1 /*
2 * linux/kernel/sys.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/export.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/reboot.h>
12 #include <linux/prctl.h>
13 #include <linux/highuid.h>
14 #include <linux/fs.h>
15 #include <linux/kmod.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/gfp.h>
40 #include <linux/syscore_ops.h>
41 #include <linux/version.h>
42 #include <linux/ctype.h>
43
44 #include <linux/compat.h>
45 #include <linux/syscalls.h>
46 #include <linux/kprobes.h>
47 #include <linux/user_namespace.h>
48
49 #include <linux/kmsg_dump.h>
50 /* Move somewhere else to avoid recompiling? */
51 #include <generated/utsrelease.h>
52
53 #include <asm/uaccess.h>
54 #include <asm/io.h>
55 #include <asm/unistd.h>
56
57 #ifndef SET_UNALIGN_CTL
58 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
59 #endif
60 #ifndef GET_UNALIGN_CTL
61 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
62 #endif
63 #ifndef SET_FPEMU_CTL
64 # define SET_FPEMU_CTL(a,b) (-EINVAL)
65 #endif
66 #ifndef GET_FPEMU_CTL
67 # define GET_FPEMU_CTL(a,b) (-EINVAL)
68 #endif
69 #ifndef SET_FPEXC_CTL
70 # define SET_FPEXC_CTL(a,b) (-EINVAL)
71 #endif
72 #ifndef GET_FPEXC_CTL
73 # define GET_FPEXC_CTL(a,b) (-EINVAL)
74 #endif
75 #ifndef GET_ENDIAN
76 # define GET_ENDIAN(a,b) (-EINVAL)
77 #endif
78 #ifndef SET_ENDIAN
79 # define SET_ENDIAN(a,b) (-EINVAL)
80 #endif
81 #ifndef GET_TSC_CTL
82 # define GET_TSC_CTL(a) (-EINVAL)
83 #endif
84 #ifndef SET_TSC_CTL
85 # define SET_TSC_CTL(a) (-EINVAL)
86 #endif
87
88 /*
89 * this is where the system-wide overflow UID and GID are defined, for
90 * architectures that now have 32-bit UID/GID but didn't in the past
91 */
92
93 int overflowuid = DEFAULT_OVERFLOWUID;
94 int overflowgid = DEFAULT_OVERFLOWGID;
95
96 #ifdef CONFIG_UID16
97 EXPORT_SYMBOL(overflowuid);
98 EXPORT_SYMBOL(overflowgid);
99 #endif
100
101 /*
102 * the same as above, but for filesystems which can only store a 16-bit
103 * UID and GID. as such, this is needed on all architectures
104 */
105
106 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
107 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
108
109 EXPORT_SYMBOL(fs_overflowuid);
110 EXPORT_SYMBOL(fs_overflowgid);
111
112 /*
113 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
114 */
115
116 int C_A_D = 1;
117 struct pid *cad_pid;
118 EXPORT_SYMBOL(cad_pid);
119
120 /*
121 * If set, this is used for preparing the system to power off.
122 */
123
124 void (*pm_power_off_prepare)(void);
125
126 /*
127 * Returns true if current's euid is same as p's uid or euid,
128 * or has CAP_SYS_NICE to p's user_ns.
129 *
130 * Called with rcu_read_lock, creds are safe
131 */
set_one_prio_perm(struct task_struct * p)132 static bool set_one_prio_perm(struct task_struct *p)
133 {
134 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
135
136 if (pcred->user->user_ns == cred->user->user_ns &&
137 (pcred->uid == cred->euid ||
138 pcred->euid == cred->euid))
139 return true;
140 if (ns_capable(pcred->user->user_ns, CAP_SYS_NICE))
141 return true;
142 return false;
143 }
144
145 /*
146 * set the priority of a task
147 * - the caller must hold the RCU read lock
148 */
set_one_prio(struct task_struct * p,int niceval,int error)149 static int set_one_prio(struct task_struct *p, int niceval, int error)
150 {
151 int no_nice;
152
153 if (!set_one_prio_perm(p)) {
154 error = -EPERM;
155 goto out;
156 }
157 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
158 error = -EACCES;
159 goto out;
160 }
161 no_nice = security_task_setnice(p, niceval);
162 if (no_nice) {
163 error = no_nice;
164 goto out;
165 }
166 if (error == -ESRCH)
167 error = 0;
168 set_user_nice(p, niceval);
169 out:
170 return error;
171 }
172
SYSCALL_DEFINE3(setpriority,int,which,int,who,int,niceval)173 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
174 {
175 struct task_struct *g, *p;
176 struct user_struct *user;
177 const struct cred *cred = current_cred();
178 int error = -EINVAL;
179 struct pid *pgrp;
180
181 if (which > PRIO_USER || which < PRIO_PROCESS)
182 goto out;
183
184 /* normalize: avoid signed division (rounding problems) */
185 error = -ESRCH;
186 if (niceval < -20)
187 niceval = -20;
188 if (niceval > 19)
189 niceval = 19;
190
191 rcu_read_lock();
192 read_lock(&tasklist_lock);
193 switch (which) {
194 case PRIO_PROCESS:
195 if (who)
196 p = find_task_by_vpid(who);
197 else
198 p = current;
199 if (p)
200 error = set_one_prio(p, niceval, error);
201 break;
202 case PRIO_PGRP:
203 if (who)
204 pgrp = find_vpid(who);
205 else
206 pgrp = task_pgrp(current);
207 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
208 error = set_one_prio(p, niceval, error);
209 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
210 break;
211 case PRIO_USER:
212 user = (struct user_struct *) cred->user;
213 if (!who)
214 who = cred->uid;
215 else if ((who != cred->uid) &&
216 !(user = find_user(who)))
217 goto out_unlock; /* No processes for this user */
218
219 do_each_thread(g, p) {
220 if (__task_cred(p)->uid == who)
221 error = set_one_prio(p, niceval, error);
222 } while_each_thread(g, p);
223 if (who != cred->uid)
224 free_uid(user); /* For find_user() */
225 break;
226 }
227 out_unlock:
228 read_unlock(&tasklist_lock);
229 rcu_read_unlock();
230 out:
231 return error;
232 }
233
234 /*
235 * Ugh. To avoid negative return values, "getpriority()" will
236 * not return the normal nice-value, but a negated value that
237 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
238 * to stay compatible.
239 */
SYSCALL_DEFINE2(getpriority,int,which,int,who)240 SYSCALL_DEFINE2(getpriority, int, which, int, who)
241 {
242 struct task_struct *g, *p;
243 struct user_struct *user;
244 const struct cred *cred = current_cred();
245 long niceval, retval = -ESRCH;
246 struct pid *pgrp;
247
248 if (which > PRIO_USER || which < PRIO_PROCESS)
249 return -EINVAL;
250
251 rcu_read_lock();
252 read_lock(&tasklist_lock);
253 switch (which) {
254 case PRIO_PROCESS:
255 if (who)
256 p = find_task_by_vpid(who);
257 else
258 p = current;
259 if (p) {
260 niceval = 20 - task_nice(p);
261 if (niceval > retval)
262 retval = niceval;
263 }
264 break;
265 case PRIO_PGRP:
266 if (who)
267 pgrp = find_vpid(who);
268 else
269 pgrp = task_pgrp(current);
270 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
271 niceval = 20 - task_nice(p);
272 if (niceval > retval)
273 retval = niceval;
274 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
275 break;
276 case PRIO_USER:
277 user = (struct user_struct *) cred->user;
278 if (!who)
279 who = cred->uid;
280 else if ((who != cred->uid) &&
281 !(user = find_user(who)))
282 goto out_unlock; /* No processes for this user */
283
284 do_each_thread(g, p) {
285 if (__task_cred(p)->uid == who) {
286 niceval = 20 - task_nice(p);
287 if (niceval > retval)
288 retval = niceval;
289 }
290 } while_each_thread(g, p);
291 if (who != cred->uid)
292 free_uid(user); /* for find_user() */
293 break;
294 }
295 out_unlock:
296 read_unlock(&tasklist_lock);
297 rcu_read_unlock();
298
299 return retval;
300 }
301
302 /**
303 * emergency_restart - reboot the system
304 *
305 * Without shutting down any hardware or taking any locks
306 * reboot the system. This is called when we know we are in
307 * trouble so this is our best effort to reboot. This is
308 * safe to call in interrupt context.
309 */
emergency_restart(void)310 void emergency_restart(void)
311 {
312 kmsg_dump(KMSG_DUMP_EMERG);
313 machine_emergency_restart();
314 }
315 EXPORT_SYMBOL_GPL(emergency_restart);
316
kernel_restart_prepare(char * cmd)317 void kernel_restart_prepare(char *cmd)
318 {
319 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
320 system_state = SYSTEM_RESTART;
321 usermodehelper_disable();
322 device_shutdown();
323 }
324
325 /**
326 * register_reboot_notifier - Register function to be called at reboot time
327 * @nb: Info about notifier function to be called
328 *
329 * Registers a function with the list of functions
330 * to be called at reboot time.
331 *
332 * Currently always returns zero, as blocking_notifier_chain_register()
333 * always returns zero.
334 */
register_reboot_notifier(struct notifier_block * nb)335 int register_reboot_notifier(struct notifier_block *nb)
336 {
337 return blocking_notifier_chain_register(&reboot_notifier_list, nb);
338 }
339 EXPORT_SYMBOL(register_reboot_notifier);
340
341 /**
342 * unregister_reboot_notifier - Unregister previously registered reboot notifier
343 * @nb: Hook to be unregistered
344 *
345 * Unregisters a previously registered reboot
346 * notifier function.
347 *
348 * Returns zero on success, or %-ENOENT on failure.
349 */
unregister_reboot_notifier(struct notifier_block * nb)350 int unregister_reboot_notifier(struct notifier_block *nb)
351 {
352 return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
353 }
354 EXPORT_SYMBOL(unregister_reboot_notifier);
355
356 /* Add backwards compatibility for stable trees. */
357 #ifndef PF_NO_SETAFFINITY
358 #define PF_NO_SETAFFINITY PF_THREAD_BOUND
359 #endif
360
migrate_to_reboot_cpu(void)361 static void migrate_to_reboot_cpu(void)
362 {
363 /* The boot cpu is always logical cpu 0 */
364 int cpu = 0;
365
366 cpu_hotplug_disable();
367
368 /* Make certain the cpu I'm about to reboot on is online */
369 if (!cpu_online(cpu))
370 cpu = cpumask_first(cpu_online_mask);
371
372 /* Prevent races with other tasks migrating this task */
373 current->flags |= PF_NO_SETAFFINITY;
374
375 /* Make certain I only run on the appropriate processor */
376 set_cpus_allowed_ptr(current, cpumask_of(cpu));
377 }
378
379 /**
380 * kernel_restart - reboot the system
381 * @cmd: pointer to buffer containing command to execute for restart
382 * or %NULL
383 *
384 * Shutdown everything and perform a clean reboot.
385 * This is not safe to call in interrupt context.
386 */
kernel_restart(char * cmd)387 void kernel_restart(char *cmd)
388 {
389 kernel_restart_prepare(cmd);
390 migrate_to_reboot_cpu();
391 syscore_shutdown();
392 if (!cmd)
393 printk(KERN_EMERG "Restarting system.\n");
394 else
395 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
396 kmsg_dump(KMSG_DUMP_RESTART);
397 machine_restart(cmd);
398 }
399 EXPORT_SYMBOL_GPL(kernel_restart);
400
kernel_shutdown_prepare(enum system_states state)401 static void kernel_shutdown_prepare(enum system_states state)
402 {
403 blocking_notifier_call_chain(&reboot_notifier_list,
404 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
405 system_state = state;
406 usermodehelper_disable();
407 device_shutdown();
408 }
409 /**
410 * kernel_halt - halt the system
411 *
412 * Shutdown everything and perform a clean system halt.
413 */
kernel_halt(void)414 void kernel_halt(void)
415 {
416 kernel_shutdown_prepare(SYSTEM_HALT);
417 migrate_to_reboot_cpu();
418 syscore_shutdown();
419 printk(KERN_EMERG "System halted.\n");
420 kmsg_dump(KMSG_DUMP_HALT);
421 machine_halt();
422 }
423
424 EXPORT_SYMBOL_GPL(kernel_halt);
425
426 /**
427 * kernel_power_off - power_off the system
428 *
429 * Shutdown everything and perform a clean system power_off.
430 */
kernel_power_off(void)431 void kernel_power_off(void)
432 {
433 kernel_shutdown_prepare(SYSTEM_POWER_OFF);
434 if (pm_power_off_prepare)
435 pm_power_off_prepare();
436 migrate_to_reboot_cpu();
437 syscore_shutdown();
438 printk(KERN_EMERG "Power down.\n");
439 kmsg_dump(KMSG_DUMP_POWEROFF);
440 machine_power_off();
441 }
442 EXPORT_SYMBOL_GPL(kernel_power_off);
443
444 static DEFINE_MUTEX(reboot_mutex);
445
446 /*
447 * Reboot system call: for obvious reasons only root may call it,
448 * and even root needs to set up some magic numbers in the registers
449 * so that some mistake won't make this reboot the whole machine.
450 * You can also set the meaning of the ctrl-alt-del-key here.
451 *
452 * reboot doesn't sync: do that yourself before calling this.
453 */
SYSCALL_DEFINE4(reboot,int,magic1,int,magic2,unsigned int,cmd,void __user *,arg)454 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
455 void __user *, arg)
456 {
457 char buffer[256];
458 int ret = 0;
459
460 /* We only trust the superuser with rebooting the system. */
461 if (!capable(CAP_SYS_BOOT))
462 return -EPERM;
463
464 /* For safety, we require "magic" arguments. */
465 if (magic1 != LINUX_REBOOT_MAGIC1 ||
466 (magic2 != LINUX_REBOOT_MAGIC2 &&
467 magic2 != LINUX_REBOOT_MAGIC2A &&
468 magic2 != LINUX_REBOOT_MAGIC2B &&
469 magic2 != LINUX_REBOOT_MAGIC2C))
470 return -EINVAL;
471
472 /*
473 * If pid namespaces are enabled and the current task is in a child
474 * pid_namespace, the command is handled by reboot_pid_ns() which will
475 * call do_exit().
476 */
477 ret = reboot_pid_ns(task_active_pid_ns(current), cmd);
478 if (ret)
479 return ret;
480
481 /* Instead of trying to make the power_off code look like
482 * halt when pm_power_off is not set do it the easy way.
483 */
484 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
485 cmd = LINUX_REBOOT_CMD_HALT;
486
487 mutex_lock(&reboot_mutex);
488 switch (cmd) {
489 case LINUX_REBOOT_CMD_RESTART:
490 kernel_restart(NULL);
491 break;
492
493 case LINUX_REBOOT_CMD_CAD_ON:
494 C_A_D = 1;
495 break;
496
497 case LINUX_REBOOT_CMD_CAD_OFF:
498 C_A_D = 0;
499 break;
500
501 case LINUX_REBOOT_CMD_HALT:
502 kernel_halt();
503 do_exit(0);
504 panic("cannot halt");
505
506 case LINUX_REBOOT_CMD_POWER_OFF:
507 kernel_power_off();
508 do_exit(0);
509 break;
510
511 case LINUX_REBOOT_CMD_RESTART2:
512 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
513 ret = -EFAULT;
514 break;
515 }
516 buffer[sizeof(buffer) - 1] = '\0';
517
518 kernel_restart(buffer);
519 break;
520
521 #ifdef CONFIG_KEXEC
522 case LINUX_REBOOT_CMD_KEXEC:
523 ret = kernel_kexec();
524 break;
525 #endif
526
527 #ifdef CONFIG_HIBERNATION
528 case LINUX_REBOOT_CMD_SW_SUSPEND:
529 ret = hibernate();
530 break;
531 #endif
532
533 default:
534 ret = -EINVAL;
535 break;
536 }
537 mutex_unlock(&reboot_mutex);
538 return ret;
539 }
540
deferred_cad(struct work_struct * dummy)541 static void deferred_cad(struct work_struct *dummy)
542 {
543 kernel_restart(NULL);
544 }
545
546 /*
547 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
548 * As it's called within an interrupt, it may NOT sync: the only choice
549 * is whether to reboot at once, or just ignore the ctrl-alt-del.
550 */
ctrl_alt_del(void)551 void ctrl_alt_del(void)
552 {
553 static DECLARE_WORK(cad_work, deferred_cad);
554
555 if (C_A_D)
556 schedule_work(&cad_work);
557 else
558 kill_cad_pid(SIGINT, 1);
559 }
560
561 /*
562 * Unprivileged users may change the real gid to the effective gid
563 * or vice versa. (BSD-style)
564 *
565 * If you set the real gid at all, or set the effective gid to a value not
566 * equal to the real gid, then the saved gid is set to the new effective gid.
567 *
568 * This makes it possible for a setgid program to completely drop its
569 * privileges, which is often a useful assertion to make when you are doing
570 * a security audit over a program.
571 *
572 * The general idea is that a program which uses just setregid() will be
573 * 100% compatible with BSD. A program which uses just setgid() will be
574 * 100% compatible with POSIX with saved IDs.
575 *
576 * SMP: There are not races, the GIDs are checked only by filesystem
577 * operations (as far as semantic preservation is concerned).
578 */
SYSCALL_DEFINE2(setregid,gid_t,rgid,gid_t,egid)579 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
580 {
581 const struct cred *old;
582 struct cred *new;
583 int retval;
584
585 new = prepare_creds();
586 if (!new)
587 return -ENOMEM;
588 old = current_cred();
589
590 retval = -EPERM;
591 if (rgid != (gid_t) -1) {
592 if (old->gid == rgid ||
593 old->egid == rgid ||
594 nsown_capable(CAP_SETGID))
595 new->gid = rgid;
596 else
597 goto error;
598 }
599 if (egid != (gid_t) -1) {
600 if (old->gid == egid ||
601 old->egid == egid ||
602 old->sgid == egid ||
603 nsown_capable(CAP_SETGID))
604 new->egid = egid;
605 else
606 goto error;
607 }
608
609 if (rgid != (gid_t) -1 ||
610 (egid != (gid_t) -1 && egid != old->gid))
611 new->sgid = new->egid;
612 new->fsgid = new->egid;
613
614 return commit_creds(new);
615
616 error:
617 abort_creds(new);
618 return retval;
619 }
620
621 /*
622 * setgid() is implemented like SysV w/ SAVED_IDS
623 *
624 * SMP: Same implicit races as above.
625 */
SYSCALL_DEFINE1(setgid,gid_t,gid)626 SYSCALL_DEFINE1(setgid, gid_t, gid)
627 {
628 const struct cred *old;
629 struct cred *new;
630 int retval;
631
632 new = prepare_creds();
633 if (!new)
634 return -ENOMEM;
635 old = current_cred();
636
637 retval = -EPERM;
638 if (nsown_capable(CAP_SETGID))
639 new->gid = new->egid = new->sgid = new->fsgid = gid;
640 else if (gid == old->gid || gid == old->sgid)
641 new->egid = new->fsgid = gid;
642 else
643 goto error;
644
645 return commit_creds(new);
646
647 error:
648 abort_creds(new);
649 return retval;
650 }
651
652 /*
653 * change the user struct in a credentials set to match the new UID
654 */
set_user(struct cred * new)655 static int set_user(struct cred *new)
656 {
657 struct user_struct *new_user;
658
659 new_user = alloc_uid(current_user_ns(), new->uid);
660 if (!new_user)
661 return -EAGAIN;
662
663 /*
664 * We don't fail in case of NPROC limit excess here because too many
665 * poorly written programs don't check set*uid() return code, assuming
666 * it never fails if called by root. We may still enforce NPROC limit
667 * for programs doing set*uid()+execve() by harmlessly deferring the
668 * failure to the execve() stage.
669 */
670 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
671 new_user != INIT_USER)
672 current->flags |= PF_NPROC_EXCEEDED;
673 else
674 current->flags &= ~PF_NPROC_EXCEEDED;
675
676 free_uid(new->user);
677 new->user = new_user;
678 return 0;
679 }
680
681 /*
682 * Unprivileged users may change the real uid to the effective uid
683 * or vice versa. (BSD-style)
684 *
685 * If you set the real uid at all, or set the effective uid to a value not
686 * equal to the real uid, then the saved uid is set to the new effective uid.
687 *
688 * This makes it possible for a setuid program to completely drop its
689 * privileges, which is often a useful assertion to make when you are doing
690 * a security audit over a program.
691 *
692 * The general idea is that a program which uses just setreuid() will be
693 * 100% compatible with BSD. A program which uses just setuid() will be
694 * 100% compatible with POSIX with saved IDs.
695 */
SYSCALL_DEFINE2(setreuid,uid_t,ruid,uid_t,euid)696 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
697 {
698 const struct cred *old;
699 struct cred *new;
700 int retval;
701
702 new = prepare_creds();
703 if (!new)
704 return -ENOMEM;
705 old = current_cred();
706
707 retval = -EPERM;
708 if (ruid != (uid_t) -1) {
709 new->uid = ruid;
710 if (old->uid != ruid &&
711 old->euid != ruid &&
712 !nsown_capable(CAP_SETUID))
713 goto error;
714 }
715
716 if (euid != (uid_t) -1) {
717 new->euid = euid;
718 if (old->uid != euid &&
719 old->euid != euid &&
720 old->suid != euid &&
721 !nsown_capable(CAP_SETUID))
722 goto error;
723 }
724
725 if (new->uid != old->uid) {
726 retval = set_user(new);
727 if (retval < 0)
728 goto error;
729 }
730 if (ruid != (uid_t) -1 ||
731 (euid != (uid_t) -1 && euid != old->uid))
732 new->suid = new->euid;
733 new->fsuid = new->euid;
734
735 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
736 if (retval < 0)
737 goto error;
738
739 return commit_creds(new);
740
741 error:
742 abort_creds(new);
743 return retval;
744 }
745
746 /*
747 * setuid() is implemented like SysV with SAVED_IDS
748 *
749 * Note that SAVED_ID's is deficient in that a setuid root program
750 * like sendmail, for example, cannot set its uid to be a normal
751 * user and then switch back, because if you're root, setuid() sets
752 * the saved uid too. If you don't like this, blame the bright people
753 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
754 * will allow a root program to temporarily drop privileges and be able to
755 * regain them by swapping the real and effective uid.
756 */
SYSCALL_DEFINE1(setuid,uid_t,uid)757 SYSCALL_DEFINE1(setuid, uid_t, uid)
758 {
759 const struct cred *old;
760 struct cred *new;
761 int retval;
762
763 new = prepare_creds();
764 if (!new)
765 return -ENOMEM;
766 old = current_cred();
767
768 retval = -EPERM;
769 if (nsown_capable(CAP_SETUID)) {
770 new->suid = new->uid = uid;
771 if (uid != old->uid) {
772 retval = set_user(new);
773 if (retval < 0)
774 goto error;
775 }
776 } else if (uid != old->uid && uid != new->suid) {
777 goto error;
778 }
779
780 new->fsuid = new->euid = uid;
781
782 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
783 if (retval < 0)
784 goto error;
785
786 return commit_creds(new);
787
788 error:
789 abort_creds(new);
790 return retval;
791 }
792
793
794 /*
795 * This function implements a generic ability to update ruid, euid,
796 * and suid. This allows you to implement the 4.4 compatible seteuid().
797 */
SYSCALL_DEFINE3(setresuid,uid_t,ruid,uid_t,euid,uid_t,suid)798 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
799 {
800 const struct cred *old;
801 struct cred *new;
802 int retval;
803
804 new = prepare_creds();
805 if (!new)
806 return -ENOMEM;
807
808 old = current_cred();
809
810 retval = -EPERM;
811 if (!nsown_capable(CAP_SETUID)) {
812 if (ruid != (uid_t) -1 && ruid != old->uid &&
813 ruid != old->euid && ruid != old->suid)
814 goto error;
815 if (euid != (uid_t) -1 && euid != old->uid &&
816 euid != old->euid && euid != old->suid)
817 goto error;
818 if (suid != (uid_t) -1 && suid != old->uid &&
819 suid != old->euid && suid != old->suid)
820 goto error;
821 }
822
823 if (ruid != (uid_t) -1) {
824 new->uid = ruid;
825 if (ruid != old->uid) {
826 retval = set_user(new);
827 if (retval < 0)
828 goto error;
829 }
830 }
831 if (euid != (uid_t) -1)
832 new->euid = euid;
833 if (suid != (uid_t) -1)
834 new->suid = suid;
835 new->fsuid = new->euid;
836
837 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
838 if (retval < 0)
839 goto error;
840
841 return commit_creds(new);
842
843 error:
844 abort_creds(new);
845 return retval;
846 }
847
SYSCALL_DEFINE3(getresuid,uid_t __user *,ruid,uid_t __user *,euid,uid_t __user *,suid)848 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
849 {
850 const struct cred *cred = current_cred();
851 int retval;
852
853 if (!(retval = put_user(cred->uid, ruid)) &&
854 !(retval = put_user(cred->euid, euid)))
855 retval = put_user(cred->suid, suid);
856
857 return retval;
858 }
859
860 /*
861 * Same as above, but for rgid, egid, sgid.
862 */
SYSCALL_DEFINE3(setresgid,gid_t,rgid,gid_t,egid,gid_t,sgid)863 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
864 {
865 const struct cred *old;
866 struct cred *new;
867 int retval;
868
869 new = prepare_creds();
870 if (!new)
871 return -ENOMEM;
872 old = current_cred();
873
874 retval = -EPERM;
875 if (!nsown_capable(CAP_SETGID)) {
876 if (rgid != (gid_t) -1 && rgid != old->gid &&
877 rgid != old->egid && rgid != old->sgid)
878 goto error;
879 if (egid != (gid_t) -1 && egid != old->gid &&
880 egid != old->egid && egid != old->sgid)
881 goto error;
882 if (sgid != (gid_t) -1 && sgid != old->gid &&
883 sgid != old->egid && sgid != old->sgid)
884 goto error;
885 }
886
887 if (rgid != (gid_t) -1)
888 new->gid = rgid;
889 if (egid != (gid_t) -1)
890 new->egid = egid;
891 if (sgid != (gid_t) -1)
892 new->sgid = sgid;
893 new->fsgid = new->egid;
894
895 return commit_creds(new);
896
897 error:
898 abort_creds(new);
899 return retval;
900 }
901
SYSCALL_DEFINE3(getresgid,gid_t __user *,rgid,gid_t __user *,egid,gid_t __user *,sgid)902 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
903 {
904 const struct cred *cred = current_cred();
905 int retval;
906
907 if (!(retval = put_user(cred->gid, rgid)) &&
908 !(retval = put_user(cred->egid, egid)))
909 retval = put_user(cred->sgid, sgid);
910
911 return retval;
912 }
913
914
915 /*
916 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
917 * is used for "access()" and for the NFS daemon (letting nfsd stay at
918 * whatever uid it wants to). It normally shadows "euid", except when
919 * explicitly set by setfsuid() or for access..
920 */
SYSCALL_DEFINE1(setfsuid,uid_t,uid)921 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
922 {
923 const struct cred *old;
924 struct cred *new;
925 uid_t old_fsuid;
926
927 new = prepare_creds();
928 if (!new)
929 return current_fsuid();
930 old = current_cred();
931 old_fsuid = old->fsuid;
932
933 if (uid == old->uid || uid == old->euid ||
934 uid == old->suid || uid == old->fsuid ||
935 nsown_capable(CAP_SETUID)) {
936 if (uid != old_fsuid) {
937 new->fsuid = uid;
938 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
939 goto change_okay;
940 }
941 }
942
943 abort_creds(new);
944 return old_fsuid;
945
946 change_okay:
947 commit_creds(new);
948 return old_fsuid;
949 }
950
951 /*
952 * Samma på svenska..
953 */
SYSCALL_DEFINE1(setfsgid,gid_t,gid)954 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
955 {
956 const struct cred *old;
957 struct cred *new;
958 gid_t old_fsgid;
959
960 new = prepare_creds();
961 if (!new)
962 return current_fsgid();
963 old = current_cred();
964 old_fsgid = old->fsgid;
965
966 if (gid == old->gid || gid == old->egid ||
967 gid == old->sgid || gid == old->fsgid ||
968 nsown_capable(CAP_SETGID)) {
969 if (gid != old_fsgid) {
970 new->fsgid = gid;
971 goto change_okay;
972 }
973 }
974
975 abort_creds(new);
976 return old_fsgid;
977
978 change_okay:
979 commit_creds(new);
980 return old_fsgid;
981 }
982
do_sys_times(struct tms * tms)983 void do_sys_times(struct tms *tms)
984 {
985 cputime_t tgutime, tgstime, cutime, cstime;
986
987 spin_lock_irq(¤t->sighand->siglock);
988 thread_group_times(current, &tgutime, &tgstime);
989 cutime = current->signal->cutime;
990 cstime = current->signal->cstime;
991 spin_unlock_irq(¤t->sighand->siglock);
992 tms->tms_utime = cputime_to_clock_t(tgutime);
993 tms->tms_stime = cputime_to_clock_t(tgstime);
994 tms->tms_cutime = cputime_to_clock_t(cutime);
995 tms->tms_cstime = cputime_to_clock_t(cstime);
996 }
997
SYSCALL_DEFINE1(times,struct tms __user *,tbuf)998 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
999 {
1000 if (tbuf) {
1001 struct tms tmp;
1002
1003 do_sys_times(&tmp);
1004 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1005 return -EFAULT;
1006 }
1007 force_successful_syscall_return();
1008 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1009 }
1010
1011 /*
1012 * This needs some heavy checking ...
1013 * I just haven't the stomach for it. I also don't fully
1014 * understand sessions/pgrp etc. Let somebody who does explain it.
1015 *
1016 * OK, I think I have the protection semantics right.... this is really
1017 * only important on a multi-user system anyway, to make sure one user
1018 * can't send a signal to a process owned by another. -TYT, 12/12/91
1019 *
1020 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1021 * LBT 04.03.94
1022 */
SYSCALL_DEFINE2(setpgid,pid_t,pid,pid_t,pgid)1023 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1024 {
1025 struct task_struct *p;
1026 struct task_struct *group_leader = current->group_leader;
1027 struct pid *pgrp;
1028 int err;
1029
1030 if (!pid)
1031 pid = task_pid_vnr(group_leader);
1032 if (!pgid)
1033 pgid = pid;
1034 if (pgid < 0)
1035 return -EINVAL;
1036 rcu_read_lock();
1037
1038 /* From this point forward we keep holding onto the tasklist lock
1039 * so that our parent does not change from under us. -DaveM
1040 */
1041 write_lock_irq(&tasklist_lock);
1042
1043 err = -ESRCH;
1044 p = find_task_by_vpid(pid);
1045 if (!p)
1046 goto out;
1047
1048 err = -EINVAL;
1049 if (!thread_group_leader(p))
1050 goto out;
1051
1052 if (same_thread_group(p->real_parent, group_leader)) {
1053 err = -EPERM;
1054 if (task_session(p) != task_session(group_leader))
1055 goto out;
1056 err = -EACCES;
1057 if (p->did_exec)
1058 goto out;
1059 } else {
1060 err = -ESRCH;
1061 if (p != group_leader)
1062 goto out;
1063 }
1064
1065 err = -EPERM;
1066 if (p->signal->leader)
1067 goto out;
1068
1069 pgrp = task_pid(p);
1070 if (pgid != pid) {
1071 struct task_struct *g;
1072
1073 pgrp = find_vpid(pgid);
1074 g = pid_task(pgrp, PIDTYPE_PGID);
1075 if (!g || task_session(g) != task_session(group_leader))
1076 goto out;
1077 }
1078
1079 err = security_task_setpgid(p, pgid);
1080 if (err)
1081 goto out;
1082
1083 if (task_pgrp(p) != pgrp)
1084 change_pid(p, PIDTYPE_PGID, pgrp);
1085
1086 err = 0;
1087 out:
1088 /* All paths lead to here, thus we are safe. -DaveM */
1089 write_unlock_irq(&tasklist_lock);
1090 rcu_read_unlock();
1091 return err;
1092 }
1093
SYSCALL_DEFINE1(getpgid,pid_t,pid)1094 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1095 {
1096 struct task_struct *p;
1097 struct pid *grp;
1098 int retval;
1099
1100 rcu_read_lock();
1101 if (!pid)
1102 grp = task_pgrp(current);
1103 else {
1104 retval = -ESRCH;
1105 p = find_task_by_vpid(pid);
1106 if (!p)
1107 goto out;
1108 grp = task_pgrp(p);
1109 if (!grp)
1110 goto out;
1111
1112 retval = security_task_getpgid(p);
1113 if (retval)
1114 goto out;
1115 }
1116 retval = pid_vnr(grp);
1117 out:
1118 rcu_read_unlock();
1119 return retval;
1120 }
1121
1122 #ifdef __ARCH_WANT_SYS_GETPGRP
1123
SYSCALL_DEFINE0(getpgrp)1124 SYSCALL_DEFINE0(getpgrp)
1125 {
1126 return sys_getpgid(0);
1127 }
1128
1129 #endif
1130
SYSCALL_DEFINE1(getsid,pid_t,pid)1131 SYSCALL_DEFINE1(getsid, pid_t, pid)
1132 {
1133 struct task_struct *p;
1134 struct pid *sid;
1135 int retval;
1136
1137 rcu_read_lock();
1138 if (!pid)
1139 sid = task_session(current);
1140 else {
1141 retval = -ESRCH;
1142 p = find_task_by_vpid(pid);
1143 if (!p)
1144 goto out;
1145 sid = task_session(p);
1146 if (!sid)
1147 goto out;
1148
1149 retval = security_task_getsid(p);
1150 if (retval)
1151 goto out;
1152 }
1153 retval = pid_vnr(sid);
1154 out:
1155 rcu_read_unlock();
1156 return retval;
1157 }
1158
SYSCALL_DEFINE0(setsid)1159 SYSCALL_DEFINE0(setsid)
1160 {
1161 struct task_struct *group_leader = current->group_leader;
1162 struct pid *sid = task_pid(group_leader);
1163 pid_t session = pid_vnr(sid);
1164 int err = -EPERM;
1165
1166 write_lock_irq(&tasklist_lock);
1167 /* Fail if I am already a session leader */
1168 if (group_leader->signal->leader)
1169 goto out;
1170
1171 /* Fail if a process group id already exists that equals the
1172 * proposed session id.
1173 */
1174 if (pid_task(sid, PIDTYPE_PGID))
1175 goto out;
1176
1177 group_leader->signal->leader = 1;
1178 __set_special_pids(sid);
1179
1180 proc_clear_tty(group_leader);
1181
1182 err = session;
1183 out:
1184 write_unlock_irq(&tasklist_lock);
1185 if (err > 0) {
1186 proc_sid_connector(group_leader);
1187 sched_autogroup_create_attach(group_leader);
1188 }
1189 return err;
1190 }
1191
1192 DECLARE_RWSEM(uts_sem);
1193
1194 #ifdef COMPAT_UTS_MACHINE
1195 #define override_architecture(name) \
1196 (personality(current->personality) == PER_LINUX32 && \
1197 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1198 sizeof(COMPAT_UTS_MACHINE)))
1199 #else
1200 #define override_architecture(name) 0
1201 #endif
1202
1203 /*
1204 * Work around broken programs that cannot handle "Linux 3.0".
1205 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1206 */
override_release(char __user * release,size_t len)1207 static int override_release(char __user *release, size_t len)
1208 {
1209 int ret = 0;
1210
1211 if (current->personality & UNAME26) {
1212 const char *rest = UTS_RELEASE;
1213 char buf[65] = { 0 };
1214 int ndots = 0;
1215 unsigned v;
1216 size_t copy;
1217
1218 while (*rest) {
1219 if (*rest == '.' && ++ndots >= 3)
1220 break;
1221 if (!isdigit(*rest) && *rest != '.')
1222 break;
1223 rest++;
1224 }
1225 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
1226 copy = clamp_t(size_t, len, 1, sizeof(buf));
1227 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1228 ret = copy_to_user(release, buf, copy + 1);
1229 }
1230 return ret;
1231 }
1232
SYSCALL_DEFINE1(newuname,struct new_utsname __user *,name)1233 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1234 {
1235 int errno = 0;
1236
1237 down_read(&uts_sem);
1238 if (copy_to_user(name, utsname(), sizeof *name))
1239 errno = -EFAULT;
1240 up_read(&uts_sem);
1241
1242 if (!errno && override_release(name->release, sizeof(name->release)))
1243 errno = -EFAULT;
1244 if (!errno && override_architecture(name))
1245 errno = -EFAULT;
1246 return errno;
1247 }
1248
1249 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1250 /*
1251 * Old cruft
1252 */
SYSCALL_DEFINE1(uname,struct old_utsname __user *,name)1253 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1254 {
1255 int error = 0;
1256
1257 if (!name)
1258 return -EFAULT;
1259
1260 down_read(&uts_sem);
1261 if (copy_to_user(name, utsname(), sizeof(*name)))
1262 error = -EFAULT;
1263 up_read(&uts_sem);
1264
1265 if (!error && override_release(name->release, sizeof(name->release)))
1266 error = -EFAULT;
1267 if (!error && override_architecture(name))
1268 error = -EFAULT;
1269 return error;
1270 }
1271
SYSCALL_DEFINE1(olduname,struct oldold_utsname __user *,name)1272 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1273 {
1274 int error;
1275
1276 if (!name)
1277 return -EFAULT;
1278 if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1279 return -EFAULT;
1280
1281 down_read(&uts_sem);
1282 error = __copy_to_user(&name->sysname, &utsname()->sysname,
1283 __OLD_UTS_LEN);
1284 error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1285 error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1286 __OLD_UTS_LEN);
1287 error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1288 error |= __copy_to_user(&name->release, &utsname()->release,
1289 __OLD_UTS_LEN);
1290 error |= __put_user(0, name->release + __OLD_UTS_LEN);
1291 error |= __copy_to_user(&name->version, &utsname()->version,
1292 __OLD_UTS_LEN);
1293 error |= __put_user(0, name->version + __OLD_UTS_LEN);
1294 error |= __copy_to_user(&name->machine, &utsname()->machine,
1295 __OLD_UTS_LEN);
1296 error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1297 up_read(&uts_sem);
1298
1299 if (!error && override_architecture(name))
1300 error = -EFAULT;
1301 if (!error && override_release(name->release, sizeof(name->release)))
1302 error = -EFAULT;
1303 return error ? -EFAULT : 0;
1304 }
1305 #endif
1306
SYSCALL_DEFINE2(sethostname,char __user *,name,int,len)1307 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1308 {
1309 int errno;
1310 char tmp[__NEW_UTS_LEN];
1311
1312 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1313 return -EPERM;
1314
1315 if (len < 0 || len > __NEW_UTS_LEN)
1316 return -EINVAL;
1317 down_write(&uts_sem);
1318 errno = -EFAULT;
1319 if (!copy_from_user(tmp, name, len)) {
1320 struct new_utsname *u = utsname();
1321
1322 memcpy(u->nodename, tmp, len);
1323 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1324 errno = 0;
1325 }
1326 uts_proc_notify(UTS_PROC_HOSTNAME);
1327 up_write(&uts_sem);
1328 return errno;
1329 }
1330
1331 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1332
SYSCALL_DEFINE2(gethostname,char __user *,name,int,len)1333 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1334 {
1335 int i, errno;
1336 struct new_utsname *u;
1337
1338 if (len < 0)
1339 return -EINVAL;
1340 down_read(&uts_sem);
1341 u = utsname();
1342 i = 1 + strlen(u->nodename);
1343 if (i > len)
1344 i = len;
1345 errno = 0;
1346 if (copy_to_user(name, u->nodename, i))
1347 errno = -EFAULT;
1348 up_read(&uts_sem);
1349 return errno;
1350 }
1351
1352 #endif
1353
1354 /*
1355 * Only setdomainname; getdomainname can be implemented by calling
1356 * uname()
1357 */
SYSCALL_DEFINE2(setdomainname,char __user *,name,int,len)1358 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1359 {
1360 int errno;
1361 char tmp[__NEW_UTS_LEN];
1362
1363 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1364 return -EPERM;
1365 if (len < 0 || len > __NEW_UTS_LEN)
1366 return -EINVAL;
1367
1368 down_write(&uts_sem);
1369 errno = -EFAULT;
1370 if (!copy_from_user(tmp, name, len)) {
1371 struct new_utsname *u = utsname();
1372
1373 memcpy(u->domainname, tmp, len);
1374 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1375 errno = 0;
1376 }
1377 uts_proc_notify(UTS_PROC_DOMAINNAME);
1378 up_write(&uts_sem);
1379 return errno;
1380 }
1381
SYSCALL_DEFINE2(getrlimit,unsigned int,resource,struct rlimit __user *,rlim)1382 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1383 {
1384 struct rlimit value;
1385 int ret;
1386
1387 ret = do_prlimit(current, resource, NULL, &value);
1388 if (!ret)
1389 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1390
1391 return ret;
1392 }
1393
1394 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1395
1396 /*
1397 * Back compatibility for getrlimit. Needed for some apps.
1398 */
1399
SYSCALL_DEFINE2(old_getrlimit,unsigned int,resource,struct rlimit __user *,rlim)1400 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1401 struct rlimit __user *, rlim)
1402 {
1403 struct rlimit x;
1404 if (resource >= RLIM_NLIMITS)
1405 return -EINVAL;
1406
1407 task_lock(current->group_leader);
1408 x = current->signal->rlim[resource];
1409 task_unlock(current->group_leader);
1410 if (x.rlim_cur > 0x7FFFFFFF)
1411 x.rlim_cur = 0x7FFFFFFF;
1412 if (x.rlim_max > 0x7FFFFFFF)
1413 x.rlim_max = 0x7FFFFFFF;
1414 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1415 }
1416
1417 #endif
1418
rlim64_is_infinity(__u64 rlim64)1419 static inline bool rlim64_is_infinity(__u64 rlim64)
1420 {
1421 #if BITS_PER_LONG < 64
1422 return rlim64 >= ULONG_MAX;
1423 #else
1424 return rlim64 == RLIM64_INFINITY;
1425 #endif
1426 }
1427
rlim_to_rlim64(const struct rlimit * rlim,struct rlimit64 * rlim64)1428 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1429 {
1430 if (rlim->rlim_cur == RLIM_INFINITY)
1431 rlim64->rlim_cur = RLIM64_INFINITY;
1432 else
1433 rlim64->rlim_cur = rlim->rlim_cur;
1434 if (rlim->rlim_max == RLIM_INFINITY)
1435 rlim64->rlim_max = RLIM64_INFINITY;
1436 else
1437 rlim64->rlim_max = rlim->rlim_max;
1438 }
1439
rlim64_to_rlim(const struct rlimit64 * rlim64,struct rlimit * rlim)1440 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1441 {
1442 if (rlim64_is_infinity(rlim64->rlim_cur))
1443 rlim->rlim_cur = RLIM_INFINITY;
1444 else
1445 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1446 if (rlim64_is_infinity(rlim64->rlim_max))
1447 rlim->rlim_max = RLIM_INFINITY;
1448 else
1449 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1450 }
1451
1452 /* make sure you are allowed to change @tsk limits before calling this */
do_prlimit(struct task_struct * tsk,unsigned int resource,struct rlimit * new_rlim,struct rlimit * old_rlim)1453 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1454 struct rlimit *new_rlim, struct rlimit *old_rlim)
1455 {
1456 struct rlimit *rlim;
1457 int retval = 0;
1458
1459 if (resource >= RLIM_NLIMITS)
1460 return -EINVAL;
1461 if (new_rlim) {
1462 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1463 return -EINVAL;
1464 if (resource == RLIMIT_NOFILE &&
1465 new_rlim->rlim_max > sysctl_nr_open)
1466 return -EPERM;
1467 }
1468
1469 /* protect tsk->signal and tsk->sighand from disappearing */
1470 read_lock(&tasklist_lock);
1471 if (!tsk->sighand) {
1472 retval = -ESRCH;
1473 goto out;
1474 }
1475
1476 rlim = tsk->signal->rlim + resource;
1477 task_lock(tsk->group_leader);
1478 if (new_rlim) {
1479 /* Keep the capable check against init_user_ns until
1480 cgroups can contain all limits */
1481 if (new_rlim->rlim_max > rlim->rlim_max &&
1482 !capable(CAP_SYS_RESOURCE))
1483 retval = -EPERM;
1484 if (!retval)
1485 retval = security_task_setrlimit(tsk->group_leader,
1486 resource, new_rlim);
1487 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1488 /*
1489 * The caller is asking for an immediate RLIMIT_CPU
1490 * expiry. But we use the zero value to mean "it was
1491 * never set". So let's cheat and make it one second
1492 * instead
1493 */
1494 new_rlim->rlim_cur = 1;
1495 }
1496 }
1497 if (!retval) {
1498 if (old_rlim)
1499 *old_rlim = *rlim;
1500 if (new_rlim)
1501 *rlim = *new_rlim;
1502 }
1503 task_unlock(tsk->group_leader);
1504
1505 /*
1506 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1507 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1508 * very long-standing error, and fixing it now risks breakage of
1509 * applications, so we live with it
1510 */
1511 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1512 new_rlim->rlim_cur != RLIM_INFINITY)
1513 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1514 out:
1515 read_unlock(&tasklist_lock);
1516 return retval;
1517 }
1518
1519 /* rcu lock must be held */
check_prlimit_permission(struct task_struct * task)1520 static int check_prlimit_permission(struct task_struct *task)
1521 {
1522 const struct cred *cred = current_cred(), *tcred;
1523
1524 if (current == task)
1525 return 0;
1526
1527 tcred = __task_cred(task);
1528 if (cred->user->user_ns == tcred->user->user_ns &&
1529 (cred->uid == tcred->euid &&
1530 cred->uid == tcred->suid &&
1531 cred->uid == tcred->uid &&
1532 cred->gid == tcred->egid &&
1533 cred->gid == tcred->sgid &&
1534 cred->gid == tcred->gid))
1535 return 0;
1536 if (ns_capable(tcred->user->user_ns, CAP_SYS_RESOURCE))
1537 return 0;
1538
1539 return -EPERM;
1540 }
1541
SYSCALL_DEFINE4(prlimit64,pid_t,pid,unsigned int,resource,const struct rlimit64 __user *,new_rlim,struct rlimit64 __user *,old_rlim)1542 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1543 const struct rlimit64 __user *, new_rlim,
1544 struct rlimit64 __user *, old_rlim)
1545 {
1546 struct rlimit64 old64, new64;
1547 struct rlimit old, new;
1548 struct task_struct *tsk;
1549 int ret;
1550
1551 if (new_rlim) {
1552 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1553 return -EFAULT;
1554 rlim64_to_rlim(&new64, &new);
1555 }
1556
1557 rcu_read_lock();
1558 tsk = pid ? find_task_by_vpid(pid) : current;
1559 if (!tsk) {
1560 rcu_read_unlock();
1561 return -ESRCH;
1562 }
1563 ret = check_prlimit_permission(tsk);
1564 if (ret) {
1565 rcu_read_unlock();
1566 return ret;
1567 }
1568 get_task_struct(tsk);
1569 rcu_read_unlock();
1570
1571 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1572 old_rlim ? &old : NULL);
1573
1574 if (!ret && old_rlim) {
1575 rlim_to_rlim64(&old, &old64);
1576 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1577 ret = -EFAULT;
1578 }
1579
1580 put_task_struct(tsk);
1581 return ret;
1582 }
1583
SYSCALL_DEFINE2(setrlimit,unsigned int,resource,struct rlimit __user *,rlim)1584 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1585 {
1586 struct rlimit new_rlim;
1587
1588 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1589 return -EFAULT;
1590 return do_prlimit(current, resource, &new_rlim, NULL);
1591 }
1592
1593 /*
1594 * It would make sense to put struct rusage in the task_struct,
1595 * except that would make the task_struct be *really big*. After
1596 * task_struct gets moved into malloc'ed memory, it would
1597 * make sense to do this. It will make moving the rest of the information
1598 * a lot simpler! (Which we're not doing right now because we're not
1599 * measuring them yet).
1600 *
1601 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1602 * races with threads incrementing their own counters. But since word
1603 * reads are atomic, we either get new values or old values and we don't
1604 * care which for the sums. We always take the siglock to protect reading
1605 * the c* fields from p->signal from races with exit.c updating those
1606 * fields when reaping, so a sample either gets all the additions of a
1607 * given child after it's reaped, or none so this sample is before reaping.
1608 *
1609 * Locking:
1610 * We need to take the siglock for CHILDEREN, SELF and BOTH
1611 * for the cases current multithreaded, non-current single threaded
1612 * non-current multithreaded. Thread traversal is now safe with
1613 * the siglock held.
1614 * Strictly speaking, we donot need to take the siglock if we are current and
1615 * single threaded, as no one else can take our signal_struct away, no one
1616 * else can reap the children to update signal->c* counters, and no one else
1617 * can race with the signal-> fields. If we do not take any lock, the
1618 * signal-> fields could be read out of order while another thread was just
1619 * exiting. So we should place a read memory barrier when we avoid the lock.
1620 * On the writer side, write memory barrier is implied in __exit_signal
1621 * as __exit_signal releases the siglock spinlock after updating the signal->
1622 * fields. But we don't do this yet to keep things simple.
1623 *
1624 */
1625
accumulate_thread_rusage(struct task_struct * t,struct rusage * r)1626 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1627 {
1628 r->ru_nvcsw += t->nvcsw;
1629 r->ru_nivcsw += t->nivcsw;
1630 r->ru_minflt += t->min_flt;
1631 r->ru_majflt += t->maj_flt;
1632 r->ru_inblock += task_io_get_inblock(t);
1633 r->ru_oublock += task_io_get_oublock(t);
1634 }
1635
k_getrusage(struct task_struct * p,int who,struct rusage * r)1636 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1637 {
1638 struct task_struct *t;
1639 unsigned long flags;
1640 cputime_t tgutime, tgstime, utime, stime;
1641 unsigned long maxrss = 0;
1642
1643 memset((char *) r, 0, sizeof *r);
1644 utime = stime = 0;
1645
1646 if (who == RUSAGE_THREAD) {
1647 task_times(current, &utime, &stime);
1648 accumulate_thread_rusage(p, r);
1649 maxrss = p->signal->maxrss;
1650 goto out;
1651 }
1652
1653 if (!lock_task_sighand(p, &flags))
1654 return;
1655
1656 switch (who) {
1657 case RUSAGE_BOTH:
1658 case RUSAGE_CHILDREN:
1659 utime = p->signal->cutime;
1660 stime = p->signal->cstime;
1661 r->ru_nvcsw = p->signal->cnvcsw;
1662 r->ru_nivcsw = p->signal->cnivcsw;
1663 r->ru_minflt = p->signal->cmin_flt;
1664 r->ru_majflt = p->signal->cmaj_flt;
1665 r->ru_inblock = p->signal->cinblock;
1666 r->ru_oublock = p->signal->coublock;
1667 maxrss = p->signal->cmaxrss;
1668
1669 if (who == RUSAGE_CHILDREN)
1670 break;
1671
1672 case RUSAGE_SELF:
1673 thread_group_times(p, &tgutime, &tgstime);
1674 utime += tgutime;
1675 stime += tgstime;
1676 r->ru_nvcsw += p->signal->nvcsw;
1677 r->ru_nivcsw += p->signal->nivcsw;
1678 r->ru_minflt += p->signal->min_flt;
1679 r->ru_majflt += p->signal->maj_flt;
1680 r->ru_inblock += p->signal->inblock;
1681 r->ru_oublock += p->signal->oublock;
1682 if (maxrss < p->signal->maxrss)
1683 maxrss = p->signal->maxrss;
1684 t = p;
1685 do {
1686 accumulate_thread_rusage(t, r);
1687 t = next_thread(t);
1688 } while (t != p);
1689 break;
1690
1691 default:
1692 BUG();
1693 }
1694 unlock_task_sighand(p, &flags);
1695
1696 out:
1697 cputime_to_timeval(utime, &r->ru_utime);
1698 cputime_to_timeval(stime, &r->ru_stime);
1699
1700 if (who != RUSAGE_CHILDREN) {
1701 struct mm_struct *mm = get_task_mm(p);
1702 if (mm) {
1703 setmax_mm_hiwater_rss(&maxrss, mm);
1704 mmput(mm);
1705 }
1706 }
1707 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1708 }
1709
getrusage(struct task_struct * p,int who,struct rusage __user * ru)1710 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1711 {
1712 struct rusage r;
1713 k_getrusage(p, who, &r);
1714 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1715 }
1716
SYSCALL_DEFINE2(getrusage,int,who,struct rusage __user *,ru)1717 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1718 {
1719 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1720 who != RUSAGE_THREAD)
1721 return -EINVAL;
1722 return getrusage(current, who, ru);
1723 }
1724
SYSCALL_DEFINE1(umask,int,mask)1725 SYSCALL_DEFINE1(umask, int, mask)
1726 {
1727 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO);
1728 return mask;
1729 }
1730
1731 #ifdef CONFIG_CHECKPOINT_RESTORE
prctl_set_mm(int opt,unsigned long addr,unsigned long arg4,unsigned long arg5)1732 static int prctl_set_mm(int opt, unsigned long addr,
1733 unsigned long arg4, unsigned long arg5)
1734 {
1735 unsigned long rlim = rlimit(RLIMIT_DATA);
1736 unsigned long vm_req_flags;
1737 unsigned long vm_bad_flags;
1738 struct vm_area_struct *vma;
1739 int error = 0;
1740 struct mm_struct *mm = current->mm;
1741
1742 if (arg4 | arg5)
1743 return -EINVAL;
1744
1745 if (!capable(CAP_SYS_RESOURCE))
1746 return -EPERM;
1747
1748 if (addr >= TASK_SIZE)
1749 return -EINVAL;
1750
1751 down_read(&mm->mmap_sem);
1752 vma = find_vma(mm, addr);
1753
1754 if (opt != PR_SET_MM_START_BRK && opt != PR_SET_MM_BRK) {
1755 /* It must be existing VMA */
1756 if (!vma || vma->vm_start > addr)
1757 goto out;
1758 }
1759
1760 error = -EINVAL;
1761 switch (opt) {
1762 case PR_SET_MM_START_CODE:
1763 case PR_SET_MM_END_CODE:
1764 vm_req_flags = VM_READ | VM_EXEC;
1765 vm_bad_flags = VM_WRITE | VM_MAYSHARE;
1766
1767 if ((vma->vm_flags & vm_req_flags) != vm_req_flags ||
1768 (vma->vm_flags & vm_bad_flags))
1769 goto out;
1770
1771 if (opt == PR_SET_MM_START_CODE)
1772 mm->start_code = addr;
1773 else
1774 mm->end_code = addr;
1775 break;
1776
1777 case PR_SET_MM_START_DATA:
1778 case PR_SET_MM_END_DATA:
1779 vm_req_flags = VM_READ | VM_WRITE;
1780 vm_bad_flags = VM_EXEC | VM_MAYSHARE;
1781
1782 if ((vma->vm_flags & vm_req_flags) != vm_req_flags ||
1783 (vma->vm_flags & vm_bad_flags))
1784 goto out;
1785
1786 if (opt == PR_SET_MM_START_DATA)
1787 mm->start_data = addr;
1788 else
1789 mm->end_data = addr;
1790 break;
1791
1792 case PR_SET_MM_START_STACK:
1793
1794 #ifdef CONFIG_STACK_GROWSUP
1795 vm_req_flags = VM_READ | VM_WRITE | VM_GROWSUP;
1796 #else
1797 vm_req_flags = VM_READ | VM_WRITE | VM_GROWSDOWN;
1798 #endif
1799 if ((vma->vm_flags & vm_req_flags) != vm_req_flags)
1800 goto out;
1801
1802 mm->start_stack = addr;
1803 break;
1804
1805 case PR_SET_MM_START_BRK:
1806 if (addr <= mm->end_data)
1807 goto out;
1808
1809 if (rlim < RLIM_INFINITY &&
1810 (mm->brk - addr) +
1811 (mm->end_data - mm->start_data) > rlim)
1812 goto out;
1813
1814 mm->start_brk = addr;
1815 break;
1816
1817 case PR_SET_MM_BRK:
1818 if (addr <= mm->end_data)
1819 goto out;
1820
1821 if (rlim < RLIM_INFINITY &&
1822 (addr - mm->start_brk) +
1823 (mm->end_data - mm->start_data) > rlim)
1824 goto out;
1825
1826 mm->brk = addr;
1827 break;
1828
1829 default:
1830 error = -EINVAL;
1831 goto out;
1832 }
1833
1834 error = 0;
1835
1836 out:
1837 up_read(&mm->mmap_sem);
1838
1839 return error;
1840 }
1841 #else /* CONFIG_CHECKPOINT_RESTORE */
prctl_set_mm(int opt,unsigned long addr,unsigned long arg4,unsigned long arg5)1842 static int prctl_set_mm(int opt, unsigned long addr,
1843 unsigned long arg4, unsigned long arg5)
1844 {
1845 return -EINVAL;
1846 }
1847 #endif
1848
SYSCALL_DEFINE5(prctl,int,option,unsigned long,arg2,unsigned long,arg3,unsigned long,arg4,unsigned long,arg5)1849 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1850 unsigned long, arg4, unsigned long, arg5)
1851 {
1852 struct task_struct *me = current;
1853 unsigned char comm[sizeof(me->comm)];
1854 long error;
1855
1856 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1857 if (error != -ENOSYS)
1858 return error;
1859
1860 error = 0;
1861 switch (option) {
1862 case PR_SET_PDEATHSIG:
1863 if (!valid_signal(arg2)) {
1864 error = -EINVAL;
1865 break;
1866 }
1867 me->pdeath_signal = arg2;
1868 error = 0;
1869 break;
1870 case PR_GET_PDEATHSIG:
1871 error = put_user(me->pdeath_signal, (int __user *)arg2);
1872 break;
1873 case PR_GET_DUMPABLE:
1874 error = get_dumpable(me->mm);
1875 break;
1876 case PR_SET_DUMPABLE:
1877 if (arg2 < 0 || arg2 > 1) {
1878 error = -EINVAL;
1879 break;
1880 }
1881 set_dumpable(me->mm, arg2);
1882 error = 0;
1883 break;
1884
1885 case PR_SET_UNALIGN:
1886 error = SET_UNALIGN_CTL(me, arg2);
1887 break;
1888 case PR_GET_UNALIGN:
1889 error = GET_UNALIGN_CTL(me, arg2);
1890 break;
1891 case PR_SET_FPEMU:
1892 error = SET_FPEMU_CTL(me, arg2);
1893 break;
1894 case PR_GET_FPEMU:
1895 error = GET_FPEMU_CTL(me, arg2);
1896 break;
1897 case PR_SET_FPEXC:
1898 error = SET_FPEXC_CTL(me, arg2);
1899 break;
1900 case PR_GET_FPEXC:
1901 error = GET_FPEXC_CTL(me, arg2);
1902 break;
1903 case PR_GET_TIMING:
1904 error = PR_TIMING_STATISTICAL;
1905 break;
1906 case PR_SET_TIMING:
1907 if (arg2 != PR_TIMING_STATISTICAL)
1908 error = -EINVAL;
1909 else
1910 error = 0;
1911 break;
1912
1913 case PR_SET_NAME:
1914 comm[sizeof(me->comm)-1] = 0;
1915 if (strncpy_from_user(comm, (char __user *)arg2,
1916 sizeof(me->comm) - 1) < 0)
1917 return -EFAULT;
1918 set_task_comm(me, comm);
1919 proc_comm_connector(me);
1920 return 0;
1921 case PR_GET_NAME:
1922 get_task_comm(comm, me);
1923 if (copy_to_user((char __user *)arg2, comm,
1924 sizeof(comm)))
1925 return -EFAULT;
1926 return 0;
1927 case PR_GET_ENDIAN:
1928 error = GET_ENDIAN(me, arg2);
1929 break;
1930 case PR_SET_ENDIAN:
1931 error = SET_ENDIAN(me, arg2);
1932 break;
1933
1934 case PR_GET_SECCOMP:
1935 error = prctl_get_seccomp();
1936 break;
1937 case PR_SET_SECCOMP:
1938 error = prctl_set_seccomp(arg2);
1939 break;
1940 case PR_GET_TSC:
1941 error = GET_TSC_CTL(arg2);
1942 break;
1943 case PR_SET_TSC:
1944 error = SET_TSC_CTL(arg2);
1945 break;
1946 case PR_TASK_PERF_EVENTS_DISABLE:
1947 error = perf_event_task_disable();
1948 break;
1949 case PR_TASK_PERF_EVENTS_ENABLE:
1950 error = perf_event_task_enable();
1951 break;
1952 case PR_GET_TIMERSLACK:
1953 error = current->timer_slack_ns;
1954 break;
1955 case PR_SET_TIMERSLACK:
1956 if (arg2 <= 0)
1957 current->timer_slack_ns =
1958 current->default_timer_slack_ns;
1959 else
1960 current->timer_slack_ns = arg2;
1961 error = 0;
1962 break;
1963 case PR_MCE_KILL:
1964 if (arg4 | arg5)
1965 return -EINVAL;
1966 switch (arg2) {
1967 case PR_MCE_KILL_CLEAR:
1968 if (arg3 != 0)
1969 return -EINVAL;
1970 current->flags &= ~PF_MCE_PROCESS;
1971 break;
1972 case PR_MCE_KILL_SET:
1973 current->flags |= PF_MCE_PROCESS;
1974 if (arg3 == PR_MCE_KILL_EARLY)
1975 current->flags |= PF_MCE_EARLY;
1976 else if (arg3 == PR_MCE_KILL_LATE)
1977 current->flags &= ~PF_MCE_EARLY;
1978 else if (arg3 == PR_MCE_KILL_DEFAULT)
1979 current->flags &=
1980 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
1981 else
1982 return -EINVAL;
1983 break;
1984 default:
1985 return -EINVAL;
1986 }
1987 error = 0;
1988 break;
1989 case PR_MCE_KILL_GET:
1990 if (arg2 | arg3 | arg4 | arg5)
1991 return -EINVAL;
1992 if (current->flags & PF_MCE_PROCESS)
1993 error = (current->flags & PF_MCE_EARLY) ?
1994 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1995 else
1996 error = PR_MCE_KILL_DEFAULT;
1997 break;
1998 case PR_SET_MM:
1999 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2000 break;
2001 case PR_SET_CHILD_SUBREAPER:
2002 me->signal->is_child_subreaper = !!arg2;
2003 error = 0;
2004 break;
2005 case PR_GET_CHILD_SUBREAPER:
2006 error = put_user(me->signal->is_child_subreaper,
2007 (int __user *) arg2);
2008 break;
2009 default:
2010 error = -EINVAL;
2011 break;
2012 }
2013 return error;
2014 }
2015
SYSCALL_DEFINE3(getcpu,unsigned __user *,cpup,unsigned __user *,nodep,struct getcpu_cache __user *,unused)2016 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2017 struct getcpu_cache __user *, unused)
2018 {
2019 int err = 0;
2020 int cpu = raw_smp_processor_id();
2021 if (cpup)
2022 err |= put_user(cpu, cpup);
2023 if (nodep)
2024 err |= put_user(cpu_to_node(cpu), nodep);
2025 return err ? -EFAULT : 0;
2026 }
2027
2028 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
2029
argv_cleanup(struct subprocess_info * info)2030 static void argv_cleanup(struct subprocess_info *info)
2031 {
2032 argv_free(info->argv);
2033 }
2034
2035 /**
2036 * orderly_poweroff - Trigger an orderly system poweroff
2037 * @force: force poweroff if command execution fails
2038 *
2039 * This may be called from any context to trigger a system shutdown.
2040 * If the orderly shutdown fails, it will force an immediate shutdown.
2041 */
orderly_poweroff(bool force)2042 int orderly_poweroff(bool force)
2043 {
2044 int argc;
2045 char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
2046 static char *envp[] = {
2047 "HOME=/",
2048 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
2049 NULL
2050 };
2051 int ret = -ENOMEM;
2052 struct subprocess_info *info;
2053
2054 if (argv == NULL) {
2055 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
2056 __func__, poweroff_cmd);
2057 goto out;
2058 }
2059
2060 info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
2061 if (info == NULL) {
2062 argv_free(argv);
2063 goto out;
2064 }
2065
2066 call_usermodehelper_setfns(info, NULL, argv_cleanup, NULL);
2067
2068 ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
2069
2070 out:
2071 if (ret && force) {
2072 printk(KERN_WARNING "Failed to start orderly shutdown: "
2073 "forcing the issue\n");
2074
2075 /* I guess this should try to kick off some daemon to
2076 sync and poweroff asap. Or not even bother syncing
2077 if we're doing an emergency shutdown? */
2078 emergency_sync();
2079 kernel_power_off();
2080 }
2081
2082 return ret;
2083 }
2084 EXPORT_SYMBOL_GPL(orderly_poweroff);
2085