1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2002 Andi Kleen, SuSE Labs.
4 * Thanks to Ben LaHaise for precious feedback.
5 */
6 #include <linux/highmem.h>
7 #include <linux/memblock.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/debugfs.h>
13 #include <linux/pfn.h>
14 #include <linux/percpu.h>
15 #include <linux/gfp.h>
16 #include <linux/pci.h>
17 #include <linux/vmalloc.h>
18 #include <linux/libnvdimm.h>
19 #include <linux/vmstat.h>
20 #include <linux/kernel.h>
21 #include <linux/cc_platform.h>
22 #include <linux/set_memory.h>
23
24 #include <asm/e820/api.h>
25 #include <asm/processor.h>
26 #include <asm/tlbflush.h>
27 #include <asm/sections.h>
28 #include <asm/setup.h>
29 #include <linux/uaccess.h>
30 #include <asm/pgalloc.h>
31 #include <asm/proto.h>
32 #include <asm/memtype.h>
33 #include <asm/hyperv-tlfs.h>
34 #include <asm/mshyperv.h>
35
36 #include "../mm_internal.h"
37
38 /*
39 * The current flushing context - we pass it instead of 5 arguments:
40 */
41 struct cpa_data {
42 unsigned long *vaddr;
43 pgd_t *pgd;
44 pgprot_t mask_set;
45 pgprot_t mask_clr;
46 unsigned long numpages;
47 unsigned long curpage;
48 unsigned long pfn;
49 unsigned int flags;
50 unsigned int force_split : 1,
51 force_static_prot : 1,
52 force_flush_all : 1;
53 struct page **pages;
54 };
55
56 enum cpa_warn {
57 CPA_CONFLICT,
58 CPA_PROTECT,
59 CPA_DETECT,
60 };
61
62 static const int cpa_warn_level = CPA_PROTECT;
63
64 /*
65 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
66 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
67 * entries change the page attribute in parallel to some other cpu
68 * splitting a large page entry along with changing the attribute.
69 */
70 static DEFINE_SPINLOCK(cpa_lock);
71
72 #define CPA_FLUSHTLB 1
73 #define CPA_ARRAY 2
74 #define CPA_PAGES_ARRAY 4
75 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
76
cachemode2pgprot(enum page_cache_mode pcm)77 static inline pgprot_t cachemode2pgprot(enum page_cache_mode pcm)
78 {
79 return __pgprot(cachemode2protval(pcm));
80 }
81
82 #ifdef CONFIG_PROC_FS
83 static unsigned long direct_pages_count[PG_LEVEL_NUM];
84
update_page_count(int level,unsigned long pages)85 void update_page_count(int level, unsigned long pages)
86 {
87 /* Protect against CPA */
88 spin_lock(&pgd_lock);
89 direct_pages_count[level] += pages;
90 spin_unlock(&pgd_lock);
91 }
92
split_page_count(int level)93 static void split_page_count(int level)
94 {
95 if (direct_pages_count[level] == 0)
96 return;
97
98 direct_pages_count[level]--;
99 if (system_state == SYSTEM_RUNNING) {
100 if (level == PG_LEVEL_2M)
101 count_vm_event(DIRECT_MAP_LEVEL2_SPLIT);
102 else if (level == PG_LEVEL_1G)
103 count_vm_event(DIRECT_MAP_LEVEL3_SPLIT);
104 }
105 direct_pages_count[level - 1] += PTRS_PER_PTE;
106 }
107
arch_report_meminfo(struct seq_file * m)108 void arch_report_meminfo(struct seq_file *m)
109 {
110 seq_printf(m, "DirectMap4k: %8lu kB\n",
111 direct_pages_count[PG_LEVEL_4K] << 2);
112 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
113 seq_printf(m, "DirectMap2M: %8lu kB\n",
114 direct_pages_count[PG_LEVEL_2M] << 11);
115 #else
116 seq_printf(m, "DirectMap4M: %8lu kB\n",
117 direct_pages_count[PG_LEVEL_2M] << 12);
118 #endif
119 if (direct_gbpages)
120 seq_printf(m, "DirectMap1G: %8lu kB\n",
121 direct_pages_count[PG_LEVEL_1G] << 20);
122 }
123 #else
split_page_count(int level)124 static inline void split_page_count(int level) { }
125 #endif
126
127 #ifdef CONFIG_X86_CPA_STATISTICS
128
129 static unsigned long cpa_1g_checked;
130 static unsigned long cpa_1g_sameprot;
131 static unsigned long cpa_1g_preserved;
132 static unsigned long cpa_2m_checked;
133 static unsigned long cpa_2m_sameprot;
134 static unsigned long cpa_2m_preserved;
135 static unsigned long cpa_4k_install;
136
cpa_inc_1g_checked(void)137 static inline void cpa_inc_1g_checked(void)
138 {
139 cpa_1g_checked++;
140 }
141
cpa_inc_2m_checked(void)142 static inline void cpa_inc_2m_checked(void)
143 {
144 cpa_2m_checked++;
145 }
146
cpa_inc_4k_install(void)147 static inline void cpa_inc_4k_install(void)
148 {
149 data_race(cpa_4k_install++);
150 }
151
cpa_inc_lp_sameprot(int level)152 static inline void cpa_inc_lp_sameprot(int level)
153 {
154 if (level == PG_LEVEL_1G)
155 cpa_1g_sameprot++;
156 else
157 cpa_2m_sameprot++;
158 }
159
cpa_inc_lp_preserved(int level)160 static inline void cpa_inc_lp_preserved(int level)
161 {
162 if (level == PG_LEVEL_1G)
163 cpa_1g_preserved++;
164 else
165 cpa_2m_preserved++;
166 }
167
cpastats_show(struct seq_file * m,void * p)168 static int cpastats_show(struct seq_file *m, void *p)
169 {
170 seq_printf(m, "1G pages checked: %16lu\n", cpa_1g_checked);
171 seq_printf(m, "1G pages sameprot: %16lu\n", cpa_1g_sameprot);
172 seq_printf(m, "1G pages preserved: %16lu\n", cpa_1g_preserved);
173 seq_printf(m, "2M pages checked: %16lu\n", cpa_2m_checked);
174 seq_printf(m, "2M pages sameprot: %16lu\n", cpa_2m_sameprot);
175 seq_printf(m, "2M pages preserved: %16lu\n", cpa_2m_preserved);
176 seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install);
177 return 0;
178 }
179
cpastats_open(struct inode * inode,struct file * file)180 static int cpastats_open(struct inode *inode, struct file *file)
181 {
182 return single_open(file, cpastats_show, NULL);
183 }
184
185 static const struct file_operations cpastats_fops = {
186 .open = cpastats_open,
187 .read = seq_read,
188 .llseek = seq_lseek,
189 .release = single_release,
190 };
191
cpa_stats_init(void)192 static int __init cpa_stats_init(void)
193 {
194 debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL,
195 &cpastats_fops);
196 return 0;
197 }
198 late_initcall(cpa_stats_init);
199 #else
cpa_inc_1g_checked(void)200 static inline void cpa_inc_1g_checked(void) { }
cpa_inc_2m_checked(void)201 static inline void cpa_inc_2m_checked(void) { }
cpa_inc_4k_install(void)202 static inline void cpa_inc_4k_install(void) { }
cpa_inc_lp_sameprot(int level)203 static inline void cpa_inc_lp_sameprot(int level) { }
cpa_inc_lp_preserved(int level)204 static inline void cpa_inc_lp_preserved(int level) { }
205 #endif
206
207
208 static inline int
within(unsigned long addr,unsigned long start,unsigned long end)209 within(unsigned long addr, unsigned long start, unsigned long end)
210 {
211 return addr >= start && addr < end;
212 }
213
214 static inline int
within_inclusive(unsigned long addr,unsigned long start,unsigned long end)215 within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
216 {
217 return addr >= start && addr <= end;
218 }
219
220 #ifdef CONFIG_X86_64
221
highmap_start_pfn(void)222 static inline unsigned long highmap_start_pfn(void)
223 {
224 return __pa_symbol(_text) >> PAGE_SHIFT;
225 }
226
highmap_end_pfn(void)227 static inline unsigned long highmap_end_pfn(void)
228 {
229 /* Do not reference physical address outside the kernel. */
230 return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
231 }
232
__cpa_pfn_in_highmap(unsigned long pfn)233 static bool __cpa_pfn_in_highmap(unsigned long pfn)
234 {
235 /*
236 * Kernel text has an alias mapping at a high address, known
237 * here as "highmap".
238 */
239 return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
240 }
241
242 #else
243
__cpa_pfn_in_highmap(unsigned long pfn)244 static bool __cpa_pfn_in_highmap(unsigned long pfn)
245 {
246 /* There is no highmap on 32-bit */
247 return false;
248 }
249
250 #endif
251
252 /*
253 * See set_mce_nospec().
254 *
255 * Machine check recovery code needs to change cache mode of poisoned pages to
256 * UC to avoid speculative access logging another error. But passing the
257 * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a
258 * speculative access. So we cheat and flip the top bit of the address. This
259 * works fine for the code that updates the page tables. But at the end of the
260 * process we need to flush the TLB and cache and the non-canonical address
261 * causes a #GP fault when used by the INVLPG and CLFLUSH instructions.
262 *
263 * But in the common case we already have a canonical address. This code
264 * will fix the top bit if needed and is a no-op otherwise.
265 */
fix_addr(unsigned long addr)266 static inline unsigned long fix_addr(unsigned long addr)
267 {
268 #ifdef CONFIG_X86_64
269 return (long)(addr << 1) >> 1;
270 #else
271 return addr;
272 #endif
273 }
274
__cpa_addr(struct cpa_data * cpa,unsigned long idx)275 static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx)
276 {
277 if (cpa->flags & CPA_PAGES_ARRAY) {
278 struct page *page = cpa->pages[idx];
279
280 if (unlikely(PageHighMem(page)))
281 return 0;
282
283 return (unsigned long)page_address(page);
284 }
285
286 if (cpa->flags & CPA_ARRAY)
287 return cpa->vaddr[idx];
288
289 return *cpa->vaddr + idx * PAGE_SIZE;
290 }
291
292 /*
293 * Flushing functions
294 */
295
clflush_cache_range_opt(void * vaddr,unsigned int size)296 static void clflush_cache_range_opt(void *vaddr, unsigned int size)
297 {
298 const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
299 void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
300 void *vend = vaddr + size;
301
302 if (p >= vend)
303 return;
304
305 for (; p < vend; p += clflush_size)
306 clflushopt(p);
307 }
308
309 /**
310 * clflush_cache_range - flush a cache range with clflush
311 * @vaddr: virtual start address
312 * @size: number of bytes to flush
313 *
314 * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or
315 * SFENCE to avoid ordering issues.
316 */
clflush_cache_range(void * vaddr,unsigned int size)317 void clflush_cache_range(void *vaddr, unsigned int size)
318 {
319 mb();
320 clflush_cache_range_opt(vaddr, size);
321 mb();
322 }
323 EXPORT_SYMBOL_GPL(clflush_cache_range);
324
325 #ifdef CONFIG_ARCH_HAS_PMEM_API
arch_invalidate_pmem(void * addr,size_t size)326 void arch_invalidate_pmem(void *addr, size_t size)
327 {
328 clflush_cache_range(addr, size);
329 }
330 EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
331 #endif
332
__cpa_flush_all(void * arg)333 static void __cpa_flush_all(void *arg)
334 {
335 unsigned long cache = (unsigned long)arg;
336
337 /*
338 * Flush all to work around Errata in early athlons regarding
339 * large page flushing.
340 */
341 __flush_tlb_all();
342
343 if (cache && boot_cpu_data.x86 >= 4)
344 wbinvd();
345 }
346
cpa_flush_all(unsigned long cache)347 static void cpa_flush_all(unsigned long cache)
348 {
349 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
350
351 on_each_cpu(__cpa_flush_all, (void *) cache, 1);
352 }
353
__cpa_flush_tlb(void * data)354 static void __cpa_flush_tlb(void *data)
355 {
356 struct cpa_data *cpa = data;
357 unsigned int i;
358
359 for (i = 0; i < cpa->numpages; i++)
360 flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i)));
361 }
362
cpa_flush(struct cpa_data * data,int cache)363 static void cpa_flush(struct cpa_data *data, int cache)
364 {
365 struct cpa_data *cpa = data;
366 unsigned int i;
367
368 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
369
370 if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
371 cpa_flush_all(cache);
372 return;
373 }
374
375 if (cpa->force_flush_all || cpa->numpages > tlb_single_page_flush_ceiling)
376 flush_tlb_all();
377 else
378 on_each_cpu(__cpa_flush_tlb, cpa, 1);
379
380 if (!cache)
381 return;
382
383 mb();
384 for (i = 0; i < cpa->numpages; i++) {
385 unsigned long addr = __cpa_addr(cpa, i);
386 unsigned int level;
387
388 pte_t *pte = lookup_address(addr, &level);
389
390 /*
391 * Only flush present addresses:
392 */
393 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
394 clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE);
395 }
396 mb();
397 }
398
overlaps(unsigned long r1_start,unsigned long r1_end,unsigned long r2_start,unsigned long r2_end)399 static bool overlaps(unsigned long r1_start, unsigned long r1_end,
400 unsigned long r2_start, unsigned long r2_end)
401 {
402 return (r1_start <= r2_end && r1_end >= r2_start) ||
403 (r2_start <= r1_end && r2_end >= r1_start);
404 }
405
406 #ifdef CONFIG_PCI_BIOS
407 /*
408 * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
409 * based config access (CONFIG_PCI_GOBIOS) support.
410 */
411 #define BIOS_PFN PFN_DOWN(BIOS_BEGIN)
412 #define BIOS_PFN_END PFN_DOWN(BIOS_END - 1)
413
protect_pci_bios(unsigned long spfn,unsigned long epfn)414 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
415 {
416 if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END))
417 return _PAGE_NX;
418 return 0;
419 }
420 #else
protect_pci_bios(unsigned long spfn,unsigned long epfn)421 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
422 {
423 return 0;
424 }
425 #endif
426
427 /*
428 * The .rodata section needs to be read-only. Using the pfn catches all
429 * aliases. This also includes __ro_after_init, so do not enforce until
430 * kernel_set_to_readonly is true.
431 */
protect_rodata(unsigned long spfn,unsigned long epfn)432 static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn)
433 {
434 unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata));
435
436 /*
437 * Note: __end_rodata is at page aligned and not inclusive, so
438 * subtract 1 to get the last enforced PFN in the rodata area.
439 */
440 epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1;
441
442 if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro))
443 return _PAGE_RW;
444 return 0;
445 }
446
447 /*
448 * Protect kernel text against becoming non executable by forbidding
449 * _PAGE_NX. This protects only the high kernel mapping (_text -> _etext)
450 * out of which the kernel actually executes. Do not protect the low
451 * mapping.
452 *
453 * This does not cover __inittext since that is gone after boot.
454 */
protect_kernel_text(unsigned long start,unsigned long end)455 static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end)
456 {
457 unsigned long t_end = (unsigned long)_etext - 1;
458 unsigned long t_start = (unsigned long)_text;
459
460 if (overlaps(start, end, t_start, t_end))
461 return _PAGE_NX;
462 return 0;
463 }
464
465 #if defined(CONFIG_X86_64)
466 /*
467 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
468 * kernel text mappings for the large page aligned text, rodata sections
469 * will be always read-only. For the kernel identity mappings covering the
470 * holes caused by this alignment can be anything that user asks.
471 *
472 * This will preserve the large page mappings for kernel text/data at no
473 * extra cost.
474 */
protect_kernel_text_ro(unsigned long start,unsigned long end)475 static pgprotval_t protect_kernel_text_ro(unsigned long start,
476 unsigned long end)
477 {
478 unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1;
479 unsigned long t_start = (unsigned long)_text;
480 unsigned int level;
481
482 if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end))
483 return 0;
484 /*
485 * Don't enforce the !RW mapping for the kernel text mapping, if
486 * the current mapping is already using small page mapping. No
487 * need to work hard to preserve large page mappings in this case.
488 *
489 * This also fixes the Linux Xen paravirt guest boot failure caused
490 * by unexpected read-only mappings for kernel identity
491 * mappings. In this paravirt guest case, the kernel text mapping
492 * and the kernel identity mapping share the same page-table pages,
493 * so the protections for kernel text and identity mappings have to
494 * be the same.
495 */
496 if (lookup_address(start, &level) && (level != PG_LEVEL_4K))
497 return _PAGE_RW;
498 return 0;
499 }
500 #else
protect_kernel_text_ro(unsigned long start,unsigned long end)501 static pgprotval_t protect_kernel_text_ro(unsigned long start,
502 unsigned long end)
503 {
504 return 0;
505 }
506 #endif
507
conflicts(pgprot_t prot,pgprotval_t val)508 static inline bool conflicts(pgprot_t prot, pgprotval_t val)
509 {
510 return (pgprot_val(prot) & ~val) != pgprot_val(prot);
511 }
512
check_conflict(int warnlvl,pgprot_t prot,pgprotval_t val,unsigned long start,unsigned long end,unsigned long pfn,const char * txt)513 static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val,
514 unsigned long start, unsigned long end,
515 unsigned long pfn, const char *txt)
516 {
517 static const char *lvltxt[] = {
518 [CPA_CONFLICT] = "conflict",
519 [CPA_PROTECT] = "protect",
520 [CPA_DETECT] = "detect",
521 };
522
523 if (warnlvl > cpa_warn_level || !conflicts(prot, val))
524 return;
525
526 pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
527 lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot),
528 (unsigned long long)val);
529 }
530
531 /*
532 * Certain areas of memory on x86 require very specific protection flags,
533 * for example the BIOS area or kernel text. Callers don't always get this
534 * right (again, ioremap() on BIOS memory is not uncommon) so this function
535 * checks and fixes these known static required protection bits.
536 */
static_protections(pgprot_t prot,unsigned long start,unsigned long pfn,unsigned long npg,unsigned long lpsize,int warnlvl)537 static inline pgprot_t static_protections(pgprot_t prot, unsigned long start,
538 unsigned long pfn, unsigned long npg,
539 unsigned long lpsize, int warnlvl)
540 {
541 pgprotval_t forbidden, res;
542 unsigned long end;
543
544 /*
545 * There is no point in checking RW/NX conflicts when the requested
546 * mapping is setting the page !PRESENT.
547 */
548 if (!(pgprot_val(prot) & _PAGE_PRESENT))
549 return prot;
550
551 /* Operate on the virtual address */
552 end = start + npg * PAGE_SIZE - 1;
553
554 res = protect_kernel_text(start, end);
555 check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX");
556 forbidden = res;
557
558 /*
559 * Special case to preserve a large page. If the change spawns the
560 * full large page mapping then there is no point to split it
561 * up. Happens with ftrace and is going to be removed once ftrace
562 * switched to text_poke().
563 */
564 if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) {
565 res = protect_kernel_text_ro(start, end);
566 check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO");
567 forbidden |= res;
568 }
569
570 /* Check the PFN directly */
571 res = protect_pci_bios(pfn, pfn + npg - 1);
572 check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX");
573 forbidden |= res;
574
575 res = protect_rodata(pfn, pfn + npg - 1);
576 check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO");
577 forbidden |= res;
578
579 return __pgprot(pgprot_val(prot) & ~forbidden);
580 }
581
582 /*
583 * Validate strict W^X semantics.
584 */
verify_rwx(pgprot_t old,pgprot_t new,unsigned long start,unsigned long pfn,unsigned long npg)585 static inline pgprot_t verify_rwx(pgprot_t old, pgprot_t new, unsigned long start,
586 unsigned long pfn, unsigned long npg)
587 {
588 unsigned long end;
589
590 /* Kernel text is rw at boot up */
591 if (system_state == SYSTEM_BOOTING)
592 return new;
593
594 /*
595 * 32-bit has some unfixable W+X issues, like EFI code
596 * and writeable data being in the same page. Disable
597 * detection and enforcement there.
598 */
599 if (IS_ENABLED(CONFIG_X86_32))
600 return new;
601
602 /* Only verify when NX is supported: */
603 if (!(__supported_pte_mask & _PAGE_NX))
604 return new;
605
606 if (!((pgprot_val(old) ^ pgprot_val(new)) & (_PAGE_RW | _PAGE_NX)))
607 return new;
608
609 if ((pgprot_val(new) & (_PAGE_RW | _PAGE_NX)) != _PAGE_RW)
610 return new;
611
612 end = start + npg * PAGE_SIZE - 1;
613 WARN_ONCE(1, "CPA detected W^X violation: %016llx -> %016llx range: 0x%016lx - 0x%016lx PFN %lx\n",
614 (unsigned long long)pgprot_val(old),
615 (unsigned long long)pgprot_val(new),
616 start, end, pfn);
617
618 /*
619 * For now, allow all permission change attempts by returning the
620 * attempted permissions. This can 'return old' to actively
621 * refuse the permission change at a later time.
622 */
623 return new;
624 }
625
626 /*
627 * Lookup the page table entry for a virtual address in a specific pgd.
628 * Return a pointer to the entry and the level of the mapping.
629 */
lookup_address_in_pgd(pgd_t * pgd,unsigned long address,unsigned int * level)630 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
631 unsigned int *level)
632 {
633 p4d_t *p4d;
634 pud_t *pud;
635 pmd_t *pmd;
636
637 *level = PG_LEVEL_NONE;
638
639 if (pgd_none(*pgd))
640 return NULL;
641
642 p4d = p4d_offset(pgd, address);
643 if (p4d_none(*p4d))
644 return NULL;
645
646 *level = PG_LEVEL_512G;
647 if (p4d_large(*p4d) || !p4d_present(*p4d))
648 return (pte_t *)p4d;
649
650 pud = pud_offset(p4d, address);
651 if (pud_none(*pud))
652 return NULL;
653
654 *level = PG_LEVEL_1G;
655 if (pud_large(*pud) || !pud_present(*pud))
656 return (pte_t *)pud;
657
658 pmd = pmd_offset(pud, address);
659 if (pmd_none(*pmd))
660 return NULL;
661
662 *level = PG_LEVEL_2M;
663 if (pmd_large(*pmd) || !pmd_present(*pmd))
664 return (pte_t *)pmd;
665
666 *level = PG_LEVEL_4K;
667
668 return pte_offset_kernel(pmd, address);
669 }
670
671 /*
672 * Lookup the page table entry for a virtual address. Return a pointer
673 * to the entry and the level of the mapping.
674 *
675 * Note: We return pud and pmd either when the entry is marked large
676 * or when the present bit is not set. Otherwise we would return a
677 * pointer to a nonexisting mapping.
678 */
lookup_address(unsigned long address,unsigned int * level)679 pte_t *lookup_address(unsigned long address, unsigned int *level)
680 {
681 return lookup_address_in_pgd(pgd_offset_k(address), address, level);
682 }
683 EXPORT_SYMBOL_GPL(lookup_address);
684
_lookup_address_cpa(struct cpa_data * cpa,unsigned long address,unsigned int * level)685 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
686 unsigned int *level)
687 {
688 if (cpa->pgd)
689 return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
690 address, level);
691
692 return lookup_address(address, level);
693 }
694
695 /*
696 * Lookup the PMD entry for a virtual address. Return a pointer to the entry
697 * or NULL if not present.
698 */
lookup_pmd_address(unsigned long address)699 pmd_t *lookup_pmd_address(unsigned long address)
700 {
701 pgd_t *pgd;
702 p4d_t *p4d;
703 pud_t *pud;
704
705 pgd = pgd_offset_k(address);
706 if (pgd_none(*pgd))
707 return NULL;
708
709 p4d = p4d_offset(pgd, address);
710 if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
711 return NULL;
712
713 pud = pud_offset(p4d, address);
714 if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
715 return NULL;
716
717 return pmd_offset(pud, address);
718 }
719
720 /*
721 * This is necessary because __pa() does not work on some
722 * kinds of memory, like vmalloc() or the alloc_remap()
723 * areas on 32-bit NUMA systems. The percpu areas can
724 * end up in this kind of memory, for instance.
725 *
726 * This could be optimized, but it is only intended to be
727 * used at initialization time, and keeping it
728 * unoptimized should increase the testing coverage for
729 * the more obscure platforms.
730 */
slow_virt_to_phys(void * __virt_addr)731 phys_addr_t slow_virt_to_phys(void *__virt_addr)
732 {
733 unsigned long virt_addr = (unsigned long)__virt_addr;
734 phys_addr_t phys_addr;
735 unsigned long offset;
736 enum pg_level level;
737 pte_t *pte;
738
739 pte = lookup_address(virt_addr, &level);
740 BUG_ON(!pte);
741
742 /*
743 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
744 * before being left-shifted PAGE_SHIFT bits -- this trick is to
745 * make 32-PAE kernel work correctly.
746 */
747 switch (level) {
748 case PG_LEVEL_1G:
749 phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
750 offset = virt_addr & ~PUD_PAGE_MASK;
751 break;
752 case PG_LEVEL_2M:
753 phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
754 offset = virt_addr & ~PMD_PAGE_MASK;
755 break;
756 default:
757 phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
758 offset = virt_addr & ~PAGE_MASK;
759 }
760
761 return (phys_addr_t)(phys_addr | offset);
762 }
763 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
764
765 /*
766 * Set the new pmd in all the pgds we know about:
767 */
__set_pmd_pte(pte_t * kpte,unsigned long address,pte_t pte)768 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
769 {
770 /* change init_mm */
771 set_pte_atomic(kpte, pte);
772 #ifdef CONFIG_X86_32
773 if (!SHARED_KERNEL_PMD) {
774 struct page *page;
775
776 list_for_each_entry(page, &pgd_list, lru) {
777 pgd_t *pgd;
778 p4d_t *p4d;
779 pud_t *pud;
780 pmd_t *pmd;
781
782 pgd = (pgd_t *)page_address(page) + pgd_index(address);
783 p4d = p4d_offset(pgd, address);
784 pud = pud_offset(p4d, address);
785 pmd = pmd_offset(pud, address);
786 set_pte_atomic((pte_t *)pmd, pte);
787 }
788 }
789 #endif
790 }
791
pgprot_clear_protnone_bits(pgprot_t prot)792 static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
793 {
794 /*
795 * _PAGE_GLOBAL means "global page" for present PTEs.
796 * But, it is also used to indicate _PAGE_PROTNONE
797 * for non-present PTEs.
798 *
799 * This ensures that a _PAGE_GLOBAL PTE going from
800 * present to non-present is not confused as
801 * _PAGE_PROTNONE.
802 */
803 if (!(pgprot_val(prot) & _PAGE_PRESENT))
804 pgprot_val(prot) &= ~_PAGE_GLOBAL;
805
806 return prot;
807 }
808
__should_split_large_page(pte_t * kpte,unsigned long address,struct cpa_data * cpa)809 static int __should_split_large_page(pte_t *kpte, unsigned long address,
810 struct cpa_data *cpa)
811 {
812 unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn;
813 pgprot_t old_prot, new_prot, req_prot, chk_prot;
814 pte_t new_pte, *tmp;
815 enum pg_level level;
816
817 /*
818 * Check for races, another CPU might have split this page
819 * up already:
820 */
821 tmp = _lookup_address_cpa(cpa, address, &level);
822 if (tmp != kpte)
823 return 1;
824
825 switch (level) {
826 case PG_LEVEL_2M:
827 old_prot = pmd_pgprot(*(pmd_t *)kpte);
828 old_pfn = pmd_pfn(*(pmd_t *)kpte);
829 cpa_inc_2m_checked();
830 break;
831 case PG_LEVEL_1G:
832 old_prot = pud_pgprot(*(pud_t *)kpte);
833 old_pfn = pud_pfn(*(pud_t *)kpte);
834 cpa_inc_1g_checked();
835 break;
836 default:
837 return -EINVAL;
838 }
839
840 psize = page_level_size(level);
841 pmask = page_level_mask(level);
842
843 /*
844 * Calculate the number of pages, which fit into this large
845 * page starting at address:
846 */
847 lpaddr = (address + psize) & pmask;
848 numpages = (lpaddr - address) >> PAGE_SHIFT;
849 if (numpages < cpa->numpages)
850 cpa->numpages = numpages;
851
852 /*
853 * We are safe now. Check whether the new pgprot is the same:
854 * Convert protection attributes to 4k-format, as cpa->mask* are set
855 * up accordingly.
856 */
857
858 /* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
859 req_prot = pgprot_large_2_4k(old_prot);
860
861 pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
862 pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
863
864 /*
865 * req_prot is in format of 4k pages. It must be converted to large
866 * page format: the caching mode includes the PAT bit located at
867 * different bit positions in the two formats.
868 */
869 req_prot = pgprot_4k_2_large(req_prot);
870 req_prot = pgprot_clear_protnone_bits(req_prot);
871 if (pgprot_val(req_prot) & _PAGE_PRESENT)
872 pgprot_val(req_prot) |= _PAGE_PSE;
873
874 /*
875 * old_pfn points to the large page base pfn. So we need to add the
876 * offset of the virtual address:
877 */
878 pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
879 cpa->pfn = pfn;
880
881 /*
882 * Calculate the large page base address and the number of 4K pages
883 * in the large page
884 */
885 lpaddr = address & pmask;
886 numpages = psize >> PAGE_SHIFT;
887
888 /*
889 * Sanity check that the existing mapping is correct versus the static
890 * protections. static_protections() guards against !PRESENT, so no
891 * extra conditional required here.
892 */
893 chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages,
894 psize, CPA_CONFLICT);
895
896 if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) {
897 /*
898 * Split the large page and tell the split code to
899 * enforce static protections.
900 */
901 cpa->force_static_prot = 1;
902 return 1;
903 }
904
905 /*
906 * Optimization: If the requested pgprot is the same as the current
907 * pgprot, then the large page can be preserved and no updates are
908 * required independent of alignment and length of the requested
909 * range. The above already established that the current pgprot is
910 * correct, which in consequence makes the requested pgprot correct
911 * as well if it is the same. The static protection scan below will
912 * not come to a different conclusion.
913 */
914 if (pgprot_val(req_prot) == pgprot_val(old_prot)) {
915 cpa_inc_lp_sameprot(level);
916 return 0;
917 }
918
919 /*
920 * If the requested range does not cover the full page, split it up
921 */
922 if (address != lpaddr || cpa->numpages != numpages)
923 return 1;
924
925 /*
926 * Check whether the requested pgprot is conflicting with a static
927 * protection requirement in the large page.
928 */
929 new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages,
930 psize, CPA_DETECT);
931
932 new_prot = verify_rwx(old_prot, new_prot, lpaddr, old_pfn, numpages);
933
934 /*
935 * If there is a conflict, split the large page.
936 *
937 * There used to be a 4k wise evaluation trying really hard to
938 * preserve the large pages, but experimentation has shown, that this
939 * does not help at all. There might be corner cases which would
940 * preserve one large page occasionally, but it's really not worth the
941 * extra code and cycles for the common case.
942 */
943 if (pgprot_val(req_prot) != pgprot_val(new_prot))
944 return 1;
945
946 /* All checks passed. Update the large page mapping. */
947 new_pte = pfn_pte(old_pfn, new_prot);
948 __set_pmd_pte(kpte, address, new_pte);
949 cpa->flags |= CPA_FLUSHTLB;
950 cpa_inc_lp_preserved(level);
951 return 0;
952 }
953
should_split_large_page(pte_t * kpte,unsigned long address,struct cpa_data * cpa)954 static int should_split_large_page(pte_t *kpte, unsigned long address,
955 struct cpa_data *cpa)
956 {
957 int do_split;
958
959 if (cpa->force_split)
960 return 1;
961
962 spin_lock(&pgd_lock);
963 do_split = __should_split_large_page(kpte, address, cpa);
964 spin_unlock(&pgd_lock);
965
966 return do_split;
967 }
968
split_set_pte(struct cpa_data * cpa,pte_t * pte,unsigned long pfn,pgprot_t ref_prot,unsigned long address,unsigned long size)969 static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn,
970 pgprot_t ref_prot, unsigned long address,
971 unsigned long size)
972 {
973 unsigned int npg = PFN_DOWN(size);
974 pgprot_t prot;
975
976 /*
977 * If should_split_large_page() discovered an inconsistent mapping,
978 * remove the invalid protection in the split mapping.
979 */
980 if (!cpa->force_static_prot)
981 goto set;
982
983 /* Hand in lpsize = 0 to enforce the protection mechanism */
984 prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT);
985
986 if (pgprot_val(prot) == pgprot_val(ref_prot))
987 goto set;
988
989 /*
990 * If this is splitting a PMD, fix it up. PUD splits cannot be
991 * fixed trivially as that would require to rescan the newly
992 * installed PMD mappings after returning from split_large_page()
993 * so an eventual further split can allocate the necessary PTE
994 * pages. Warn for now and revisit it in case this actually
995 * happens.
996 */
997 if (size == PAGE_SIZE)
998 ref_prot = prot;
999 else
1000 pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
1001 set:
1002 set_pte(pte, pfn_pte(pfn, ref_prot));
1003 }
1004
1005 static int
__split_large_page(struct cpa_data * cpa,pte_t * kpte,unsigned long address,struct page * base)1006 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
1007 struct page *base)
1008 {
1009 unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1;
1010 pte_t *pbase = (pte_t *)page_address(base);
1011 unsigned int i, level;
1012 pgprot_t ref_prot;
1013 pte_t *tmp;
1014
1015 spin_lock(&pgd_lock);
1016 /*
1017 * Check for races, another CPU might have split this page
1018 * up for us already:
1019 */
1020 tmp = _lookup_address_cpa(cpa, address, &level);
1021 if (tmp != kpte) {
1022 spin_unlock(&pgd_lock);
1023 return 1;
1024 }
1025
1026 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
1027
1028 switch (level) {
1029 case PG_LEVEL_2M:
1030 ref_prot = pmd_pgprot(*(pmd_t *)kpte);
1031 /*
1032 * Clear PSE (aka _PAGE_PAT) and move
1033 * PAT bit to correct position.
1034 */
1035 ref_prot = pgprot_large_2_4k(ref_prot);
1036 ref_pfn = pmd_pfn(*(pmd_t *)kpte);
1037 lpaddr = address & PMD_MASK;
1038 lpinc = PAGE_SIZE;
1039 break;
1040
1041 case PG_LEVEL_1G:
1042 ref_prot = pud_pgprot(*(pud_t *)kpte);
1043 ref_pfn = pud_pfn(*(pud_t *)kpte);
1044 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
1045 lpaddr = address & PUD_MASK;
1046 lpinc = PMD_SIZE;
1047 /*
1048 * Clear the PSE flags if the PRESENT flag is not set
1049 * otherwise pmd_present/pmd_huge will return true
1050 * even on a non present pmd.
1051 */
1052 if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
1053 pgprot_val(ref_prot) &= ~_PAGE_PSE;
1054 break;
1055
1056 default:
1057 spin_unlock(&pgd_lock);
1058 return 1;
1059 }
1060
1061 ref_prot = pgprot_clear_protnone_bits(ref_prot);
1062
1063 /*
1064 * Get the target pfn from the original entry:
1065 */
1066 pfn = ref_pfn;
1067 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc)
1068 split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc);
1069
1070 if (virt_addr_valid(address)) {
1071 unsigned long pfn = PFN_DOWN(__pa(address));
1072
1073 if (pfn_range_is_mapped(pfn, pfn + 1))
1074 split_page_count(level);
1075 }
1076
1077 /*
1078 * Install the new, split up pagetable.
1079 *
1080 * We use the standard kernel pagetable protections for the new
1081 * pagetable protections, the actual ptes set above control the
1082 * primary protection behavior:
1083 */
1084 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
1085
1086 /*
1087 * Do a global flush tlb after splitting the large page
1088 * and before we do the actual change page attribute in the PTE.
1089 *
1090 * Without this, we violate the TLB application note, that says:
1091 * "The TLBs may contain both ordinary and large-page
1092 * translations for a 4-KByte range of linear addresses. This
1093 * may occur if software modifies the paging structures so that
1094 * the page size used for the address range changes. If the two
1095 * translations differ with respect to page frame or attributes
1096 * (e.g., permissions), processor behavior is undefined and may
1097 * be implementation-specific."
1098 *
1099 * We do this global tlb flush inside the cpa_lock, so that we
1100 * don't allow any other cpu, with stale tlb entries change the
1101 * page attribute in parallel, that also falls into the
1102 * just split large page entry.
1103 */
1104 flush_tlb_all();
1105 spin_unlock(&pgd_lock);
1106
1107 return 0;
1108 }
1109
split_large_page(struct cpa_data * cpa,pte_t * kpte,unsigned long address)1110 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
1111 unsigned long address)
1112 {
1113 struct page *base;
1114
1115 if (!debug_pagealloc_enabled())
1116 spin_unlock(&cpa_lock);
1117 base = alloc_pages(GFP_KERNEL, 0);
1118 if (!debug_pagealloc_enabled())
1119 spin_lock(&cpa_lock);
1120 if (!base)
1121 return -ENOMEM;
1122
1123 if (__split_large_page(cpa, kpte, address, base))
1124 __free_page(base);
1125
1126 return 0;
1127 }
1128
try_to_free_pte_page(pte_t * pte)1129 static bool try_to_free_pte_page(pte_t *pte)
1130 {
1131 int i;
1132
1133 for (i = 0; i < PTRS_PER_PTE; i++)
1134 if (!pte_none(pte[i]))
1135 return false;
1136
1137 free_page((unsigned long)pte);
1138 return true;
1139 }
1140
try_to_free_pmd_page(pmd_t * pmd)1141 static bool try_to_free_pmd_page(pmd_t *pmd)
1142 {
1143 int i;
1144
1145 for (i = 0; i < PTRS_PER_PMD; i++)
1146 if (!pmd_none(pmd[i]))
1147 return false;
1148
1149 free_page((unsigned long)pmd);
1150 return true;
1151 }
1152
unmap_pte_range(pmd_t * pmd,unsigned long start,unsigned long end)1153 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
1154 {
1155 pte_t *pte = pte_offset_kernel(pmd, start);
1156
1157 while (start < end) {
1158 set_pte(pte, __pte(0));
1159
1160 start += PAGE_SIZE;
1161 pte++;
1162 }
1163
1164 if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
1165 pmd_clear(pmd);
1166 return true;
1167 }
1168 return false;
1169 }
1170
__unmap_pmd_range(pud_t * pud,pmd_t * pmd,unsigned long start,unsigned long end)1171 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
1172 unsigned long start, unsigned long end)
1173 {
1174 if (unmap_pte_range(pmd, start, end))
1175 if (try_to_free_pmd_page(pud_pgtable(*pud)))
1176 pud_clear(pud);
1177 }
1178
unmap_pmd_range(pud_t * pud,unsigned long start,unsigned long end)1179 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
1180 {
1181 pmd_t *pmd = pmd_offset(pud, start);
1182
1183 /*
1184 * Not on a 2MB page boundary?
1185 */
1186 if (start & (PMD_SIZE - 1)) {
1187 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1188 unsigned long pre_end = min_t(unsigned long, end, next_page);
1189
1190 __unmap_pmd_range(pud, pmd, start, pre_end);
1191
1192 start = pre_end;
1193 pmd++;
1194 }
1195
1196 /*
1197 * Try to unmap in 2M chunks.
1198 */
1199 while (end - start >= PMD_SIZE) {
1200 if (pmd_large(*pmd))
1201 pmd_clear(pmd);
1202 else
1203 __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
1204
1205 start += PMD_SIZE;
1206 pmd++;
1207 }
1208
1209 /*
1210 * 4K leftovers?
1211 */
1212 if (start < end)
1213 return __unmap_pmd_range(pud, pmd, start, end);
1214
1215 /*
1216 * Try again to free the PMD page if haven't succeeded above.
1217 */
1218 if (!pud_none(*pud))
1219 if (try_to_free_pmd_page(pud_pgtable(*pud)))
1220 pud_clear(pud);
1221 }
1222
unmap_pud_range(p4d_t * p4d,unsigned long start,unsigned long end)1223 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
1224 {
1225 pud_t *pud = pud_offset(p4d, start);
1226
1227 /*
1228 * Not on a GB page boundary?
1229 */
1230 if (start & (PUD_SIZE - 1)) {
1231 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1232 unsigned long pre_end = min_t(unsigned long, end, next_page);
1233
1234 unmap_pmd_range(pud, start, pre_end);
1235
1236 start = pre_end;
1237 pud++;
1238 }
1239
1240 /*
1241 * Try to unmap in 1G chunks?
1242 */
1243 while (end - start >= PUD_SIZE) {
1244
1245 if (pud_large(*pud))
1246 pud_clear(pud);
1247 else
1248 unmap_pmd_range(pud, start, start + PUD_SIZE);
1249
1250 start += PUD_SIZE;
1251 pud++;
1252 }
1253
1254 /*
1255 * 2M leftovers?
1256 */
1257 if (start < end)
1258 unmap_pmd_range(pud, start, end);
1259
1260 /*
1261 * No need to try to free the PUD page because we'll free it in
1262 * populate_pgd's error path
1263 */
1264 }
1265
alloc_pte_page(pmd_t * pmd)1266 static int alloc_pte_page(pmd_t *pmd)
1267 {
1268 pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
1269 if (!pte)
1270 return -1;
1271
1272 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
1273 return 0;
1274 }
1275
alloc_pmd_page(pud_t * pud)1276 static int alloc_pmd_page(pud_t *pud)
1277 {
1278 pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
1279 if (!pmd)
1280 return -1;
1281
1282 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
1283 return 0;
1284 }
1285
populate_pte(struct cpa_data * cpa,unsigned long start,unsigned long end,unsigned num_pages,pmd_t * pmd,pgprot_t pgprot)1286 static void populate_pte(struct cpa_data *cpa,
1287 unsigned long start, unsigned long end,
1288 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
1289 {
1290 pte_t *pte;
1291
1292 pte = pte_offset_kernel(pmd, start);
1293
1294 pgprot = pgprot_clear_protnone_bits(pgprot);
1295
1296 while (num_pages-- && start < end) {
1297 set_pte(pte, pfn_pte(cpa->pfn, pgprot));
1298
1299 start += PAGE_SIZE;
1300 cpa->pfn++;
1301 pte++;
1302 }
1303 }
1304
populate_pmd(struct cpa_data * cpa,unsigned long start,unsigned long end,unsigned num_pages,pud_t * pud,pgprot_t pgprot)1305 static long populate_pmd(struct cpa_data *cpa,
1306 unsigned long start, unsigned long end,
1307 unsigned num_pages, pud_t *pud, pgprot_t pgprot)
1308 {
1309 long cur_pages = 0;
1310 pmd_t *pmd;
1311 pgprot_t pmd_pgprot;
1312
1313 /*
1314 * Not on a 2M boundary?
1315 */
1316 if (start & (PMD_SIZE - 1)) {
1317 unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
1318 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1319
1320 pre_end = min_t(unsigned long, pre_end, next_page);
1321 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1322 cur_pages = min_t(unsigned int, num_pages, cur_pages);
1323
1324 /*
1325 * Need a PTE page?
1326 */
1327 pmd = pmd_offset(pud, start);
1328 if (pmd_none(*pmd))
1329 if (alloc_pte_page(pmd))
1330 return -1;
1331
1332 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
1333
1334 start = pre_end;
1335 }
1336
1337 /*
1338 * We mapped them all?
1339 */
1340 if (num_pages == cur_pages)
1341 return cur_pages;
1342
1343 pmd_pgprot = pgprot_4k_2_large(pgprot);
1344
1345 while (end - start >= PMD_SIZE) {
1346
1347 /*
1348 * We cannot use a 1G page so allocate a PMD page if needed.
1349 */
1350 if (pud_none(*pud))
1351 if (alloc_pmd_page(pud))
1352 return -1;
1353
1354 pmd = pmd_offset(pud, start);
1355
1356 set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1357 canon_pgprot(pmd_pgprot))));
1358
1359 start += PMD_SIZE;
1360 cpa->pfn += PMD_SIZE >> PAGE_SHIFT;
1361 cur_pages += PMD_SIZE >> PAGE_SHIFT;
1362 }
1363
1364 /*
1365 * Map trailing 4K pages.
1366 */
1367 if (start < end) {
1368 pmd = pmd_offset(pud, start);
1369 if (pmd_none(*pmd))
1370 if (alloc_pte_page(pmd))
1371 return -1;
1372
1373 populate_pte(cpa, start, end, num_pages - cur_pages,
1374 pmd, pgprot);
1375 }
1376 return num_pages;
1377 }
1378
populate_pud(struct cpa_data * cpa,unsigned long start,p4d_t * p4d,pgprot_t pgprot)1379 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1380 pgprot_t pgprot)
1381 {
1382 pud_t *pud;
1383 unsigned long end;
1384 long cur_pages = 0;
1385 pgprot_t pud_pgprot;
1386
1387 end = start + (cpa->numpages << PAGE_SHIFT);
1388
1389 /*
1390 * Not on a Gb page boundary? => map everything up to it with
1391 * smaller pages.
1392 */
1393 if (start & (PUD_SIZE - 1)) {
1394 unsigned long pre_end;
1395 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1396
1397 pre_end = min_t(unsigned long, end, next_page);
1398 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1399 cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1400
1401 pud = pud_offset(p4d, start);
1402
1403 /*
1404 * Need a PMD page?
1405 */
1406 if (pud_none(*pud))
1407 if (alloc_pmd_page(pud))
1408 return -1;
1409
1410 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1411 pud, pgprot);
1412 if (cur_pages < 0)
1413 return cur_pages;
1414
1415 start = pre_end;
1416 }
1417
1418 /* We mapped them all? */
1419 if (cpa->numpages == cur_pages)
1420 return cur_pages;
1421
1422 pud = pud_offset(p4d, start);
1423 pud_pgprot = pgprot_4k_2_large(pgprot);
1424
1425 /*
1426 * Map everything starting from the Gb boundary, possibly with 1G pages
1427 */
1428 while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1429 set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1430 canon_pgprot(pud_pgprot))));
1431
1432 start += PUD_SIZE;
1433 cpa->pfn += PUD_SIZE >> PAGE_SHIFT;
1434 cur_pages += PUD_SIZE >> PAGE_SHIFT;
1435 pud++;
1436 }
1437
1438 /* Map trailing leftover */
1439 if (start < end) {
1440 long tmp;
1441
1442 pud = pud_offset(p4d, start);
1443 if (pud_none(*pud))
1444 if (alloc_pmd_page(pud))
1445 return -1;
1446
1447 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1448 pud, pgprot);
1449 if (tmp < 0)
1450 return cur_pages;
1451
1452 cur_pages += tmp;
1453 }
1454 return cur_pages;
1455 }
1456
1457 /*
1458 * Restrictions for kernel page table do not necessarily apply when mapping in
1459 * an alternate PGD.
1460 */
populate_pgd(struct cpa_data * cpa,unsigned long addr)1461 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1462 {
1463 pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1464 pud_t *pud = NULL; /* shut up gcc */
1465 p4d_t *p4d;
1466 pgd_t *pgd_entry;
1467 long ret;
1468
1469 pgd_entry = cpa->pgd + pgd_index(addr);
1470
1471 if (pgd_none(*pgd_entry)) {
1472 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1473 if (!p4d)
1474 return -1;
1475
1476 set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1477 }
1478
1479 /*
1480 * Allocate a PUD page and hand it down for mapping.
1481 */
1482 p4d = p4d_offset(pgd_entry, addr);
1483 if (p4d_none(*p4d)) {
1484 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1485 if (!pud)
1486 return -1;
1487
1488 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1489 }
1490
1491 pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1492 pgprot_val(pgprot) |= pgprot_val(cpa->mask_set);
1493
1494 ret = populate_pud(cpa, addr, p4d, pgprot);
1495 if (ret < 0) {
1496 /*
1497 * Leave the PUD page in place in case some other CPU or thread
1498 * already found it, but remove any useless entries we just
1499 * added to it.
1500 */
1501 unmap_pud_range(p4d, addr,
1502 addr + (cpa->numpages << PAGE_SHIFT));
1503 return ret;
1504 }
1505
1506 cpa->numpages = ret;
1507 return 0;
1508 }
1509
__cpa_process_fault(struct cpa_data * cpa,unsigned long vaddr,int primary)1510 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1511 int primary)
1512 {
1513 if (cpa->pgd) {
1514 /*
1515 * Right now, we only execute this code path when mapping
1516 * the EFI virtual memory map regions, no other users
1517 * provide a ->pgd value. This may change in the future.
1518 */
1519 return populate_pgd(cpa, vaddr);
1520 }
1521
1522 /*
1523 * Ignore all non primary paths.
1524 */
1525 if (!primary) {
1526 cpa->numpages = 1;
1527 return 0;
1528 }
1529
1530 /*
1531 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1532 * to have holes.
1533 * Also set numpages to '1' indicating that we processed cpa req for
1534 * one virtual address page and its pfn. TBD: numpages can be set based
1535 * on the initial value and the level returned by lookup_address().
1536 */
1537 if (within(vaddr, PAGE_OFFSET,
1538 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1539 cpa->numpages = 1;
1540 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1541 return 0;
1542
1543 } else if (__cpa_pfn_in_highmap(cpa->pfn)) {
1544 /* Faults in the highmap are OK, so do not warn: */
1545 return -EFAULT;
1546 } else {
1547 WARN(1, KERN_WARNING "CPA: called for zero pte. "
1548 "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1549 *cpa->vaddr);
1550
1551 return -EFAULT;
1552 }
1553 }
1554
__change_page_attr(struct cpa_data * cpa,int primary)1555 static int __change_page_attr(struct cpa_data *cpa, int primary)
1556 {
1557 unsigned long address;
1558 int do_split, err;
1559 unsigned int level;
1560 pte_t *kpte, old_pte;
1561
1562 address = __cpa_addr(cpa, cpa->curpage);
1563 repeat:
1564 kpte = _lookup_address_cpa(cpa, address, &level);
1565 if (!kpte)
1566 return __cpa_process_fault(cpa, address, primary);
1567
1568 old_pte = *kpte;
1569 if (pte_none(old_pte))
1570 return __cpa_process_fault(cpa, address, primary);
1571
1572 if (level == PG_LEVEL_4K) {
1573 pte_t new_pte;
1574 pgprot_t old_prot = pte_pgprot(old_pte);
1575 pgprot_t new_prot = pte_pgprot(old_pte);
1576 unsigned long pfn = pte_pfn(old_pte);
1577
1578 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1579 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1580
1581 cpa_inc_4k_install();
1582 /* Hand in lpsize = 0 to enforce the protection mechanism */
1583 new_prot = static_protections(new_prot, address, pfn, 1, 0,
1584 CPA_PROTECT);
1585
1586 new_prot = verify_rwx(old_prot, new_prot, address, pfn, 1);
1587
1588 new_prot = pgprot_clear_protnone_bits(new_prot);
1589
1590 /*
1591 * We need to keep the pfn from the existing PTE,
1592 * after all we're only going to change it's attributes
1593 * not the memory it points to
1594 */
1595 new_pte = pfn_pte(pfn, new_prot);
1596 cpa->pfn = pfn;
1597 /*
1598 * Do we really change anything ?
1599 */
1600 if (pte_val(old_pte) != pte_val(new_pte)) {
1601 set_pte_atomic(kpte, new_pte);
1602 cpa->flags |= CPA_FLUSHTLB;
1603 }
1604 cpa->numpages = 1;
1605 return 0;
1606 }
1607
1608 /*
1609 * Check, whether we can keep the large page intact
1610 * and just change the pte:
1611 */
1612 do_split = should_split_large_page(kpte, address, cpa);
1613 /*
1614 * When the range fits into the existing large page,
1615 * return. cp->numpages and cpa->tlbflush have been updated in
1616 * try_large_page:
1617 */
1618 if (do_split <= 0)
1619 return do_split;
1620
1621 /*
1622 * We have to split the large page:
1623 */
1624 err = split_large_page(cpa, kpte, address);
1625 if (!err)
1626 goto repeat;
1627
1628 return err;
1629 }
1630
1631 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1632
cpa_process_alias(struct cpa_data * cpa)1633 static int cpa_process_alias(struct cpa_data *cpa)
1634 {
1635 struct cpa_data alias_cpa;
1636 unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1637 unsigned long vaddr;
1638 int ret;
1639
1640 if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1641 return 0;
1642
1643 /*
1644 * No need to redo, when the primary call touched the direct
1645 * mapping already:
1646 */
1647 vaddr = __cpa_addr(cpa, cpa->curpage);
1648 if (!(within(vaddr, PAGE_OFFSET,
1649 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1650
1651 alias_cpa = *cpa;
1652 alias_cpa.vaddr = &laddr;
1653 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1654 alias_cpa.curpage = 0;
1655
1656 cpa->force_flush_all = 1;
1657
1658 ret = __change_page_attr_set_clr(&alias_cpa, 0);
1659 if (ret)
1660 return ret;
1661 }
1662
1663 #ifdef CONFIG_X86_64
1664 /*
1665 * If the primary call didn't touch the high mapping already
1666 * and the physical address is inside the kernel map, we need
1667 * to touch the high mapped kernel as well:
1668 */
1669 if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1670 __cpa_pfn_in_highmap(cpa->pfn)) {
1671 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1672 __START_KERNEL_map - phys_base;
1673 alias_cpa = *cpa;
1674 alias_cpa.vaddr = &temp_cpa_vaddr;
1675 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1676 alias_cpa.curpage = 0;
1677
1678 cpa->force_flush_all = 1;
1679 /*
1680 * The high mapping range is imprecise, so ignore the
1681 * return value.
1682 */
1683 __change_page_attr_set_clr(&alias_cpa, 0);
1684 }
1685 #endif
1686
1687 return 0;
1688 }
1689
__change_page_attr_set_clr(struct cpa_data * cpa,int checkalias)1690 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1691 {
1692 unsigned long numpages = cpa->numpages;
1693 unsigned long rempages = numpages;
1694 int ret = 0;
1695
1696 while (rempages) {
1697 /*
1698 * Store the remaining nr of pages for the large page
1699 * preservation check.
1700 */
1701 cpa->numpages = rempages;
1702 /* for array changes, we can't use large page */
1703 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1704 cpa->numpages = 1;
1705
1706 if (!debug_pagealloc_enabled())
1707 spin_lock(&cpa_lock);
1708 ret = __change_page_attr(cpa, checkalias);
1709 if (!debug_pagealloc_enabled())
1710 spin_unlock(&cpa_lock);
1711 if (ret)
1712 goto out;
1713
1714 if (checkalias) {
1715 ret = cpa_process_alias(cpa);
1716 if (ret)
1717 goto out;
1718 }
1719
1720 /*
1721 * Adjust the number of pages with the result of the
1722 * CPA operation. Either a large page has been
1723 * preserved or a single page update happened.
1724 */
1725 BUG_ON(cpa->numpages > rempages || !cpa->numpages);
1726 rempages -= cpa->numpages;
1727 cpa->curpage += cpa->numpages;
1728 }
1729
1730 out:
1731 /* Restore the original numpages */
1732 cpa->numpages = numpages;
1733 return ret;
1734 }
1735
change_page_attr_set_clr(unsigned long * addr,int numpages,pgprot_t mask_set,pgprot_t mask_clr,int force_split,int in_flag,struct page ** pages)1736 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1737 pgprot_t mask_set, pgprot_t mask_clr,
1738 int force_split, int in_flag,
1739 struct page **pages)
1740 {
1741 struct cpa_data cpa;
1742 int ret, cache, checkalias;
1743
1744 memset(&cpa, 0, sizeof(cpa));
1745
1746 /*
1747 * Check, if we are requested to set a not supported
1748 * feature. Clearing non-supported features is OK.
1749 */
1750 mask_set = canon_pgprot(mask_set);
1751
1752 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1753 return 0;
1754
1755 /* Ensure we are PAGE_SIZE aligned */
1756 if (in_flag & CPA_ARRAY) {
1757 int i;
1758 for (i = 0; i < numpages; i++) {
1759 if (addr[i] & ~PAGE_MASK) {
1760 addr[i] &= PAGE_MASK;
1761 WARN_ON_ONCE(1);
1762 }
1763 }
1764 } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1765 /*
1766 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1767 * No need to check in that case
1768 */
1769 if (*addr & ~PAGE_MASK) {
1770 *addr &= PAGE_MASK;
1771 /*
1772 * People should not be passing in unaligned addresses:
1773 */
1774 WARN_ON_ONCE(1);
1775 }
1776 }
1777
1778 /* Must avoid aliasing mappings in the highmem code */
1779 kmap_flush_unused();
1780
1781 vm_unmap_aliases();
1782
1783 cpa.vaddr = addr;
1784 cpa.pages = pages;
1785 cpa.numpages = numpages;
1786 cpa.mask_set = mask_set;
1787 cpa.mask_clr = mask_clr;
1788 cpa.flags = 0;
1789 cpa.curpage = 0;
1790 cpa.force_split = force_split;
1791
1792 if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1793 cpa.flags |= in_flag;
1794
1795 /* No alias checking for _NX bit modifications */
1796 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1797 /* Has caller explicitly disabled alias checking? */
1798 if (in_flag & CPA_NO_CHECK_ALIAS)
1799 checkalias = 0;
1800
1801 ret = __change_page_attr_set_clr(&cpa, checkalias);
1802
1803 /*
1804 * Check whether we really changed something:
1805 */
1806 if (!(cpa.flags & CPA_FLUSHTLB))
1807 goto out;
1808
1809 /*
1810 * No need to flush, when we did not set any of the caching
1811 * attributes:
1812 */
1813 cache = !!pgprot2cachemode(mask_set);
1814
1815 /*
1816 * On error; flush everything to be sure.
1817 */
1818 if (ret) {
1819 cpa_flush_all(cache);
1820 goto out;
1821 }
1822
1823 cpa_flush(&cpa, cache);
1824 out:
1825 return ret;
1826 }
1827
change_page_attr_set(unsigned long * addr,int numpages,pgprot_t mask,int array)1828 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1829 pgprot_t mask, int array)
1830 {
1831 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1832 (array ? CPA_ARRAY : 0), NULL);
1833 }
1834
change_page_attr_clear(unsigned long * addr,int numpages,pgprot_t mask,int array)1835 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1836 pgprot_t mask, int array)
1837 {
1838 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1839 (array ? CPA_ARRAY : 0), NULL);
1840 }
1841
cpa_set_pages_array(struct page ** pages,int numpages,pgprot_t mask)1842 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1843 pgprot_t mask)
1844 {
1845 return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1846 CPA_PAGES_ARRAY, pages);
1847 }
1848
cpa_clear_pages_array(struct page ** pages,int numpages,pgprot_t mask)1849 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1850 pgprot_t mask)
1851 {
1852 return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1853 CPA_PAGES_ARRAY, pages);
1854 }
1855
1856 /*
1857 * __set_memory_prot is an internal helper for callers that have been passed
1858 * a pgprot_t value from upper layers and a reservation has already been taken.
1859 * If you want to set the pgprot to a specific page protocol, use the
1860 * set_memory_xx() functions.
1861 */
__set_memory_prot(unsigned long addr,int numpages,pgprot_t prot)1862 int __set_memory_prot(unsigned long addr, int numpages, pgprot_t prot)
1863 {
1864 return change_page_attr_set_clr(&addr, numpages, prot,
1865 __pgprot(~pgprot_val(prot)), 0, 0,
1866 NULL);
1867 }
1868
_set_memory_uc(unsigned long addr,int numpages)1869 int _set_memory_uc(unsigned long addr, int numpages)
1870 {
1871 /*
1872 * for now UC MINUS. see comments in ioremap()
1873 * If you really need strong UC use ioremap_uc(), but note
1874 * that you cannot override IO areas with set_memory_*() as
1875 * these helpers cannot work with IO memory.
1876 */
1877 return change_page_attr_set(&addr, numpages,
1878 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1879 0);
1880 }
1881
set_memory_uc(unsigned long addr,int numpages)1882 int set_memory_uc(unsigned long addr, int numpages)
1883 {
1884 int ret;
1885
1886 /*
1887 * for now UC MINUS. see comments in ioremap()
1888 */
1889 ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1890 _PAGE_CACHE_MODE_UC_MINUS, NULL);
1891 if (ret)
1892 goto out_err;
1893
1894 ret = _set_memory_uc(addr, numpages);
1895 if (ret)
1896 goto out_free;
1897
1898 return 0;
1899
1900 out_free:
1901 memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1902 out_err:
1903 return ret;
1904 }
1905 EXPORT_SYMBOL(set_memory_uc);
1906
_set_memory_wc(unsigned long addr,int numpages)1907 int _set_memory_wc(unsigned long addr, int numpages)
1908 {
1909 int ret;
1910
1911 ret = change_page_attr_set(&addr, numpages,
1912 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1913 0);
1914 if (!ret) {
1915 ret = change_page_attr_set_clr(&addr, numpages,
1916 cachemode2pgprot(_PAGE_CACHE_MODE_WC),
1917 __pgprot(_PAGE_CACHE_MASK),
1918 0, 0, NULL);
1919 }
1920 return ret;
1921 }
1922
set_memory_wc(unsigned long addr,int numpages)1923 int set_memory_wc(unsigned long addr, int numpages)
1924 {
1925 int ret;
1926
1927 ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1928 _PAGE_CACHE_MODE_WC, NULL);
1929 if (ret)
1930 return ret;
1931
1932 ret = _set_memory_wc(addr, numpages);
1933 if (ret)
1934 memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1935
1936 return ret;
1937 }
1938 EXPORT_SYMBOL(set_memory_wc);
1939
_set_memory_wt(unsigned long addr,int numpages)1940 int _set_memory_wt(unsigned long addr, int numpages)
1941 {
1942 return change_page_attr_set(&addr, numpages,
1943 cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1944 }
1945
_set_memory_wb(unsigned long addr,int numpages)1946 int _set_memory_wb(unsigned long addr, int numpages)
1947 {
1948 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1949 return change_page_attr_clear(&addr, numpages,
1950 __pgprot(_PAGE_CACHE_MASK), 0);
1951 }
1952
set_memory_wb(unsigned long addr,int numpages)1953 int set_memory_wb(unsigned long addr, int numpages)
1954 {
1955 int ret;
1956
1957 ret = _set_memory_wb(addr, numpages);
1958 if (ret)
1959 return ret;
1960
1961 memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1962 return 0;
1963 }
1964 EXPORT_SYMBOL(set_memory_wb);
1965
1966 /* Prevent speculative access to a page by marking it not-present */
1967 #ifdef CONFIG_X86_64
set_mce_nospec(unsigned long pfn)1968 int set_mce_nospec(unsigned long pfn)
1969 {
1970 unsigned long decoy_addr;
1971 int rc;
1972
1973 /* SGX pages are not in the 1:1 map */
1974 if (arch_is_platform_page(pfn << PAGE_SHIFT))
1975 return 0;
1976 /*
1977 * We would like to just call:
1978 * set_memory_XX((unsigned long)pfn_to_kaddr(pfn), 1);
1979 * but doing that would radically increase the odds of a
1980 * speculative access to the poison page because we'd have
1981 * the virtual address of the kernel 1:1 mapping sitting
1982 * around in registers.
1983 * Instead we get tricky. We create a non-canonical address
1984 * that looks just like the one we want, but has bit 63 flipped.
1985 * This relies on set_memory_XX() properly sanitizing any __pa()
1986 * results with __PHYSICAL_MASK or PTE_PFN_MASK.
1987 */
1988 decoy_addr = (pfn << PAGE_SHIFT) + (PAGE_OFFSET ^ BIT(63));
1989
1990 rc = set_memory_np(decoy_addr, 1);
1991 if (rc)
1992 pr_warn("Could not invalidate pfn=0x%lx from 1:1 map\n", pfn);
1993 return rc;
1994 }
1995
set_memory_p(unsigned long * addr,int numpages)1996 static int set_memory_p(unsigned long *addr, int numpages)
1997 {
1998 return change_page_attr_set(addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1999 }
2000
2001 /* Restore full speculative operation to the pfn. */
clear_mce_nospec(unsigned long pfn)2002 int clear_mce_nospec(unsigned long pfn)
2003 {
2004 unsigned long addr = (unsigned long) pfn_to_kaddr(pfn);
2005
2006 return set_memory_p(&addr, 1);
2007 }
2008 EXPORT_SYMBOL_GPL(clear_mce_nospec);
2009 #endif /* CONFIG_X86_64 */
2010
set_memory_x(unsigned long addr,int numpages)2011 int set_memory_x(unsigned long addr, int numpages)
2012 {
2013 if (!(__supported_pte_mask & _PAGE_NX))
2014 return 0;
2015
2016 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
2017 }
2018
set_memory_nx(unsigned long addr,int numpages)2019 int set_memory_nx(unsigned long addr, int numpages)
2020 {
2021 if (!(__supported_pte_mask & _PAGE_NX))
2022 return 0;
2023
2024 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
2025 }
2026
set_memory_ro(unsigned long addr,int numpages)2027 int set_memory_ro(unsigned long addr, int numpages)
2028 {
2029 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
2030 }
2031
set_memory_rw(unsigned long addr,int numpages)2032 int set_memory_rw(unsigned long addr, int numpages)
2033 {
2034 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
2035 }
2036
set_memory_np(unsigned long addr,int numpages)2037 int set_memory_np(unsigned long addr, int numpages)
2038 {
2039 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
2040 }
2041
set_memory_np_noalias(unsigned long addr,int numpages)2042 int set_memory_np_noalias(unsigned long addr, int numpages)
2043 {
2044 int cpa_flags = CPA_NO_CHECK_ALIAS;
2045
2046 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2047 __pgprot(_PAGE_PRESENT), 0,
2048 cpa_flags, NULL);
2049 }
2050
set_memory_4k(unsigned long addr,int numpages)2051 int set_memory_4k(unsigned long addr, int numpages)
2052 {
2053 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2054 __pgprot(0), 1, 0, NULL);
2055 }
2056
set_memory_nonglobal(unsigned long addr,int numpages)2057 int set_memory_nonglobal(unsigned long addr, int numpages)
2058 {
2059 return change_page_attr_clear(&addr, numpages,
2060 __pgprot(_PAGE_GLOBAL), 0);
2061 }
2062
set_memory_global(unsigned long addr,int numpages)2063 int set_memory_global(unsigned long addr, int numpages)
2064 {
2065 return change_page_attr_set(&addr, numpages,
2066 __pgprot(_PAGE_GLOBAL), 0);
2067 }
2068
2069 /*
2070 * __set_memory_enc_pgtable() is used for the hypervisors that get
2071 * informed about "encryption" status via page tables.
2072 */
__set_memory_enc_pgtable(unsigned long addr,int numpages,bool enc)2073 static int __set_memory_enc_pgtable(unsigned long addr, int numpages, bool enc)
2074 {
2075 pgprot_t empty = __pgprot(0);
2076 struct cpa_data cpa;
2077 int ret;
2078
2079 /* Should not be working on unaligned addresses */
2080 if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
2081 addr &= PAGE_MASK;
2082
2083 memset(&cpa, 0, sizeof(cpa));
2084 cpa.vaddr = &addr;
2085 cpa.numpages = numpages;
2086 cpa.mask_set = enc ? pgprot_encrypted(empty) : pgprot_decrypted(empty);
2087 cpa.mask_clr = enc ? pgprot_decrypted(empty) : pgprot_encrypted(empty);
2088 cpa.pgd = init_mm.pgd;
2089
2090 /* Must avoid aliasing mappings in the highmem code */
2091 kmap_flush_unused();
2092 vm_unmap_aliases();
2093
2094 /* Flush the caches as needed before changing the encryption attribute. */
2095 if (x86_platform.guest.enc_tlb_flush_required(enc))
2096 cpa_flush(&cpa, x86_platform.guest.enc_cache_flush_required());
2097
2098 /* Notify hypervisor that we are about to set/clr encryption attribute. */
2099 x86_platform.guest.enc_status_change_prepare(addr, numpages, enc);
2100
2101 ret = __change_page_attr_set_clr(&cpa, 1);
2102
2103 /*
2104 * After changing the encryption attribute, we need to flush TLBs again
2105 * in case any speculative TLB caching occurred (but no need to flush
2106 * caches again). We could just use cpa_flush_all(), but in case TLB
2107 * flushing gets optimized in the cpa_flush() path use the same logic
2108 * as above.
2109 */
2110 cpa_flush(&cpa, 0);
2111
2112 /* Notify hypervisor that we have successfully set/clr encryption attribute. */
2113 if (!ret) {
2114 if (!x86_platform.guest.enc_status_change_finish(addr, numpages, enc))
2115 ret = -EIO;
2116 }
2117
2118 return ret;
2119 }
2120
__set_memory_enc_dec(unsigned long addr,int numpages,bool enc)2121 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
2122 {
2123 if (hv_is_isolation_supported())
2124 return hv_set_mem_host_visibility(addr, numpages, !enc);
2125
2126 if (cc_platform_has(CC_ATTR_MEM_ENCRYPT))
2127 return __set_memory_enc_pgtable(addr, numpages, enc);
2128
2129 return 0;
2130 }
2131
set_memory_encrypted(unsigned long addr,int numpages)2132 int set_memory_encrypted(unsigned long addr, int numpages)
2133 {
2134 return __set_memory_enc_dec(addr, numpages, true);
2135 }
2136 EXPORT_SYMBOL_GPL(set_memory_encrypted);
2137
set_memory_decrypted(unsigned long addr,int numpages)2138 int set_memory_decrypted(unsigned long addr, int numpages)
2139 {
2140 return __set_memory_enc_dec(addr, numpages, false);
2141 }
2142 EXPORT_SYMBOL_GPL(set_memory_decrypted);
2143
set_pages_uc(struct page * page,int numpages)2144 int set_pages_uc(struct page *page, int numpages)
2145 {
2146 unsigned long addr = (unsigned long)page_address(page);
2147
2148 return set_memory_uc(addr, numpages);
2149 }
2150 EXPORT_SYMBOL(set_pages_uc);
2151
_set_pages_array(struct page ** pages,int numpages,enum page_cache_mode new_type)2152 static int _set_pages_array(struct page **pages, int numpages,
2153 enum page_cache_mode new_type)
2154 {
2155 unsigned long start;
2156 unsigned long end;
2157 enum page_cache_mode set_type;
2158 int i;
2159 int free_idx;
2160 int ret;
2161
2162 for (i = 0; i < numpages; i++) {
2163 if (PageHighMem(pages[i]))
2164 continue;
2165 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2166 end = start + PAGE_SIZE;
2167 if (memtype_reserve(start, end, new_type, NULL))
2168 goto err_out;
2169 }
2170
2171 /* If WC, set to UC- first and then WC */
2172 set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
2173 _PAGE_CACHE_MODE_UC_MINUS : new_type;
2174
2175 ret = cpa_set_pages_array(pages, numpages,
2176 cachemode2pgprot(set_type));
2177 if (!ret && new_type == _PAGE_CACHE_MODE_WC)
2178 ret = change_page_attr_set_clr(NULL, numpages,
2179 cachemode2pgprot(
2180 _PAGE_CACHE_MODE_WC),
2181 __pgprot(_PAGE_CACHE_MASK),
2182 0, CPA_PAGES_ARRAY, pages);
2183 if (ret)
2184 goto err_out;
2185 return 0; /* Success */
2186 err_out:
2187 free_idx = i;
2188 for (i = 0; i < free_idx; i++) {
2189 if (PageHighMem(pages[i]))
2190 continue;
2191 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2192 end = start + PAGE_SIZE;
2193 memtype_free(start, end);
2194 }
2195 return -EINVAL;
2196 }
2197
set_pages_array_uc(struct page ** pages,int numpages)2198 int set_pages_array_uc(struct page **pages, int numpages)
2199 {
2200 return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS);
2201 }
2202 EXPORT_SYMBOL(set_pages_array_uc);
2203
set_pages_array_wc(struct page ** pages,int numpages)2204 int set_pages_array_wc(struct page **pages, int numpages)
2205 {
2206 return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC);
2207 }
2208 EXPORT_SYMBOL(set_pages_array_wc);
2209
set_pages_wb(struct page * page,int numpages)2210 int set_pages_wb(struct page *page, int numpages)
2211 {
2212 unsigned long addr = (unsigned long)page_address(page);
2213
2214 return set_memory_wb(addr, numpages);
2215 }
2216 EXPORT_SYMBOL(set_pages_wb);
2217
set_pages_array_wb(struct page ** pages,int numpages)2218 int set_pages_array_wb(struct page **pages, int numpages)
2219 {
2220 int retval;
2221 unsigned long start;
2222 unsigned long end;
2223 int i;
2224
2225 /* WB cache mode is hard wired to all cache attribute bits being 0 */
2226 retval = cpa_clear_pages_array(pages, numpages,
2227 __pgprot(_PAGE_CACHE_MASK));
2228 if (retval)
2229 return retval;
2230
2231 for (i = 0; i < numpages; i++) {
2232 if (PageHighMem(pages[i]))
2233 continue;
2234 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2235 end = start + PAGE_SIZE;
2236 memtype_free(start, end);
2237 }
2238
2239 return 0;
2240 }
2241 EXPORT_SYMBOL(set_pages_array_wb);
2242
set_pages_ro(struct page * page,int numpages)2243 int set_pages_ro(struct page *page, int numpages)
2244 {
2245 unsigned long addr = (unsigned long)page_address(page);
2246
2247 return set_memory_ro(addr, numpages);
2248 }
2249
set_pages_rw(struct page * page,int numpages)2250 int set_pages_rw(struct page *page, int numpages)
2251 {
2252 unsigned long addr = (unsigned long)page_address(page);
2253
2254 return set_memory_rw(addr, numpages);
2255 }
2256
__set_pages_p(struct page * page,int numpages)2257 static int __set_pages_p(struct page *page, int numpages)
2258 {
2259 unsigned long tempaddr = (unsigned long) page_address(page);
2260 struct cpa_data cpa = { .vaddr = &tempaddr,
2261 .pgd = NULL,
2262 .numpages = numpages,
2263 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2264 .mask_clr = __pgprot(0),
2265 .flags = 0};
2266
2267 /*
2268 * No alias checking needed for setting present flag. otherwise,
2269 * we may need to break large pages for 64-bit kernel text
2270 * mappings (this adds to complexity if we want to do this from
2271 * atomic context especially). Let's keep it simple!
2272 */
2273 return __change_page_attr_set_clr(&cpa, 0);
2274 }
2275
__set_pages_np(struct page * page,int numpages)2276 static int __set_pages_np(struct page *page, int numpages)
2277 {
2278 unsigned long tempaddr = (unsigned long) page_address(page);
2279 struct cpa_data cpa = { .vaddr = &tempaddr,
2280 .pgd = NULL,
2281 .numpages = numpages,
2282 .mask_set = __pgprot(0),
2283 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2284 .flags = 0};
2285
2286 /*
2287 * No alias checking needed for setting not present flag. otherwise,
2288 * we may need to break large pages for 64-bit kernel text
2289 * mappings (this adds to complexity if we want to do this from
2290 * atomic context especially). Let's keep it simple!
2291 */
2292 return __change_page_attr_set_clr(&cpa, 0);
2293 }
2294
set_direct_map_invalid_noflush(struct page * page)2295 int set_direct_map_invalid_noflush(struct page *page)
2296 {
2297 return __set_pages_np(page, 1);
2298 }
2299
set_direct_map_default_noflush(struct page * page)2300 int set_direct_map_default_noflush(struct page *page)
2301 {
2302 return __set_pages_p(page, 1);
2303 }
2304
2305 #ifdef CONFIG_DEBUG_PAGEALLOC
__kernel_map_pages(struct page * page,int numpages,int enable)2306 void __kernel_map_pages(struct page *page, int numpages, int enable)
2307 {
2308 if (PageHighMem(page))
2309 return;
2310 if (!enable) {
2311 debug_check_no_locks_freed(page_address(page),
2312 numpages * PAGE_SIZE);
2313 }
2314
2315 /*
2316 * The return value is ignored as the calls cannot fail.
2317 * Large pages for identity mappings are not used at boot time
2318 * and hence no memory allocations during large page split.
2319 */
2320 if (enable)
2321 __set_pages_p(page, numpages);
2322 else
2323 __set_pages_np(page, numpages);
2324
2325 /*
2326 * We should perform an IPI and flush all tlbs,
2327 * but that can deadlock->flush only current cpu.
2328 * Preemption needs to be disabled around __flush_tlb_all() due to
2329 * CR3 reload in __native_flush_tlb().
2330 */
2331 preempt_disable();
2332 __flush_tlb_all();
2333 preempt_enable();
2334
2335 arch_flush_lazy_mmu_mode();
2336 }
2337 #endif /* CONFIG_DEBUG_PAGEALLOC */
2338
kernel_page_present(struct page * page)2339 bool kernel_page_present(struct page *page)
2340 {
2341 unsigned int level;
2342 pte_t *pte;
2343
2344 if (PageHighMem(page))
2345 return false;
2346
2347 pte = lookup_address((unsigned long)page_address(page), &level);
2348 return (pte_val(*pte) & _PAGE_PRESENT);
2349 }
2350
kernel_map_pages_in_pgd(pgd_t * pgd,u64 pfn,unsigned long address,unsigned numpages,unsigned long page_flags)2351 int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2352 unsigned numpages, unsigned long page_flags)
2353 {
2354 int retval = -EINVAL;
2355
2356 struct cpa_data cpa = {
2357 .vaddr = &address,
2358 .pfn = pfn,
2359 .pgd = pgd,
2360 .numpages = numpages,
2361 .mask_set = __pgprot(0),
2362 .mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)),
2363 .flags = 0,
2364 };
2365
2366 WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2367
2368 if (!(__supported_pte_mask & _PAGE_NX))
2369 goto out;
2370
2371 if (!(page_flags & _PAGE_ENC))
2372 cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2373
2374 cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2375
2376 retval = __change_page_attr_set_clr(&cpa, 0);
2377 __flush_tlb_all();
2378
2379 out:
2380 return retval;
2381 }
2382
2383 /*
2384 * __flush_tlb_all() flushes mappings only on current CPU and hence this
2385 * function shouldn't be used in an SMP environment. Presently, it's used only
2386 * during boot (way before smp_init()) by EFI subsystem and hence is ok.
2387 */
kernel_unmap_pages_in_pgd(pgd_t * pgd,unsigned long address,unsigned long numpages)2388 int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address,
2389 unsigned long numpages)
2390 {
2391 int retval;
2392
2393 /*
2394 * The typical sequence for unmapping is to find a pte through
2395 * lookup_address_in_pgd() (ideally, it should never return NULL because
2396 * the address is already mapped) and change it's protections. As pfn is
2397 * the *target* of a mapping, it's not useful while unmapping.
2398 */
2399 struct cpa_data cpa = {
2400 .vaddr = &address,
2401 .pfn = 0,
2402 .pgd = pgd,
2403 .numpages = numpages,
2404 .mask_set = __pgprot(0),
2405 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2406 .flags = 0,
2407 };
2408
2409 WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2410
2411 retval = __change_page_attr_set_clr(&cpa, 0);
2412 __flush_tlb_all();
2413
2414 return retval;
2415 }
2416
2417 /*
2418 * The testcases use internal knowledge of the implementation that shouldn't
2419 * be exposed to the rest of the kernel. Include these directly here.
2420 */
2421 #ifdef CONFIG_CPA_DEBUG
2422 #include "cpa-test.c"
2423 #endif
2424