1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/kernfs/dir.c - kernfs directory implementation
4 *
5 * Copyright (c) 2001-3 Patrick Mochel
6 * Copyright (c) 2007 SUSE Linux Products GmbH
7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8 */
9
10 #include <linux/sched.h>
11 #include <linux/fs.h>
12 #include <linux/namei.h>
13 #include <linux/idr.h>
14 #include <linux/slab.h>
15 #include <linux/security.h>
16 #include <linux/hash.h>
17
18 #include "kernfs-internal.h"
19
20 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
21 /*
22 * Don't use rename_lock to piggy back on pr_cont_buf. We don't want to
23 * call pr_cont() while holding rename_lock. Because sometimes pr_cont()
24 * will perform wakeups when releasing console_sem. Holding rename_lock
25 * will introduce deadlock if the scheduler reads the kernfs_name in the
26 * wakeup path.
27 */
28 static DEFINE_SPINLOCK(kernfs_pr_cont_lock);
29 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by pr_cont_lock */
30 static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */
31
32 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
33
kernfs_active(struct kernfs_node * kn)34 static bool kernfs_active(struct kernfs_node *kn)
35 {
36 lockdep_assert_held(&kernfs_root(kn)->kernfs_rwsem);
37 return atomic_read(&kn->active) >= 0;
38 }
39
kernfs_lockdep(struct kernfs_node * kn)40 static bool kernfs_lockdep(struct kernfs_node *kn)
41 {
42 #ifdef CONFIG_DEBUG_LOCK_ALLOC
43 return kn->flags & KERNFS_LOCKDEP;
44 #else
45 return false;
46 #endif
47 }
48
kernfs_name_locked(struct kernfs_node * kn,char * buf,size_t buflen)49 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
50 {
51 if (!kn)
52 return strlcpy(buf, "(null)", buflen);
53
54 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
55 }
56
57 /* kernfs_node_depth - compute depth from @from to @to */
kernfs_depth(struct kernfs_node * from,struct kernfs_node * to)58 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
59 {
60 size_t depth = 0;
61
62 while (to->parent && to != from) {
63 depth++;
64 to = to->parent;
65 }
66 return depth;
67 }
68
kernfs_common_ancestor(struct kernfs_node * a,struct kernfs_node * b)69 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
70 struct kernfs_node *b)
71 {
72 size_t da, db;
73 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
74
75 if (ra != rb)
76 return NULL;
77
78 da = kernfs_depth(ra->kn, a);
79 db = kernfs_depth(rb->kn, b);
80
81 while (da > db) {
82 a = a->parent;
83 da--;
84 }
85 while (db > da) {
86 b = b->parent;
87 db--;
88 }
89
90 /* worst case b and a will be the same at root */
91 while (b != a) {
92 b = b->parent;
93 a = a->parent;
94 }
95
96 return a;
97 }
98
99 /**
100 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
101 * where kn_from is treated as root of the path.
102 * @kn_from: kernfs node which should be treated as root for the path
103 * @kn_to: kernfs node to which path is needed
104 * @buf: buffer to copy the path into
105 * @buflen: size of @buf
106 *
107 * We need to handle couple of scenarios here:
108 * [1] when @kn_from is an ancestor of @kn_to at some level
109 * kn_from: /n1/n2/n3
110 * kn_to: /n1/n2/n3/n4/n5
111 * result: /n4/n5
112 *
113 * [2] when @kn_from is on a different hierarchy and we need to find common
114 * ancestor between @kn_from and @kn_to.
115 * kn_from: /n1/n2/n3/n4
116 * kn_to: /n1/n2/n5
117 * result: /../../n5
118 * OR
119 * kn_from: /n1/n2/n3/n4/n5 [depth=5]
120 * kn_to: /n1/n2/n3 [depth=3]
121 * result: /../..
122 *
123 * [3] when @kn_to is NULL result will be "(null)"
124 *
125 * Returns the length of the full path. If the full length is equal to or
126 * greater than @buflen, @buf contains the truncated path with the trailing
127 * '\0'. On error, -errno is returned.
128 */
kernfs_path_from_node_locked(struct kernfs_node * kn_to,struct kernfs_node * kn_from,char * buf,size_t buflen)129 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
130 struct kernfs_node *kn_from,
131 char *buf, size_t buflen)
132 {
133 struct kernfs_node *kn, *common;
134 const char parent_str[] = "/..";
135 size_t depth_from, depth_to, len = 0;
136 int i, j;
137
138 if (!kn_to)
139 return strlcpy(buf, "(null)", buflen);
140
141 if (!kn_from)
142 kn_from = kernfs_root(kn_to)->kn;
143
144 if (kn_from == kn_to)
145 return strlcpy(buf, "/", buflen);
146
147 if (!buf)
148 return -EINVAL;
149
150 common = kernfs_common_ancestor(kn_from, kn_to);
151 if (WARN_ON(!common))
152 return -EINVAL;
153
154 depth_to = kernfs_depth(common, kn_to);
155 depth_from = kernfs_depth(common, kn_from);
156
157 buf[0] = '\0';
158
159 for (i = 0; i < depth_from; i++)
160 len += strlcpy(buf + len, parent_str,
161 len < buflen ? buflen - len : 0);
162
163 /* Calculate how many bytes we need for the rest */
164 for (i = depth_to - 1; i >= 0; i--) {
165 for (kn = kn_to, j = 0; j < i; j++)
166 kn = kn->parent;
167 len += strlcpy(buf + len, "/",
168 len < buflen ? buflen - len : 0);
169 len += strlcpy(buf + len, kn->name,
170 len < buflen ? buflen - len : 0);
171 }
172
173 return len;
174 }
175
176 /**
177 * kernfs_name - obtain the name of a given node
178 * @kn: kernfs_node of interest
179 * @buf: buffer to copy @kn's name into
180 * @buflen: size of @buf
181 *
182 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
183 * similar to strlcpy(). It returns the length of @kn's name and if @buf
184 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
185 *
186 * Fills buffer with "(null)" if @kn is NULL.
187 *
188 * This function can be called from any context.
189 */
kernfs_name(struct kernfs_node * kn,char * buf,size_t buflen)190 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
191 {
192 unsigned long flags;
193 int ret;
194
195 spin_lock_irqsave(&kernfs_rename_lock, flags);
196 ret = kernfs_name_locked(kn, buf, buflen);
197 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
198 return ret;
199 }
200
201 /**
202 * kernfs_path_from_node - build path of node @to relative to @from.
203 * @from: parent kernfs_node relative to which we need to build the path
204 * @to: kernfs_node of interest
205 * @buf: buffer to copy @to's path into
206 * @buflen: size of @buf
207 *
208 * Builds @to's path relative to @from in @buf. @from and @to must
209 * be on the same kernfs-root. If @from is not parent of @to, then a relative
210 * path (which includes '..'s) as needed to reach from @from to @to is
211 * returned.
212 *
213 * Returns the length of the full path. If the full length is equal to or
214 * greater than @buflen, @buf contains the truncated path with the trailing
215 * '\0'. On error, -errno is returned.
216 */
kernfs_path_from_node(struct kernfs_node * to,struct kernfs_node * from,char * buf,size_t buflen)217 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
218 char *buf, size_t buflen)
219 {
220 unsigned long flags;
221 int ret;
222
223 spin_lock_irqsave(&kernfs_rename_lock, flags);
224 ret = kernfs_path_from_node_locked(to, from, buf, buflen);
225 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
226 return ret;
227 }
228 EXPORT_SYMBOL_GPL(kernfs_path_from_node);
229
230 /**
231 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
232 * @kn: kernfs_node of interest
233 *
234 * This function can be called from any context.
235 */
pr_cont_kernfs_name(struct kernfs_node * kn)236 void pr_cont_kernfs_name(struct kernfs_node *kn)
237 {
238 unsigned long flags;
239
240 spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
241
242 kernfs_name(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
243 pr_cont("%s", kernfs_pr_cont_buf);
244
245 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
246 }
247
248 /**
249 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
250 * @kn: kernfs_node of interest
251 *
252 * This function can be called from any context.
253 */
pr_cont_kernfs_path(struct kernfs_node * kn)254 void pr_cont_kernfs_path(struct kernfs_node *kn)
255 {
256 unsigned long flags;
257 int sz;
258
259 spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
260
261 sz = kernfs_path_from_node(kn, NULL, kernfs_pr_cont_buf,
262 sizeof(kernfs_pr_cont_buf));
263 if (sz < 0) {
264 pr_cont("(error)");
265 goto out;
266 }
267
268 if (sz >= sizeof(kernfs_pr_cont_buf)) {
269 pr_cont("(name too long)");
270 goto out;
271 }
272
273 pr_cont("%s", kernfs_pr_cont_buf);
274
275 out:
276 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
277 }
278
279 /**
280 * kernfs_get_parent - determine the parent node and pin it
281 * @kn: kernfs_node of interest
282 *
283 * Determines @kn's parent, pins and returns it. This function can be
284 * called from any context.
285 */
kernfs_get_parent(struct kernfs_node * kn)286 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
287 {
288 struct kernfs_node *parent;
289 unsigned long flags;
290
291 spin_lock_irqsave(&kernfs_rename_lock, flags);
292 parent = kn->parent;
293 kernfs_get(parent);
294 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
295
296 return parent;
297 }
298
299 /**
300 * kernfs_name_hash
301 * @name: Null terminated string to hash
302 * @ns: Namespace tag to hash
303 *
304 * Returns 31 bit hash of ns + name (so it fits in an off_t )
305 */
kernfs_name_hash(const char * name,const void * ns)306 static unsigned int kernfs_name_hash(const char *name, const void *ns)
307 {
308 unsigned long hash = init_name_hash(ns);
309 unsigned int len = strlen(name);
310 while (len--)
311 hash = partial_name_hash(*name++, hash);
312 hash = end_name_hash(hash);
313 hash &= 0x7fffffffU;
314 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
315 if (hash < 2)
316 hash += 2;
317 if (hash >= INT_MAX)
318 hash = INT_MAX - 1;
319 return hash;
320 }
321
kernfs_name_compare(unsigned int hash,const char * name,const void * ns,const struct kernfs_node * kn)322 static int kernfs_name_compare(unsigned int hash, const char *name,
323 const void *ns, const struct kernfs_node *kn)
324 {
325 if (hash < kn->hash)
326 return -1;
327 if (hash > kn->hash)
328 return 1;
329 if (ns < kn->ns)
330 return -1;
331 if (ns > kn->ns)
332 return 1;
333 return strcmp(name, kn->name);
334 }
335
kernfs_sd_compare(const struct kernfs_node * left,const struct kernfs_node * right)336 static int kernfs_sd_compare(const struct kernfs_node *left,
337 const struct kernfs_node *right)
338 {
339 return kernfs_name_compare(left->hash, left->name, left->ns, right);
340 }
341
342 /**
343 * kernfs_link_sibling - link kernfs_node into sibling rbtree
344 * @kn: kernfs_node of interest
345 *
346 * Link @kn into its sibling rbtree which starts from
347 * @kn->parent->dir.children.
348 *
349 * Locking:
350 * kernfs_rwsem held exclusive
351 *
352 * RETURNS:
353 * 0 on susccess -EEXIST on failure.
354 */
kernfs_link_sibling(struct kernfs_node * kn)355 static int kernfs_link_sibling(struct kernfs_node *kn)
356 {
357 struct rb_node **node = &kn->parent->dir.children.rb_node;
358 struct rb_node *parent = NULL;
359
360 while (*node) {
361 struct kernfs_node *pos;
362 int result;
363
364 pos = rb_to_kn(*node);
365 parent = *node;
366 result = kernfs_sd_compare(kn, pos);
367 if (result < 0)
368 node = &pos->rb.rb_left;
369 else if (result > 0)
370 node = &pos->rb.rb_right;
371 else
372 return -EEXIST;
373 }
374
375 /* add new node and rebalance the tree */
376 rb_link_node(&kn->rb, parent, node);
377 rb_insert_color(&kn->rb, &kn->parent->dir.children);
378
379 /* successfully added, account subdir number */
380 if (kernfs_type(kn) == KERNFS_DIR)
381 kn->parent->dir.subdirs++;
382 kernfs_inc_rev(kn->parent);
383
384 return 0;
385 }
386
387 /**
388 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
389 * @kn: kernfs_node of interest
390 *
391 * Try to unlink @kn from its sibling rbtree which starts from
392 * kn->parent->dir.children. Returns %true if @kn was actually
393 * removed, %false if @kn wasn't on the rbtree.
394 *
395 * Locking:
396 * kernfs_rwsem held exclusive
397 */
kernfs_unlink_sibling(struct kernfs_node * kn)398 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
399 {
400 if (RB_EMPTY_NODE(&kn->rb))
401 return false;
402
403 if (kernfs_type(kn) == KERNFS_DIR)
404 kn->parent->dir.subdirs--;
405 kernfs_inc_rev(kn->parent);
406
407 rb_erase(&kn->rb, &kn->parent->dir.children);
408 RB_CLEAR_NODE(&kn->rb);
409 return true;
410 }
411
412 /**
413 * kernfs_get_active - get an active reference to kernfs_node
414 * @kn: kernfs_node to get an active reference to
415 *
416 * Get an active reference of @kn. This function is noop if @kn
417 * is NULL.
418 *
419 * RETURNS:
420 * Pointer to @kn on success, NULL on failure.
421 */
kernfs_get_active(struct kernfs_node * kn)422 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
423 {
424 if (unlikely(!kn))
425 return NULL;
426
427 if (!atomic_inc_unless_negative(&kn->active))
428 return NULL;
429
430 if (kernfs_lockdep(kn))
431 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
432 return kn;
433 }
434
435 /**
436 * kernfs_put_active - put an active reference to kernfs_node
437 * @kn: kernfs_node to put an active reference to
438 *
439 * Put an active reference to @kn. This function is noop if @kn
440 * is NULL.
441 */
kernfs_put_active(struct kernfs_node * kn)442 void kernfs_put_active(struct kernfs_node *kn)
443 {
444 int v;
445
446 if (unlikely(!kn))
447 return;
448
449 if (kernfs_lockdep(kn))
450 rwsem_release(&kn->dep_map, _RET_IP_);
451 v = atomic_dec_return(&kn->active);
452 if (likely(v != KN_DEACTIVATED_BIAS))
453 return;
454
455 wake_up_all(&kernfs_root(kn)->deactivate_waitq);
456 }
457
458 /**
459 * kernfs_drain - drain kernfs_node
460 * @kn: kernfs_node to drain
461 *
462 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
463 * removers may invoke this function concurrently on @kn and all will
464 * return after draining is complete.
465 */
kernfs_drain(struct kernfs_node * kn)466 static void kernfs_drain(struct kernfs_node *kn)
467 __releases(&kernfs_root(kn)->kernfs_rwsem)
468 __acquires(&kernfs_root(kn)->kernfs_rwsem)
469 {
470 struct kernfs_root *root = kernfs_root(kn);
471
472 lockdep_assert_held_write(&root->kernfs_rwsem);
473 WARN_ON_ONCE(kernfs_active(kn));
474
475 up_write(&root->kernfs_rwsem);
476
477 if (kernfs_lockdep(kn)) {
478 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
479 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
480 lock_contended(&kn->dep_map, _RET_IP_);
481 }
482
483 /* but everyone should wait for draining */
484 wait_event(root->deactivate_waitq,
485 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
486
487 if (kernfs_lockdep(kn)) {
488 lock_acquired(&kn->dep_map, _RET_IP_);
489 rwsem_release(&kn->dep_map, _RET_IP_);
490 }
491
492 kernfs_drain_open_files(kn);
493
494 down_write(&root->kernfs_rwsem);
495 }
496
497 /**
498 * kernfs_get - get a reference count on a kernfs_node
499 * @kn: the target kernfs_node
500 */
kernfs_get(struct kernfs_node * kn)501 void kernfs_get(struct kernfs_node *kn)
502 {
503 if (kn) {
504 WARN_ON(!atomic_read(&kn->count));
505 atomic_inc(&kn->count);
506 }
507 }
508 EXPORT_SYMBOL_GPL(kernfs_get);
509
510 /**
511 * kernfs_put - put a reference count on a kernfs_node
512 * @kn: the target kernfs_node
513 *
514 * Put a reference count of @kn and destroy it if it reached zero.
515 */
kernfs_put(struct kernfs_node * kn)516 void kernfs_put(struct kernfs_node *kn)
517 {
518 struct kernfs_node *parent;
519 struct kernfs_root *root;
520
521 if (!kn || !atomic_dec_and_test(&kn->count))
522 return;
523 root = kernfs_root(kn);
524 repeat:
525 /*
526 * Moving/renaming is always done while holding reference.
527 * kn->parent won't change beneath us.
528 */
529 parent = kn->parent;
530
531 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
532 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
533 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
534
535 if (kernfs_type(kn) == KERNFS_LINK)
536 kernfs_put(kn->symlink.target_kn);
537
538 kfree_const(kn->name);
539
540 if (kn->iattr) {
541 simple_xattrs_free(&kn->iattr->xattrs);
542 kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
543 }
544 spin_lock(&kernfs_idr_lock);
545 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
546 spin_unlock(&kernfs_idr_lock);
547 kmem_cache_free(kernfs_node_cache, kn);
548
549 kn = parent;
550 if (kn) {
551 if (atomic_dec_and_test(&kn->count))
552 goto repeat;
553 } else {
554 /* just released the root kn, free @root too */
555 idr_destroy(&root->ino_idr);
556 kfree(root);
557 }
558 }
559 EXPORT_SYMBOL_GPL(kernfs_put);
560
561 /**
562 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
563 * @dentry: the dentry in question
564 *
565 * Return the kernfs_node associated with @dentry. If @dentry is not a
566 * kernfs one, %NULL is returned.
567 *
568 * While the returned kernfs_node will stay accessible as long as @dentry
569 * is accessible, the returned node can be in any state and the caller is
570 * fully responsible for determining what's accessible.
571 */
kernfs_node_from_dentry(struct dentry * dentry)572 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
573 {
574 if (dentry->d_sb->s_op == &kernfs_sops)
575 return kernfs_dentry_node(dentry);
576 return NULL;
577 }
578
__kernfs_new_node(struct kernfs_root * root,struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,unsigned flags)579 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
580 struct kernfs_node *parent,
581 const char *name, umode_t mode,
582 kuid_t uid, kgid_t gid,
583 unsigned flags)
584 {
585 struct kernfs_node *kn;
586 u32 id_highbits;
587 int ret;
588
589 name = kstrdup_const(name, GFP_KERNEL);
590 if (!name)
591 return NULL;
592
593 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
594 if (!kn)
595 goto err_out1;
596
597 idr_preload(GFP_KERNEL);
598 spin_lock(&kernfs_idr_lock);
599 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
600 if (ret >= 0 && ret < root->last_id_lowbits)
601 root->id_highbits++;
602 id_highbits = root->id_highbits;
603 root->last_id_lowbits = ret;
604 spin_unlock(&kernfs_idr_lock);
605 idr_preload_end();
606 if (ret < 0)
607 goto err_out2;
608
609 kn->id = (u64)id_highbits << 32 | ret;
610
611 atomic_set(&kn->count, 1);
612 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
613 RB_CLEAR_NODE(&kn->rb);
614
615 kn->name = name;
616 kn->mode = mode;
617 kn->flags = flags;
618
619 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
620 struct iattr iattr = {
621 .ia_valid = ATTR_UID | ATTR_GID,
622 .ia_uid = uid,
623 .ia_gid = gid,
624 };
625
626 ret = __kernfs_setattr(kn, &iattr);
627 if (ret < 0)
628 goto err_out3;
629 }
630
631 if (parent) {
632 ret = security_kernfs_init_security(parent, kn);
633 if (ret)
634 goto err_out3;
635 }
636
637 return kn;
638
639 err_out3:
640 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
641 err_out2:
642 kmem_cache_free(kernfs_node_cache, kn);
643 err_out1:
644 kfree_const(name);
645 return NULL;
646 }
647
kernfs_new_node(struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,unsigned flags)648 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
649 const char *name, umode_t mode,
650 kuid_t uid, kgid_t gid,
651 unsigned flags)
652 {
653 struct kernfs_node *kn;
654
655 kn = __kernfs_new_node(kernfs_root(parent), parent,
656 name, mode, uid, gid, flags);
657 if (kn) {
658 kernfs_get(parent);
659 kn->parent = parent;
660 }
661 return kn;
662 }
663
664 /*
665 * kernfs_find_and_get_node_by_id - get kernfs_node from node id
666 * @root: the kernfs root
667 * @id: the target node id
668 *
669 * @id's lower 32bits encode ino and upper gen. If the gen portion is
670 * zero, all generations are matched.
671 *
672 * RETURNS:
673 * NULL on failure. Return a kernfs node with reference counter incremented
674 */
kernfs_find_and_get_node_by_id(struct kernfs_root * root,u64 id)675 struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root,
676 u64 id)
677 {
678 struct kernfs_node *kn;
679 ino_t ino = kernfs_id_ino(id);
680 u32 gen = kernfs_id_gen(id);
681
682 spin_lock(&kernfs_idr_lock);
683
684 kn = idr_find(&root->ino_idr, (u32)ino);
685 if (!kn)
686 goto err_unlock;
687
688 if (sizeof(ino_t) >= sizeof(u64)) {
689 /* we looked up with the low 32bits, compare the whole */
690 if (kernfs_ino(kn) != ino)
691 goto err_unlock;
692 } else {
693 /* 0 matches all generations */
694 if (unlikely(gen && kernfs_gen(kn) != gen))
695 goto err_unlock;
696 }
697
698 /*
699 * ACTIVATED is protected with kernfs_mutex but it was clear when
700 * @kn was added to idr and we just wanna see it set. No need to
701 * grab kernfs_mutex.
702 */
703 if (unlikely(!(kn->flags & KERNFS_ACTIVATED) ||
704 !atomic_inc_not_zero(&kn->count)))
705 goto err_unlock;
706
707 spin_unlock(&kernfs_idr_lock);
708 return kn;
709 err_unlock:
710 spin_unlock(&kernfs_idr_lock);
711 return NULL;
712 }
713
714 /**
715 * kernfs_add_one - add kernfs_node to parent without warning
716 * @kn: kernfs_node to be added
717 *
718 * The caller must already have initialized @kn->parent. This
719 * function increments nlink of the parent's inode if @kn is a
720 * directory and link into the children list of the parent.
721 *
722 * RETURNS:
723 * 0 on success, -EEXIST if entry with the given name already
724 * exists.
725 */
kernfs_add_one(struct kernfs_node * kn)726 int kernfs_add_one(struct kernfs_node *kn)
727 {
728 struct kernfs_node *parent = kn->parent;
729 struct kernfs_root *root = kernfs_root(parent);
730 struct kernfs_iattrs *ps_iattr;
731 bool has_ns;
732 int ret;
733
734 down_write(&root->kernfs_rwsem);
735
736 ret = -EINVAL;
737 has_ns = kernfs_ns_enabled(parent);
738 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
739 has_ns ? "required" : "invalid", parent->name, kn->name))
740 goto out_unlock;
741
742 if (kernfs_type(parent) != KERNFS_DIR)
743 goto out_unlock;
744
745 ret = -ENOENT;
746 if (parent->flags & KERNFS_EMPTY_DIR)
747 goto out_unlock;
748
749 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
750 goto out_unlock;
751
752 kn->hash = kernfs_name_hash(kn->name, kn->ns);
753
754 ret = kernfs_link_sibling(kn);
755 if (ret)
756 goto out_unlock;
757
758 /* Update timestamps on the parent */
759 ps_iattr = parent->iattr;
760 if (ps_iattr) {
761 ktime_get_real_ts64(&ps_iattr->ia_ctime);
762 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
763 }
764
765 up_write(&root->kernfs_rwsem);
766
767 /*
768 * Activate the new node unless CREATE_DEACTIVATED is requested.
769 * If not activated here, the kernfs user is responsible for
770 * activating the node with kernfs_activate(). A node which hasn't
771 * been activated is not visible to userland and its removal won't
772 * trigger deactivation.
773 */
774 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
775 kernfs_activate(kn);
776 return 0;
777
778 out_unlock:
779 up_write(&root->kernfs_rwsem);
780 return ret;
781 }
782
783 /**
784 * kernfs_find_ns - find kernfs_node with the given name
785 * @parent: kernfs_node to search under
786 * @name: name to look for
787 * @ns: the namespace tag to use
788 *
789 * Look for kernfs_node with name @name under @parent. Returns pointer to
790 * the found kernfs_node on success, %NULL on failure.
791 */
kernfs_find_ns(struct kernfs_node * parent,const unsigned char * name,const void * ns)792 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
793 const unsigned char *name,
794 const void *ns)
795 {
796 struct rb_node *node = parent->dir.children.rb_node;
797 bool has_ns = kernfs_ns_enabled(parent);
798 unsigned int hash;
799
800 lockdep_assert_held(&kernfs_root(parent)->kernfs_rwsem);
801
802 if (has_ns != (bool)ns) {
803 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
804 has_ns ? "required" : "invalid", parent->name, name);
805 return NULL;
806 }
807
808 hash = kernfs_name_hash(name, ns);
809 while (node) {
810 struct kernfs_node *kn;
811 int result;
812
813 kn = rb_to_kn(node);
814 result = kernfs_name_compare(hash, name, ns, kn);
815 if (result < 0)
816 node = node->rb_left;
817 else if (result > 0)
818 node = node->rb_right;
819 else
820 return kn;
821 }
822 return NULL;
823 }
824
kernfs_walk_ns(struct kernfs_node * parent,const unsigned char * path,const void * ns)825 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
826 const unsigned char *path,
827 const void *ns)
828 {
829 size_t len;
830 char *p, *name;
831
832 lockdep_assert_held_read(&kernfs_root(parent)->kernfs_rwsem);
833
834 spin_lock_irq(&kernfs_pr_cont_lock);
835
836 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
837
838 if (len >= sizeof(kernfs_pr_cont_buf)) {
839 spin_unlock_irq(&kernfs_pr_cont_lock);
840 return NULL;
841 }
842
843 p = kernfs_pr_cont_buf;
844
845 while ((name = strsep(&p, "/")) && parent) {
846 if (*name == '\0')
847 continue;
848 parent = kernfs_find_ns(parent, name, ns);
849 }
850
851 spin_unlock_irq(&kernfs_pr_cont_lock);
852
853 return parent;
854 }
855
856 /**
857 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
858 * @parent: kernfs_node to search under
859 * @name: name to look for
860 * @ns: the namespace tag to use
861 *
862 * Look for kernfs_node with name @name under @parent and get a reference
863 * if found. This function may sleep and returns pointer to the found
864 * kernfs_node on success, %NULL on failure.
865 */
kernfs_find_and_get_ns(struct kernfs_node * parent,const char * name,const void * ns)866 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
867 const char *name, const void *ns)
868 {
869 struct kernfs_node *kn;
870 struct kernfs_root *root = kernfs_root(parent);
871
872 down_read(&root->kernfs_rwsem);
873 kn = kernfs_find_ns(parent, name, ns);
874 kernfs_get(kn);
875 up_read(&root->kernfs_rwsem);
876
877 return kn;
878 }
879 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
880
881 /**
882 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
883 * @parent: kernfs_node to search under
884 * @path: path to look for
885 * @ns: the namespace tag to use
886 *
887 * Look for kernfs_node with path @path under @parent and get a reference
888 * if found. This function may sleep and returns pointer to the found
889 * kernfs_node on success, %NULL on failure.
890 */
kernfs_walk_and_get_ns(struct kernfs_node * parent,const char * path,const void * ns)891 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
892 const char *path, const void *ns)
893 {
894 struct kernfs_node *kn;
895 struct kernfs_root *root = kernfs_root(parent);
896
897 down_read(&root->kernfs_rwsem);
898 kn = kernfs_walk_ns(parent, path, ns);
899 kernfs_get(kn);
900 up_read(&root->kernfs_rwsem);
901
902 return kn;
903 }
904
905 /**
906 * kernfs_create_root - create a new kernfs hierarchy
907 * @scops: optional syscall operations for the hierarchy
908 * @flags: KERNFS_ROOT_* flags
909 * @priv: opaque data associated with the new directory
910 *
911 * Returns the root of the new hierarchy on success, ERR_PTR() value on
912 * failure.
913 */
kernfs_create_root(struct kernfs_syscall_ops * scops,unsigned int flags,void * priv)914 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
915 unsigned int flags, void *priv)
916 {
917 struct kernfs_root *root;
918 struct kernfs_node *kn;
919
920 root = kzalloc(sizeof(*root), GFP_KERNEL);
921 if (!root)
922 return ERR_PTR(-ENOMEM);
923
924 idr_init(&root->ino_idr);
925 init_rwsem(&root->kernfs_rwsem);
926 INIT_LIST_HEAD(&root->supers);
927
928 /*
929 * On 64bit ino setups, id is ino. On 32bit, low 32bits are ino.
930 * High bits generation. The starting value for both ino and
931 * genenration is 1. Initialize upper 32bit allocation
932 * accordingly.
933 */
934 if (sizeof(ino_t) >= sizeof(u64))
935 root->id_highbits = 0;
936 else
937 root->id_highbits = 1;
938
939 kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
940 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
941 KERNFS_DIR);
942 if (!kn) {
943 idr_destroy(&root->ino_idr);
944 kfree(root);
945 return ERR_PTR(-ENOMEM);
946 }
947
948 kn->priv = priv;
949 kn->dir.root = root;
950
951 root->syscall_ops = scops;
952 root->flags = flags;
953 root->kn = kn;
954 init_waitqueue_head(&root->deactivate_waitq);
955
956 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
957 kernfs_activate(kn);
958
959 return root;
960 }
961
962 /**
963 * kernfs_destroy_root - destroy a kernfs hierarchy
964 * @root: root of the hierarchy to destroy
965 *
966 * Destroy the hierarchy anchored at @root by removing all existing
967 * directories and destroying @root.
968 */
kernfs_destroy_root(struct kernfs_root * root)969 void kernfs_destroy_root(struct kernfs_root *root)
970 {
971 /*
972 * kernfs_remove holds kernfs_rwsem from the root so the root
973 * shouldn't be freed during the operation.
974 */
975 kernfs_get(root->kn);
976 kernfs_remove(root->kn);
977 kernfs_put(root->kn); /* will also free @root */
978 }
979
980 /**
981 * kernfs_root_to_node - return the kernfs_node associated with a kernfs_root
982 * @root: root to use to lookup
983 */
kernfs_root_to_node(struct kernfs_root * root)984 struct kernfs_node *kernfs_root_to_node(struct kernfs_root *root)
985 {
986 return root->kn;
987 }
988
989 /**
990 * kernfs_create_dir_ns - create a directory
991 * @parent: parent in which to create a new directory
992 * @name: name of the new directory
993 * @mode: mode of the new directory
994 * @uid: uid of the new directory
995 * @gid: gid of the new directory
996 * @priv: opaque data associated with the new directory
997 * @ns: optional namespace tag of the directory
998 *
999 * Returns the created node on success, ERR_PTR() value on failure.
1000 */
kernfs_create_dir_ns(struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,void * priv,const void * ns)1001 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
1002 const char *name, umode_t mode,
1003 kuid_t uid, kgid_t gid,
1004 void *priv, const void *ns)
1005 {
1006 struct kernfs_node *kn;
1007 int rc;
1008
1009 /* allocate */
1010 kn = kernfs_new_node(parent, name, mode | S_IFDIR,
1011 uid, gid, KERNFS_DIR);
1012 if (!kn)
1013 return ERR_PTR(-ENOMEM);
1014
1015 kn->dir.root = parent->dir.root;
1016 kn->ns = ns;
1017 kn->priv = priv;
1018
1019 /* link in */
1020 rc = kernfs_add_one(kn);
1021 if (!rc)
1022 return kn;
1023
1024 kernfs_put(kn);
1025 return ERR_PTR(rc);
1026 }
1027
1028 /**
1029 * kernfs_create_empty_dir - create an always empty directory
1030 * @parent: parent in which to create a new directory
1031 * @name: name of the new directory
1032 *
1033 * Returns the created node on success, ERR_PTR() value on failure.
1034 */
kernfs_create_empty_dir(struct kernfs_node * parent,const char * name)1035 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1036 const char *name)
1037 {
1038 struct kernfs_node *kn;
1039 int rc;
1040
1041 /* allocate */
1042 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1043 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1044 if (!kn)
1045 return ERR_PTR(-ENOMEM);
1046
1047 kn->flags |= KERNFS_EMPTY_DIR;
1048 kn->dir.root = parent->dir.root;
1049 kn->ns = NULL;
1050 kn->priv = NULL;
1051
1052 /* link in */
1053 rc = kernfs_add_one(kn);
1054 if (!rc)
1055 return kn;
1056
1057 kernfs_put(kn);
1058 return ERR_PTR(rc);
1059 }
1060
kernfs_dop_revalidate(struct dentry * dentry,unsigned int flags)1061 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
1062 {
1063 struct kernfs_node *kn;
1064 struct kernfs_root *root;
1065
1066 if (flags & LOOKUP_RCU)
1067 return -ECHILD;
1068
1069 /* Negative hashed dentry? */
1070 if (d_really_is_negative(dentry)) {
1071 struct kernfs_node *parent;
1072
1073 /* If the kernfs parent node has changed discard and
1074 * proceed to ->lookup.
1075 */
1076 spin_lock(&dentry->d_lock);
1077 parent = kernfs_dentry_node(dentry->d_parent);
1078 if (parent) {
1079 spin_unlock(&dentry->d_lock);
1080 root = kernfs_root(parent);
1081 down_read(&root->kernfs_rwsem);
1082 if (kernfs_dir_changed(parent, dentry)) {
1083 up_read(&root->kernfs_rwsem);
1084 return 0;
1085 }
1086 up_read(&root->kernfs_rwsem);
1087 } else
1088 spin_unlock(&dentry->d_lock);
1089
1090 /* The kernfs parent node hasn't changed, leave the
1091 * dentry negative and return success.
1092 */
1093 return 1;
1094 }
1095
1096 kn = kernfs_dentry_node(dentry);
1097 root = kernfs_root(kn);
1098 down_read(&root->kernfs_rwsem);
1099
1100 /* The kernfs node has been deactivated */
1101 if (!kernfs_active(kn))
1102 goto out_bad;
1103
1104 /* The kernfs node has been moved? */
1105 if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
1106 goto out_bad;
1107
1108 /* The kernfs node has been renamed */
1109 if (strcmp(dentry->d_name.name, kn->name) != 0)
1110 goto out_bad;
1111
1112 /* The kernfs node has been moved to a different namespace */
1113 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
1114 kernfs_info(dentry->d_sb)->ns != kn->ns)
1115 goto out_bad;
1116
1117 up_read(&root->kernfs_rwsem);
1118 return 1;
1119 out_bad:
1120 up_read(&root->kernfs_rwsem);
1121 return 0;
1122 }
1123
1124 const struct dentry_operations kernfs_dops = {
1125 .d_revalidate = kernfs_dop_revalidate,
1126 };
1127
kernfs_iop_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1128 static struct dentry *kernfs_iop_lookup(struct inode *dir,
1129 struct dentry *dentry,
1130 unsigned int flags)
1131 {
1132 struct kernfs_node *parent = dir->i_private;
1133 struct kernfs_node *kn;
1134 struct kernfs_root *root;
1135 struct inode *inode = NULL;
1136 const void *ns = NULL;
1137
1138 root = kernfs_root(parent);
1139 down_read(&root->kernfs_rwsem);
1140 if (kernfs_ns_enabled(parent))
1141 ns = kernfs_info(dir->i_sb)->ns;
1142
1143 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1144 /* attach dentry and inode */
1145 if (kn) {
1146 /* Inactive nodes are invisible to the VFS so don't
1147 * create a negative.
1148 */
1149 if (!kernfs_active(kn)) {
1150 up_read(&root->kernfs_rwsem);
1151 return NULL;
1152 }
1153 inode = kernfs_get_inode(dir->i_sb, kn);
1154 if (!inode)
1155 inode = ERR_PTR(-ENOMEM);
1156 }
1157 /*
1158 * Needed for negative dentry validation.
1159 * The negative dentry can be created in kernfs_iop_lookup()
1160 * or transforms from positive dentry in dentry_unlink_inode()
1161 * called from vfs_rmdir().
1162 */
1163 if (!IS_ERR(inode))
1164 kernfs_set_rev(parent, dentry);
1165 up_read(&root->kernfs_rwsem);
1166
1167 /* instantiate and hash (possibly negative) dentry */
1168 return d_splice_alias(inode, dentry);
1169 }
1170
kernfs_iop_mkdir(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode)1171 static int kernfs_iop_mkdir(struct user_namespace *mnt_userns,
1172 struct inode *dir, struct dentry *dentry,
1173 umode_t mode)
1174 {
1175 struct kernfs_node *parent = dir->i_private;
1176 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1177 int ret;
1178
1179 if (!scops || !scops->mkdir)
1180 return -EPERM;
1181
1182 if (!kernfs_get_active(parent))
1183 return -ENODEV;
1184
1185 ret = scops->mkdir(parent, dentry->d_name.name, mode);
1186
1187 kernfs_put_active(parent);
1188 return ret;
1189 }
1190
kernfs_iop_rmdir(struct inode * dir,struct dentry * dentry)1191 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1192 {
1193 struct kernfs_node *kn = kernfs_dentry_node(dentry);
1194 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1195 int ret;
1196
1197 if (!scops || !scops->rmdir)
1198 return -EPERM;
1199
1200 if (!kernfs_get_active(kn))
1201 return -ENODEV;
1202
1203 ret = scops->rmdir(kn);
1204
1205 kernfs_put_active(kn);
1206 return ret;
1207 }
1208
kernfs_iop_rename(struct user_namespace * mnt_userns,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)1209 static int kernfs_iop_rename(struct user_namespace *mnt_userns,
1210 struct inode *old_dir, struct dentry *old_dentry,
1211 struct inode *new_dir, struct dentry *new_dentry,
1212 unsigned int flags)
1213 {
1214 struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1215 struct kernfs_node *new_parent = new_dir->i_private;
1216 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1217 int ret;
1218
1219 if (flags)
1220 return -EINVAL;
1221
1222 if (!scops || !scops->rename)
1223 return -EPERM;
1224
1225 if (!kernfs_get_active(kn))
1226 return -ENODEV;
1227
1228 if (!kernfs_get_active(new_parent)) {
1229 kernfs_put_active(kn);
1230 return -ENODEV;
1231 }
1232
1233 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1234
1235 kernfs_put_active(new_parent);
1236 kernfs_put_active(kn);
1237 return ret;
1238 }
1239
1240 const struct inode_operations kernfs_dir_iops = {
1241 .lookup = kernfs_iop_lookup,
1242 .permission = kernfs_iop_permission,
1243 .setattr = kernfs_iop_setattr,
1244 .getattr = kernfs_iop_getattr,
1245 .listxattr = kernfs_iop_listxattr,
1246
1247 .mkdir = kernfs_iop_mkdir,
1248 .rmdir = kernfs_iop_rmdir,
1249 .rename = kernfs_iop_rename,
1250 };
1251
kernfs_leftmost_descendant(struct kernfs_node * pos)1252 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1253 {
1254 struct kernfs_node *last;
1255
1256 while (true) {
1257 struct rb_node *rbn;
1258
1259 last = pos;
1260
1261 if (kernfs_type(pos) != KERNFS_DIR)
1262 break;
1263
1264 rbn = rb_first(&pos->dir.children);
1265 if (!rbn)
1266 break;
1267
1268 pos = rb_to_kn(rbn);
1269 }
1270
1271 return last;
1272 }
1273
1274 /**
1275 * kernfs_next_descendant_post - find the next descendant for post-order walk
1276 * @pos: the current position (%NULL to initiate traversal)
1277 * @root: kernfs_node whose descendants to walk
1278 *
1279 * Find the next descendant to visit for post-order traversal of @root's
1280 * descendants. @root is included in the iteration and the last node to be
1281 * visited.
1282 */
kernfs_next_descendant_post(struct kernfs_node * pos,struct kernfs_node * root)1283 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1284 struct kernfs_node *root)
1285 {
1286 struct rb_node *rbn;
1287
1288 lockdep_assert_held_write(&kernfs_root(root)->kernfs_rwsem);
1289
1290 /* if first iteration, visit leftmost descendant which may be root */
1291 if (!pos)
1292 return kernfs_leftmost_descendant(root);
1293
1294 /* if we visited @root, we're done */
1295 if (pos == root)
1296 return NULL;
1297
1298 /* if there's an unvisited sibling, visit its leftmost descendant */
1299 rbn = rb_next(&pos->rb);
1300 if (rbn)
1301 return kernfs_leftmost_descendant(rb_to_kn(rbn));
1302
1303 /* no sibling left, visit parent */
1304 return pos->parent;
1305 }
1306
1307 /**
1308 * kernfs_activate - activate a node which started deactivated
1309 * @kn: kernfs_node whose subtree is to be activated
1310 *
1311 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1312 * needs to be explicitly activated. A node which hasn't been activated
1313 * isn't visible to userland and deactivation is skipped during its
1314 * removal. This is useful to construct atomic init sequences where
1315 * creation of multiple nodes should either succeed or fail atomically.
1316 *
1317 * The caller is responsible for ensuring that this function is not called
1318 * after kernfs_remove*() is invoked on @kn.
1319 */
kernfs_activate(struct kernfs_node * kn)1320 void kernfs_activate(struct kernfs_node *kn)
1321 {
1322 struct kernfs_node *pos;
1323 struct kernfs_root *root = kernfs_root(kn);
1324
1325 down_write(&root->kernfs_rwsem);
1326
1327 pos = NULL;
1328 while ((pos = kernfs_next_descendant_post(pos, kn))) {
1329 if (pos->flags & KERNFS_ACTIVATED)
1330 continue;
1331
1332 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1333 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1334
1335 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1336 pos->flags |= KERNFS_ACTIVATED;
1337 }
1338
1339 up_write(&root->kernfs_rwsem);
1340 }
1341
__kernfs_remove(struct kernfs_node * kn)1342 static void __kernfs_remove(struct kernfs_node *kn)
1343 {
1344 struct kernfs_node *pos;
1345
1346 /* Short-circuit if non-root @kn has already finished removal. */
1347 if (!kn)
1348 return;
1349
1350 lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem);
1351
1352 /*
1353 * This is for kernfs_remove_self() which plays with active ref
1354 * after removal.
1355 */
1356 if (kn->parent && RB_EMPTY_NODE(&kn->rb))
1357 return;
1358
1359 pr_debug("kernfs %s: removing\n", kn->name);
1360
1361 /* prevent any new usage under @kn by deactivating all nodes */
1362 pos = NULL;
1363 while ((pos = kernfs_next_descendant_post(pos, kn)))
1364 if (kernfs_active(pos))
1365 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1366
1367 /* deactivate and unlink the subtree node-by-node */
1368 do {
1369 pos = kernfs_leftmost_descendant(kn);
1370
1371 /*
1372 * kernfs_drain() drops kernfs_rwsem temporarily and @pos's
1373 * base ref could have been put by someone else by the time
1374 * the function returns. Make sure it doesn't go away
1375 * underneath us.
1376 */
1377 kernfs_get(pos);
1378
1379 /*
1380 * Drain iff @kn was activated. This avoids draining and
1381 * its lockdep annotations for nodes which have never been
1382 * activated and allows embedding kernfs_remove() in create
1383 * error paths without worrying about draining.
1384 */
1385 if (kn->flags & KERNFS_ACTIVATED)
1386 kernfs_drain(pos);
1387 else
1388 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1389
1390 /*
1391 * kernfs_unlink_sibling() succeeds once per node. Use it
1392 * to decide who's responsible for cleanups.
1393 */
1394 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1395 struct kernfs_iattrs *ps_iattr =
1396 pos->parent ? pos->parent->iattr : NULL;
1397
1398 /* update timestamps on the parent */
1399 if (ps_iattr) {
1400 ktime_get_real_ts64(&ps_iattr->ia_ctime);
1401 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
1402 }
1403
1404 kernfs_put(pos);
1405 }
1406
1407 kernfs_put(pos);
1408 } while (pos != kn);
1409 }
1410
1411 /**
1412 * kernfs_remove - remove a kernfs_node recursively
1413 * @kn: the kernfs_node to remove
1414 *
1415 * Remove @kn along with all its subdirectories and files.
1416 */
kernfs_remove(struct kernfs_node * kn)1417 void kernfs_remove(struct kernfs_node *kn)
1418 {
1419 struct kernfs_root *root;
1420
1421 if (!kn)
1422 return;
1423
1424 root = kernfs_root(kn);
1425
1426 down_write(&root->kernfs_rwsem);
1427 __kernfs_remove(kn);
1428 up_write(&root->kernfs_rwsem);
1429 }
1430
1431 /**
1432 * kernfs_break_active_protection - break out of active protection
1433 * @kn: the self kernfs_node
1434 *
1435 * The caller must be running off of a kernfs operation which is invoked
1436 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1437 * this function must also be matched with an invocation of
1438 * kernfs_unbreak_active_protection().
1439 *
1440 * This function releases the active reference of @kn the caller is
1441 * holding. Once this function is called, @kn may be removed at any point
1442 * and the caller is solely responsible for ensuring that the objects it
1443 * dereferences are accessible.
1444 */
kernfs_break_active_protection(struct kernfs_node * kn)1445 void kernfs_break_active_protection(struct kernfs_node *kn)
1446 {
1447 /*
1448 * Take out ourself out of the active ref dependency chain. If
1449 * we're called without an active ref, lockdep will complain.
1450 */
1451 kernfs_put_active(kn);
1452 }
1453
1454 /**
1455 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1456 * @kn: the self kernfs_node
1457 *
1458 * If kernfs_break_active_protection() was called, this function must be
1459 * invoked before finishing the kernfs operation. Note that while this
1460 * function restores the active reference, it doesn't and can't actually
1461 * restore the active protection - @kn may already or be in the process of
1462 * being removed. Once kernfs_break_active_protection() is invoked, that
1463 * protection is irreversibly gone for the kernfs operation instance.
1464 *
1465 * While this function may be called at any point after
1466 * kernfs_break_active_protection() is invoked, its most useful location
1467 * would be right before the enclosing kernfs operation returns.
1468 */
kernfs_unbreak_active_protection(struct kernfs_node * kn)1469 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1470 {
1471 /*
1472 * @kn->active could be in any state; however, the increment we do
1473 * here will be undone as soon as the enclosing kernfs operation
1474 * finishes and this temporary bump can't break anything. If @kn
1475 * is alive, nothing changes. If @kn is being deactivated, the
1476 * soon-to-follow put will either finish deactivation or restore
1477 * deactivated state. If @kn is already removed, the temporary
1478 * bump is guaranteed to be gone before @kn is released.
1479 */
1480 atomic_inc(&kn->active);
1481 if (kernfs_lockdep(kn))
1482 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1483 }
1484
1485 /**
1486 * kernfs_remove_self - remove a kernfs_node from its own method
1487 * @kn: the self kernfs_node to remove
1488 *
1489 * The caller must be running off of a kernfs operation which is invoked
1490 * with an active reference - e.g. one of kernfs_ops. This can be used to
1491 * implement a file operation which deletes itself.
1492 *
1493 * For example, the "delete" file for a sysfs device directory can be
1494 * implemented by invoking kernfs_remove_self() on the "delete" file
1495 * itself. This function breaks the circular dependency of trying to
1496 * deactivate self while holding an active ref itself. It isn't necessary
1497 * to modify the usual removal path to use kernfs_remove_self(). The
1498 * "delete" implementation can simply invoke kernfs_remove_self() on self
1499 * before proceeding with the usual removal path. kernfs will ignore later
1500 * kernfs_remove() on self.
1501 *
1502 * kernfs_remove_self() can be called multiple times concurrently on the
1503 * same kernfs_node. Only the first one actually performs removal and
1504 * returns %true. All others will wait until the kernfs operation which
1505 * won self-removal finishes and return %false. Note that the losers wait
1506 * for the completion of not only the winning kernfs_remove_self() but also
1507 * the whole kernfs_ops which won the arbitration. This can be used to
1508 * guarantee, for example, all concurrent writes to a "delete" file to
1509 * finish only after the whole operation is complete.
1510 */
kernfs_remove_self(struct kernfs_node * kn)1511 bool kernfs_remove_self(struct kernfs_node *kn)
1512 {
1513 bool ret;
1514 struct kernfs_root *root = kernfs_root(kn);
1515
1516 down_write(&root->kernfs_rwsem);
1517 kernfs_break_active_protection(kn);
1518
1519 /*
1520 * SUICIDAL is used to arbitrate among competing invocations. Only
1521 * the first one will actually perform removal. When the removal
1522 * is complete, SUICIDED is set and the active ref is restored
1523 * while kernfs_rwsem for held exclusive. The ones which lost
1524 * arbitration waits for SUICIDED && drained which can happen only
1525 * after the enclosing kernfs operation which executed the winning
1526 * instance of kernfs_remove_self() finished.
1527 */
1528 if (!(kn->flags & KERNFS_SUICIDAL)) {
1529 kn->flags |= KERNFS_SUICIDAL;
1530 __kernfs_remove(kn);
1531 kn->flags |= KERNFS_SUICIDED;
1532 ret = true;
1533 } else {
1534 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1535 DEFINE_WAIT(wait);
1536
1537 while (true) {
1538 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1539
1540 if ((kn->flags & KERNFS_SUICIDED) &&
1541 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1542 break;
1543
1544 up_write(&root->kernfs_rwsem);
1545 schedule();
1546 down_write(&root->kernfs_rwsem);
1547 }
1548 finish_wait(waitq, &wait);
1549 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1550 ret = false;
1551 }
1552
1553 /*
1554 * This must be done while kernfs_rwsem held exclusive; otherwise,
1555 * waiting for SUICIDED && deactivated could finish prematurely.
1556 */
1557 kernfs_unbreak_active_protection(kn);
1558
1559 up_write(&root->kernfs_rwsem);
1560 return ret;
1561 }
1562
1563 /**
1564 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1565 * @parent: parent of the target
1566 * @name: name of the kernfs_node to remove
1567 * @ns: namespace tag of the kernfs_node to remove
1568 *
1569 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1570 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1571 */
kernfs_remove_by_name_ns(struct kernfs_node * parent,const char * name,const void * ns)1572 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1573 const void *ns)
1574 {
1575 struct kernfs_node *kn;
1576 struct kernfs_root *root;
1577
1578 if (!parent) {
1579 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1580 name);
1581 return -ENOENT;
1582 }
1583
1584 root = kernfs_root(parent);
1585 down_write(&root->kernfs_rwsem);
1586
1587 kn = kernfs_find_ns(parent, name, ns);
1588 if (kn)
1589 __kernfs_remove(kn);
1590
1591 up_write(&root->kernfs_rwsem);
1592
1593 if (kn)
1594 return 0;
1595 else
1596 return -ENOENT;
1597 }
1598
1599 /**
1600 * kernfs_rename_ns - move and rename a kernfs_node
1601 * @kn: target node
1602 * @new_parent: new parent to put @sd under
1603 * @new_name: new name
1604 * @new_ns: new namespace tag
1605 */
kernfs_rename_ns(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name,const void * new_ns)1606 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1607 const char *new_name, const void *new_ns)
1608 {
1609 struct kernfs_node *old_parent;
1610 struct kernfs_root *root;
1611 const char *old_name = NULL;
1612 int error;
1613
1614 /* can't move or rename root */
1615 if (!kn->parent)
1616 return -EINVAL;
1617
1618 root = kernfs_root(kn);
1619 down_write(&root->kernfs_rwsem);
1620
1621 error = -ENOENT;
1622 if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1623 (new_parent->flags & KERNFS_EMPTY_DIR))
1624 goto out;
1625
1626 error = 0;
1627 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1628 (strcmp(kn->name, new_name) == 0))
1629 goto out; /* nothing to rename */
1630
1631 error = -EEXIST;
1632 if (kernfs_find_ns(new_parent, new_name, new_ns))
1633 goto out;
1634
1635 /* rename kernfs_node */
1636 if (strcmp(kn->name, new_name) != 0) {
1637 error = -ENOMEM;
1638 new_name = kstrdup_const(new_name, GFP_KERNEL);
1639 if (!new_name)
1640 goto out;
1641 } else {
1642 new_name = NULL;
1643 }
1644
1645 /*
1646 * Move to the appropriate place in the appropriate directories rbtree.
1647 */
1648 kernfs_unlink_sibling(kn);
1649 kernfs_get(new_parent);
1650
1651 /* rename_lock protects ->parent and ->name accessors */
1652 spin_lock_irq(&kernfs_rename_lock);
1653
1654 old_parent = kn->parent;
1655 kn->parent = new_parent;
1656
1657 kn->ns = new_ns;
1658 if (new_name) {
1659 old_name = kn->name;
1660 kn->name = new_name;
1661 }
1662
1663 spin_unlock_irq(&kernfs_rename_lock);
1664
1665 kn->hash = kernfs_name_hash(kn->name, kn->ns);
1666 kernfs_link_sibling(kn);
1667
1668 kernfs_put(old_parent);
1669 kfree_const(old_name);
1670
1671 error = 0;
1672 out:
1673 up_write(&root->kernfs_rwsem);
1674 return error;
1675 }
1676
1677 /* Relationship between mode and the DT_xxx types */
dt_type(struct kernfs_node * kn)1678 static inline unsigned char dt_type(struct kernfs_node *kn)
1679 {
1680 return (kn->mode >> 12) & 15;
1681 }
1682
kernfs_dir_fop_release(struct inode * inode,struct file * filp)1683 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1684 {
1685 kernfs_put(filp->private_data);
1686 return 0;
1687 }
1688
kernfs_dir_pos(const void * ns,struct kernfs_node * parent,loff_t hash,struct kernfs_node * pos)1689 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1690 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1691 {
1692 if (pos) {
1693 int valid = kernfs_active(pos) &&
1694 pos->parent == parent && hash == pos->hash;
1695 kernfs_put(pos);
1696 if (!valid)
1697 pos = NULL;
1698 }
1699 if (!pos && (hash > 1) && (hash < INT_MAX)) {
1700 struct rb_node *node = parent->dir.children.rb_node;
1701 while (node) {
1702 pos = rb_to_kn(node);
1703
1704 if (hash < pos->hash)
1705 node = node->rb_left;
1706 else if (hash > pos->hash)
1707 node = node->rb_right;
1708 else
1709 break;
1710 }
1711 }
1712 /* Skip over entries which are dying/dead or in the wrong namespace */
1713 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1714 struct rb_node *node = rb_next(&pos->rb);
1715 if (!node)
1716 pos = NULL;
1717 else
1718 pos = rb_to_kn(node);
1719 }
1720 return pos;
1721 }
1722
kernfs_dir_next_pos(const void * ns,struct kernfs_node * parent,ino_t ino,struct kernfs_node * pos)1723 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1724 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1725 {
1726 pos = kernfs_dir_pos(ns, parent, ino, pos);
1727 if (pos) {
1728 do {
1729 struct rb_node *node = rb_next(&pos->rb);
1730 if (!node)
1731 pos = NULL;
1732 else
1733 pos = rb_to_kn(node);
1734 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1735 }
1736 return pos;
1737 }
1738
kernfs_fop_readdir(struct file * file,struct dir_context * ctx)1739 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1740 {
1741 struct dentry *dentry = file->f_path.dentry;
1742 struct kernfs_node *parent = kernfs_dentry_node(dentry);
1743 struct kernfs_node *pos = file->private_data;
1744 struct kernfs_root *root;
1745 const void *ns = NULL;
1746
1747 if (!dir_emit_dots(file, ctx))
1748 return 0;
1749
1750 root = kernfs_root(parent);
1751 down_read(&root->kernfs_rwsem);
1752
1753 if (kernfs_ns_enabled(parent))
1754 ns = kernfs_info(dentry->d_sb)->ns;
1755
1756 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1757 pos;
1758 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1759 const char *name = pos->name;
1760 unsigned int type = dt_type(pos);
1761 int len = strlen(name);
1762 ino_t ino = kernfs_ino(pos);
1763
1764 ctx->pos = pos->hash;
1765 file->private_data = pos;
1766 kernfs_get(pos);
1767
1768 up_read(&root->kernfs_rwsem);
1769 if (!dir_emit(ctx, name, len, ino, type))
1770 return 0;
1771 down_read(&root->kernfs_rwsem);
1772 }
1773 up_read(&root->kernfs_rwsem);
1774 file->private_data = NULL;
1775 ctx->pos = INT_MAX;
1776 return 0;
1777 }
1778
1779 const struct file_operations kernfs_dir_fops = {
1780 .read = generic_read_dir,
1781 .iterate_shared = kernfs_fop_readdir,
1782 .release = kernfs_dir_fop_release,
1783 .llseek = generic_file_llseek,
1784 };
1785