KFD_INVALID_FD;
1853 }
1854
1855 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
1856 bo_bucket->offset = KFD_MMAP_TYPE_DOORBELL |
1857 KFD_MMAP_GPU_ID(pdd->dev->id);
1858 else if (bo_bucket->alloc_flags &
1859 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1860 bo_bucket->offset = KFD_MMAP_TYPE_MMIO |
1861 KFD_MMAP_GPU_ID(pdd->dev->id);
1862 else
1863 bo_bucket->offset = amdgpu_bo_mmap_offset(dumper_bo);
1864
1865 for (i = 0; i < p->n_pdds; i++) {
1866 if (amdgpu_amdkfd_bo_mapped_to_dev(p->pdds[i]->dev->adev, kgd_mem))
1867 bo_priv->mapped_gpuids[dev_idx++] = p->pdds[i]->user_gpu_id;
1868 }
1869
1870 pr_debug("bo_size = 0x%llx, bo_addr = 0x%llx bo_offset = 0x%llx\n"
1871 "gpu_id = 0x%x alloc_flags = 0x%x idr_handle = 0x%x",
1872 bo_bucket->size,
1873 bo_bucket->addr,
1874 bo_bucket->offset,
1875 bo_bucket->gpu_id,
1876 bo_bucket->alloc_flags,
1877 bo_priv->idr_handle);
1878 bo_index++;
1879 }
1880 }
1881
1882 ret = copy_to_user(user_bos, bo_buckets, num_bos * sizeof(*bo_buckets));
1883 if (ret) {
1884 pr_err("Failed to copy BO information to user\n");
1885 ret = -EFAULT;
1886 goto exit;
1887 }
1888
1889 ret = copy_to_user(user_priv_data + *priv_offset, bo_privs, num_bos * sizeof(*bo_privs));
1890 if (ret) {
1891 pr_err("Failed to copy BO priv information to user\n");
1892 ret = -EFAULT;
1893 goto exit;
1894 }
1895
1896 *priv_offset += num_bos * sizeof(*bo_privs);
1897
1898 exit:
1899 while (ret && bo_index--) {
1900 if (bo_buckets[bo_index].alloc_flags
1901 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT))
1902 close_fd(bo_buckets[bo_index].dmabuf_fd);
1903 }
1904
1905 kvfree(bo_buckets);
1906 kvfree(bo_privs);
1907 return ret;
1908 }
1909
criu_get_process_object_info(struct kfd_process * p,uint32_t * num_devices,uint32_t * num_bos,uint32_t * num_objects,uint64_t * objs_priv_size)1910 static int criu_get_process_object_info(struct kfd_process *p,
1911 uint32_t *num_devices,
1912 uint32_t *num_bos,
1913 uint32_t *num_objects,
1914 uint64_t *objs_priv_size)
1915 {
1916 uint64_t queues_priv_data_size, svm_priv_data_size, priv_size;
1917 uint32_t num_queues, num_events, num_svm_ranges;
1918 int ret;
1919
1920 *num_devices = p->n_pdds;
1921 *num_bos = get_process_num_bos(p);
1922
1923 ret = kfd_process_get_queue_info(p, &num_queues, &queues_priv_data_size);
1924 if (ret)
1925 return ret;
1926
1927 num_events = kfd_get_num_events(p);
1928
1929 ret = svm_range_get_info(p, &num_svm_ranges, &svm_priv_data_size);
1930 if (ret)
1931 return ret;
1932
1933 *num_objects = num_queues + num_events + num_svm_ranges;
1934
1935 if (objs_priv_size) {
1936 priv_size = sizeof(struct kfd_criu_process_priv_data);
1937 priv_size += *num_devices * sizeof(struct kfd_criu_device_priv_data);
1938 priv_size += *num_bos * sizeof(struct kfd_criu_bo_priv_data);
1939 priv_size += queues_priv_data_size;
1940 priv_size += num_events * sizeof(struct kfd_criu_event_priv_data);
1941 priv_size += svm_priv_data_size;
1942 *objs_priv_size = priv_size;
1943 }
1944 return 0;
1945 }
1946
criu_checkpoint(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args)1947 static int criu_checkpoint(struct file *filep,
1948 struct kfd_process *p,
1949 struct kfd_ioctl_criu_args *args)
1950 {
1951 int ret;
1952 uint32_t num_devices, num_bos, num_objects;
1953 uint64_t priv_size, priv_offset = 0, bo_priv_offset;
1954
1955 if (!args->devices || !args->bos || !args->priv_data)
1956 return -EINVAL;
1957
1958 mutex_lock(&p->mutex);
1959
1960 if (!p->n_pdds) {
1961 pr_err("No pdd for given process\n");
1962 ret = -ENODEV;
1963 goto exit_unlock;
1964 }
1965
1966 /* Confirm all process queues are evicted */
1967 if (!p->queues_paused) {
1968 pr_err("Cannot dump process when queues are not in evicted state\n");
1969 /* CRIU plugin did not call op PROCESS_INFO before checkpointing */
1970 ret = -EINVAL;
1971 goto exit_unlock;
1972 }
1973
1974 ret = criu_get_process_object_info(p, &num_devices, &num_bos, &num_objects, &priv_size);
1975 if (ret)
1976 goto exit_unlock;
1977
1978 if (num_devices != args->num_devices ||
1979 num_bos != args->num_bos ||
1980 num_objects != args->num_objects ||
1981 priv_size != args->priv_data_size) {
1982
1983 ret = -EINVAL;
1984 goto exit_unlock;
1985 }
1986
1987 /* each function will store private data inside priv_data and adjust priv_offset */
1988 ret = criu_checkpoint_process(p, (uint8_t __user *)args->priv_data, &priv_offset);
1989 if (ret)
1990 goto exit_unlock;
1991
1992 ret = criu_checkpoint_devices(p, num_devices, (uint8_t __user *)args->devices,
1993 (uint8_t __user *)args->priv_data, &priv_offset);
1994 if (ret)
1995 goto exit_unlock;
1996
1997 /* Leave room for BOs in the private data. They need to be restored
1998 * before events, but we checkpoint them last to simplify the error
1999 * handling.
2000 */
2001 bo_priv_offset = priv_offset;
2002 priv_offset += num_bos * sizeof(struct kfd_criu_bo_priv_data);
2003
2004 if (num_objects) {
2005 ret = kfd_criu_checkpoint_queues(p, (uint8_t __user *)args->priv_data,
2006 &priv_offset);
2007 if (ret)
2008 goto exit_unlock;
2009
2010 ret = kfd_criu_checkpoint_events(p, (uint8_t __user *)args->priv_data,
2011 &priv_offset);
2012 if (ret)
2013 goto exit_unlock;
2014
2015 ret = kfd_criu_checkpoint_svm(p, (uint8_t __user *)args->priv_data, &priv_offset);
2016 if (ret)
2017 goto exit_unlock;
2018 }
2019
2020 /* This must be the last thing in this function that can fail.
2021 * Otherwise we leak dmabuf file descriptors.
2022 */
2023 ret = criu_checkpoint_bos(p, num_bos, (uint8_t __user *)args->bos,
2024 (uint8_t __user *)args->priv_data, &bo_priv_offset);
2025
2026 exit_unlock:
2027 mutex_unlock(&p->mutex);
2028 if (ret)
2029 pr_err("Failed to dump CRIU ret:%d\n", ret);
2030 else
2031 pr_debug("CRIU dump ret:%d\n", ret);
2032
2033 return ret;
2034 }
2035
criu_restore_process(struct kfd_process * p,struct kfd_ioctl_criu_args * args,uint64_t * priv_offset,uint64_t max_priv_data_size)2036 static int criu_restore_process(struct kfd_process *p,
2037 struct kfd_ioctl_criu_args *args,
2038 uint64_t *priv_offset,
2039 uint64_t max_priv_data_size)
2040 {
2041 int ret = 0;
2042 struct kfd_criu_process_priv_data process_priv;
2043
2044 if (*priv_offset + sizeof(process_priv) > max_priv_data_size)
2045 return -EINVAL;
2046
2047 ret = copy_from_user(&process_priv,
2048 (void __user *)(args->priv_data + *priv_offset),
2049 sizeof(process_priv));
2050 if (ret) {
2051 pr_err("Failed to copy process private information from user\n");
2052 ret = -EFAULT;
2053 goto exit;
2054 }
2055 *priv_offset += sizeof(process_priv);
2056
2057 if (process_priv.version != KFD_CRIU_PRIV_VERSION) {
2058 pr_err("Invalid CRIU API version (checkpointed:%d current:%d)\n",
2059 process_priv.version, KFD_CRIU_PRIV_VERSION);
2060 return -EINVAL;
2061 }
2062
2063 pr_debug("Setting XNACK mode\n");
2064 if (process_priv.xnack_mode && !kfd_process_xnack_mode(p, true)) {
2065 pr_err("xnack mode cannot be set\n");
2066 ret = -EPERM;
2067 goto exit;
2068 } else {
2069 pr_debug("set xnack mode: %d\n", process_priv.xnack_mode);
2070 p->xnack_enabled = process_priv.xnack_mode;
2071 }
2072
2073 exit:
2074 return ret;
2075 }
2076
criu_restore_devices(struct kfd_process * p,struct kfd_ioctl_criu_args * args,uint64_t * priv_offset,uint64_t max_priv_data_size)2077 static int criu_restore_devices(struct kfd_process *p,
2078 struct kfd_ioctl_criu_args *args,
2079 uint64_t *priv_offset,
2080 uint64_t max_priv_data_size)
2081 {
2082 struct kfd_criu_device_bucket *device_buckets;
2083 struct kfd_criu_device_priv_data *device_privs;
2084 int ret = 0;
2085 uint32_t i;
2086
2087 if (args->num_devices != p->n_pdds)
2088 return -EINVAL;
2089
2090 if (*priv_offset + (args->num_devices * sizeof(*device_privs)) > max_priv_data_size)
2091 return -EINVAL;
2092
2093 device_buckets = kmalloc_array(args->num_devices, sizeof(*device_buckets), GFP_KERNEL);
2094 if (!device_buckets)
2095 return -ENOMEM;
2096
2097 ret = copy_from_user(device_buckets, (void __user *)args->devices,
2098 args->num_devices * sizeof(*device_buckets));
2099 if (ret) {
2100 pr_err("Failed to copy devices buckets from user\n");
2101 ret = -EFAULT;
2102 goto exit;
2103 }
2104
2105 for (i = 0; i < args->num_devices; i++) {
2106 struct kfd_dev *dev;
2107 struct kfd_process_device *pdd;
2108 struct file *drm_file;
2109
2110 /* device private data is not currently used */
2111
2112 if (!device_buckets[i].user_gpu_id) {
2113 pr_err("Invalid user gpu_id\n");
2114 ret = -EINVAL;
2115 goto exit;
2116 }
2117
2118 dev = kfd_device_by_id(device_buckets[i].actual_gpu_id);
2119 if (!dev) {
2120 pr_err("Failed to find device with gpu_id = %x\n",
2121 device_buckets[i].actual_gpu_id);
2122 ret = -EINVAL;
2123 goto exit;
2124 }
2125
2126 pdd = kfd_get_process_device_data(dev, p);
2127 if (!pdd) {
2128 pr_err("Failed to get pdd for gpu_id = %x\n",
2129 device_buckets[i].actual_gpu_id);
2130 ret = -EINVAL;
2131 goto exit;
2132 }
2133 pdd->user_gpu_id = device_buckets[i].user_gpu_id;
2134
2135 drm_file = fget(device_buckets[i].drm_fd);
2136 if (!drm_file) {
2137 pr_err("Invalid render node file descriptor sent from plugin (%d)\n",
2138 device_buckets[i].drm_fd);
2139 ret = -EINVAL;
2140 goto exit;
2141 }
2142
2143 if (pdd->drm_file) {
2144 ret = -EINVAL;
2145 goto exit;
2146 }
2147
2148 /* create the vm using render nodes for kfd pdd */
2149 if (kfd_process_device_init_vm(pdd, drm_file)) {
2150 pr_err("could not init vm for given pdd\n");
2151 /* On success, the PDD keeps the drm_file reference */
2152 fput(drm_file);
2153 ret = -EINVAL;
2154 goto exit;
2155 }
2156 /*
2157 * pdd now already has the vm bound to render node so below api won't create a new
2158 * exclusive kfd mapping but use existing one with renderDXXX but is still needed
2159 * for iommu v2 binding and runtime pm.
2160 */
2161 pdd = kfd_bind_process_to_device(dev, p);
2162 if (IS_ERR(pdd)) {
2163 ret = PTR_ERR(pdd);
2164 goto exit;
2165 }
2166
2167 if (!pdd->doorbell_index &&
2168 kfd_alloc_process_doorbells(pdd->dev, &pdd->doorbell_index) < 0) {
2169 ret = -ENOMEM;
2170 goto exit;
2171 }
2172 }
2173
2174 /*
2175 * We are not copying device private data from user as we are not using the data for now,
2176 * but we still adjust for its private data.
2177 */
2178 *priv_offset += args->num_devices * sizeof(*device_privs);
2179
2180 exit:
2181 kfree(device_buckets);
2182 return ret;
2183 }
2184
criu_restore_memory_of_gpu(struct kfd_process_device * pdd,struct kfd_criu_bo_bucket * bo_bucket,struct kfd_criu_bo_priv_data * bo_priv,struct kgd_mem ** kgd_mem)2185 static int criu_restore_memory_of_gpu(struct kfd_process_device *pdd,
2186 struct kfd_criu_bo_bucket *bo_bucket,
2187 struct kfd_criu_bo_priv_data *bo_priv,
2188 struct kgd_mem **kgd_mem)
2189 {
2190 int idr_handle;
2191 int ret;
2192 const bool criu_resume = true;
2193 u64 offset;
2194
2195 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
2196 if (bo_bucket->size != kfd_doorbell_process_slice(pdd->dev))
2197 return -EINVAL;
2198
2199 offset = kfd_get_process_doorbells(pdd);
2200 if (!offset)
2201 return -ENOMEM;
2202 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2203 /* MMIO BOs need remapped bus address */
2204 if (bo_bucket->size != PAGE_SIZE) {
2205 pr_err("Invalid page size\n");
2206 return -EINVAL;
2207 }
2208 offset = pdd->dev->adev->rmmio_remap.bus_addr;
2209 if (!offset) {
2210 pr_err("amdgpu_amdkfd_get_mmio_remap_phys_addr failed\n");
2211 return -ENOMEM;
2212 }
2213 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
2214 offset = bo_priv->user_addr;
2215 }
2216 /* Create the BO */
2217 ret = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(pdd->dev->adev, bo_bucket->addr,
2218 bo_bucket->size, pdd->drm_priv, kgd_mem,
2219 &offset, bo_bucket->alloc_flags, criu_resume);
2220 if (ret) {
2221 pr_err("Could not create the BO\n");
2222 return ret;
2223 }
2224 pr_debug("New BO created: size:0x%llx addr:0x%llx offset:0x%llx\n",
2225 bo_bucket->size, bo_bucket->addr, offset);
2226
2227 /* Restore previous IDR handle */
2228 pr_debug("Restoring old IDR handle for the BO");
2229 idr_handle = idr_alloc(&pdd->alloc_idr, *kgd_mem, bo_priv->idr_handle,
2230 bo_priv->idr_handle + 1, GFP_KERNEL);
2231
2232 if (idr_handle < 0) {
2233 pr_err("Could not allocate idr\n");
2234 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, *kgd_mem, pdd->drm_priv,
2235 NULL);
2236 return -ENOMEM;
2237 }
2238
2239 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
2240 bo_bucket->restored_offset = KFD_MMAP_TYPE_DOORBELL | KFD_MMAP_GPU_ID(pdd->dev->id);
2241 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2242 bo_bucket->restored_offset = KFD_MMAP_TYPE_MMIO | KFD_MMAP_GPU_ID(pdd->dev->id);
2243 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
2244 bo_bucket->restored_offset = offset;
2245 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
2246 bo_bucket->restored_offset = offset;
2247 /* Update the VRAM usage count */
2248 WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + bo_bucket->size);
2249 }
2250 return 0;
2251 }
2252
criu_restore_bo(struct kfd_process * p,struct kfd_criu_bo_bucket * bo_bucket,struct kfd_criu_bo_priv_data * bo_priv)2253 static int criu_restore_bo(struct kfd_process *p,
2254 struct kfd_criu_bo_bucket *bo_bucket,
2255 struct kfd_criu_bo_priv_data *bo_priv)
2256 {
2257 struct kfd_process_device *pdd;
2258 struct kgd_mem *kgd_mem;
2259 int ret;
2260 int j;
2261
2262 pr_debug("Restoring BO size:0x%llx addr:0x%llx gpu_id:0x%x flags:0x%x idr_handle:0x%x\n",
2263 bo_bucket->size, bo_bucket->addr, bo_bucket->gpu_id, bo_bucket->alloc_flags,
2264 bo_priv->idr_handle);
2265
2266 pdd = kfd_process_device_data_by_id(p, bo_bucket->gpu_id);
2267 if (!pdd) {
2268 pr_err("Failed to get pdd\n");
2269 return -ENODEV;
2270 }
2271
2272 ret = criu_restore_memory_of_gpu(pdd, bo_bucket, bo_priv, &kgd_mem);
2273 if (ret)
2274 return ret;
2275
2276 /* now map these BOs to GPU/s */
2277 for (j = 0; j < p->n_pdds; j++) {
2278 struct kfd_dev *peer;
2279 struct kfd_process_device *peer_pdd;
2280
2281 if (!bo_priv->mapped_gpuids[j])
2282 break;
2283
2284 peer_pdd = kfd_process_device_data_by_id(p, bo_priv->mapped_gpuids[j]);
2285 if (!peer_pdd)
2286 return -EINVAL;
2287
2288 peer = peer_pdd->dev;
2289
2290 peer_pdd = kfd_bind_process_to_device(peer, p);
2291 if (IS_ERR(peer_pdd))
2292 return PTR_ERR(peer_pdd);
2293
2294 ret = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(peer->adev, kgd_mem,
2295 peer_pdd->drm_priv);
2296 if (ret) {
2297 pr_err("Failed to map to gpu %d/%d\n", j, p->n_pdds);
2298 return ret;
2299 }
2300 }
2301
2302 pr_debug("map memory was successful for the BO\n");
2303 /* create the dmabuf object and export the bo */
2304 if (bo_bucket->alloc_flags
2305 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
2306 ret = criu_get_prime_handle(&kgd_mem->bo->tbo.base, DRM_RDWR,
2307 &bo_bucket->dmabuf_fd);
2308 if (ret)
2309 return ret;
2310 } else {
2311 bo_bucket->dmabuf_fd = KFD_INVALID_FD;
2312 }
2313
2314 return 0;
2315 }
2316
criu_restore_bos(struct kfd_process * p,struct kfd_ioctl_criu_args * args,uint64_t * priv_offset,uint64_t max_priv_data_size)2317 static int criu_restore_bos(struct kfd_process *p,
2318 struct kfd_ioctl_criu_args *args,
2319 uint64_t *priv_offset,
2320 uint64_t max_priv_data_size)
2321 {
2322 struct kfd_criu_bo_bucket *bo_buckets = NULL;
2323 struct kfd_criu_bo_priv_data *bo_privs = NULL;
2324 int ret = 0;
2325 uint32_t i = 0;
2326
2327 if (*priv_offset + (args->num_bos * sizeof(*bo_privs)) > max_priv_data_size)
2328 return -EINVAL;
2329
2330 /* Prevent MMU notifications until stage-4 IOCTL (CRIU_RESUME) is received */
2331 amdgpu_amdkfd_block_mmu_notifications(p->kgd_process_info);
2332
2333 bo_buckets = kvmalloc_array(args->num_bos, sizeof(*bo_buckets), GFP_KERNEL);
2334 if (!bo_buckets)
2335 return -ENOMEM;
2336
2337 ret = copy_from_user(bo_buckets, (void __user *)args->bos,
2338 args->num_bos * sizeof(*bo_buckets));
2339 if (ret) {
2340 pr_err("Failed to copy BOs information from user\n");
2341 ret = -EFAULT;
2342 goto exit;
2343 }
2344
2345 bo_privs = kvmalloc_array(args->num_bos, sizeof(*bo_privs), GFP_KERNEL);
2346 if (!bo_privs) {
2347 ret = -ENOMEM;
2348 goto exit;
2349 }
2350
2351 ret = copy_from_user(bo_privs, (void __user *)args->priv_data + *priv_offset,
2352 args->num_bos * sizeof(*bo_privs));
2353 if (ret) {
2354 pr_err("Failed to copy BOs information from user\n");
2355 ret = -EFAULT;
2356 goto exit;
2357 }
2358 *priv_offset += args->num_bos * sizeof(*bo_privs);
2359
2360 /* Create and map new BOs */
2361 for (; i < args->num_bos; i++) {
2362 ret = criu_restore_bo(p, &bo_buckets[i], &bo_privs[i]);
2363 if (ret) {
2364 pr_debug("Failed to restore BO[%d] ret%d\n", i, ret);
2365 goto exit;
2366 }
2367 } /* done */
2368
2369 /* Copy only the buckets back so user can read bo_buckets[N].restored_offset */
2370 ret = copy_to_user((void __user *)args->bos,
2371 bo_buckets,
2372 (args->num_bos * sizeof(*bo_buckets)));
2373 if (ret)
2374 ret = -EFAULT;
2375
2376 exit:
2377 while (ret && i--) {
2378 if (bo_buckets[i].alloc_flags
2379 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT))
2380 close_fd(bo_buckets[i].dmabuf_fd);
2381 }
2382 kvfree(bo_buckets);
2383 kvfree(bo_privs);
2384 return ret;
2385 }
2386
criu_restore_objects(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args,uint64_t * priv_offset,uint64_t max_priv_data_size)2387 static int criu_restore_objects(struct file *filep,
2388 struct kfd_process *p,
2389 struct kfd_ioctl_criu_args *args,
2390 uint64_t *priv_offset,
2391 uint64_t max_priv_data_size)
2392 {
2393 int ret = 0;
2394 uint32_t i;
2395
2396 BUILD_BUG_ON(offsetof(struct kfd_criu_queue_priv_data, object_type));
2397 BUILD_BUG_ON(offsetof(struct kfd_criu_event_priv_data, object_type));
2398 BUILD_BUG_ON(offsetof(struct kfd_criu_svm_range_priv_data, object_type));
2399
2400 for (i = 0; i < args->num_objects; i++) {
2401 uint32_t object_type;
2402
2403 if (*priv_offset + sizeof(object_type) > max_priv_data_size) {
2404 pr_err("Invalid private data size\n");
2405 return -EINVAL;
2406 }
2407
2408 ret = get_user(object_type, (uint32_t __user *)(args->priv_data + *priv_offset));
2409 if (ret) {
2410 pr_err("Failed to copy private information from user\n");
2411 goto exit;
2412 }
2413
2414 switch (object_type) {
2415 case KFD_CRIU_OBJECT_TYPE_QUEUE:
2416 ret = kfd_criu_restore_queue(p, (uint8_t __user *)args->priv_data,
2417 priv_offset, max_priv_data_size);
2418 if (ret)
2419 goto exit;
2420 break;
2421 case KFD_CRIU_OBJECT_TYPE_EVENT:
2422 ret = kfd_criu_restore_event(filep, p, (uint8_t __user *)args->priv_data,
2423 priv_offset, max_priv_data_size);
2424 if (ret)
2425 goto exit;
2426 break;
2427 case KFD_CRIU_OBJECT_TYPE_SVM_RANGE:
2428 ret = kfd_criu_restore_svm(p, (uint8_t __user *)args->priv_data,
2429 priv_offset, max_priv_data_size);
2430 if (ret)
2431 goto exit;
2432 break;
2433 default:
2434 pr_err("Invalid object type:%u at index:%d\n", object_type, i);
2435 ret = -EINVAL;
2436 goto exit;
2437 }
2438 }
2439 exit:
2440 return ret;
2441 }
2442
criu_restore(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args)2443 static int criu_restore(struct file *filep,
2444 struct kfd_process *p,
2445 struct kfd_ioctl_criu_args *args)
2446 {
2447 uint64_t priv_offset = 0;
2448 int ret = 0;
2449
2450 pr_debug("CRIU restore (num_devices:%u num_bos:%u num_objects:%u priv_data_size:%llu)\n",
2451 args->num_devices, args->num_bos, args->num_objects, args->priv_data_size);
2452
2453 if (!args->bos || !args->devices || !args->priv_data || !args->priv_data_size ||
2454 !args->num_devices || !args->num_bos)
2455 return -EINVAL;
2456
2457 mutex_lock(&p->mutex);
2458
2459 /*
2460 * Set the process to evicted state to avoid running any new queues before all the memory
2461 * mappings are ready.
2462 */
2463 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_RESTORE);
2464 if (ret)
2465 goto exit_unlock;
2466
2467 /* Each function will adjust priv_offset based on how many bytes they consumed */
2468 ret = criu_restore_process(p, args, &priv_offset, args->priv_data_size);
2469 if (ret)
2470 goto exit_unlock;
2471
2472 ret = criu_restore_devices(p, args, &priv_offset, args->priv_data_size);
2473 if (ret)
2474 goto exit_unlock;
2475
2476 ret = criu_restore_bos(p, args, &priv_offset, args->priv_data_size);
2477 if (ret)
2478 goto exit_unlock;
2479
2480 ret = criu_restore_objects(filep, p, args, &priv_offset, args->priv_data_size);
2481 if (ret)
2482 goto exit_unlock;
2483
2484 if (priv_offset != args->priv_data_size) {
2485 pr_err("Invalid private data size\n");
2486 ret = -EINVAL;
2487 }
2488
2489 exit_unlock:
2490 mutex_unlock(&p->mutex);
2491 if (ret)
2492 pr_err("Failed to restore CRIU ret:%d\n", ret);
2493 else
2494 pr_debug("CRIU restore successful\n");
2495
2496 return ret;
2497 }
2498
criu_unpause(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args)2499 static int criu_unpause(struct file *filep,
2500 struct kfd_process *p,
2501 struct kfd_ioctl_criu_args *args)
2502 {
2503 int ret;
2504
2505 mutex_lock(&p->mutex);
2506
2507 if (!p->queues_paused) {
2508 mutex_unlock(&p->mutex);
2509 return -EINVAL;
2510 }
2511
2512 ret = kfd_process_restore_queues(p);
2513 if (ret)
2514 pr_err("Failed to unpause queues ret:%d\n", ret);
2515 else
2516 p->queues_paused = false;
2517
2518 mutex_unlock(&p->mutex);
2519
2520 return ret;
2521 }
2522
criu_resume(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args)2523 static int criu_resume(struct file *filep,
2524 struct kfd_process *p,
2525 struct kfd_ioctl_criu_args *args)
2526 {
2527 struct kfd_process *target = NULL;
2528 struct pid *pid = NULL;
2529 int ret = 0;
2530
2531 pr_debug("Inside %s, target pid for criu restore: %d\n", __func__,
2532 args->pid);
2533
2534 pid = find_get_pid(args->pid);
2535 if (!pid) {
2536 pr_err("Cannot find pid info for %i\n", args->pid);
2537 return -ESRCH;
2538 }
2539
2540 pr_debug("calling kfd_lookup_process_by_pid\n");
2541 target = kfd_lookup_process_by_pid(pid);
2542
2543 put_pid(pid);
2544
2545 if (!target) {
2546 pr_debug("Cannot find process info for %i\n", args->pid);
2547 return -ESRCH;
2548 }
2549
2550 mutex_lock(&target->mutex);
2551 ret = kfd_criu_resume_svm(target);
2552 if (ret) {
2553 pr_err("kfd_criu_resume_svm failed for %i\n", args->pid);
2554 goto exit;
2555 }
2556
2557 ret = amdgpu_amdkfd_criu_resume(target->kgd_process_info);
2558 if (ret)
2559 pr_err("amdgpu_amdkfd_criu_resume failed for %i\n", args->pid);
2560
2561 exit:
2562 mutex_unlock(&target->mutex);
2563
2564 kfd_unref_process(target);
2565 return ret;
2566 }
2567
criu_process_info(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args)2568 static int criu_process_info(struct file *filep,
2569 struct kfd_process *p,
2570 struct kfd_ioctl_criu_args *args)
2571 {
2572 int ret = 0;
2573
2574 mutex_lock(&p->mutex);
2575
2576 if (!p->n_pdds) {
2577 pr_err("No pdd for given process\n");
2578 ret = -ENODEV;
2579 goto err_unlock;
2580 }
2581
2582 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_CHECKPOINT);
2583 if (ret)
2584 goto err_unlock;
2585
2586 p->queues_paused = true;
2587
2588 args->pid = task_pid_nr_ns(p->lead_thread,
2589 task_active_pid_ns(p->lead_thread));
2590
2591 ret = criu_get_process_object_info(p, &args->num_devices, &args->num_bos,
2592 &args->num_objects, &args->priv_data_size);
2593 if (ret)
2594 goto err_unlock;
2595
2596 dev_dbg(kfd_device, "Num of devices:%u bos:%u objects:%u priv_data_size:%lld\n",
2597 args->num_devices, args->num_bos, args->num_objects,
2598 args->priv_data_size);
2599
2600 err_unlock:
2601 if (ret) {
2602 kfd_process_restore_queues(p);
2603 p->queues_paused = false;
2604 }
2605 mutex_unlock(&p->mutex);
2606 return ret;
2607 }
2608
kfd_ioctl_criu(struct file * filep,struct kfd_process * p,void * data)2609 static int kfd_ioctl_criu(struct file *filep, struct kfd_process *p, void *data)
2610 {
2611 struct kfd_ioctl_criu_args *args = data;
2612 int ret;
2613
2614 dev_dbg(kfd_device, "CRIU operation: %d\n", args->op);
2615 switch (args->op) {
2616 case KFD_CRIU_OP_PROCESS_INFO:
2617 ret = criu_process_info(filep, p, args);
2618 break;
2619 case KFD_CRIU_OP_CHECKPOINT:
2620 ret = criu_checkpoint(filep, p, args);
2621 break;
2622 case KFD_CRIU_OP_UNPAUSE:
2623 ret = criu_unpause(filep, p, args);
2624 break;
2625 case KFD_CRIU_OP_RESTORE:
2626 ret = criu_restore(filep, p, args);
2627 break;
2628 case KFD_CRIU_OP_RESUME:
2629 ret = criu_resume(filep, p, args);
2630 break;
2631 default:
2632 dev_dbg(kfd_device, "Unsupported CRIU operation:%d\n", args->op);
2633 ret = -EINVAL;
2634 break;
2635 }
2636
2637 if (ret)
2638 dev_dbg(kfd_device, "CRIU operation:%d err:%d\n", args->op, ret);
2639
2640 return ret;
2641 }
2642
2643 #define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
2644 [_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
2645 .cmd_drv = 0, .name = #ioctl}
2646
2647 /** Ioctl table */
2648 static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
2649 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
2650 kfd_ioctl_get_version, 0),
2651
2652 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
2653 kfd_ioctl_create_queue, 0),
2654
2655 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
2656 kfd_ioctl_destroy_queue, 0),
2657
2658 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
2659 kfd_ioctl_set_memory_policy, 0),
2660
2661 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
2662 kfd_ioctl_get_clock_counters, 0),
2663
2664 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
2665 kfd_ioctl_get_process_apertures, 0),
2666
2667 AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
2668 kfd_ioctl_update_queue, 0),
2669
2670 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
2671 kfd_ioctl_create_event, 0),
2672
2673 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
2674 kfd_ioctl_destroy_event, 0),
2675
2676 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
2677 kfd_ioctl_set_event, 0),
2678
2679 AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
2680 kfd_ioctl_reset_event, 0),
2681
2682 AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
2683 kfd_ioctl_wait_events, 0),
2684
2685 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER_DEPRECATED,
2686 kfd_ioctl_dbg_register, 0),
2687
2688 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER_DEPRECATED,
2689 kfd_ioctl_dbg_unregister, 0),
2690
2691 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH_DEPRECATED,
2692 kfd_ioctl_dbg_address_watch, 0),
2693
2694 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL_DEPRECATED,
2695 kfd_ioctl_dbg_wave_control, 0),
2696
2697 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
2698 kfd_ioctl_set_scratch_backing_va, 0),
2699
2700 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
2701 kfd_ioctl_get_tile_config, 0),
2702
2703 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
2704 kfd_ioctl_set_trap_handler, 0),
2705
2706 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW,
2707 kfd_ioctl_get_process_apertures_new, 0),
2708
2709 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM,
2710 kfd_ioctl_acquire_vm, 0),
2711
2712 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU,
2713 kfd_ioctl_alloc_memory_of_gpu, 0),
2714
2715 AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU,
2716 kfd_ioctl_free_memory_of_gpu, 0),
2717
2718 AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU,
2719 kfd_ioctl_map_memory_to_gpu, 0),
2720
2721 AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU,
2722 kfd_ioctl_unmap_memory_from_gpu, 0),
2723
2724 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK,
2725 kfd_ioctl_set_cu_mask, 0),
2726
2727 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE,
2728 kfd_ioctl_get_queue_wave_state, 0),
2729
2730 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO,
2731 kfd_ioctl_get_dmabuf_info, 0),
2732
2733 AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF,
2734 kfd_ioctl_import_dmabuf, 0),
2735
2736 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_QUEUE_GWS,
2737 kfd_ioctl_alloc_queue_gws, 0),
2738
2739 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SMI_EVENTS,
2740 kfd_ioctl_smi_events, 0),
2741
2742 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SVM, kfd_ioctl_svm, 0),
2743
2744 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_XNACK_MODE,
2745 kfd_ioctl_set_xnack_mode, 0),
2746
2747 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CRIU_OP,
2748 kfd_ioctl_criu, KFD_IOC_FLAG_CHECKPOINT_RESTORE),
2749
2750 AMDKFD_IOCTL_DEF(AMDKFD_IOC_AVAILABLE_MEMORY,
2751 kfd_ioctl_get_available_memory, 0),
2752 };
2753
2754 #define AMDKFD_CORE_IOCTL_COUNT ARRAY_SIZE(amdkfd_ioctls)
2755
kfd_ioctl(struct file * filep,unsigned int cmd,unsigned long arg)2756 static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
2757 {
2758 struct kfd_process *process;
2759 amdkfd_ioctl_t *func;
2760 const struct amdkfd_ioctl_desc *ioctl = NULL;
2761 unsigned int nr = _IOC_NR(cmd);
2762 char stack_kdata[128];
2763 char *kdata = NULL;
2764 unsigned int usize, asize;
2765 int retcode = -EINVAL;
2766 bool ptrace_attached = false;
2767
2768 if (nr >= AMDKFD_CORE_IOCTL_COUNT)
2769 goto err_i1;
2770
2771 if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
2772 u32 amdkfd_size;
2773
2774 ioctl = &amdkfd_ioctls[nr];
2775
2776 amdkfd_size = _IOC_SIZE(ioctl->cmd);
2777 usize = asize = _IOC_SIZE(cmd);
2778 if (amdkfd_size > asize)
2779 asize = amdkfd_size;
2780
2781 cmd = ioctl->cmd;
2782 } else
2783 goto err_i1;
2784
2785 dev_dbg(kfd_device, "ioctl cmd 0x%x (#0x%x), arg 0x%lx\n", cmd, nr, arg);
2786
2787 /* Get the process struct from the filep. Only the process
2788 * that opened /dev/kfd can use the file descriptor. Child
2789 * processes need to create their own KFD device context.
2790 */
2791 process = filep->private_data;
2792
2793 rcu_read_lock();
2794 if ((ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE) &&
2795 ptrace_parent(process->lead_thread) == current)
2796 ptrace_attached = true;
2797 rcu_read_unlock();
2798
2799 if (process->lead_thread != current->group_leader
2800 && !ptrace_attached) {
2801 dev_dbg(kfd_device, "Using KFD FD in wrong process\n");
2802 retcode = -EBADF;
2803 goto err_i1;
2804 }
2805
2806 /* Do not trust userspace, use our own definition */
2807 func = ioctl->func;
2808
2809 if (unlikely(!func)) {
2810 dev_dbg(kfd_device, "no function\n");
2811 retcode = -EINVAL;
2812 goto err_i1;
2813 }
2814
2815 /*
2816 * Versions of docker shipped in Ubuntu 18.xx and 20.xx do not support
2817 * CAP_CHECKPOINT_RESTORE, so we also allow access if CAP_SYS_ADMIN as CAP_SYS_ADMIN is a
2818 * more priviledged access.
2819 */
2820 if (unlikely(ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE)) {
2821 if (!capable(CAP_CHECKPOINT_RESTORE) &&
2822 !capable(CAP_SYS_ADMIN)) {
2823 retcode = -EACCES;
2824 goto err_i1;
2825 }
2826 }
2827
2828 if (cmd & (IOC_IN | IOC_OUT)) {
2829 if (asize <= sizeof(stack_kdata)) {
2830 kdata = stack_kdata;
2831 } else {
2832 kdata = kmalloc(asize, GFP_KERNEL);
2833 if (!kdata) {
2834 retcode = -ENOMEM;
2835 goto err_i1;
2836 }
2837 }
2838 if (asize > usize)
2839 memset(kdata + usize, 0, asize - usize);
2840 }
2841
2842 if (cmd & IOC_IN) {
2843 if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
2844 retcode = -EFAULT;
2845 goto err_i1;
2846 }
2847 } else if (cmd & IOC_OUT) {
2848 memset(kdata, 0, usize);
2849 }
2850
2851 retcode = func(filep, process, kdata);
2852
2853 if (cmd & IOC_OUT)
2854 if (copy_to_user((void __user *)arg, kdata, usize) != 0)
2855 retcode = -EFAULT;
2856
2857 err_i1:
2858 if (!ioctl)
2859 dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
2860 task_pid_nr(current), cmd, nr);
2861
2862 if (kdata != stack_kdata)
2863 kfree(kdata);
2864
2865 if (retcode)
2866 dev_dbg(kfd_device, "ioctl cmd (#0x%x), arg 0x%lx, ret = %d\n",
2867 nr, arg, retcode);
2868
2869 return retcode;
2870 }
2871
kfd_mmio_mmap(struct kfd_dev * dev,struct kfd_process * process,struct vm_area_struct * vma)2872 static int kfd_mmio_mmap(struct kfd_dev *dev, struct kfd_process *process,
2873 struct vm_area_struct *vma)
2874 {
2875 phys_addr_t address;
2876
2877 if (vma->vm_end - vma->vm_start != PAGE_SIZE)
2878 return -EINVAL;
2879
2880 address = dev->adev->rmmio_remap.bus_addr;
2881
2882 vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
2883 VM_DONTDUMP | VM_PFNMAP;
2884
2885 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
2886
2887 pr_debug("pasid 0x%x mapping mmio page\n"
2888 " target user address == 0x%08llX\n"
2889 " physical address == 0x%08llX\n"
2890 " vm_flags == 0x%04lX\n"
2891 " size == 0x%04lX\n",
2892 process->pasid, (unsigned long long) vma->vm_start,
2893 address, vma->vm_flags, PAGE_SIZE);
2894
2895 return io_remap_pfn_range(vma,
2896 vma->vm_start,
2897 address >> PAGE_SHIFT,
2898 PAGE_SIZE,
2899 vma->vm_page_prot);
2900 }
2901
2902
kfd_mmap(struct file * filp,struct vm_area_struct * vma)2903 static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
2904 {
2905 struct kfd_process *process;
2906 struct kfd_dev *dev = NULL;
2907 unsigned long mmap_offset;
2908 unsigned int gpu_id;
2909
2910 process = kfd_get_process(current);
2911 if (IS_ERR(process))
2912 return PTR_ERR(process);
2913
2914 mmap_offset = vma->vm_pgoff << PAGE_SHIFT;
2915 gpu_id = KFD_MMAP_GET_GPU_ID(mmap_offset);
2916 if (gpu_id)
2917 dev = kfd_device_by_id(gpu_id);
2918
2919 switch (mmap_offset & KFD_MMAP_TYPE_MASK) {
2920 case KFD_MMAP_TYPE_DOORBELL:
2921 if (!dev)
2922 return -ENODEV;
2923 return kfd_doorbell_mmap(dev, process, vma);
2924
2925 case KFD_MMAP_TYPE_EVENTS:
2926 return kfd_event_mmap(process, vma);
2927
2928 case KFD_MMAP_TYPE_RESERVED_MEM:
2929 if (!dev)
2930 return -ENODEV;
2931 return kfd_reserved_mem_mmap(dev, process, vma);
2932 case KFD_MMAP_TYPE_MMIO:
2933 if (!dev)
2934 return -ENODEV;
2935 return kfd_mmio_mmap(dev, process, vma);
2936 }
2937
2938 return -EFAULT;
2939 }
2940