1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/kernfs/dir.c - kernfs directory implementation
4 *
5 * Copyright (c) 2001-3 Patrick Mochel
6 * Copyright (c) 2007 SUSE Linux Products GmbH
7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8 */
9
10 #include <linux/sched.h>
11 #include <linux/fs.h>
12 #include <linux/namei.h>
13 #include <linux/idr.h>
14 #include <linux/slab.h>
15 #include <linux/security.h>
16 #include <linux/hash.h>
17
18 #include "kernfs-internal.h"
19
20 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
21 /*
22 * Don't use rename_lock to piggy back on pr_cont_buf. We don't want to
23 * call pr_cont() while holding rename_lock. Because sometimes pr_cont()
24 * will perform wakeups when releasing console_sem. Holding rename_lock
25 * will introduce deadlock if the scheduler reads the kernfs_name in the
26 * wakeup path.
27 */
28 static DEFINE_SPINLOCK(kernfs_pr_cont_lock);
29 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by pr_cont_lock */
30 static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */
31
32 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
33
__kernfs_active(struct kernfs_node * kn)34 static bool __kernfs_active(struct kernfs_node *kn)
35 {
36 return atomic_read(&kn->active) >= 0;
37 }
38
kernfs_active(struct kernfs_node * kn)39 static bool kernfs_active(struct kernfs_node *kn)
40 {
41 lockdep_assert_held(&kernfs_root(kn)->kernfs_rwsem);
42 return __kernfs_active(kn);
43 }
44
kernfs_lockdep(struct kernfs_node * kn)45 static bool kernfs_lockdep(struct kernfs_node *kn)
46 {
47 #ifdef CONFIG_DEBUG_LOCK_ALLOC
48 return kn->flags & KERNFS_LOCKDEP;
49 #else
50 return false;
51 #endif
52 }
53
kernfs_name_locked(struct kernfs_node * kn,char * buf,size_t buflen)54 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
55 {
56 if (!kn)
57 return strlcpy(buf, "(null)", buflen);
58
59 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
60 }
61
62 /* kernfs_node_depth - compute depth from @from to @to */
kernfs_depth(struct kernfs_node * from,struct kernfs_node * to)63 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
64 {
65 size_t depth = 0;
66
67 while (to->parent && to != from) {
68 depth++;
69 to = to->parent;
70 }
71 return depth;
72 }
73
kernfs_common_ancestor(struct kernfs_node * a,struct kernfs_node * b)74 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
75 struct kernfs_node *b)
76 {
77 size_t da, db;
78 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
79
80 if (ra != rb)
81 return NULL;
82
83 da = kernfs_depth(ra->kn, a);
84 db = kernfs_depth(rb->kn, b);
85
86 while (da > db) {
87 a = a->parent;
88 da--;
89 }
90 while (db > da) {
91 b = b->parent;
92 db--;
93 }
94
95 /* worst case b and a will be the same at root */
96 while (b != a) {
97 b = b->parent;
98 a = a->parent;
99 }
100
101 return a;
102 }
103
104 /**
105 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
106 * where kn_from is treated as root of the path.
107 * @kn_from: kernfs node which should be treated as root for the path
108 * @kn_to: kernfs node to which path is needed
109 * @buf: buffer to copy the path into
110 * @buflen: size of @buf
111 *
112 * We need to handle couple of scenarios here:
113 * [1] when @kn_from is an ancestor of @kn_to at some level
114 * kn_from: /n1/n2/n3
115 * kn_to: /n1/n2/n3/n4/n5
116 * result: /n4/n5
117 *
118 * [2] when @kn_from is on a different hierarchy and we need to find common
119 * ancestor between @kn_from and @kn_to.
120 * kn_from: /n1/n2/n3/n4
121 * kn_to: /n1/n2/n5
122 * result: /../../n5
123 * OR
124 * kn_from: /n1/n2/n3/n4/n5 [depth=5]
125 * kn_to: /n1/n2/n3 [depth=3]
126 * result: /../..
127 *
128 * [3] when @kn_to is NULL result will be "(null)"
129 *
130 * Returns the length of the full path. If the full length is equal to or
131 * greater than @buflen, @buf contains the truncated path with the trailing
132 * '\0'. On error, -errno is returned.
133 */
kernfs_path_from_node_locked(struct kernfs_node * kn_to,struct kernfs_node * kn_from,char * buf,size_t buflen)134 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
135 struct kernfs_node *kn_from,
136 char *buf, size_t buflen)
137 {
138 struct kernfs_node *kn, *common;
139 const char parent_str[] = "/..";
140 size_t depth_from, depth_to, len = 0;
141 int i, j;
142
143 if (!kn_to)
144 return strlcpy(buf, "(null)", buflen);
145
146 if (!kn_from)
147 kn_from = kernfs_root(kn_to)->kn;
148
149 if (kn_from == kn_to)
150 return strlcpy(buf, "/", buflen);
151
152 if (!buf)
153 return -EINVAL;
154
155 common = kernfs_common_ancestor(kn_from, kn_to);
156 if (WARN_ON(!common))
157 return -EINVAL;
158
159 depth_to = kernfs_depth(common, kn_to);
160 depth_from = kernfs_depth(common, kn_from);
161
162 buf[0] = '\0';
163
164 for (i = 0; i < depth_from; i++)
165 len += strlcpy(buf + len, parent_str,
166 len < buflen ? buflen - len : 0);
167
168 /* Calculate how many bytes we need for the rest */
169 for (i = depth_to - 1; i >= 0; i--) {
170 for (kn = kn_to, j = 0; j < i; j++)
171 kn = kn->parent;
172 len += strlcpy(buf + len, "/",
173 len < buflen ? buflen - len : 0);
174 len += strlcpy(buf + len, kn->name,
175 len < buflen ? buflen - len : 0);
176 }
177
178 return len;
179 }
180
181 /**
182 * kernfs_name - obtain the name of a given node
183 * @kn: kernfs_node of interest
184 * @buf: buffer to copy @kn's name into
185 * @buflen: size of @buf
186 *
187 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
188 * similar to strlcpy(). It returns the length of @kn's name and if @buf
189 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
190 *
191 * Fills buffer with "(null)" if @kn is NULL.
192 *
193 * This function can be called from any context.
194 */
kernfs_name(struct kernfs_node * kn,char * buf,size_t buflen)195 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
196 {
197 unsigned long flags;
198 int ret;
199
200 spin_lock_irqsave(&kernfs_rename_lock, flags);
201 ret = kernfs_name_locked(kn, buf, buflen);
202 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
203 return ret;
204 }
205
206 /**
207 * kernfs_path_from_node - build path of node @to relative to @from.
208 * @from: parent kernfs_node relative to which we need to build the path
209 * @to: kernfs_node of interest
210 * @buf: buffer to copy @to's path into
211 * @buflen: size of @buf
212 *
213 * Builds @to's path relative to @from in @buf. @from and @to must
214 * be on the same kernfs-root. If @from is not parent of @to, then a relative
215 * path (which includes '..'s) as needed to reach from @from to @to is
216 * returned.
217 *
218 * Returns the length of the full path. If the full length is equal to or
219 * greater than @buflen, @buf contains the truncated path with the trailing
220 * '\0'. On error, -errno is returned.
221 */
kernfs_path_from_node(struct kernfs_node * to,struct kernfs_node * from,char * buf,size_t buflen)222 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
223 char *buf, size_t buflen)
224 {
225 unsigned long flags;
226 int ret;
227
228 spin_lock_irqsave(&kernfs_rename_lock, flags);
229 ret = kernfs_path_from_node_locked(to, from, buf, buflen);
230 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
231 return ret;
232 }
233 EXPORT_SYMBOL_GPL(kernfs_path_from_node);
234
235 /**
236 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
237 * @kn: kernfs_node of interest
238 *
239 * This function can be called from any context.
240 */
pr_cont_kernfs_name(struct kernfs_node * kn)241 void pr_cont_kernfs_name(struct kernfs_node *kn)
242 {
243 unsigned long flags;
244
245 spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
246
247 kernfs_name(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
248 pr_cont("%s", kernfs_pr_cont_buf);
249
250 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
251 }
252
253 /**
254 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
255 * @kn: kernfs_node of interest
256 *
257 * This function can be called from any context.
258 */
pr_cont_kernfs_path(struct kernfs_node * kn)259 void pr_cont_kernfs_path(struct kernfs_node *kn)
260 {
261 unsigned long flags;
262 int sz;
263
264 spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
265
266 sz = kernfs_path_from_node(kn, NULL, kernfs_pr_cont_buf,
267 sizeof(kernfs_pr_cont_buf));
268 if (sz < 0) {
269 pr_cont("(error)");
270 goto out;
271 }
272
273 if (sz >= sizeof(kernfs_pr_cont_buf)) {
274 pr_cont("(name too long)");
275 goto out;
276 }
277
278 pr_cont("%s", kernfs_pr_cont_buf);
279
280 out:
281 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
282 }
283
284 /**
285 * kernfs_get_parent - determine the parent node and pin it
286 * @kn: kernfs_node of interest
287 *
288 * Determines @kn's parent, pins and returns it. This function can be
289 * called from any context.
290 */
kernfs_get_parent(struct kernfs_node * kn)291 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
292 {
293 struct kernfs_node *parent;
294 unsigned long flags;
295
296 spin_lock_irqsave(&kernfs_rename_lock, flags);
297 parent = kn->parent;
298 kernfs_get(parent);
299 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
300
301 return parent;
302 }
303
304 /**
305 * kernfs_name_hash
306 * @name: Null terminated string to hash
307 * @ns: Namespace tag to hash
308 *
309 * Returns 31 bit hash of ns + name (so it fits in an off_t )
310 */
kernfs_name_hash(const char * name,const void * ns)311 static unsigned int kernfs_name_hash(const char *name, const void *ns)
312 {
313 unsigned long hash = init_name_hash(ns);
314 unsigned int len = strlen(name);
315 while (len--)
316 hash = partial_name_hash(*name++, hash);
317 hash = end_name_hash(hash);
318 hash &= 0x7fffffffU;
319 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
320 if (hash < 2)
321 hash += 2;
322 if (hash >= INT_MAX)
323 hash = INT_MAX - 1;
324 return hash;
325 }
326
kernfs_name_compare(unsigned int hash,const char * name,const void * ns,const struct kernfs_node * kn)327 static int kernfs_name_compare(unsigned int hash, const char *name,
328 const void *ns, const struct kernfs_node *kn)
329 {
330 if (hash < kn->hash)
331 return -1;
332 if (hash > kn->hash)
333 return 1;
334 if (ns < kn->ns)
335 return -1;
336 if (ns > kn->ns)
337 return 1;
338 return strcmp(name, kn->name);
339 }
340
kernfs_sd_compare(const struct kernfs_node * left,const struct kernfs_node * right)341 static int kernfs_sd_compare(const struct kernfs_node *left,
342 const struct kernfs_node *right)
343 {
344 return kernfs_name_compare(left->hash, left->name, left->ns, right);
345 }
346
347 /**
348 * kernfs_link_sibling - link kernfs_node into sibling rbtree
349 * @kn: kernfs_node of interest
350 *
351 * Link @kn into its sibling rbtree which starts from
352 * @kn->parent->dir.children.
353 *
354 * Locking:
355 * kernfs_rwsem held exclusive
356 *
357 * RETURNS:
358 * 0 on susccess -EEXIST on failure.
359 */
kernfs_link_sibling(struct kernfs_node * kn)360 static int kernfs_link_sibling(struct kernfs_node *kn)
361 {
362 struct rb_node **node = &kn->parent->dir.children.rb_node;
363 struct rb_node *parent = NULL;
364
365 while (*node) {
366 struct kernfs_node *pos;
367 int result;
368
369 pos = rb_to_kn(*node);
370 parent = *node;
371 result = kernfs_sd_compare(kn, pos);
372 if (result < 0)
373 node = &pos->rb.rb_left;
374 else if (result > 0)
375 node = &pos->rb.rb_right;
376 else
377 return -EEXIST;
378 }
379
380 /* add new node and rebalance the tree */
381 rb_link_node(&kn->rb, parent, node);
382 rb_insert_color(&kn->rb, &kn->parent->dir.children);
383
384 /* successfully added, account subdir number */
385 if (kernfs_type(kn) == KERNFS_DIR)
386 kn->parent->dir.subdirs++;
387 kernfs_inc_rev(kn->parent);
388
389 return 0;
390 }
391
392 /**
393 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
394 * @kn: kernfs_node of interest
395 *
396 * Try to unlink @kn from its sibling rbtree which starts from
397 * kn->parent->dir.children. Returns %true if @kn was actually
398 * removed, %false if @kn wasn't on the rbtree.
399 *
400 * Locking:
401 * kernfs_rwsem held exclusive
402 */
kernfs_unlink_sibling(struct kernfs_node * kn)403 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
404 {
405 if (RB_EMPTY_NODE(&kn->rb))
406 return false;
407
408 if (kernfs_type(kn) == KERNFS_DIR)
409 kn->parent->dir.subdirs--;
410 kernfs_inc_rev(kn->parent);
411
412 rb_erase(&kn->rb, &kn->parent->dir.children);
413 RB_CLEAR_NODE(&kn->rb);
414 return true;
415 }
416
417 /**
418 * kernfs_get_active - get an active reference to kernfs_node
419 * @kn: kernfs_node to get an active reference to
420 *
421 * Get an active reference of @kn. This function is noop if @kn
422 * is NULL.
423 *
424 * RETURNS:
425 * Pointer to @kn on success, NULL on failure.
426 */
kernfs_get_active(struct kernfs_node * kn)427 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
428 {
429 if (unlikely(!kn))
430 return NULL;
431
432 if (!atomic_inc_unless_negative(&kn->active))
433 return NULL;
434
435 if (kernfs_lockdep(kn))
436 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
437 return kn;
438 }
439
440 /**
441 * kernfs_put_active - put an active reference to kernfs_node
442 * @kn: kernfs_node to put an active reference to
443 *
444 * Put an active reference to @kn. This function is noop if @kn
445 * is NULL.
446 */
kernfs_put_active(struct kernfs_node * kn)447 void kernfs_put_active(struct kernfs_node *kn)
448 {
449 int v;
450
451 if (unlikely(!kn))
452 return;
453
454 if (kernfs_lockdep(kn))
455 rwsem_release(&kn->dep_map, _RET_IP_);
456 v = atomic_dec_return(&kn->active);
457 if (likely(v != KN_DEACTIVATED_BIAS))
458 return;
459
460 wake_up_all(&kernfs_root(kn)->deactivate_waitq);
461 }
462
463 /**
464 * kernfs_drain - drain kernfs_node
465 * @kn: kernfs_node to drain
466 *
467 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
468 * removers may invoke this function concurrently on @kn and all will
469 * return after draining is complete.
470 */
kernfs_drain(struct kernfs_node * kn)471 static void kernfs_drain(struct kernfs_node *kn)
472 __releases(&kernfs_root(kn)->kernfs_rwsem)
473 __acquires(&kernfs_root(kn)->kernfs_rwsem)
474 {
475 struct kernfs_root *root = kernfs_root(kn);
476
477 lockdep_assert_held_write(&root->kernfs_rwsem);
478 WARN_ON_ONCE(kernfs_active(kn));
479
480 /*
481 * Skip draining if already fully drained. This avoids draining and its
482 * lockdep annotations for nodes which have never been activated
483 * allowing embedding kernfs_remove() in create error paths without
484 * worrying about draining.
485 */
486 if (atomic_read(&kn->active) == KN_DEACTIVATED_BIAS &&
487 !kernfs_should_drain_open_files(kn))
488 return;
489
490 up_write(&root->kernfs_rwsem);
491
492 if (kernfs_lockdep(kn)) {
493 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
494 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
495 lock_contended(&kn->dep_map, _RET_IP_);
496 }
497
498 wait_event(root->deactivate_waitq,
499 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
500
501 if (kernfs_lockdep(kn)) {
502 lock_acquired(&kn->dep_map, _RET_IP_);
503 rwsem_release(&kn->dep_map, _RET_IP_);
504 }
505
506 if (kernfs_should_drain_open_files(kn))
507 kernfs_drain_open_files(kn);
508
509 down_write(&root->kernfs_rwsem);
510 }
511
512 /**
513 * kernfs_get - get a reference count on a kernfs_node
514 * @kn: the target kernfs_node
515 */
kernfs_get(struct kernfs_node * kn)516 void kernfs_get(struct kernfs_node *kn)
517 {
518 if (kn) {
519 WARN_ON(!atomic_read(&kn->count));
520 atomic_inc(&kn->count);
521 }
522 }
523 EXPORT_SYMBOL_GPL(kernfs_get);
524
525 /**
526 * kernfs_put - put a reference count on a kernfs_node
527 * @kn: the target kernfs_node
528 *
529 * Put a reference count of @kn and destroy it if it reached zero.
530 */
kernfs_put(struct kernfs_node * kn)531 void kernfs_put(struct kernfs_node *kn)
532 {
533 struct kernfs_node *parent;
534 struct kernfs_root *root;
535
536 if (!kn || !atomic_dec_and_test(&kn->count))
537 return;
538 root = kernfs_root(kn);
539 repeat:
540 /*
541 * Moving/renaming is always done while holding reference.
542 * kn->parent won't change beneath us.
543 */
544 parent = kn->parent;
545
546 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
547 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
548 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
549
550 if (kernfs_type(kn) == KERNFS_LINK)
551 kernfs_put(kn->symlink.target_kn);
552
553 kfree_const(kn->name);
554
555 if (kn->iattr) {
556 simple_xattrs_free(&kn->iattr->xattrs);
557 kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
558 }
559 spin_lock(&kernfs_idr_lock);
560 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
561 spin_unlock(&kernfs_idr_lock);
562 kmem_cache_free(kernfs_node_cache, kn);
563
564 kn = parent;
565 if (kn) {
566 if (atomic_dec_and_test(&kn->count))
567 goto repeat;
568 } else {
569 /* just released the root kn, free @root too */
570 idr_destroy(&root->ino_idr);
571 kfree(root);
572 }
573 }
574 EXPORT_SYMBOL_GPL(kernfs_put);
575
576 /**
577 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
578 * @dentry: the dentry in question
579 *
580 * Return the kernfs_node associated with @dentry. If @dentry is not a
581 * kernfs one, %NULL is returned.
582 *
583 * While the returned kernfs_node will stay accessible as long as @dentry
584 * is accessible, the returned node can be in any state and the caller is
585 * fully responsible for determining what's accessible.
586 */
kernfs_node_from_dentry(struct dentry * dentry)587 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
588 {
589 if (dentry->d_sb->s_op == &kernfs_sops)
590 return kernfs_dentry_node(dentry);
591 return NULL;
592 }
593
__kernfs_new_node(struct kernfs_root * root,struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,unsigned flags)594 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
595 struct kernfs_node *parent,
596 const char *name, umode_t mode,
597 kuid_t uid, kgid_t gid,
598 unsigned flags)
599 {
600 struct kernfs_node *kn;
601 u32 id_highbits;
602 int ret;
603
604 name = kstrdup_const(name, GFP_KERNEL);
605 if (!name)
606 return NULL;
607
608 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
609 if (!kn)
610 goto err_out1;
611
612 idr_preload(GFP_KERNEL);
613 spin_lock(&kernfs_idr_lock);
614 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
615 if (ret >= 0 && ret < root->last_id_lowbits)
616 root->id_highbits++;
617 id_highbits = root->id_highbits;
618 root->last_id_lowbits = ret;
619 spin_unlock(&kernfs_idr_lock);
620 idr_preload_end();
621 if (ret < 0)
622 goto err_out2;
623
624 kn->id = (u64)id_highbits << 32 | ret;
625
626 atomic_set(&kn->count, 1);
627 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
628 RB_CLEAR_NODE(&kn->rb);
629
630 kn->name = name;
631 kn->mode = mode;
632 kn->flags = flags;
633
634 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
635 struct iattr iattr = {
636 .ia_valid = ATTR_UID | ATTR_GID,
637 .ia_uid = uid,
638 .ia_gid = gid,
639 };
640
641 ret = __kernfs_setattr(kn, &iattr);
642 if (ret < 0)
643 goto err_out3;
644 }
645
646 if (parent) {
647 ret = security_kernfs_init_security(parent, kn);
648 if (ret)
649 goto err_out3;
650 }
651
652 return kn;
653
654 err_out3:
655 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
656 err_out2:
657 kmem_cache_free(kernfs_node_cache, kn);
658 err_out1:
659 kfree_const(name);
660 return NULL;
661 }
662
kernfs_new_node(struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,unsigned flags)663 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
664 const char *name, umode_t mode,
665 kuid_t uid, kgid_t gid,
666 unsigned flags)
667 {
668 struct kernfs_node *kn;
669
670 kn = __kernfs_new_node(kernfs_root(parent), parent,
671 name, mode, uid, gid, flags);
672 if (kn) {
673 kernfs_get(parent);
674 kn->parent = parent;
675 }
676 return kn;
677 }
678
679 /*
680 * kernfs_find_and_get_node_by_id - get kernfs_node from node id
681 * @root: the kernfs root
682 * @id: the target node id
683 *
684 * @id's lower 32bits encode ino and upper gen. If the gen portion is
685 * zero, all generations are matched.
686 *
687 * RETURNS:
688 * NULL on failure. Return a kernfs node with reference counter incremented
689 */
kernfs_find_and_get_node_by_id(struct kernfs_root * root,u64 id)690 struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root,
691 u64 id)
692 {
693 struct kernfs_node *kn;
694 ino_t ino = kernfs_id_ino(id);
695 u32 gen = kernfs_id_gen(id);
696
697 spin_lock(&kernfs_idr_lock);
698
699 kn = idr_find(&root->ino_idr, (u32)ino);
700 if (!kn)
701 goto err_unlock;
702
703 if (sizeof(ino_t) >= sizeof(u64)) {
704 /* we looked up with the low 32bits, compare the whole */
705 if (kernfs_ino(kn) != ino)
706 goto err_unlock;
707 } else {
708 /* 0 matches all generations */
709 if (unlikely(gen && kernfs_gen(kn) != gen))
710 goto err_unlock;
711 }
712
713 /*
714 * We should fail if @kn has never been activated and guarantee success
715 * if the caller knows that @kn is active. Both can be achieved by
716 * __kernfs_active() which tests @kn->active without kernfs_rwsem.
717 */
718 if (unlikely(!__kernfs_active(kn) || !atomic_inc_not_zero(&kn->count)))
719 goto err_unlock;
720
721 spin_unlock(&kernfs_idr_lock);
722 return kn;
723 err_unlock:
724 spin_unlock(&kernfs_idr_lock);
725 return NULL;
726 }
727
728 /**
729 * kernfs_add_one - add kernfs_node to parent without warning
730 * @kn: kernfs_node to be added
731 *
732 * The caller must already have initialized @kn->parent. This
733 * function increments nlink of the parent's inode if @kn is a
734 * directory and link into the children list of the parent.
735 *
736 * RETURNS:
737 * 0 on success, -EEXIST if entry with the given name already
738 * exists.
739 */
kernfs_add_one(struct kernfs_node * kn)740 int kernfs_add_one(struct kernfs_node *kn)
741 {
742 struct kernfs_node *parent = kn->parent;
743 struct kernfs_root *root = kernfs_root(parent);
744 struct kernfs_iattrs *ps_iattr;
745 bool has_ns;
746 int ret;
747
748 down_write(&root->kernfs_rwsem);
749
750 ret = -EINVAL;
751 has_ns = kernfs_ns_enabled(parent);
752 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
753 has_ns ? "required" : "invalid", parent->name, kn->name))
754 goto out_unlock;
755
756 if (kernfs_type(parent) != KERNFS_DIR)
757 goto out_unlock;
758
759 ret = -ENOENT;
760 if (parent->flags & (KERNFS_REMOVING | KERNFS_EMPTY_DIR))
761 goto out_unlock;
762
763 kn->hash = kernfs_name_hash(kn->name, kn->ns);
764
765 ret = kernfs_link_sibling(kn);
766 if (ret)
767 goto out_unlock;
768
769 /* Update timestamps on the parent */
770 ps_iattr = parent->iattr;
771 if (ps_iattr) {
772 ktime_get_real_ts64(&ps_iattr->ia_ctime);
773 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
774 }
775
776 up_write(&root->kernfs_rwsem);
777
778 /*
779 * Activate the new node unless CREATE_DEACTIVATED is requested.
780 * If not activated here, the kernfs user is responsible for
781 * activating the node with kernfs_activate(). A node which hasn't
782 * been activated is not visible to userland and its removal won't
783 * trigger deactivation.
784 */
785 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
786 kernfs_activate(kn);
787 return 0;
788
789 out_unlock:
790 up_write(&root->kernfs_rwsem);
791 return ret;
792 }
793
794 /**
795 * kernfs_find_ns - find kernfs_node with the given name
796 * @parent: kernfs_node to search under
797 * @name: name to look for
798 * @ns: the namespace tag to use
799 *
800 * Look for kernfs_node with name @name under @parent. Returns pointer to
801 * the found kernfs_node on success, %NULL on failure.
802 */
kernfs_find_ns(struct kernfs_node * parent,const unsigned char * name,const void * ns)803 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
804 const unsigned char *name,
805 const void *ns)
806 {
807 struct rb_node *node = parent->dir.children.rb_node;
808 bool has_ns = kernfs_ns_enabled(parent);
809 unsigned int hash;
810
811 lockdep_assert_held(&kernfs_root(parent)->kernfs_rwsem);
812
813 if (has_ns != (bool)ns) {
814 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
815 has_ns ? "required" : "invalid", parent->name, name);
816 return NULL;
817 }
818
819 hash = kernfs_name_hash(name, ns);
820 while (node) {
821 struct kernfs_node *kn;
822 int result;
823
824 kn = rb_to_kn(node);
825 result = kernfs_name_compare(hash, name, ns, kn);
826 if (result < 0)
827 node = node->rb_left;
828 else if (result > 0)
829 node = node->rb_right;
830 else
831 return kn;
832 }
833 return NULL;
834 }
835
kernfs_walk_ns(struct kernfs_node * parent,const unsigned char * path,const void * ns)836 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
837 const unsigned char *path,
838 const void *ns)
839 {
840 size_t len;
841 char *p, *name;
842
843 lockdep_assert_held_read(&kernfs_root(parent)->kernfs_rwsem);
844
845 spin_lock_irq(&kernfs_pr_cont_lock);
846
847 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
848
849 if (len >= sizeof(kernfs_pr_cont_buf)) {
850 spin_unlock_irq(&kernfs_pr_cont_lock);
851 return NULL;
852 }
853
854 p = kernfs_pr_cont_buf;
855
856 while ((name = strsep(&p, "/")) && parent) {
857 if (*name == '\0')
858 continue;
859 parent = kernfs_find_ns(parent, name, ns);
860 }
861
862 spin_unlock_irq(&kernfs_pr_cont_lock);
863
864 return parent;
865 }
866
867 /**
868 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
869 * @parent: kernfs_node to search under
870 * @name: name to look for
871 * @ns: the namespace tag to use
872 *
873 * Look for kernfs_node with name @name under @parent and get a reference
874 * if found. This function may sleep and returns pointer to the found
875 * kernfs_node on success, %NULL on failure.
876 */
kernfs_find_and_get_ns(struct kernfs_node * parent,const char * name,const void * ns)877 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
878 const char *name, const void *ns)
879 {
880 struct kernfs_node *kn;
881 struct kernfs_root *root = kernfs_root(parent);
882
883 down_read(&root->kernfs_rwsem);
884 kn = kernfs_find_ns(parent, name, ns);
885 kernfs_get(kn);
886 up_read(&root->kernfs_rwsem);
887
888 return kn;
889 }
890 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
891
892 /**
893 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
894 * @parent: kernfs_node to search under
895 * @path: path to look for
896 * @ns: the namespace tag to use
897 *
898 * Look for kernfs_node with path @path under @parent and get a reference
899 * if found. This function may sleep and returns pointer to the found
900 * kernfs_node on success, %NULL on failure.
901 */
kernfs_walk_and_get_ns(struct kernfs_node * parent,const char * path,const void * ns)902 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
903 const char *path, const void *ns)
904 {
905 struct kernfs_node *kn;
906 struct kernfs_root *root = kernfs_root(parent);
907
908 down_read(&root->kernfs_rwsem);
909 kn = kernfs_walk_ns(parent, path, ns);
910 kernfs_get(kn);
911 up_read(&root->kernfs_rwsem);
912
913 return kn;
914 }
915
916 /**
917 * kernfs_create_root - create a new kernfs hierarchy
918 * @scops: optional syscall operations for the hierarchy
919 * @flags: KERNFS_ROOT_* flags
920 * @priv: opaque data associated with the new directory
921 *
922 * Returns the root of the new hierarchy on success, ERR_PTR() value on
923 * failure.
924 */
kernfs_create_root(struct kernfs_syscall_ops * scops,unsigned int flags,void * priv)925 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
926 unsigned int flags, void *priv)
927 {
928 struct kernfs_root *root;
929 struct kernfs_node *kn;
930
931 root = kzalloc(sizeof(*root), GFP_KERNEL);
932 if (!root)
933 return ERR_PTR(-ENOMEM);
934
935 idr_init(&root->ino_idr);
936 init_rwsem(&root->kernfs_rwsem);
937 INIT_LIST_HEAD(&root->supers);
938
939 /*
940 * On 64bit ino setups, id is ino. On 32bit, low 32bits are ino.
941 * High bits generation. The starting value for both ino and
942 * genenration is 1. Initialize upper 32bit allocation
943 * accordingly.
944 */
945 if (sizeof(ino_t) >= sizeof(u64))
946 root->id_highbits = 0;
947 else
948 root->id_highbits = 1;
949
950 kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
951 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
952 KERNFS_DIR);
953 if (!kn) {
954 idr_destroy(&root->ino_idr);
955 kfree(root);
956 return ERR_PTR(-ENOMEM);
957 }
958
959 kn->priv = priv;
960 kn->dir.root = root;
961
962 root->syscall_ops = scops;
963 root->flags = flags;
964 root->kn = kn;
965 init_waitqueue_head(&root->deactivate_waitq);
966
967 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
968 kernfs_activate(kn);
969
970 return root;
971 }
972
973 /**
974 * kernfs_destroy_root - destroy a kernfs hierarchy
975 * @root: root of the hierarchy to destroy
976 *
977 * Destroy the hierarchy anchored at @root by removing all existing
978 * directories and destroying @root.
979 */
kernfs_destroy_root(struct kernfs_root * root)980 void kernfs_destroy_root(struct kernfs_root *root)
981 {
982 /*
983 * kernfs_remove holds kernfs_rwsem from the root so the root
984 * shouldn't be freed during the operation.
985 */
986 kernfs_get(root->kn);
987 kernfs_remove(root->kn);
988 kernfs_put(root->kn); /* will also free @root */
989 }
990
991 /**
992 * kernfs_root_to_node - return the kernfs_node associated with a kernfs_root
993 * @root: root to use to lookup
994 */
kernfs_root_to_node(struct kernfs_root * root)995 struct kernfs_node *kernfs_root_to_node(struct kernfs_root *root)
996 {
997 return root->kn;
998 }
999
1000 /**
1001 * kernfs_create_dir_ns - create a directory
1002 * @parent: parent in which to create a new directory
1003 * @name: name of the new directory
1004 * @mode: mode of the new directory
1005 * @uid: uid of the new directory
1006 * @gid: gid of the new directory
1007 * @priv: opaque data associated with the new directory
1008 * @ns: optional namespace tag of the directory
1009 *
1010 * Returns the created node on success, ERR_PTR() value on failure.
1011 */
kernfs_create_dir_ns(struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,void * priv,const void * ns)1012 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
1013 const char *name, umode_t mode,
1014 kuid_t uid, kgid_t gid,
1015 void *priv, const void *ns)
1016 {
1017 struct kernfs_node *kn;
1018 int rc;
1019
1020 /* allocate */
1021 kn = kernfs_new_node(parent, name, mode | S_IFDIR,
1022 uid, gid, KERNFS_DIR);
1023 if (!kn)
1024 return ERR_PTR(-ENOMEM);
1025
1026 kn->dir.root = parent->dir.root;
1027 kn->ns = ns;
1028 kn->priv = priv;
1029
1030 /* link in */
1031 rc = kernfs_add_one(kn);
1032 if (!rc)
1033 return kn;
1034
1035 kernfs_put(kn);
1036 return ERR_PTR(rc);
1037 }
1038
1039 /**
1040 * kernfs_create_empty_dir - create an always empty directory
1041 * @parent: parent in which to create a new directory
1042 * @name: name of the new directory
1043 *
1044 * Returns the created node on success, ERR_PTR() value on failure.
1045 */
kernfs_create_empty_dir(struct kernfs_node * parent,const char * name)1046 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1047 const char *name)
1048 {
1049 struct kernfs_node *kn;
1050 int rc;
1051
1052 /* allocate */
1053 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1054 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1055 if (!kn)
1056 return ERR_PTR(-ENOMEM);
1057
1058 kn->flags |= KERNFS_EMPTY_DIR;
1059 kn->dir.root = parent->dir.root;
1060 kn->ns = NULL;
1061 kn->priv = NULL;
1062
1063 /* link in */
1064 rc = kernfs_add_one(kn);
1065 if (!rc)
1066 return kn;
1067
1068 kernfs_put(kn);
1069 return ERR_PTR(rc);
1070 }
1071
kernfs_dop_revalidate(struct dentry * dentry,unsigned int flags)1072 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
1073 {
1074 struct kernfs_node *kn;
1075 struct kernfs_root *root;
1076
1077 if (flags & LOOKUP_RCU)
1078 return -ECHILD;
1079
1080 /* Negative hashed dentry? */
1081 if (d_really_is_negative(dentry)) {
1082 struct kernfs_node *parent;
1083
1084 /* If the kernfs parent node has changed discard and
1085 * proceed to ->lookup.
1086 */
1087 spin_lock(&dentry->d_lock);
1088 parent = kernfs_dentry_node(dentry->d_parent);
1089 if (parent) {
1090 spin_unlock(&dentry->d_lock);
1091 root = kernfs_root(parent);
1092 down_read(&root->kernfs_rwsem);
1093 if (kernfs_dir_changed(parent, dentry)) {
1094 up_read(&root->kernfs_rwsem);
1095 return 0;
1096 }
1097 up_read(&root->kernfs_rwsem);
1098 } else
1099 spin_unlock(&dentry->d_lock);
1100
1101 /* The kernfs parent node hasn't changed, leave the
1102 * dentry negative and return success.
1103 */
1104 return 1;
1105 }
1106
1107 kn = kernfs_dentry_node(dentry);
1108 root = kernfs_root(kn);
1109 down_read(&root->kernfs_rwsem);
1110
1111 /* The kernfs node has been deactivated */
1112 if (!kernfs_active(kn))
1113 goto out_bad;
1114
1115 /* The kernfs node has been moved? */
1116 if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
1117 goto out_bad;
1118
1119 /* The kernfs node has been renamed */
1120 if (strcmp(dentry->d_name.name, kn->name) != 0)
1121 goto out_bad;
1122
1123 /* The kernfs node has been moved to a different namespace */
1124 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
1125 kernfs_info(dentry->d_sb)->ns != kn->ns)
1126 goto out_bad;
1127
1128 up_read(&root->kernfs_rwsem);
1129 return 1;
1130 out_bad:
1131 up_read(&root->kernfs_rwsem);
1132 return 0;
1133 }
1134
1135 const struct dentry_operations kernfs_dops = {
1136 .d_revalidate = kernfs_dop_revalidate,
1137 };
1138
kernfs_iop_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1139 static struct dentry *kernfs_iop_lookup(struct inode *dir,
1140 struct dentry *dentry,
1141 unsigned int flags)
1142 {
1143 struct kernfs_node *parent = dir->i_private;
1144 struct kernfs_node *kn;
1145 struct kernfs_root *root;
1146 struct inode *inode = NULL;
1147 const void *ns = NULL;
1148
1149 root = kernfs_root(parent);
1150 down_read(&root->kernfs_rwsem);
1151 if (kernfs_ns_enabled(parent))
1152 ns = kernfs_info(dir->i_sb)->ns;
1153
1154 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1155 /* attach dentry and inode */
1156 if (kn) {
1157 /* Inactive nodes are invisible to the VFS so don't
1158 * create a negative.
1159 */
1160 if (!kernfs_active(kn)) {
1161 up_read(&root->kernfs_rwsem);
1162 return NULL;
1163 }
1164 inode = kernfs_get_inode(dir->i_sb, kn);
1165 if (!inode)
1166 inode = ERR_PTR(-ENOMEM);
1167 }
1168 /*
1169 * Needed for negative dentry validation.
1170 * The negative dentry can be created in kernfs_iop_lookup()
1171 * or transforms from positive dentry in dentry_unlink_inode()
1172 * called from vfs_rmdir().
1173 */
1174 if (!IS_ERR(inode))
1175 kernfs_set_rev(parent, dentry);
1176 up_read(&root->kernfs_rwsem);
1177
1178 /* instantiate and hash (possibly negative) dentry */
1179 return d_splice_alias(inode, dentry);
1180 }
1181
kernfs_iop_mkdir(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode)1182 static int kernfs_iop_mkdir(struct user_namespace *mnt_userns,
1183 struct inode *dir, struct dentry *dentry,
1184 umode_t mode)
1185 {
1186 struct kernfs_node *parent = dir->i_private;
1187 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1188 int ret;
1189
1190 if (!scops || !scops->mkdir)
1191 return -EPERM;
1192
1193 if (!kernfs_get_active(parent))
1194 return -ENODEV;
1195
1196 ret = scops->mkdir(parent, dentry->d_name.name, mode);
1197
1198 kernfs_put_active(parent);
1199 return ret;
1200 }
1201
kernfs_iop_rmdir(struct inode * dir,struct dentry * dentry)1202 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1203 {
1204 struct kernfs_node *kn = kernfs_dentry_node(dentry);
1205 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1206 int ret;
1207
1208 if (!scops || !scops->rmdir)
1209 return -EPERM;
1210
1211 if (!kernfs_get_active(kn))
1212 return -ENODEV;
1213
1214 ret = scops->rmdir(kn);
1215
1216 kernfs_put_active(kn);
1217 return ret;
1218 }
1219
kernfs_iop_rename(struct user_namespace * mnt_userns,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)1220 static int kernfs_iop_rename(struct user_namespace *mnt_userns,
1221 struct inode *old_dir, struct dentry *old_dentry,
1222 struct inode *new_dir, struct dentry *new_dentry,
1223 unsigned int flags)
1224 {
1225 struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1226 struct kernfs_node *new_parent = new_dir->i_private;
1227 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1228 int ret;
1229
1230 if (flags)
1231 return -EINVAL;
1232
1233 if (!scops || !scops->rename)
1234 return -EPERM;
1235
1236 if (!kernfs_get_active(kn))
1237 return -ENODEV;
1238
1239 if (!kernfs_get_active(new_parent)) {
1240 kernfs_put_active(kn);
1241 return -ENODEV;
1242 }
1243
1244 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1245
1246 kernfs_put_active(new_parent);
1247 kernfs_put_active(kn);
1248 return ret;
1249 }
1250
1251 const struct inode_operations kernfs_dir_iops = {
1252 .lookup = kernfs_iop_lookup,
1253 .permission = kernfs_iop_permission,
1254 .setattr = kernfs_iop_setattr,
1255 .getattr = kernfs_iop_getattr,
1256 .listxattr = kernfs_iop_listxattr,
1257
1258 .mkdir = kernfs_iop_mkdir,
1259 .rmdir = kernfs_iop_rmdir,
1260 .rename = kernfs_iop_rename,
1261 };
1262
kernfs_leftmost_descendant(struct kernfs_node * pos)1263 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1264 {
1265 struct kernfs_node *last;
1266
1267 while (true) {
1268 struct rb_node *rbn;
1269
1270 last = pos;
1271
1272 if (kernfs_type(pos) != KERNFS_DIR)
1273 break;
1274
1275 rbn = rb_first(&pos->dir.children);
1276 if (!rbn)
1277 break;
1278
1279 pos = rb_to_kn(rbn);
1280 }
1281
1282 return last;
1283 }
1284
1285 /**
1286 * kernfs_next_descendant_post - find the next descendant for post-order walk
1287 * @pos: the current position (%NULL to initiate traversal)
1288 * @root: kernfs_node whose descendants to walk
1289 *
1290 * Find the next descendant to visit for post-order traversal of @root's
1291 * descendants. @root is included in the iteration and the last node to be
1292 * visited.
1293 */
kernfs_next_descendant_post(struct kernfs_node * pos,struct kernfs_node * root)1294 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1295 struct kernfs_node *root)
1296 {
1297 struct rb_node *rbn;
1298
1299 lockdep_assert_held_write(&kernfs_root(root)->kernfs_rwsem);
1300
1301 /* if first iteration, visit leftmost descendant which may be root */
1302 if (!pos)
1303 return kernfs_leftmost_descendant(root);
1304
1305 /* if we visited @root, we're done */
1306 if (pos == root)
1307 return NULL;
1308
1309 /* if there's an unvisited sibling, visit its leftmost descendant */
1310 rbn = rb_next(&pos->rb);
1311 if (rbn)
1312 return kernfs_leftmost_descendant(rb_to_kn(rbn));
1313
1314 /* no sibling left, visit parent */
1315 return pos->parent;
1316 }
1317
kernfs_activate_one(struct kernfs_node * kn)1318 static void kernfs_activate_one(struct kernfs_node *kn)
1319 {
1320 lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem);
1321
1322 kn->flags |= KERNFS_ACTIVATED;
1323
1324 if (kernfs_active(kn) || (kn->flags & (KERNFS_HIDDEN | KERNFS_REMOVING)))
1325 return;
1326
1327 WARN_ON_ONCE(kn->parent && RB_EMPTY_NODE(&kn->rb));
1328 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1329
1330 atomic_sub(KN_DEACTIVATED_BIAS, &kn->active);
1331 }
1332
1333 /**
1334 * kernfs_activate - activate a node which started deactivated
1335 * @kn: kernfs_node whose subtree is to be activated
1336 *
1337 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1338 * needs to be explicitly activated. A node which hasn't been activated
1339 * isn't visible to userland and deactivation is skipped during its
1340 * removal. This is useful to construct atomic init sequences where
1341 * creation of multiple nodes should either succeed or fail atomically.
1342 *
1343 * The caller is responsible for ensuring that this function is not called
1344 * after kernfs_remove*() is invoked on @kn.
1345 */
kernfs_activate(struct kernfs_node * kn)1346 void kernfs_activate(struct kernfs_node *kn)
1347 {
1348 struct kernfs_node *pos;
1349 struct kernfs_root *root = kernfs_root(kn);
1350
1351 down_write(&root->kernfs_rwsem);
1352
1353 pos = NULL;
1354 while ((pos = kernfs_next_descendant_post(pos, kn)))
1355 kernfs_activate_one(pos);
1356
1357 up_write(&root->kernfs_rwsem);
1358 }
1359
1360 /**
1361 * kernfs_show - show or hide a node
1362 * @kn: kernfs_node to show or hide
1363 * @show: whether to show or hide
1364 *
1365 * If @show is %false, @kn is marked hidden and deactivated. A hidden node is
1366 * ignored in future activaitons. If %true, the mark is removed and activation
1367 * state is restored. This function won't implicitly activate a new node in a
1368 * %KERNFS_ROOT_CREATE_DEACTIVATED root which hasn't been activated yet.
1369 *
1370 * To avoid recursion complexities, directories aren't supported for now.
1371 */
kernfs_show(struct kernfs_node * kn,bool show)1372 void kernfs_show(struct kernfs_node *kn, bool show)
1373 {
1374 struct kernfs_root *root = kernfs_root(kn);
1375
1376 if (WARN_ON_ONCE(kernfs_type(kn) == KERNFS_DIR))
1377 return;
1378
1379 down_write(&root->kernfs_rwsem);
1380
1381 if (show) {
1382 kn->flags &= ~KERNFS_HIDDEN;
1383 if (kn->flags & KERNFS_ACTIVATED)
1384 kernfs_activate_one(kn);
1385 } else {
1386 kn->flags |= KERNFS_HIDDEN;
1387 if (kernfs_active(kn))
1388 atomic_add(KN_DEACTIVATED_BIAS, &kn->active);
1389 kernfs_drain(kn);
1390 }
1391
1392 up_write(&root->kernfs_rwsem);
1393 }
1394
__kernfs_remove(struct kernfs_node * kn)1395 static void __kernfs_remove(struct kernfs_node *kn)
1396 {
1397 struct kernfs_node *pos;
1398
1399 /* Short-circuit if non-root @kn has already finished removal. */
1400 if (!kn)
1401 return;
1402
1403 lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem);
1404
1405 /*
1406 * This is for kernfs_remove_self() which plays with active ref
1407 * after removal.
1408 */
1409 if (kn->parent && RB_EMPTY_NODE(&kn->rb))
1410 return;
1411
1412 pr_debug("kernfs %s: removing\n", kn->name);
1413
1414 /* prevent new usage by marking all nodes removing and deactivating */
1415 pos = NULL;
1416 while ((pos = kernfs_next_descendant_post(pos, kn))) {
1417 pos->flags |= KERNFS_REMOVING;
1418 if (kernfs_active(pos))
1419 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1420 }
1421
1422 /* deactivate and unlink the subtree node-by-node */
1423 do {
1424 pos = kernfs_leftmost_descendant(kn);
1425
1426 /*
1427 * kernfs_drain() may drop kernfs_rwsem temporarily and @pos's
1428 * base ref could have been put by someone else by the time
1429 * the function returns. Make sure it doesn't go away
1430 * underneath us.
1431 */
1432 kernfs_get(pos);
1433
1434 kernfs_drain(pos);
1435
1436 /*
1437 * kernfs_unlink_sibling() succeeds once per node. Use it
1438 * to decide who's responsible for cleanups.
1439 */
1440 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1441 struct kernfs_iattrs *ps_iattr =
1442 pos->parent ? pos->parent->iattr : NULL;
1443
1444 /* update timestamps on the parent */
1445 if (ps_iattr) {
1446 ktime_get_real_ts64(&ps_iattr->ia_ctime);
1447 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
1448 }
1449
1450 kernfs_put(pos);
1451 }
1452
1453 kernfs_put(pos);
1454 } while (pos != kn);
1455 }
1456
1457 /**
1458 * kernfs_remove - remove a kernfs_node recursively
1459 * @kn: the kernfs_node to remove
1460 *
1461 * Remove @kn along with all its subdirectories and files.
1462 */
kernfs_remove(struct kernfs_node * kn)1463 void kernfs_remove(struct kernfs_node *kn)
1464 {
1465 struct kernfs_root *root;
1466
1467 if (!kn)
1468 return;
1469
1470 root = kernfs_root(kn);
1471
1472 down_write(&root->kernfs_rwsem);
1473 __kernfs_remove(kn);
1474 up_write(&root->kernfs_rwsem);
1475 }
1476
1477 /**
1478 * kernfs_break_active_protection - break out of active protection
1479 * @kn: the self kernfs_node
1480 *
1481 * The caller must be running off of a kernfs operation which is invoked
1482 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1483 * this function must also be matched with an invocation of
1484 * kernfs_unbreak_active_protection().
1485 *
1486 * This function releases the active reference of @kn the caller is
1487 * holding. Once this function is called, @kn may be removed at any point
1488 * and the caller is solely responsible for ensuring that the objects it
1489 * dereferences are accessible.
1490 */
kernfs_break_active_protection(struct kernfs_node * kn)1491 void kernfs_break_active_protection(struct kernfs_node *kn)
1492 {
1493 /*
1494 * Take out ourself out of the active ref dependency chain. If
1495 * we're called without an active ref, lockdep will complain.
1496 */
1497 kernfs_put_active(kn);
1498 }
1499
1500 /**
1501 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1502 * @kn: the self kernfs_node
1503 *
1504 * If kernfs_break_active_protection() was called, this function must be
1505 * invoked before finishing the kernfs operation. Note that while this
1506 * function restores the active reference, it doesn't and can't actually
1507 * restore the active protection - @kn may already or be in the process of
1508 * being removed. Once kernfs_break_active_protection() is invoked, that
1509 * protection is irreversibly gone for the kernfs operation instance.
1510 *
1511 * While this function may be called at any point after
1512 * kernfs_break_active_protection() is invoked, its most useful location
1513 * would be right before the enclosing kernfs operation returns.
1514 */
kernfs_unbreak_active_protection(struct kernfs_node * kn)1515 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1516 {
1517 /*
1518 * @kn->active could be in any state; however, the increment we do
1519 * here will be undone as soon as the enclosing kernfs operation
1520 * finishes and this temporary bump can't break anything. If @kn
1521 * is alive, nothing changes. If @kn is being deactivated, the
1522 * soon-to-follow put will either finish deactivation or restore
1523 * deactivated state. If @kn is already removed, the temporary
1524 * bump is guaranteed to be gone before @kn is released.
1525 */
1526 atomic_inc(&kn->active);
1527 if (kernfs_lockdep(kn))
1528 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1529 }
1530
1531 /**
1532 * kernfs_remove_self - remove a kernfs_node from its own method
1533 * @kn: the self kernfs_node to remove
1534 *
1535 * The caller must be running off of a kernfs operation which is invoked
1536 * with an active reference - e.g. one of kernfs_ops. This can be used to
1537 * implement a file operation which deletes itself.
1538 *
1539 * For example, the "delete" file for a sysfs device directory can be
1540 * implemented by invoking kernfs_remove_self() on the "delete" file
1541 * itself. This function breaks the circular dependency of trying to
1542 * deactivate self while holding an active ref itself. It isn't necessary
1543 * to modify the usual removal path to use kernfs_remove_self(). The
1544 * "delete" implementation can simply invoke kernfs_remove_self() on self
1545 * before proceeding with the usual removal path. kernfs will ignore later
1546 * kernfs_remove() on self.
1547 *
1548 * kernfs_remove_self() can be called multiple times concurrently on the
1549 * same kernfs_node. Only the first one actually performs removal and
1550 * returns %true. All others will wait until the kernfs operation which
1551 * won self-removal finishes and return %false. Note that the losers wait
1552 * for the completion of not only the winning kernfs_remove_self() but also
1553 * the whole kernfs_ops which won the arbitration. This can be used to
1554 * guarantee, for example, all concurrent writes to a "delete" file to
1555 * finish only after the whole operation is complete.
1556 */
kernfs_remove_self(struct kernfs_node * kn)1557 bool kernfs_remove_self(struct kernfs_node *kn)
1558 {
1559 bool ret;
1560 struct kernfs_root *root = kernfs_root(kn);
1561
1562 down_write(&root->kernfs_rwsem);
1563 kernfs_break_active_protection(kn);
1564
1565 /*
1566 * SUICIDAL is used to arbitrate among competing invocations. Only
1567 * the first one will actually perform removal. When the removal
1568 * is complete, SUICIDED is set and the active ref is restored
1569 * while kernfs_rwsem for held exclusive. The ones which lost
1570 * arbitration waits for SUICIDED && drained which can happen only
1571 * after the enclosing kernfs operation which executed the winning
1572 * instance of kernfs_remove_self() finished.
1573 */
1574 if (!(kn->flags & KERNFS_SUICIDAL)) {
1575 kn->flags |= KERNFS_SUICIDAL;
1576 __kernfs_remove(kn);
1577 kn->flags |= KERNFS_SUICIDED;
1578 ret = true;
1579 } else {
1580 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1581 DEFINE_WAIT(wait);
1582
1583 while (true) {
1584 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1585
1586 if ((kn->flags & KERNFS_SUICIDED) &&
1587 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1588 break;
1589
1590 up_write(&root->kernfs_rwsem);
1591 schedule();
1592 down_write(&root->kernfs_rwsem);
1593 }
1594 finish_wait(waitq, &wait);
1595 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1596 ret = false;
1597 }
1598
1599 /*
1600 * This must be done while kernfs_rwsem held exclusive; otherwise,
1601 * waiting for SUICIDED && deactivated could finish prematurely.
1602 */
1603 kernfs_unbreak_active_protection(kn);
1604
1605 up_write(&root->kernfs_rwsem);
1606 return ret;
1607 }
1608
1609 /**
1610 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1611 * @parent: parent of the target
1612 * @name: name of the kernfs_node to remove
1613 * @ns: namespace tag of the kernfs_node to remove
1614 *
1615 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1616 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1617 */
kernfs_remove_by_name_ns(struct kernfs_node * parent,const char * name,const void * ns)1618 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1619 const void *ns)
1620 {
1621 struct kernfs_node *kn;
1622 struct kernfs_root *root;
1623
1624 if (!parent) {
1625 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1626 name);
1627 return -ENOENT;
1628 }
1629
1630 root = kernfs_root(parent);
1631 down_write(&root->kernfs_rwsem);
1632
1633 kn = kernfs_find_ns(parent, name, ns);
1634 if (kn) {
1635 kernfs_get(kn);
1636 __kernfs_remove(kn);
1637 kernfs_put(kn);
1638 }
1639
1640 up_write(&root->kernfs_rwsem);
1641
1642 if (kn)
1643 return 0;
1644 else
1645 return -ENOENT;
1646 }
1647
1648 /**
1649 * kernfs_rename_ns - move and rename a kernfs_node
1650 * @kn: target node
1651 * @new_parent: new parent to put @sd under
1652 * @new_name: new name
1653 * @new_ns: new namespace tag
1654 */
kernfs_rename_ns(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name,const void * new_ns)1655 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1656 const char *new_name, const void *new_ns)
1657 {
1658 struct kernfs_node *old_parent;
1659 struct kernfs_root *root;
1660 const char *old_name = NULL;
1661 int error;
1662
1663 /* can't move or rename root */
1664 if (!kn->parent)
1665 return -EINVAL;
1666
1667 root = kernfs_root(kn);
1668 down_write(&root->kernfs_rwsem);
1669
1670 error = -ENOENT;
1671 if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1672 (new_parent->flags & KERNFS_EMPTY_DIR))
1673 goto out;
1674
1675 error = 0;
1676 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1677 (strcmp(kn->name, new_name) == 0))
1678 goto out; /* nothing to rename */
1679
1680 error = -EEXIST;
1681 if (kernfs_find_ns(new_parent, new_name, new_ns))
1682 goto out;
1683
1684 /* rename kernfs_node */
1685 if (strcmp(kn->name, new_name) != 0) {
1686 error = -ENOMEM;
1687 new_name = kstrdup_const(new_name, GFP_KERNEL);
1688 if (!new_name)
1689 goto out;
1690 } else {
1691 new_name = NULL;
1692 }
1693
1694 /*
1695 * Move to the appropriate place in the appropriate directories rbtree.
1696 */
1697 kernfs_unlink_sibling(kn);
1698 kernfs_get(new_parent);
1699
1700 /* rename_lock protects ->parent and ->name accessors */
1701 spin_lock_irq(&kernfs_rename_lock);
1702
1703 old_parent = kn->parent;
1704 kn->parent = new_parent;
1705
1706 kn->ns = new_ns;
1707 if (new_name) {
1708 old_name = kn->name;
1709 kn->name = new_name;
1710 }
1711
1712 spin_unlock_irq(&kernfs_rename_lock);
1713
1714 kn->hash = kernfs_name_hash(kn->name, kn->ns);
1715 kernfs_link_sibling(kn);
1716
1717 kernfs_put(old_parent);
1718 kfree_const(old_name);
1719
1720 error = 0;
1721 out:
1722 up_write(&root->kernfs_rwsem);
1723 return error;
1724 }
1725
1726 /* Relationship between mode and the DT_xxx types */
dt_type(struct kernfs_node * kn)1727 static inline unsigned char dt_type(struct kernfs_node *kn)
1728 {
1729 return (kn->mode >> 12) & 15;
1730 }
1731
kernfs_dir_fop_release(struct inode * inode,struct file * filp)1732 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1733 {
1734 kernfs_put(filp->private_data);
1735 return 0;
1736 }
1737
kernfs_dir_pos(const void * ns,struct kernfs_node * parent,loff_t hash,struct kernfs_node * pos)1738 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1739 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1740 {
1741 if (pos) {
1742 int valid = kernfs_active(pos) &&
1743 pos->parent == parent && hash == pos->hash;
1744 kernfs_put(pos);
1745 if (!valid)
1746 pos = NULL;
1747 }
1748 if (!pos && (hash > 1) && (hash < INT_MAX)) {
1749 struct rb_node *node = parent->dir.children.rb_node;
1750 while (node) {
1751 pos = rb_to_kn(node);
1752
1753 if (hash < pos->hash)
1754 node = node->rb_left;
1755 else if (hash > pos->hash)
1756 node = node->rb_right;
1757 else
1758 break;
1759 }
1760 }
1761 /* Skip over entries which are dying/dead or in the wrong namespace */
1762 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1763 struct rb_node *node = rb_next(&pos->rb);
1764 if (!node)
1765 pos = NULL;
1766 else
1767 pos = rb_to_kn(node);
1768 }
1769 return pos;
1770 }
1771
kernfs_dir_next_pos(const void * ns,struct kernfs_node * parent,ino_t ino,struct kernfs_node * pos)1772 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1773 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1774 {
1775 pos = kernfs_dir_pos(ns, parent, ino, pos);
1776 if (pos) {
1777 do {
1778 struct rb_node *node = rb_next(&pos->rb);
1779 if (!node)
1780 pos = NULL;
1781 else
1782 pos = rb_to_kn(node);
1783 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1784 }
1785 return pos;
1786 }
1787
kernfs_fop_readdir(struct file * file,struct dir_context * ctx)1788 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1789 {
1790 struct dentry *dentry = file->f_path.dentry;
1791 struct kernfs_node *parent = kernfs_dentry_node(dentry);
1792 struct kernfs_node *pos = file->private_data;
1793 struct kernfs_root *root;
1794 const void *ns = NULL;
1795
1796 if (!dir_emit_dots(file, ctx))
1797 return 0;
1798
1799 root = kernfs_root(parent);
1800 down_read(&root->kernfs_rwsem);
1801
1802 if (kernfs_ns_enabled(parent))
1803 ns = kernfs_info(dentry->d_sb)->ns;
1804
1805 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1806 pos;
1807 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1808 const char *name = pos->name;
1809 unsigned int type = dt_type(pos);
1810 int len = strlen(name);
1811 ino_t ino = kernfs_ino(pos);
1812
1813 ctx->pos = pos->hash;
1814 file->private_data = pos;
1815 kernfs_get(pos);
1816
1817 up_read(&root->kernfs_rwsem);
1818 if (!dir_emit(ctx, name, len, ino, type))
1819 return 0;
1820 down_read(&root->kernfs_rwsem);
1821 }
1822 up_read(&root->kernfs_rwsem);
1823 file->private_data = NULL;
1824 ctx->pos = INT_MAX;
1825 return 0;
1826 }
1827
1828 const struct file_operations kernfs_dir_fops = {
1829 .read = generic_read_dir,
1830 .iterate_shared = kernfs_fop_readdir,
1831 .release = kernfs_dir_fop_release,
1832 .llseek = generic_file_llseek,
1833 };
1834