1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/exit.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/blkdev.h>
53 #include <linux/task_work.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 #include <linux/io_uring.h>
67 #include <linux/kprobes.h>
68 #include <linux/rethook.h>
69
70 #include <linux/uaccess.h>
71 #include <asm/unistd.h>
72 #include <asm/mmu_context.h>
73
__unhash_process(struct task_struct * p,bool group_dead)74 static void __unhash_process(struct task_struct *p, bool group_dead)
75 {
76 nr_threads--;
77 detach_pid(p, PIDTYPE_PID);
78 if (group_dead) {
79 detach_pid(p, PIDTYPE_TGID);
80 detach_pid(p, PIDTYPE_PGID);
81 detach_pid(p, PIDTYPE_SID);
82
83 list_del_rcu(&p->tasks);
84 list_del_init(&p->sibling);
85 __this_cpu_dec(process_counts);
86 }
87 list_del_rcu(&p->thread_group);
88 list_del_rcu(&p->thread_node);
89 }
90
91 /*
92 * This function expects the tasklist_lock write-locked.
93 */
__exit_signal(struct task_struct * tsk)94 static void __exit_signal(struct task_struct *tsk)
95 {
96 struct signal_struct *sig = tsk->signal;
97 bool group_dead = thread_group_leader(tsk);
98 struct sighand_struct *sighand;
99 struct tty_struct *tty;
100 u64 utime, stime;
101
102 sighand = rcu_dereference_check(tsk->sighand,
103 lockdep_tasklist_lock_is_held());
104 spin_lock(&sighand->siglock);
105
106 #ifdef CONFIG_POSIX_TIMERS
107 posix_cpu_timers_exit(tsk);
108 if (group_dead)
109 posix_cpu_timers_exit_group(tsk);
110 #endif
111
112 if (group_dead) {
113 tty = sig->tty;
114 sig->tty = NULL;
115 } else {
116 /*
117 * If there is any task waiting for the group exit
118 * then notify it:
119 */
120 if (sig->notify_count > 0 && !--sig->notify_count)
121 wake_up_process(sig->group_exec_task);
122
123 if (tsk == sig->curr_target)
124 sig->curr_target = next_thread(tsk);
125 }
126
127 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
128 sizeof(unsigned long long));
129
130 /*
131 * Accumulate here the counters for all threads as they die. We could
132 * skip the group leader because it is the last user of signal_struct,
133 * but we want to avoid the race with thread_group_cputime() which can
134 * see the empty ->thread_head list.
135 */
136 task_cputime(tsk, &utime, &stime);
137 write_seqlock(&sig->stats_lock);
138 sig->utime += utime;
139 sig->stime += stime;
140 sig->gtime += task_gtime(tsk);
141 sig->min_flt += tsk->min_flt;
142 sig->maj_flt += tsk->maj_flt;
143 sig->nvcsw += tsk->nvcsw;
144 sig->nivcsw += tsk->nivcsw;
145 sig->inblock += task_io_get_inblock(tsk);
146 sig->oublock += task_io_get_oublock(tsk);
147 task_io_accounting_add(&sig->ioac, &tsk->ioac);
148 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
149 sig->nr_threads--;
150 __unhash_process(tsk, group_dead);
151 write_sequnlock(&sig->stats_lock);
152
153 /*
154 * Do this under ->siglock, we can race with another thread
155 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
156 */
157 flush_sigqueue(&tsk->pending);
158 tsk->sighand = NULL;
159 spin_unlock(&sighand->siglock);
160
161 __cleanup_sighand(sighand);
162 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
163 if (group_dead) {
164 flush_sigqueue(&sig->shared_pending);
165 tty_kref_put(tty);
166 }
167 }
168
delayed_put_task_struct(struct rcu_head * rhp)169 static void delayed_put_task_struct(struct rcu_head *rhp)
170 {
171 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
172
173 kprobe_flush_task(tsk);
174 rethook_flush_task(tsk);
175 perf_event_delayed_put(tsk);
176 trace_sched_process_free(tsk);
177 put_task_struct(tsk);
178 }
179
put_task_struct_rcu_user(struct task_struct * task)180 void put_task_struct_rcu_user(struct task_struct *task)
181 {
182 if (refcount_dec_and_test(&task->rcu_users))
183 call_rcu(&task->rcu, delayed_put_task_struct);
184 }
185
release_task(struct task_struct * p)186 void release_task(struct task_struct *p)
187 {
188 struct task_struct *leader;
189 struct pid *thread_pid;
190 int zap_leader;
191 repeat:
192 /* don't need to get the RCU readlock here - the process is dead and
193 * can't be modifying its own credentials. But shut RCU-lockdep up */
194 rcu_read_lock();
195 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
196 rcu_read_unlock();
197
198 cgroup_release(p);
199
200 write_lock_irq(&tasklist_lock);
201 ptrace_release_task(p);
202 thread_pid = get_pid(p->thread_pid);
203 __exit_signal(p);
204
205 /*
206 * If we are the last non-leader member of the thread
207 * group, and the leader is zombie, then notify the
208 * group leader's parent process. (if it wants notification.)
209 */
210 zap_leader = 0;
211 leader = p->group_leader;
212 if (leader != p && thread_group_empty(leader)
213 && leader->exit_state == EXIT_ZOMBIE) {
214 /*
215 * If we were the last child thread and the leader has
216 * exited already, and the leader's parent ignores SIGCHLD,
217 * then we are the one who should release the leader.
218 */
219 zap_leader = do_notify_parent(leader, leader->exit_signal);
220 if (zap_leader)
221 leader->exit_state = EXIT_DEAD;
222 }
223
224 write_unlock_irq(&tasklist_lock);
225 seccomp_filter_release(p);
226 proc_flush_pid(thread_pid);
227 put_pid(thread_pid);
228 release_thread(p);
229 put_task_struct_rcu_user(p);
230
231 p = leader;
232 if (unlikely(zap_leader))
233 goto repeat;
234 }
235
rcuwait_wake_up(struct rcuwait * w)236 int rcuwait_wake_up(struct rcuwait *w)
237 {
238 int ret = 0;
239 struct task_struct *task;
240
241 rcu_read_lock();
242
243 /*
244 * Order condition vs @task, such that everything prior to the load
245 * of @task is visible. This is the condition as to why the user called
246 * rcuwait_wake() in the first place. Pairs with set_current_state()
247 * barrier (A) in rcuwait_wait_event().
248 *
249 * WAIT WAKE
250 * [S] tsk = current [S] cond = true
251 * MB (A) MB (B)
252 * [L] cond [L] tsk
253 */
254 smp_mb(); /* (B) */
255
256 task = rcu_dereference(w->task);
257 if (task)
258 ret = wake_up_process(task);
259 rcu_read_unlock();
260
261 return ret;
262 }
263 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
264
265 /*
266 * Determine if a process group is "orphaned", according to the POSIX
267 * definition in 2.2.2.52. Orphaned process groups are not to be affected
268 * by terminal-generated stop signals. Newly orphaned process groups are
269 * to receive a SIGHUP and a SIGCONT.
270 *
271 * "I ask you, have you ever known what it is to be an orphan?"
272 */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)273 static int will_become_orphaned_pgrp(struct pid *pgrp,
274 struct task_struct *ignored_task)
275 {
276 struct task_struct *p;
277
278 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
279 if ((p == ignored_task) ||
280 (p->exit_state && thread_group_empty(p)) ||
281 is_global_init(p->real_parent))
282 continue;
283
284 if (task_pgrp(p->real_parent) != pgrp &&
285 task_session(p->real_parent) == task_session(p))
286 return 0;
287 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
288
289 return 1;
290 }
291
is_current_pgrp_orphaned(void)292 int is_current_pgrp_orphaned(void)
293 {
294 int retval;
295
296 read_lock(&tasklist_lock);
297 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
298 read_unlock(&tasklist_lock);
299
300 return retval;
301 }
302
has_stopped_jobs(struct pid * pgrp)303 static bool has_stopped_jobs(struct pid *pgrp)
304 {
305 struct task_struct *p;
306
307 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
308 if (p->signal->flags & SIGNAL_STOP_STOPPED)
309 return true;
310 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
311
312 return false;
313 }
314
315 /*
316 * Check to see if any process groups have become orphaned as
317 * a result of our exiting, and if they have any stopped jobs,
318 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
319 */
320 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)321 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
322 {
323 struct pid *pgrp = task_pgrp(tsk);
324 struct task_struct *ignored_task = tsk;
325
326 if (!parent)
327 /* exit: our father is in a different pgrp than
328 * we are and we were the only connection outside.
329 */
330 parent = tsk->real_parent;
331 else
332 /* reparent: our child is in a different pgrp than
333 * we are, and it was the only connection outside.
334 */
335 ignored_task = NULL;
336
337 if (task_pgrp(parent) != pgrp &&
338 task_session(parent) == task_session(tsk) &&
339 will_become_orphaned_pgrp(pgrp, ignored_task) &&
340 has_stopped_jobs(pgrp)) {
341 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
342 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
343 }
344 }
345
coredump_task_exit(struct task_struct * tsk)346 static void coredump_task_exit(struct task_struct *tsk)
347 {
348 struct core_state *core_state;
349
350 /*
351 * Serialize with any possible pending coredump.
352 * We must hold siglock around checking core_state
353 * and setting PF_POSTCOREDUMP. The core-inducing thread
354 * will increment ->nr_threads for each thread in the
355 * group without PF_POSTCOREDUMP set.
356 */
357 spin_lock_irq(&tsk->sighand->siglock);
358 tsk->flags |= PF_POSTCOREDUMP;
359 core_state = tsk->signal->core_state;
360 spin_unlock_irq(&tsk->sighand->siglock);
361 if (core_state) {
362 struct core_thread self;
363
364 self.task = current;
365 if (self.task->flags & PF_SIGNALED)
366 self.next = xchg(&core_state->dumper.next, &self);
367 else
368 self.task = NULL;
369 /*
370 * Implies mb(), the result of xchg() must be visible
371 * to core_state->dumper.
372 */
373 if (atomic_dec_and_test(&core_state->nr_threads))
374 complete(&core_state->startup);
375
376 for (;;) {
377 set_current_state(TASK_UNINTERRUPTIBLE);
378 if (!self.task) /* see coredump_finish() */
379 break;
380 freezable_schedule();
381 }
382 __set_current_state(TASK_RUNNING);
383 }
384 }
385
386 #ifdef CONFIG_MEMCG
387 /*
388 * A task is exiting. If it owned this mm, find a new owner for the mm.
389 */
mm_update_next_owner(struct mm_struct * mm)390 void mm_update_next_owner(struct mm_struct *mm)
391 {
392 struct task_struct *c, *g, *p = current;
393
394 retry:
395 /*
396 * If the exiting or execing task is not the owner, it's
397 * someone else's problem.
398 */
399 if (mm->owner != p)
400 return;
401 /*
402 * The current owner is exiting/execing and there are no other
403 * candidates. Do not leave the mm pointing to a possibly
404 * freed task structure.
405 */
406 if (atomic_read(&mm->mm_users) <= 1) {
407 WRITE_ONCE(mm->owner, NULL);
408 return;
409 }
410
411 read_lock(&tasklist_lock);
412 /*
413 * Search in the children
414 */
415 list_for_each_entry(c, &p->children, sibling) {
416 if (c->mm == mm)
417 goto assign_new_owner;
418 }
419
420 /*
421 * Search in the siblings
422 */
423 list_for_each_entry(c, &p->real_parent->children, sibling) {
424 if (c->mm == mm)
425 goto assign_new_owner;
426 }
427
428 /*
429 * Search through everything else, we should not get here often.
430 */
431 for_each_process(g) {
432 if (g->flags & PF_KTHREAD)
433 continue;
434 for_each_thread(g, c) {
435 if (c->mm == mm)
436 goto assign_new_owner;
437 if (c->mm)
438 break;
439 }
440 }
441 read_unlock(&tasklist_lock);
442 /*
443 * We found no owner yet mm_users > 1: this implies that we are
444 * most likely racing with swapoff (try_to_unuse()) or /proc or
445 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
446 */
447 WRITE_ONCE(mm->owner, NULL);
448 return;
449
450 assign_new_owner:
451 BUG_ON(c == p);
452 get_task_struct(c);
453 /*
454 * The task_lock protects c->mm from changing.
455 * We always want mm->owner->mm == mm
456 */
457 task_lock(c);
458 /*
459 * Delay read_unlock() till we have the task_lock()
460 * to ensure that c does not slip away underneath us
461 */
462 read_unlock(&tasklist_lock);
463 if (c->mm != mm) {
464 task_unlock(c);
465 put_task_struct(c);
466 goto retry;
467 }
468 WRITE_ONCE(mm->owner, c);
469 task_unlock(c);
470 put_task_struct(c);
471 }
472 #endif /* CONFIG_MEMCG */
473
474 /*
475 * Turn us into a lazy TLB process if we
476 * aren't already..
477 */
exit_mm(void)478 static void exit_mm(void)
479 {
480 struct mm_struct *mm = current->mm;
481
482 exit_mm_release(current, mm);
483 if (!mm)
484 return;
485 sync_mm_rss(mm);
486 mmap_read_lock(mm);
487 mmgrab(mm);
488 BUG_ON(mm != current->active_mm);
489 /* more a memory barrier than a real lock */
490 task_lock(current);
491 /*
492 * When a thread stops operating on an address space, the loop
493 * in membarrier_private_expedited() may not observe that
494 * tsk->mm, and the loop in membarrier_global_expedited() may
495 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
496 * rq->membarrier_state, so those would not issue an IPI.
497 * Membarrier requires a memory barrier after accessing
498 * user-space memory, before clearing tsk->mm or the
499 * rq->membarrier_state.
500 */
501 smp_mb__after_spinlock();
502 local_irq_disable();
503 current->mm = NULL;
504 membarrier_update_current_mm(NULL);
505 enter_lazy_tlb(mm, current);
506 local_irq_enable();
507 task_unlock(current);
508 mmap_read_unlock(mm);
509 mm_update_next_owner(mm);
510 mmput(mm);
511 if (test_thread_flag(TIF_MEMDIE))
512 exit_oom_victim();
513 }
514
find_alive_thread(struct task_struct * p)515 static struct task_struct *find_alive_thread(struct task_struct *p)
516 {
517 struct task_struct *t;
518
519 for_each_thread(p, t) {
520 if (!(t->flags & PF_EXITING))
521 return t;
522 }
523 return NULL;
524 }
525
find_child_reaper(struct task_struct * father,struct list_head * dead)526 static struct task_struct *find_child_reaper(struct task_struct *father,
527 struct list_head *dead)
528 __releases(&tasklist_lock)
529 __acquires(&tasklist_lock)
530 {
531 struct pid_namespace *pid_ns = task_active_pid_ns(father);
532 struct task_struct *reaper = pid_ns->child_reaper;
533 struct task_struct *p, *n;
534
535 if (likely(reaper != father))
536 return reaper;
537
538 reaper = find_alive_thread(father);
539 if (reaper) {
540 pid_ns->child_reaper = reaper;
541 return reaper;
542 }
543
544 write_unlock_irq(&tasklist_lock);
545
546 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
547 list_del_init(&p->ptrace_entry);
548 release_task(p);
549 }
550
551 zap_pid_ns_processes(pid_ns);
552 write_lock_irq(&tasklist_lock);
553
554 return father;
555 }
556
557 /*
558 * When we die, we re-parent all our children, and try to:
559 * 1. give them to another thread in our thread group, if such a member exists
560 * 2. give it to the first ancestor process which prctl'd itself as a
561 * child_subreaper for its children (like a service manager)
562 * 3. give it to the init process (PID 1) in our pid namespace
563 */
find_new_reaper(struct task_struct * father,struct task_struct * child_reaper)564 static struct task_struct *find_new_reaper(struct task_struct *father,
565 struct task_struct *child_reaper)
566 {
567 struct task_struct *thread, *reaper;
568
569 thread = find_alive_thread(father);
570 if (thread)
571 return thread;
572
573 if (father->signal->has_child_subreaper) {
574 unsigned int ns_level = task_pid(father)->level;
575 /*
576 * Find the first ->is_child_subreaper ancestor in our pid_ns.
577 * We can't check reaper != child_reaper to ensure we do not
578 * cross the namespaces, the exiting parent could be injected
579 * by setns() + fork().
580 * We check pid->level, this is slightly more efficient than
581 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
582 */
583 for (reaper = father->real_parent;
584 task_pid(reaper)->level == ns_level;
585 reaper = reaper->real_parent) {
586 if (reaper == &init_task)
587 break;
588 if (!reaper->signal->is_child_subreaper)
589 continue;
590 thread = find_alive_thread(reaper);
591 if (thread)
592 return thread;
593 }
594 }
595
596 return child_reaper;
597 }
598
599 /*
600 * Any that need to be release_task'd are put on the @dead list.
601 */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)602 static void reparent_leader(struct task_struct *father, struct task_struct *p,
603 struct list_head *dead)
604 {
605 if (unlikely(p->exit_state == EXIT_DEAD))
606 return;
607
608 /* We don't want people slaying init. */
609 p->exit_signal = SIGCHLD;
610
611 /* If it has exited notify the new parent about this child's death. */
612 if (!p->ptrace &&
613 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
614 if (do_notify_parent(p, p->exit_signal)) {
615 p->exit_state = EXIT_DEAD;
616 list_add(&p->ptrace_entry, dead);
617 }
618 }
619
620 kill_orphaned_pgrp(p, father);
621 }
622
623 /*
624 * This does two things:
625 *
626 * A. Make init inherit all the child processes
627 * B. Check to see if any process groups have become orphaned
628 * as a result of our exiting, and if they have any stopped
629 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
630 */
forget_original_parent(struct task_struct * father,struct list_head * dead)631 static void forget_original_parent(struct task_struct *father,
632 struct list_head *dead)
633 {
634 struct task_struct *p, *t, *reaper;
635
636 if (unlikely(!list_empty(&father->ptraced)))
637 exit_ptrace(father, dead);
638
639 /* Can drop and reacquire tasklist_lock */
640 reaper = find_child_reaper(father, dead);
641 if (list_empty(&father->children))
642 return;
643
644 reaper = find_new_reaper(father, reaper);
645 list_for_each_entry(p, &father->children, sibling) {
646 for_each_thread(p, t) {
647 RCU_INIT_POINTER(t->real_parent, reaper);
648 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
649 if (likely(!t->ptrace))
650 t->parent = t->real_parent;
651 if (t->pdeath_signal)
652 group_send_sig_info(t->pdeath_signal,
653 SEND_SIG_NOINFO, t,
654 PIDTYPE_TGID);
655 }
656 /*
657 * If this is a threaded reparent there is no need to
658 * notify anyone anything has happened.
659 */
660 if (!same_thread_group(reaper, father))
661 reparent_leader(father, p, dead);
662 }
663 list_splice_tail_init(&father->children, &reaper->children);
664 }
665
666 /*
667 * Send signals to all our closest relatives so that they know
668 * to properly mourn us..
669 */
exit_notify(struct task_struct * tsk,int group_dead)670 static void exit_notify(struct task_struct *tsk, int group_dead)
671 {
672 bool autoreap;
673 struct task_struct *p, *n;
674 LIST_HEAD(dead);
675
676 write_lock_irq(&tasklist_lock);
677 forget_original_parent(tsk, &dead);
678
679 if (group_dead)
680 kill_orphaned_pgrp(tsk->group_leader, NULL);
681
682 tsk->exit_state = EXIT_ZOMBIE;
683 if (unlikely(tsk->ptrace)) {
684 int sig = thread_group_leader(tsk) &&
685 thread_group_empty(tsk) &&
686 !ptrace_reparented(tsk) ?
687 tsk->exit_signal : SIGCHLD;
688 autoreap = do_notify_parent(tsk, sig);
689 } else if (thread_group_leader(tsk)) {
690 autoreap = thread_group_empty(tsk) &&
691 do_notify_parent(tsk, tsk->exit_signal);
692 } else {
693 autoreap = true;
694 }
695
696 if (autoreap) {
697 tsk->exit_state = EXIT_DEAD;
698 list_add(&tsk->ptrace_entry, &dead);
699 }
700
701 /* mt-exec, de_thread() is waiting for group leader */
702 if (unlikely(tsk->signal->notify_count < 0))
703 wake_up_process(tsk->signal->group_exec_task);
704 write_unlock_irq(&tasklist_lock);
705
706 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
707 list_del_init(&p->ptrace_entry);
708 release_task(p);
709 }
710 }
711
712 #ifdef CONFIG_DEBUG_STACK_USAGE
check_stack_usage(void)713 static void check_stack_usage(void)
714 {
715 static DEFINE_SPINLOCK(low_water_lock);
716 static int lowest_to_date = THREAD_SIZE;
717 unsigned long free;
718
719 free = stack_not_used(current);
720
721 if (free >= lowest_to_date)
722 return;
723
724 spin_lock(&low_water_lock);
725 if (free < lowest_to_date) {
726 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
727 current->comm, task_pid_nr(current), free);
728 lowest_to_date = free;
729 }
730 spin_unlock(&low_water_lock);
731 }
732 #else
check_stack_usage(void)733 static inline void check_stack_usage(void) {}
734 #endif
735
do_exit(long code)736 void __noreturn do_exit(long code)
737 {
738 struct task_struct *tsk = current;
739 int group_dead;
740
741 WARN_ON(tsk->plug);
742
743 kcov_task_exit(tsk);
744
745 coredump_task_exit(tsk);
746 ptrace_event(PTRACE_EVENT_EXIT, code);
747
748 validate_creds_for_do_exit(tsk);
749
750 io_uring_files_cancel();
751 exit_signals(tsk); /* sets PF_EXITING */
752
753 /* sync mm's RSS info before statistics gathering */
754 if (tsk->mm)
755 sync_mm_rss(tsk->mm);
756 acct_update_integrals(tsk);
757 group_dead = atomic_dec_and_test(&tsk->signal->live);
758 if (group_dead) {
759 /*
760 * If the last thread of global init has exited, panic
761 * immediately to get a useable coredump.
762 */
763 if (unlikely(is_global_init(tsk)))
764 panic("Attempted to kill init! exitcode=0x%08x\n",
765 tsk->signal->group_exit_code ?: (int)code);
766
767 #ifdef CONFIG_POSIX_TIMERS
768 hrtimer_cancel(&tsk->signal->real_timer);
769 exit_itimers(tsk);
770 #endif
771 if (tsk->mm)
772 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
773 }
774 acct_collect(code, group_dead);
775 if (group_dead)
776 tty_audit_exit();
777 audit_free(tsk);
778
779 tsk->exit_code = code;
780 taskstats_exit(tsk, group_dead);
781
782 exit_mm();
783
784 if (group_dead)
785 acct_process();
786 trace_sched_process_exit(tsk);
787
788 exit_sem(tsk);
789 exit_shm(tsk);
790 exit_files(tsk);
791 exit_fs(tsk);
792 if (group_dead)
793 disassociate_ctty(1);
794 exit_task_namespaces(tsk);
795 exit_task_work(tsk);
796 exit_thread(tsk);
797
798 /*
799 * Flush inherited counters to the parent - before the parent
800 * gets woken up by child-exit notifications.
801 *
802 * because of cgroup mode, must be called before cgroup_exit()
803 */
804 perf_event_exit_task(tsk);
805
806 sched_autogroup_exit_task(tsk);
807 cgroup_exit(tsk);
808
809 /*
810 * FIXME: do that only when needed, using sched_exit tracepoint
811 */
812 flush_ptrace_hw_breakpoint(tsk);
813
814 exit_tasks_rcu_start();
815 exit_notify(tsk, group_dead);
816 proc_exit_connector(tsk);
817 mpol_put_task_policy(tsk);
818 #ifdef CONFIG_FUTEX
819 if (unlikely(current->pi_state_cache))
820 kfree(current->pi_state_cache);
821 #endif
822 /*
823 * Make sure we are holding no locks:
824 */
825 debug_check_no_locks_held();
826
827 if (tsk->io_context)
828 exit_io_context(tsk);
829
830 if (tsk->splice_pipe)
831 free_pipe_info(tsk->splice_pipe);
832
833 if (tsk->task_frag.page)
834 put_page(tsk->task_frag.page);
835
836 validate_creds_for_do_exit(tsk);
837 exit_task_stack_account(tsk);
838
839 check_stack_usage();
840 preempt_disable();
841 if (tsk->nr_dirtied)
842 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
843 exit_rcu();
844 exit_tasks_rcu_finish();
845
846 lockdep_free_task(tsk);
847 do_task_dead();
848 }
849
make_task_dead(int signr)850 void __noreturn make_task_dead(int signr)
851 {
852 /*
853 * Take the task off the cpu after something catastrophic has
854 * happened.
855 *
856 * We can get here from a kernel oops, sometimes with preemption off.
857 * Start by checking for critical errors.
858 * Then fix up important state like USER_DS and preemption.
859 * Then do everything else.
860 */
861 struct task_struct *tsk = current;
862
863 if (unlikely(in_interrupt()))
864 panic("Aiee, killing interrupt handler!");
865 if (unlikely(!tsk->pid))
866 panic("Attempted to kill the idle task!");
867
868 if (unlikely(in_atomic())) {
869 pr_info("note: %s[%d] exited with preempt_count %d\n",
870 current->comm, task_pid_nr(current),
871 preempt_count());
872 preempt_count_set(PREEMPT_ENABLED);
873 }
874
875 /*
876 * We're taking recursive faults here in make_task_dead. Safest is to just
877 * leave this task alone and wait for reboot.
878 */
879 if (unlikely(tsk->flags & PF_EXITING)) {
880 pr_alert("Fixing recursive fault but reboot is needed!\n");
881 futex_exit_recursive(tsk);
882 tsk->exit_state = EXIT_DEAD;
883 refcount_inc(&tsk->rcu_users);
884 do_task_dead();
885 }
886
887 do_exit(signr);
888 }
889
SYSCALL_DEFINE1(exit,int,error_code)890 SYSCALL_DEFINE1(exit, int, error_code)
891 {
892 do_exit((error_code&0xff)<<8);
893 }
894
895 /*
896 * Take down every thread in the group. This is called by fatal signals
897 * as well as by sys_exit_group (below).
898 */
899 void __noreturn
do_group_exit(int exit_code)900 do_group_exit(int exit_code)
901 {
902 struct signal_struct *sig = current->signal;
903
904 if (sig->flags & SIGNAL_GROUP_EXIT)
905 exit_code = sig->group_exit_code;
906 else if (sig->group_exec_task)
907 exit_code = 0;
908 else if (!thread_group_empty(current)) {
909 struct sighand_struct *const sighand = current->sighand;
910
911 spin_lock_irq(&sighand->siglock);
912 if (sig->flags & SIGNAL_GROUP_EXIT)
913 /* Another thread got here before we took the lock. */
914 exit_code = sig->group_exit_code;
915 else if (sig->group_exec_task)
916 exit_code = 0;
917 else {
918 sig->group_exit_code = exit_code;
919 sig->flags = SIGNAL_GROUP_EXIT;
920 zap_other_threads(current);
921 }
922 spin_unlock_irq(&sighand->siglock);
923 }
924
925 do_exit(exit_code);
926 /* NOTREACHED */
927 }
928
929 /*
930 * this kills every thread in the thread group. Note that any externally
931 * wait4()-ing process will get the correct exit code - even if this
932 * thread is not the thread group leader.
933 */
SYSCALL_DEFINE1(exit_group,int,error_code)934 SYSCALL_DEFINE1(exit_group, int, error_code)
935 {
936 do_group_exit((error_code & 0xff) << 8);
937 /* NOTREACHED */
938 return 0;
939 }
940
941 struct waitid_info {
942 pid_t pid;
943 uid_t uid;
944 int status;
945 int cause;
946 };
947
948 struct wait_opts {
949 enum pid_type wo_type;
950 int wo_flags;
951 struct pid *wo_pid;
952
953 struct waitid_info *wo_info;
954 int wo_stat;
955 struct rusage *wo_rusage;
956
957 wait_queue_entry_t child_wait;
958 int notask_error;
959 };
960
eligible_pid(struct wait_opts * wo,struct task_struct * p)961 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
962 {
963 return wo->wo_type == PIDTYPE_MAX ||
964 task_pid_type(p, wo->wo_type) == wo->wo_pid;
965 }
966
967 static int
eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)968 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
969 {
970 if (!eligible_pid(wo, p))
971 return 0;
972
973 /*
974 * Wait for all children (clone and not) if __WALL is set or
975 * if it is traced by us.
976 */
977 if (ptrace || (wo->wo_flags & __WALL))
978 return 1;
979
980 /*
981 * Otherwise, wait for clone children *only* if __WCLONE is set;
982 * otherwise, wait for non-clone children *only*.
983 *
984 * Note: a "clone" child here is one that reports to its parent
985 * using a signal other than SIGCHLD, or a non-leader thread which
986 * we can only see if it is traced by us.
987 */
988 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
989 return 0;
990
991 return 1;
992 }
993
994 /*
995 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
996 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
997 * the lock and this task is uninteresting. If we return nonzero, we have
998 * released the lock and the system call should return.
999 */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)1000 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1001 {
1002 int state, status;
1003 pid_t pid = task_pid_vnr(p);
1004 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1005 struct waitid_info *infop;
1006
1007 if (!likely(wo->wo_flags & WEXITED))
1008 return 0;
1009
1010 if (unlikely(wo->wo_flags & WNOWAIT)) {
1011 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1012 ? p->signal->group_exit_code : p->exit_code;
1013 get_task_struct(p);
1014 read_unlock(&tasklist_lock);
1015 sched_annotate_sleep();
1016 if (wo->wo_rusage)
1017 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1018 put_task_struct(p);
1019 goto out_info;
1020 }
1021 /*
1022 * Move the task's state to DEAD/TRACE, only one thread can do this.
1023 */
1024 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1025 EXIT_TRACE : EXIT_DEAD;
1026 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1027 return 0;
1028 /*
1029 * We own this thread, nobody else can reap it.
1030 */
1031 read_unlock(&tasklist_lock);
1032 sched_annotate_sleep();
1033
1034 /*
1035 * Check thread_group_leader() to exclude the traced sub-threads.
1036 */
1037 if (state == EXIT_DEAD && thread_group_leader(p)) {
1038 struct signal_struct *sig = p->signal;
1039 struct signal_struct *psig = current->signal;
1040 unsigned long maxrss;
1041 u64 tgutime, tgstime;
1042
1043 /*
1044 * The resource counters for the group leader are in its
1045 * own task_struct. Those for dead threads in the group
1046 * are in its signal_struct, as are those for the child
1047 * processes it has previously reaped. All these
1048 * accumulate in the parent's signal_struct c* fields.
1049 *
1050 * We don't bother to take a lock here to protect these
1051 * p->signal fields because the whole thread group is dead
1052 * and nobody can change them.
1053 *
1054 * psig->stats_lock also protects us from our sub-theads
1055 * which can reap other children at the same time. Until
1056 * we change k_getrusage()-like users to rely on this lock
1057 * we have to take ->siglock as well.
1058 *
1059 * We use thread_group_cputime_adjusted() to get times for
1060 * the thread group, which consolidates times for all threads
1061 * in the group including the group leader.
1062 */
1063 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1064 spin_lock_irq(¤t->sighand->siglock);
1065 write_seqlock(&psig->stats_lock);
1066 psig->cutime += tgutime + sig->cutime;
1067 psig->cstime += tgstime + sig->cstime;
1068 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1069 psig->cmin_flt +=
1070 p->min_flt + sig->min_flt + sig->cmin_flt;
1071 psig->cmaj_flt +=
1072 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1073 psig->cnvcsw +=
1074 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1075 psig->cnivcsw +=
1076 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1077 psig->cinblock +=
1078 task_io_get_inblock(p) +
1079 sig->inblock + sig->cinblock;
1080 psig->coublock +=
1081 task_io_get_oublock(p) +
1082 sig->oublock + sig->coublock;
1083 maxrss = max(sig->maxrss, sig->cmaxrss);
1084 if (psig->cmaxrss < maxrss)
1085 psig->cmaxrss = maxrss;
1086 task_io_accounting_add(&psig->ioac, &p->ioac);
1087 task_io_accounting_add(&psig->ioac, &sig->ioac);
1088 write_sequnlock(&psig->stats_lock);
1089 spin_unlock_irq(¤t->sighand->siglock);
1090 }
1091
1092 if (wo->wo_rusage)
1093 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1094 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1095 ? p->signal->group_exit_code : p->exit_code;
1096 wo->wo_stat = status;
1097
1098 if (state == EXIT_TRACE) {
1099 write_lock_irq(&tasklist_lock);
1100 /* We dropped tasklist, ptracer could die and untrace */
1101 ptrace_unlink(p);
1102
1103 /* If parent wants a zombie, don't release it now */
1104 state = EXIT_ZOMBIE;
1105 if (do_notify_parent(p, p->exit_signal))
1106 state = EXIT_DEAD;
1107 p->exit_state = state;
1108 write_unlock_irq(&tasklist_lock);
1109 }
1110 if (state == EXIT_DEAD)
1111 release_task(p);
1112
1113 out_info:
1114 infop = wo->wo_info;
1115 if (infop) {
1116 if ((status & 0x7f) == 0) {
1117 infop->cause = CLD_EXITED;
1118 infop->status = status >> 8;
1119 } else {
1120 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1121 infop->status = status & 0x7f;
1122 }
1123 infop->pid = pid;
1124 infop->uid = uid;
1125 }
1126
1127 return pid;
1128 }
1129
task_stopped_code(struct task_struct * p,bool ptrace)1130 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1131 {
1132 if (ptrace) {
1133 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1134 return &p->exit_code;
1135 } else {
1136 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1137 return &p->signal->group_exit_code;
1138 }
1139 return NULL;
1140 }
1141
1142 /**
1143 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1144 * @wo: wait options
1145 * @ptrace: is the wait for ptrace
1146 * @p: task to wait for
1147 *
1148 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1149 *
1150 * CONTEXT:
1151 * read_lock(&tasklist_lock), which is released if return value is
1152 * non-zero. Also, grabs and releases @p->sighand->siglock.
1153 *
1154 * RETURNS:
1155 * 0 if wait condition didn't exist and search for other wait conditions
1156 * should continue. Non-zero return, -errno on failure and @p's pid on
1157 * success, implies that tasklist_lock is released and wait condition
1158 * search should terminate.
1159 */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1160 static int wait_task_stopped(struct wait_opts *wo,
1161 int ptrace, struct task_struct *p)
1162 {
1163 struct waitid_info *infop;
1164 int exit_code, *p_code, why;
1165 uid_t uid = 0; /* unneeded, required by compiler */
1166 pid_t pid;
1167
1168 /*
1169 * Traditionally we see ptrace'd stopped tasks regardless of options.
1170 */
1171 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1172 return 0;
1173
1174 if (!task_stopped_code(p, ptrace))
1175 return 0;
1176
1177 exit_code = 0;
1178 spin_lock_irq(&p->sighand->siglock);
1179
1180 p_code = task_stopped_code(p, ptrace);
1181 if (unlikely(!p_code))
1182 goto unlock_sig;
1183
1184 exit_code = *p_code;
1185 if (!exit_code)
1186 goto unlock_sig;
1187
1188 if (!unlikely(wo->wo_flags & WNOWAIT))
1189 *p_code = 0;
1190
1191 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1192 unlock_sig:
1193 spin_unlock_irq(&p->sighand->siglock);
1194 if (!exit_code)
1195 return 0;
1196
1197 /*
1198 * Now we are pretty sure this task is interesting.
1199 * Make sure it doesn't get reaped out from under us while we
1200 * give up the lock and then examine it below. We don't want to
1201 * keep holding onto the tasklist_lock while we call getrusage and
1202 * possibly take page faults for user memory.
1203 */
1204 get_task_struct(p);
1205 pid = task_pid_vnr(p);
1206 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1207 read_unlock(&tasklist_lock);
1208 sched_annotate_sleep();
1209 if (wo->wo_rusage)
1210 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1211 put_task_struct(p);
1212
1213 if (likely(!(wo->wo_flags & WNOWAIT)))
1214 wo->wo_stat = (exit_code << 8) | 0x7f;
1215
1216 infop = wo->wo_info;
1217 if (infop) {
1218 infop->cause = why;
1219 infop->status = exit_code;
1220 infop->pid = pid;
1221 infop->uid = uid;
1222 }
1223 return pid;
1224 }
1225
1226 /*
1227 * Handle do_wait work for one task in a live, non-stopped state.
1228 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1229 * the lock and this task is uninteresting. If we return nonzero, we have
1230 * released the lock and the system call should return.
1231 */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1232 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1233 {
1234 struct waitid_info *infop;
1235 pid_t pid;
1236 uid_t uid;
1237
1238 if (!unlikely(wo->wo_flags & WCONTINUED))
1239 return 0;
1240
1241 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1242 return 0;
1243
1244 spin_lock_irq(&p->sighand->siglock);
1245 /* Re-check with the lock held. */
1246 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1247 spin_unlock_irq(&p->sighand->siglock);
1248 return 0;
1249 }
1250 if (!unlikely(wo->wo_flags & WNOWAIT))
1251 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1252 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1253 spin_unlock_irq(&p->sighand->siglock);
1254
1255 pid = task_pid_vnr(p);
1256 get_task_struct(p);
1257 read_unlock(&tasklist_lock);
1258 sched_annotate_sleep();
1259 if (wo->wo_rusage)
1260 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1261 put_task_struct(p);
1262
1263 infop = wo->wo_info;
1264 if (!infop) {
1265 wo->wo_stat = 0xffff;
1266 } else {
1267 infop->cause = CLD_CONTINUED;
1268 infop->pid = pid;
1269 infop->uid = uid;
1270 infop->status = SIGCONT;
1271 }
1272 return pid;
1273 }
1274
1275 /*
1276 * Consider @p for a wait by @parent.
1277 *
1278 * -ECHILD should be in ->notask_error before the first call.
1279 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1280 * Returns zero if the search for a child should continue;
1281 * then ->notask_error is 0 if @p is an eligible child,
1282 * or still -ECHILD.
1283 */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1284 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1285 struct task_struct *p)
1286 {
1287 /*
1288 * We can race with wait_task_zombie() from another thread.
1289 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1290 * can't confuse the checks below.
1291 */
1292 int exit_state = READ_ONCE(p->exit_state);
1293 int ret;
1294
1295 if (unlikely(exit_state == EXIT_DEAD))
1296 return 0;
1297
1298 ret = eligible_child(wo, ptrace, p);
1299 if (!ret)
1300 return ret;
1301
1302 if (unlikely(exit_state == EXIT_TRACE)) {
1303 /*
1304 * ptrace == 0 means we are the natural parent. In this case
1305 * we should clear notask_error, debugger will notify us.
1306 */
1307 if (likely(!ptrace))
1308 wo->notask_error = 0;
1309 return 0;
1310 }
1311
1312 if (likely(!ptrace) && unlikely(p->ptrace)) {
1313 /*
1314 * If it is traced by its real parent's group, just pretend
1315 * the caller is ptrace_do_wait() and reap this child if it
1316 * is zombie.
1317 *
1318 * This also hides group stop state from real parent; otherwise
1319 * a single stop can be reported twice as group and ptrace stop.
1320 * If a ptracer wants to distinguish these two events for its
1321 * own children it should create a separate process which takes
1322 * the role of real parent.
1323 */
1324 if (!ptrace_reparented(p))
1325 ptrace = 1;
1326 }
1327
1328 /* slay zombie? */
1329 if (exit_state == EXIT_ZOMBIE) {
1330 /* we don't reap group leaders with subthreads */
1331 if (!delay_group_leader(p)) {
1332 /*
1333 * A zombie ptracee is only visible to its ptracer.
1334 * Notification and reaping will be cascaded to the
1335 * real parent when the ptracer detaches.
1336 */
1337 if (unlikely(ptrace) || likely(!p->ptrace))
1338 return wait_task_zombie(wo, p);
1339 }
1340
1341 /*
1342 * Allow access to stopped/continued state via zombie by
1343 * falling through. Clearing of notask_error is complex.
1344 *
1345 * When !@ptrace:
1346 *
1347 * If WEXITED is set, notask_error should naturally be
1348 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1349 * so, if there are live subthreads, there are events to
1350 * wait for. If all subthreads are dead, it's still safe
1351 * to clear - this function will be called again in finite
1352 * amount time once all the subthreads are released and
1353 * will then return without clearing.
1354 *
1355 * When @ptrace:
1356 *
1357 * Stopped state is per-task and thus can't change once the
1358 * target task dies. Only continued and exited can happen.
1359 * Clear notask_error if WCONTINUED | WEXITED.
1360 */
1361 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1362 wo->notask_error = 0;
1363 } else {
1364 /*
1365 * @p is alive and it's gonna stop, continue or exit, so
1366 * there always is something to wait for.
1367 */
1368 wo->notask_error = 0;
1369 }
1370
1371 /*
1372 * Wait for stopped. Depending on @ptrace, different stopped state
1373 * is used and the two don't interact with each other.
1374 */
1375 ret = wait_task_stopped(wo, ptrace, p);
1376 if (ret)
1377 return ret;
1378
1379 /*
1380 * Wait for continued. There's only one continued state and the
1381 * ptracer can consume it which can confuse the real parent. Don't
1382 * use WCONTINUED from ptracer. You don't need or want it.
1383 */
1384 return wait_task_continued(wo, p);
1385 }
1386
1387 /*
1388 * Do the work of do_wait() for one thread in the group, @tsk.
1389 *
1390 * -ECHILD should be in ->notask_error before the first call.
1391 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1392 * Returns zero if the search for a child should continue; then
1393 * ->notask_error is 0 if there were any eligible children,
1394 * or still -ECHILD.
1395 */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1396 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1397 {
1398 struct task_struct *p;
1399
1400 list_for_each_entry(p, &tsk->children, sibling) {
1401 int ret = wait_consider_task(wo, 0, p);
1402
1403 if (ret)
1404 return ret;
1405 }
1406
1407 return 0;
1408 }
1409
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1410 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1411 {
1412 struct task_struct *p;
1413
1414 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1415 int ret = wait_consider_task(wo, 1, p);
1416
1417 if (ret)
1418 return ret;
1419 }
1420
1421 return 0;
1422 }
1423
child_wait_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1424 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1425 int sync, void *key)
1426 {
1427 struct wait_opts *wo = container_of(wait, struct wait_opts,
1428 child_wait);
1429 struct task_struct *p = key;
1430
1431 if (!eligible_pid(wo, p))
1432 return 0;
1433
1434 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1435 return 0;
1436
1437 return default_wake_function(wait, mode, sync, key);
1438 }
1439
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1440 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1441 {
1442 __wake_up_sync_key(&parent->signal->wait_chldexit,
1443 TASK_INTERRUPTIBLE, p);
1444 }
1445
is_effectively_child(struct wait_opts * wo,bool ptrace,struct task_struct * target)1446 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1447 struct task_struct *target)
1448 {
1449 struct task_struct *parent =
1450 !ptrace ? target->real_parent : target->parent;
1451
1452 return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1453 same_thread_group(current, parent));
1454 }
1455
1456 /*
1457 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1458 * and tracee lists to find the target task.
1459 */
do_wait_pid(struct wait_opts * wo)1460 static int do_wait_pid(struct wait_opts *wo)
1461 {
1462 bool ptrace;
1463 struct task_struct *target;
1464 int retval;
1465
1466 ptrace = false;
1467 target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1468 if (target && is_effectively_child(wo, ptrace, target)) {
1469 retval = wait_consider_task(wo, ptrace, target);
1470 if (retval)
1471 return retval;
1472 }
1473
1474 ptrace = true;
1475 target = pid_task(wo->wo_pid, PIDTYPE_PID);
1476 if (target && target->ptrace &&
1477 is_effectively_child(wo, ptrace, target)) {
1478 retval = wait_consider_task(wo, ptrace, target);
1479 if (retval)
1480 return retval;
1481 }
1482
1483 return 0;
1484 }
1485
do_wait(struct wait_opts * wo)1486 static long do_wait(struct wait_opts *wo)
1487 {
1488 int retval;
1489
1490 trace_sched_process_wait(wo->wo_pid);
1491
1492 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1493 wo->child_wait.private = current;
1494 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1495 repeat:
1496 /*
1497 * If there is nothing that can match our criteria, just get out.
1498 * We will clear ->notask_error to zero if we see any child that
1499 * might later match our criteria, even if we are not able to reap
1500 * it yet.
1501 */
1502 wo->notask_error = -ECHILD;
1503 if ((wo->wo_type < PIDTYPE_MAX) &&
1504 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1505 goto notask;
1506
1507 set_current_state(TASK_INTERRUPTIBLE);
1508 read_lock(&tasklist_lock);
1509
1510 if (wo->wo_type == PIDTYPE_PID) {
1511 retval = do_wait_pid(wo);
1512 if (retval)
1513 goto end;
1514 } else {
1515 struct task_struct *tsk = current;
1516
1517 do {
1518 retval = do_wait_thread(wo, tsk);
1519 if (retval)
1520 goto end;
1521
1522 retval = ptrace_do_wait(wo, tsk);
1523 if (retval)
1524 goto end;
1525
1526 if (wo->wo_flags & __WNOTHREAD)
1527 break;
1528 } while_each_thread(current, tsk);
1529 }
1530 read_unlock(&tasklist_lock);
1531
1532 notask:
1533 retval = wo->notask_error;
1534 if (!retval && !(wo->wo_flags & WNOHANG)) {
1535 retval = -ERESTARTSYS;
1536 if (!signal_pending(current)) {
1537 schedule();
1538 goto repeat;
1539 }
1540 }
1541 end:
1542 __set_current_state(TASK_RUNNING);
1543 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1544 return retval;
1545 }
1546
kernel_waitid(int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1547 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1548 int options, struct rusage *ru)
1549 {
1550 struct wait_opts wo;
1551 struct pid *pid = NULL;
1552 enum pid_type type;
1553 long ret;
1554 unsigned int f_flags = 0;
1555
1556 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1557 __WNOTHREAD|__WCLONE|__WALL))
1558 return -EINVAL;
1559 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1560 return -EINVAL;
1561
1562 switch (which) {
1563 case P_ALL:
1564 type = PIDTYPE_MAX;
1565 break;
1566 case P_PID:
1567 type = PIDTYPE_PID;
1568 if (upid <= 0)
1569 return -EINVAL;
1570
1571 pid = find_get_pid(upid);
1572 break;
1573 case P_PGID:
1574 type = PIDTYPE_PGID;
1575 if (upid < 0)
1576 return -EINVAL;
1577
1578 if (upid)
1579 pid = find_get_pid(upid);
1580 else
1581 pid = get_task_pid(current, PIDTYPE_PGID);
1582 break;
1583 case P_PIDFD:
1584 type = PIDTYPE_PID;
1585 if (upid < 0)
1586 return -EINVAL;
1587
1588 pid = pidfd_get_pid(upid, &f_flags);
1589 if (IS_ERR(pid))
1590 return PTR_ERR(pid);
1591
1592 break;
1593 default:
1594 return -EINVAL;
1595 }
1596
1597 wo.wo_type = type;
1598 wo.wo_pid = pid;
1599 wo.wo_flags = options;
1600 wo.wo_info = infop;
1601 wo.wo_rusage = ru;
1602 if (f_flags & O_NONBLOCK)
1603 wo.wo_flags |= WNOHANG;
1604
1605 ret = do_wait(&wo);
1606 if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1607 ret = -EAGAIN;
1608
1609 put_pid(pid);
1610 return ret;
1611 }
1612
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1613 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1614 infop, int, options, struct rusage __user *, ru)
1615 {
1616 struct rusage r;
1617 struct waitid_info info = {.status = 0};
1618 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1619 int signo = 0;
1620
1621 if (err > 0) {
1622 signo = SIGCHLD;
1623 err = 0;
1624 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1625 return -EFAULT;
1626 }
1627 if (!infop)
1628 return err;
1629
1630 if (!user_write_access_begin(infop, sizeof(*infop)))
1631 return -EFAULT;
1632
1633 unsafe_put_user(signo, &infop->si_signo, Efault);
1634 unsafe_put_user(0, &infop->si_errno, Efault);
1635 unsafe_put_user(info.cause, &infop->si_code, Efault);
1636 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1637 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1638 unsafe_put_user(info.status, &infop->si_status, Efault);
1639 user_write_access_end();
1640 return err;
1641 Efault:
1642 user_write_access_end();
1643 return -EFAULT;
1644 }
1645
kernel_wait4(pid_t upid,int __user * stat_addr,int options,struct rusage * ru)1646 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1647 struct rusage *ru)
1648 {
1649 struct wait_opts wo;
1650 struct pid *pid = NULL;
1651 enum pid_type type;
1652 long ret;
1653
1654 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1655 __WNOTHREAD|__WCLONE|__WALL))
1656 return -EINVAL;
1657
1658 /* -INT_MIN is not defined */
1659 if (upid == INT_MIN)
1660 return -ESRCH;
1661
1662 if (upid == -1)
1663 type = PIDTYPE_MAX;
1664 else if (upid < 0) {
1665 type = PIDTYPE_PGID;
1666 pid = find_get_pid(-upid);
1667 } else if (upid == 0) {
1668 type = PIDTYPE_PGID;
1669 pid = get_task_pid(current, PIDTYPE_PGID);
1670 } else /* upid > 0 */ {
1671 type = PIDTYPE_PID;
1672 pid = find_get_pid(upid);
1673 }
1674
1675 wo.wo_type = type;
1676 wo.wo_pid = pid;
1677 wo.wo_flags = options | WEXITED;
1678 wo.wo_info = NULL;
1679 wo.wo_stat = 0;
1680 wo.wo_rusage = ru;
1681 ret = do_wait(&wo);
1682 put_pid(pid);
1683 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1684 ret = -EFAULT;
1685
1686 return ret;
1687 }
1688
kernel_wait(pid_t pid,int * stat)1689 int kernel_wait(pid_t pid, int *stat)
1690 {
1691 struct wait_opts wo = {
1692 .wo_type = PIDTYPE_PID,
1693 .wo_pid = find_get_pid(pid),
1694 .wo_flags = WEXITED,
1695 };
1696 int ret;
1697
1698 ret = do_wait(&wo);
1699 if (ret > 0 && wo.wo_stat)
1700 *stat = wo.wo_stat;
1701 put_pid(wo.wo_pid);
1702 return ret;
1703 }
1704
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1705 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1706 int, options, struct rusage __user *, ru)
1707 {
1708 struct rusage r;
1709 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1710
1711 if (err > 0) {
1712 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1713 return -EFAULT;
1714 }
1715 return err;
1716 }
1717
1718 #ifdef __ARCH_WANT_SYS_WAITPID
1719
1720 /*
1721 * sys_waitpid() remains for compatibility. waitpid() should be
1722 * implemented by calling sys_wait4() from libc.a.
1723 */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1724 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1725 {
1726 return kernel_wait4(pid, stat_addr, options, NULL);
1727 }
1728
1729 #endif
1730
1731 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(wait4,compat_pid_t,pid,compat_uint_t __user *,stat_addr,int,options,struct compat_rusage __user *,ru)1732 COMPAT_SYSCALL_DEFINE4(wait4,
1733 compat_pid_t, pid,
1734 compat_uint_t __user *, stat_addr,
1735 int, options,
1736 struct compat_rusage __user *, ru)
1737 {
1738 struct rusage r;
1739 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1740 if (err > 0) {
1741 if (ru && put_compat_rusage(&r, ru))
1742 return -EFAULT;
1743 }
1744 return err;
1745 }
1746
COMPAT_SYSCALL_DEFINE5(waitid,int,which,compat_pid_t,pid,struct compat_siginfo __user *,infop,int,options,struct compat_rusage __user *,uru)1747 COMPAT_SYSCALL_DEFINE5(waitid,
1748 int, which, compat_pid_t, pid,
1749 struct compat_siginfo __user *, infop, int, options,
1750 struct compat_rusage __user *, uru)
1751 {
1752 struct rusage ru;
1753 struct waitid_info info = {.status = 0};
1754 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1755 int signo = 0;
1756 if (err > 0) {
1757 signo = SIGCHLD;
1758 err = 0;
1759 if (uru) {
1760 /* kernel_waitid() overwrites everything in ru */
1761 if (COMPAT_USE_64BIT_TIME)
1762 err = copy_to_user(uru, &ru, sizeof(ru));
1763 else
1764 err = put_compat_rusage(&ru, uru);
1765 if (err)
1766 return -EFAULT;
1767 }
1768 }
1769
1770 if (!infop)
1771 return err;
1772
1773 if (!user_write_access_begin(infop, sizeof(*infop)))
1774 return -EFAULT;
1775
1776 unsafe_put_user(signo, &infop->si_signo, Efault);
1777 unsafe_put_user(0, &infop->si_errno, Efault);
1778 unsafe_put_user(info.cause, &infop->si_code, Efault);
1779 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1780 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1781 unsafe_put_user(info.status, &infop->si_status, Efault);
1782 user_write_access_end();
1783 return err;
1784 Efault:
1785 user_write_access_end();
1786 return -EFAULT;
1787 }
1788 #endif
1789
1790 /**
1791 * thread_group_exited - check that a thread group has exited
1792 * @pid: tgid of thread group to be checked.
1793 *
1794 * Test if the thread group represented by tgid has exited (all
1795 * threads are zombies, dead or completely gone).
1796 *
1797 * Return: true if the thread group has exited. false otherwise.
1798 */
thread_group_exited(struct pid * pid)1799 bool thread_group_exited(struct pid *pid)
1800 {
1801 struct task_struct *task;
1802 bool exited;
1803
1804 rcu_read_lock();
1805 task = pid_task(pid, PIDTYPE_PID);
1806 exited = !task ||
1807 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1808 rcu_read_unlock();
1809
1810 return exited;
1811 }
1812 EXPORT_SYMBOL(thread_group_exited);
1813
abort(void)1814 __weak void abort(void)
1815 {
1816 BUG();
1817
1818 /* if that doesn't kill us, halt */
1819 panic("Oops failed to kill thread");
1820 }
1821 EXPORT_SYMBOL(abort);
1822