1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/exec.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * #!-checking implemented by tytso.
10 */
11 /*
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
15 *
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
18 *
19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
20 * current->executable is only used by the procfs. This allows a dispatch
21 * table to check for several different types of binary formats. We keep
22 * trying until we recognize the file or we run out of supported binary
23 * formats.
24 */
25
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/oom.h>
62 #include <linux/compat.h>
63 #include <linux/vmalloc.h>
64 #include <linux/io_uring.h>
65 #include <linux/syscall_user_dispatch.h>
66 #include <linux/coredump.h>
67 #include <linux/time_namespace.h>
68 #include <linux/user_events.h>
69
70 #include <linux/uaccess.h>
71 #include <asm/mmu_context.h>
72 #include <asm/tlb.h>
73
74 #include <trace/events/task.h>
75 #include "internal.h"
76
77 #include <trace/events/sched.h>
78
79 static int bprm_creds_from_file(struct linux_binprm *bprm);
80
81 int suid_dumpable = 0;
82
83 static LIST_HEAD(formats);
84 static DEFINE_RWLOCK(binfmt_lock);
85
__register_binfmt(struct linux_binfmt * fmt,int insert)86 void __register_binfmt(struct linux_binfmt * fmt, int insert)
87 {
88 write_lock(&binfmt_lock);
89 insert ? list_add(&fmt->lh, &formats) :
90 list_add_tail(&fmt->lh, &formats);
91 write_unlock(&binfmt_lock);
92 }
93
94 EXPORT_SYMBOL(__register_binfmt);
95
unregister_binfmt(struct linux_binfmt * fmt)96 void unregister_binfmt(struct linux_binfmt * fmt)
97 {
98 write_lock(&binfmt_lock);
99 list_del(&fmt->lh);
100 write_unlock(&binfmt_lock);
101 }
102
103 EXPORT_SYMBOL(unregister_binfmt);
104
put_binfmt(struct linux_binfmt * fmt)105 static inline void put_binfmt(struct linux_binfmt * fmt)
106 {
107 module_put(fmt->module);
108 }
109
path_noexec(const struct path * path)110 bool path_noexec(const struct path *path)
111 {
112 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
113 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
114 }
115
116 #ifdef CONFIG_USELIB
117 /*
118 * Note that a shared library must be both readable and executable due to
119 * security reasons.
120 *
121 * Also note that we take the address to load from the file itself.
122 */
SYSCALL_DEFINE1(uselib,const char __user *,library)123 SYSCALL_DEFINE1(uselib, const char __user *, library)
124 {
125 struct linux_binfmt *fmt;
126 struct file *file;
127 struct filename *tmp = getname(library);
128 int error = PTR_ERR(tmp);
129 static const struct open_flags uselib_flags = {
130 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
131 .acc_mode = MAY_READ | MAY_EXEC,
132 .intent = LOOKUP_OPEN,
133 .lookup_flags = LOOKUP_FOLLOW,
134 };
135
136 if (IS_ERR(tmp))
137 goto out;
138
139 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
140 putname(tmp);
141 error = PTR_ERR(file);
142 if (IS_ERR(file))
143 goto out;
144
145 /*
146 * may_open() has already checked for this, so it should be
147 * impossible to trip now. But we need to be extra cautious
148 * and check again at the very end too.
149 */
150 error = -EACCES;
151 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
152 path_noexec(&file->f_path)))
153 goto exit;
154
155 error = -ENOEXEC;
156
157 read_lock(&binfmt_lock);
158 list_for_each_entry(fmt, &formats, lh) {
159 if (!fmt->load_shlib)
160 continue;
161 if (!try_module_get(fmt->module))
162 continue;
163 read_unlock(&binfmt_lock);
164 error = fmt->load_shlib(file);
165 read_lock(&binfmt_lock);
166 put_binfmt(fmt);
167 if (error != -ENOEXEC)
168 break;
169 }
170 read_unlock(&binfmt_lock);
171 exit:
172 fput(file);
173 out:
174 return error;
175 }
176 #endif /* #ifdef CONFIG_USELIB */
177
178 #ifdef CONFIG_MMU
179 /*
180 * The nascent bprm->mm is not visible until exec_mmap() but it can
181 * use a lot of memory, account these pages in current->mm temporary
182 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
183 * change the counter back via acct_arg_size(0).
184 */
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)185 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
186 {
187 struct mm_struct *mm = current->mm;
188 long diff = (long)(pages - bprm->vma_pages);
189
190 if (!mm || !diff)
191 return;
192
193 bprm->vma_pages = pages;
194 add_mm_counter(mm, MM_ANONPAGES, diff);
195 }
196
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)197 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
198 int write)
199 {
200 struct page *page;
201 struct vm_area_struct *vma = bprm->vma;
202 struct mm_struct *mm = bprm->mm;
203 int ret;
204
205 /*
206 * Avoid relying on expanding the stack down in GUP (which
207 * does not work for STACK_GROWSUP anyway), and just do it
208 * by hand ahead of time.
209 */
210 if (write && pos < vma->vm_start) {
211 mmap_write_lock(mm);
212 ret = expand_downwards(vma, pos);
213 if (unlikely(ret < 0)) {
214 mmap_write_unlock(mm);
215 return NULL;
216 }
217 mmap_write_downgrade(mm);
218 } else
219 mmap_read_lock(mm);
220
221 /*
222 * We are doing an exec(). 'current' is the process
223 * doing the exec and 'mm' is the new process's mm.
224 */
225 ret = get_user_pages_remote(mm, pos, 1,
226 write ? FOLL_WRITE : 0,
227 &page, NULL);
228 mmap_read_unlock(mm);
229 if (ret <= 0)
230 return NULL;
231
232 if (write)
233 acct_arg_size(bprm, vma_pages(vma));
234
235 return page;
236 }
237
put_arg_page(struct page * page)238 static void put_arg_page(struct page *page)
239 {
240 put_page(page);
241 }
242
free_arg_pages(struct linux_binprm * bprm)243 static void free_arg_pages(struct linux_binprm *bprm)
244 {
245 }
246
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)247 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
248 struct page *page)
249 {
250 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
251 }
252
__bprm_mm_init(struct linux_binprm * bprm)253 static int __bprm_mm_init(struct linux_binprm *bprm)
254 {
255 int err;
256 struct vm_area_struct *vma = NULL;
257 struct mm_struct *mm = bprm->mm;
258
259 bprm->vma = vma = vm_area_alloc(mm);
260 if (!vma)
261 return -ENOMEM;
262 vma_set_anonymous(vma);
263
264 if (mmap_write_lock_killable(mm)) {
265 err = -EINTR;
266 goto err_free;
267 }
268
269 /*
270 * Place the stack at the largest stack address the architecture
271 * supports. Later, we'll move this to an appropriate place. We don't
272 * use STACK_TOP because that can depend on attributes which aren't
273 * configured yet.
274 */
275 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
276 vma->vm_end = STACK_TOP_MAX;
277 vma->vm_start = vma->vm_end - PAGE_SIZE;
278 vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP);
279 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
280
281 err = insert_vm_struct(mm, vma);
282 if (err)
283 goto err;
284
285 mm->stack_vm = mm->total_vm = 1;
286 mmap_write_unlock(mm);
287 bprm->p = vma->vm_end - sizeof(void *);
288 return 0;
289 err:
290 mmap_write_unlock(mm);
291 err_free:
292 bprm->vma = NULL;
293 vm_area_free(vma);
294 return err;
295 }
296
valid_arg_len(struct linux_binprm * bprm,long len)297 static bool valid_arg_len(struct linux_binprm *bprm, long len)
298 {
299 return len <= MAX_ARG_STRLEN;
300 }
301
302 #else
303
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)304 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
305 {
306 }
307
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)308 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
309 int write)
310 {
311 struct page *page;
312
313 page = bprm->page[pos / PAGE_SIZE];
314 if (!page && write) {
315 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
316 if (!page)
317 return NULL;
318 bprm->page[pos / PAGE_SIZE] = page;
319 }
320
321 return page;
322 }
323
put_arg_page(struct page * page)324 static void put_arg_page(struct page *page)
325 {
326 }
327
free_arg_page(struct linux_binprm * bprm,int i)328 static void free_arg_page(struct linux_binprm *bprm, int i)
329 {
330 if (bprm->page[i]) {
331 __free_page(bprm->page[i]);
332 bprm->page[i] = NULL;
333 }
334 }
335
free_arg_pages(struct linux_binprm * bprm)336 static void free_arg_pages(struct linux_binprm *bprm)
337 {
338 int i;
339
340 for (i = 0; i < MAX_ARG_PAGES; i++)
341 free_arg_page(bprm, i);
342 }
343
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)344 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
345 struct page *page)
346 {
347 }
348
__bprm_mm_init(struct linux_binprm * bprm)349 static int __bprm_mm_init(struct linux_binprm *bprm)
350 {
351 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
352 return 0;
353 }
354
valid_arg_len(struct linux_binprm * bprm,long len)355 static bool valid_arg_len(struct linux_binprm *bprm, long len)
356 {
357 return len <= bprm->p;
358 }
359
360 #endif /* CONFIG_MMU */
361
362 /*
363 * Create a new mm_struct and populate it with a temporary stack
364 * vm_area_struct. We don't have enough context at this point to set the stack
365 * flags, permissions, and offset, so we use temporary values. We'll update
366 * them later in setup_arg_pages().
367 */
bprm_mm_init(struct linux_binprm * bprm)368 static int bprm_mm_init(struct linux_binprm *bprm)
369 {
370 int err;
371 struct mm_struct *mm = NULL;
372
373 bprm->mm = mm = mm_alloc();
374 err = -ENOMEM;
375 if (!mm)
376 goto err;
377
378 /* Save current stack limit for all calculations made during exec. */
379 task_lock(current->group_leader);
380 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
381 task_unlock(current->group_leader);
382
383 err = __bprm_mm_init(bprm);
384 if (err)
385 goto err;
386
387 return 0;
388
389 err:
390 if (mm) {
391 bprm->mm = NULL;
392 mmdrop(mm);
393 }
394
395 return err;
396 }
397
398 struct user_arg_ptr {
399 #ifdef CONFIG_COMPAT
400 bool is_compat;
401 #endif
402 union {
403 const char __user *const __user *native;
404 #ifdef CONFIG_COMPAT
405 const compat_uptr_t __user *compat;
406 #endif
407 } ptr;
408 };
409
get_user_arg_ptr(struct user_arg_ptr argv,int nr)410 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
411 {
412 const char __user *native;
413
414 #ifdef CONFIG_COMPAT
415 if (unlikely(argv.is_compat)) {
416 compat_uptr_t compat;
417
418 if (get_user(compat, argv.ptr.compat + nr))
419 return ERR_PTR(-EFAULT);
420
421 return compat_ptr(compat);
422 }
423 #endif
424
425 if (get_user(native, argv.ptr.native + nr))
426 return ERR_PTR(-EFAULT);
427
428 return native;
429 }
430
431 /*
432 * count() counts the number of strings in array ARGV.
433 */
count(struct user_arg_ptr argv,int max)434 static int count(struct user_arg_ptr argv, int max)
435 {
436 int i = 0;
437
438 if (argv.ptr.native != NULL) {
439 for (;;) {
440 const char __user *p = get_user_arg_ptr(argv, i);
441
442 if (!p)
443 break;
444
445 if (IS_ERR(p))
446 return -EFAULT;
447
448 if (i >= max)
449 return -E2BIG;
450 ++i;
451
452 if (fatal_signal_pending(current))
453 return -ERESTARTNOHAND;
454 cond_resched();
455 }
456 }
457 return i;
458 }
459
count_strings_kernel(const char * const * argv)460 static int count_strings_kernel(const char *const *argv)
461 {
462 int i;
463
464 if (!argv)
465 return 0;
466
467 for (i = 0; argv[i]; ++i) {
468 if (i >= MAX_ARG_STRINGS)
469 return -E2BIG;
470 if (fatal_signal_pending(current))
471 return -ERESTARTNOHAND;
472 cond_resched();
473 }
474 return i;
475 }
476
bprm_stack_limits(struct linux_binprm * bprm)477 static int bprm_stack_limits(struct linux_binprm *bprm)
478 {
479 unsigned long limit, ptr_size;
480
481 /*
482 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
483 * (whichever is smaller) for the argv+env strings.
484 * This ensures that:
485 * - the remaining binfmt code will not run out of stack space,
486 * - the program will have a reasonable amount of stack left
487 * to work from.
488 */
489 limit = _STK_LIM / 4 * 3;
490 limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
491 /*
492 * We've historically supported up to 32 pages (ARG_MAX)
493 * of argument strings even with small stacks
494 */
495 limit = max_t(unsigned long, limit, ARG_MAX);
496 /*
497 * We must account for the size of all the argv and envp pointers to
498 * the argv and envp strings, since they will also take up space in
499 * the stack. They aren't stored until much later when we can't
500 * signal to the parent that the child has run out of stack space.
501 * Instead, calculate it here so it's possible to fail gracefully.
502 *
503 * In the case of argc = 0, make sure there is space for adding a
504 * empty string (which will bump argc to 1), to ensure confused
505 * userspace programs don't start processing from argv[1], thinking
506 * argc can never be 0, to keep them from walking envp by accident.
507 * See do_execveat_common().
508 */
509 ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
510 if (limit <= ptr_size)
511 return -E2BIG;
512 limit -= ptr_size;
513
514 bprm->argmin = bprm->p - limit;
515 return 0;
516 }
517
518 /*
519 * 'copy_strings()' copies argument/environment strings from the old
520 * processes's memory to the new process's stack. The call to get_user_pages()
521 * ensures the destination page is created and not swapped out.
522 */
copy_strings(int argc,struct user_arg_ptr argv,struct linux_binprm * bprm)523 static int copy_strings(int argc, struct user_arg_ptr argv,
524 struct linux_binprm *bprm)
525 {
526 struct page *kmapped_page = NULL;
527 char *kaddr = NULL;
528 unsigned long kpos = 0;
529 int ret;
530
531 while (argc-- > 0) {
532 const char __user *str;
533 int len;
534 unsigned long pos;
535
536 ret = -EFAULT;
537 str = get_user_arg_ptr(argv, argc);
538 if (IS_ERR(str))
539 goto out;
540
541 len = strnlen_user(str, MAX_ARG_STRLEN);
542 if (!len)
543 goto out;
544
545 ret = -E2BIG;
546 if (!valid_arg_len(bprm, len))
547 goto out;
548
549 /* We're going to work our way backwards. */
550 pos = bprm->p;
551 str += len;
552 bprm->p -= len;
553 #ifdef CONFIG_MMU
554 if (bprm->p < bprm->argmin)
555 goto out;
556 #endif
557
558 while (len > 0) {
559 int offset, bytes_to_copy;
560
561 if (fatal_signal_pending(current)) {
562 ret = -ERESTARTNOHAND;
563 goto out;
564 }
565 cond_resched();
566
567 offset = pos % PAGE_SIZE;
568 if (offset == 0)
569 offset = PAGE_SIZE;
570
571 bytes_to_copy = offset;
572 if (bytes_to_copy > len)
573 bytes_to_copy = len;
574
575 offset -= bytes_to_copy;
576 pos -= bytes_to_copy;
577 str -= bytes_to_copy;
578 len -= bytes_to_copy;
579
580 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
581 struct page *page;
582
583 page = get_arg_page(bprm, pos, 1);
584 if (!page) {
585 ret = -E2BIG;
586 goto out;
587 }
588
589 if (kmapped_page) {
590 flush_dcache_page(kmapped_page);
591 kunmap_local(kaddr);
592 put_arg_page(kmapped_page);
593 }
594 kmapped_page = page;
595 kaddr = kmap_local_page(kmapped_page);
596 kpos = pos & PAGE_MASK;
597 flush_arg_page(bprm, kpos, kmapped_page);
598 }
599 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
600 ret = -EFAULT;
601 goto out;
602 }
603 }
604 }
605 ret = 0;
606 out:
607 if (kmapped_page) {
608 flush_dcache_page(kmapped_page);
609 kunmap_local(kaddr);
610 put_arg_page(kmapped_page);
611 }
612 return ret;
613 }
614
615 /*
616 * Copy and argument/environment string from the kernel to the processes stack.
617 */
copy_string_kernel(const char * arg,struct linux_binprm * bprm)618 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
619 {
620 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
621 unsigned long pos = bprm->p;
622
623 if (len == 0)
624 return -EFAULT;
625 if (!valid_arg_len(bprm, len))
626 return -E2BIG;
627
628 /* We're going to work our way backwards. */
629 arg += len;
630 bprm->p -= len;
631 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
632 return -E2BIG;
633
634 while (len > 0) {
635 unsigned int bytes_to_copy = min_t(unsigned int, len,
636 min_not_zero(offset_in_page(pos), PAGE_SIZE));
637 struct page *page;
638
639 pos -= bytes_to_copy;
640 arg -= bytes_to_copy;
641 len -= bytes_to_copy;
642
643 page = get_arg_page(bprm, pos, 1);
644 if (!page)
645 return -E2BIG;
646 flush_arg_page(bprm, pos & PAGE_MASK, page);
647 memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
648 put_arg_page(page);
649 }
650
651 return 0;
652 }
653 EXPORT_SYMBOL(copy_string_kernel);
654
copy_strings_kernel(int argc,const char * const * argv,struct linux_binprm * bprm)655 static int copy_strings_kernel(int argc, const char *const *argv,
656 struct linux_binprm *bprm)
657 {
658 while (argc-- > 0) {
659 int ret = copy_string_kernel(argv[argc], bprm);
660 if (ret < 0)
661 return ret;
662 if (fatal_signal_pending(current))
663 return -ERESTARTNOHAND;
664 cond_resched();
665 }
666 return 0;
667 }
668
669 #ifdef CONFIG_MMU
670
671 /*
672 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
673 * the binfmt code determines where the new stack should reside, we shift it to
674 * its final location. The process proceeds as follows:
675 *
676 * 1) Use shift to calculate the new vma endpoints.
677 * 2) Extend vma to cover both the old and new ranges. This ensures the
678 * arguments passed to subsequent functions are consistent.
679 * 3) Move vma's page tables to the new range.
680 * 4) Free up any cleared pgd range.
681 * 5) Shrink the vma to cover only the new range.
682 */
shift_arg_pages(struct vm_area_struct * vma,unsigned long shift)683 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
684 {
685 struct mm_struct *mm = vma->vm_mm;
686 unsigned long old_start = vma->vm_start;
687 unsigned long old_end = vma->vm_end;
688 unsigned long length = old_end - old_start;
689 unsigned long new_start = old_start - shift;
690 unsigned long new_end = old_end - shift;
691 VMA_ITERATOR(vmi, mm, new_start);
692 struct vm_area_struct *next;
693 struct mmu_gather tlb;
694
695 BUG_ON(new_start > new_end);
696
697 /*
698 * ensure there are no vmas between where we want to go
699 * and where we are
700 */
701 if (vma != vma_next(&vmi))
702 return -EFAULT;
703
704 vma_iter_prev_range(&vmi);
705 /*
706 * cover the whole range: [new_start, old_end)
707 */
708 if (vma_expand(&vmi, vma, new_start, old_end, vma->vm_pgoff, NULL))
709 return -ENOMEM;
710
711 /*
712 * move the page tables downwards, on failure we rely on
713 * process cleanup to remove whatever mess we made.
714 */
715 if (length != move_page_tables(vma, old_start,
716 vma, new_start, length, false))
717 return -ENOMEM;
718
719 lru_add_drain();
720 tlb_gather_mmu(&tlb, mm);
721 next = vma_next(&vmi);
722 if (new_end > old_start) {
723 /*
724 * when the old and new regions overlap clear from new_end.
725 */
726 free_pgd_range(&tlb, new_end, old_end, new_end,
727 next ? next->vm_start : USER_PGTABLES_CEILING);
728 } else {
729 /*
730 * otherwise, clean from old_start; this is done to not touch
731 * the address space in [new_end, old_start) some architectures
732 * have constraints on va-space that make this illegal (IA64) -
733 * for the others its just a little faster.
734 */
735 free_pgd_range(&tlb, old_start, old_end, new_end,
736 next ? next->vm_start : USER_PGTABLES_CEILING);
737 }
738 tlb_finish_mmu(&tlb);
739
740 vma_prev(&vmi);
741 /* Shrink the vma to just the new range */
742 return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff);
743 }
744
745 /*
746 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
747 * the stack is optionally relocated, and some extra space is added.
748 */
setup_arg_pages(struct linux_binprm * bprm,unsigned long stack_top,int executable_stack)749 int setup_arg_pages(struct linux_binprm *bprm,
750 unsigned long stack_top,
751 int executable_stack)
752 {
753 unsigned long ret;
754 unsigned long stack_shift;
755 struct mm_struct *mm = current->mm;
756 struct vm_area_struct *vma = bprm->vma;
757 struct vm_area_struct *prev = NULL;
758 unsigned long vm_flags;
759 unsigned long stack_base;
760 unsigned long stack_size;
761 unsigned long stack_expand;
762 unsigned long rlim_stack;
763 struct mmu_gather tlb;
764 struct vma_iterator vmi;
765
766 #ifdef CONFIG_STACK_GROWSUP
767 /* Limit stack size */
768 stack_base = bprm->rlim_stack.rlim_max;
769
770 stack_base = calc_max_stack_size(stack_base);
771
772 /* Add space for stack randomization. */
773 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
774
775 /* Make sure we didn't let the argument array grow too large. */
776 if (vma->vm_end - vma->vm_start > stack_base)
777 return -ENOMEM;
778
779 stack_base = PAGE_ALIGN(stack_top - stack_base);
780
781 stack_shift = vma->vm_start - stack_base;
782 mm->arg_start = bprm->p - stack_shift;
783 bprm->p = vma->vm_end - stack_shift;
784 #else
785 stack_top = arch_align_stack(stack_top);
786 stack_top = PAGE_ALIGN(stack_top);
787
788 if (unlikely(stack_top < mmap_min_addr) ||
789 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
790 return -ENOMEM;
791
792 stack_shift = vma->vm_end - stack_top;
793
794 bprm->p -= stack_shift;
795 mm->arg_start = bprm->p;
796 #endif
797
798 if (bprm->loader)
799 bprm->loader -= stack_shift;
800 bprm->exec -= stack_shift;
801
802 if (mmap_write_lock_killable(mm))
803 return -EINTR;
804
805 vm_flags = VM_STACK_FLAGS;
806
807 /*
808 * Adjust stack execute permissions; explicitly enable for
809 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
810 * (arch default) otherwise.
811 */
812 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
813 vm_flags |= VM_EXEC;
814 else if (executable_stack == EXSTACK_DISABLE_X)
815 vm_flags &= ~VM_EXEC;
816 vm_flags |= mm->def_flags;
817 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
818
819 vma_iter_init(&vmi, mm, vma->vm_start);
820
821 tlb_gather_mmu(&tlb, mm);
822 ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end,
823 vm_flags);
824 tlb_finish_mmu(&tlb);
825
826 if (ret)
827 goto out_unlock;
828 BUG_ON(prev != vma);
829
830 if (unlikely(vm_flags & VM_EXEC)) {
831 pr_warn_once("process '%pD4' started with executable stack\n",
832 bprm->file);
833 }
834
835 /* Move stack pages down in memory. */
836 if (stack_shift) {
837 ret = shift_arg_pages(vma, stack_shift);
838 if (ret)
839 goto out_unlock;
840 }
841
842 /* mprotect_fixup is overkill to remove the temporary stack flags */
843 vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
844
845 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
846 stack_size = vma->vm_end - vma->vm_start;
847 /*
848 * Align this down to a page boundary as expand_stack
849 * will align it up.
850 */
851 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
852
853 stack_expand = min(rlim_stack, stack_size + stack_expand);
854
855 #ifdef CONFIG_STACK_GROWSUP
856 stack_base = vma->vm_start + stack_expand;
857 #else
858 stack_base = vma->vm_end - stack_expand;
859 #endif
860 current->mm->start_stack = bprm->p;
861 ret = expand_stack_locked(vma, stack_base);
862 if (ret)
863 ret = -EFAULT;
864
865 out_unlock:
866 mmap_write_unlock(mm);
867 return ret;
868 }
869 EXPORT_SYMBOL(setup_arg_pages);
870
871 #else
872
873 /*
874 * Transfer the program arguments and environment from the holding pages
875 * onto the stack. The provided stack pointer is adjusted accordingly.
876 */
transfer_args_to_stack(struct linux_binprm * bprm,unsigned long * sp_location)877 int transfer_args_to_stack(struct linux_binprm *bprm,
878 unsigned long *sp_location)
879 {
880 unsigned long index, stop, sp;
881 int ret = 0;
882
883 stop = bprm->p >> PAGE_SHIFT;
884 sp = *sp_location;
885
886 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
887 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
888 char *src = kmap_local_page(bprm->page[index]) + offset;
889 sp -= PAGE_SIZE - offset;
890 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
891 ret = -EFAULT;
892 kunmap_local(src);
893 if (ret)
894 goto out;
895 }
896
897 *sp_location = sp;
898
899 out:
900 return ret;
901 }
902 EXPORT_SYMBOL(transfer_args_to_stack);
903
904 #endif /* CONFIG_MMU */
905
do_open_execat(int fd,struct filename * name,int flags)906 static struct file *do_open_execat(int fd, struct filename *name, int flags)
907 {
908 struct file *file;
909 int err;
910 struct open_flags open_exec_flags = {
911 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
912 .acc_mode = MAY_EXEC,
913 .intent = LOOKUP_OPEN,
914 .lookup_flags = LOOKUP_FOLLOW,
915 };
916
917 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
918 return ERR_PTR(-EINVAL);
919 if (flags & AT_SYMLINK_NOFOLLOW)
920 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
921 if (flags & AT_EMPTY_PATH)
922 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
923
924 file = do_filp_open(fd, name, &open_exec_flags);
925 if (IS_ERR(file))
926 goto out;
927
928 /*
929 * may_open() has already checked for this, so it should be
930 * impossible to trip now. But we need to be extra cautious
931 * and check again at the very end too.
932 */
933 err = -EACCES;
934 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
935 path_noexec(&file->f_path)))
936 goto exit;
937
938 err = deny_write_access(file);
939 if (err)
940 goto exit;
941
942 out:
943 return file;
944
945 exit:
946 fput(file);
947 return ERR_PTR(err);
948 }
949
open_exec(const char * name)950 struct file *open_exec(const char *name)
951 {
952 struct filename *filename = getname_kernel(name);
953 struct file *f = ERR_CAST(filename);
954
955 if (!IS_ERR(filename)) {
956 f = do_open_execat(AT_FDCWD, filename, 0);
957 putname(filename);
958 }
959 return f;
960 }
961 EXPORT_SYMBOL(open_exec);
962
963 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
read_code(struct file * file,unsigned long addr,loff_t pos,size_t len)964 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
965 {
966 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
967 if (res > 0)
968 flush_icache_user_range(addr, addr + len);
969 return res;
970 }
971 EXPORT_SYMBOL(read_code);
972 #endif
973
974 /*
975 * Maps the mm_struct mm into the current task struct.
976 * On success, this function returns with exec_update_lock
977 * held for writing.
978 */
exec_mmap(struct mm_struct * mm)979 static int exec_mmap(struct mm_struct *mm)
980 {
981 struct task_struct *tsk;
982 struct mm_struct *old_mm, *active_mm;
983 int ret;
984
985 /* Notify parent that we're no longer interested in the old VM */
986 tsk = current;
987 old_mm = current->mm;
988 exec_mm_release(tsk, old_mm);
989 if (old_mm)
990 sync_mm_rss(old_mm);
991
992 ret = down_write_killable(&tsk->signal->exec_update_lock);
993 if (ret)
994 return ret;
995
996 if (old_mm) {
997 /*
998 * If there is a pending fatal signal perhaps a signal
999 * whose default action is to create a coredump get
1000 * out and die instead of going through with the exec.
1001 */
1002 ret = mmap_read_lock_killable(old_mm);
1003 if (ret) {
1004 up_write(&tsk->signal->exec_update_lock);
1005 return ret;
1006 }
1007 }
1008
1009 task_lock(tsk);
1010 membarrier_exec_mmap(mm);
1011
1012 local_irq_disable();
1013 active_mm = tsk->active_mm;
1014 tsk->active_mm = mm;
1015 tsk->mm = mm;
1016 mm_init_cid(mm);
1017 /*
1018 * This prevents preemption while active_mm is being loaded and
1019 * it and mm are being updated, which could cause problems for
1020 * lazy tlb mm refcounting when these are updated by context
1021 * switches. Not all architectures can handle irqs off over
1022 * activate_mm yet.
1023 */
1024 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1025 local_irq_enable();
1026 activate_mm(active_mm, mm);
1027 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1028 local_irq_enable();
1029 lru_gen_add_mm(mm);
1030 task_unlock(tsk);
1031 lru_gen_use_mm(mm);
1032 if (old_mm) {
1033 mmap_read_unlock(old_mm);
1034 BUG_ON(active_mm != old_mm);
1035 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1036 mm_update_next_owner(old_mm);
1037 mmput(old_mm);
1038 return 0;
1039 }
1040 mmdrop_lazy_tlb(active_mm);
1041 return 0;
1042 }
1043
de_thread(struct task_struct * tsk)1044 static int de_thread(struct task_struct *tsk)
1045 {
1046 struct signal_struct *sig = tsk->signal;
1047 struct sighand_struct *oldsighand = tsk->sighand;
1048 spinlock_t *lock = &oldsighand->siglock;
1049
1050 if (thread_group_empty(tsk))
1051 goto no_thread_group;
1052
1053 /*
1054 * Kill all other threads in the thread group.
1055 */
1056 spin_lock_irq(lock);
1057 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1058 /*
1059 * Another group action in progress, just
1060 * return so that the signal is processed.
1061 */
1062 spin_unlock_irq(lock);
1063 return -EAGAIN;
1064 }
1065
1066 sig->group_exec_task = tsk;
1067 sig->notify_count = zap_other_threads(tsk);
1068 if (!thread_group_leader(tsk))
1069 sig->notify_count--;
1070
1071 while (sig->notify_count) {
1072 __set_current_state(TASK_KILLABLE);
1073 spin_unlock_irq(lock);
1074 schedule();
1075 if (__fatal_signal_pending(tsk))
1076 goto killed;
1077 spin_lock_irq(lock);
1078 }
1079 spin_unlock_irq(lock);
1080
1081 /*
1082 * At this point all other threads have exited, all we have to
1083 * do is to wait for the thread group leader to become inactive,
1084 * and to assume its PID:
1085 */
1086 if (!thread_group_leader(tsk)) {
1087 struct task_struct *leader = tsk->group_leader;
1088
1089 for (;;) {
1090 cgroup_threadgroup_change_begin(tsk);
1091 write_lock_irq(&tasklist_lock);
1092 /*
1093 * Do this under tasklist_lock to ensure that
1094 * exit_notify() can't miss ->group_exec_task
1095 */
1096 sig->notify_count = -1;
1097 if (likely(leader->exit_state))
1098 break;
1099 __set_current_state(TASK_KILLABLE);
1100 write_unlock_irq(&tasklist_lock);
1101 cgroup_threadgroup_change_end(tsk);
1102 schedule();
1103 if (__fatal_signal_pending(tsk))
1104 goto killed;
1105 }
1106
1107 /*
1108 * The only record we have of the real-time age of a
1109 * process, regardless of execs it's done, is start_time.
1110 * All the past CPU time is accumulated in signal_struct
1111 * from sister threads now dead. But in this non-leader
1112 * exec, nothing survives from the original leader thread,
1113 * whose birth marks the true age of this process now.
1114 * When we take on its identity by switching to its PID, we
1115 * also take its birthdate (always earlier than our own).
1116 */
1117 tsk->start_time = leader->start_time;
1118 tsk->start_boottime = leader->start_boottime;
1119
1120 BUG_ON(!same_thread_group(leader, tsk));
1121 /*
1122 * An exec() starts a new thread group with the
1123 * TGID of the previous thread group. Rehash the
1124 * two threads with a switched PID, and release
1125 * the former thread group leader:
1126 */
1127
1128 /* Become a process group leader with the old leader's pid.
1129 * The old leader becomes a thread of the this thread group.
1130 */
1131 exchange_tids(tsk, leader);
1132 transfer_pid(leader, tsk, PIDTYPE_TGID);
1133 transfer_pid(leader, tsk, PIDTYPE_PGID);
1134 transfer_pid(leader, tsk, PIDTYPE_SID);
1135
1136 list_replace_rcu(&leader->tasks, &tsk->tasks);
1137 list_replace_init(&leader->sibling, &tsk->sibling);
1138
1139 tsk->group_leader = tsk;
1140 leader->group_leader = tsk;
1141
1142 tsk->exit_signal = SIGCHLD;
1143 leader->exit_signal = -1;
1144
1145 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1146 leader->exit_state = EXIT_DEAD;
1147
1148 /*
1149 * We are going to release_task()->ptrace_unlink() silently,
1150 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1151 * the tracer won't block again waiting for this thread.
1152 */
1153 if (unlikely(leader->ptrace))
1154 __wake_up_parent(leader, leader->parent);
1155 write_unlock_irq(&tasklist_lock);
1156 cgroup_threadgroup_change_end(tsk);
1157
1158 release_task(leader);
1159 }
1160
1161 sig->group_exec_task = NULL;
1162 sig->notify_count = 0;
1163
1164 no_thread_group:
1165 /* we have changed execution domain */
1166 tsk->exit_signal = SIGCHLD;
1167
1168 BUG_ON(!thread_group_leader(tsk));
1169 return 0;
1170
1171 killed:
1172 /* protects against exit_notify() and __exit_signal() */
1173 read_lock(&tasklist_lock);
1174 sig->group_exec_task = NULL;
1175 sig->notify_count = 0;
1176 read_unlock(&tasklist_lock);
1177 return -EAGAIN;
1178 }
1179
1180
1181 /*
1182 * This function makes sure the current process has its own signal table,
1183 * so that flush_signal_handlers can later reset the handlers without
1184 * disturbing other processes. (Other processes might share the signal
1185 * table via the CLONE_SIGHAND option to clone().)
1186 */
unshare_sighand(struct task_struct * me)1187 static int unshare_sighand(struct task_struct *me)
1188 {
1189 struct sighand_struct *oldsighand = me->sighand;
1190
1191 if (refcount_read(&oldsighand->count) != 1) {
1192 struct sighand_struct *newsighand;
1193 /*
1194 * This ->sighand is shared with the CLONE_SIGHAND
1195 * but not CLONE_THREAD task, switch to the new one.
1196 */
1197 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1198 if (!newsighand)
1199 return -ENOMEM;
1200
1201 refcount_set(&newsighand->count, 1);
1202
1203 write_lock_irq(&tasklist_lock);
1204 spin_lock(&oldsighand->siglock);
1205 memcpy(newsighand->action, oldsighand->action,
1206 sizeof(newsighand->action));
1207 rcu_assign_pointer(me->sighand, newsighand);
1208 spin_unlock(&oldsighand->siglock);
1209 write_unlock_irq(&tasklist_lock);
1210
1211 __cleanup_sighand(oldsighand);
1212 }
1213 return 0;
1214 }
1215
__get_task_comm(char * buf,size_t buf_size,struct task_struct * tsk)1216 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1217 {
1218 task_lock(tsk);
1219 /* Always NUL terminated and zero-padded */
1220 strscpy_pad(buf, tsk->comm, buf_size);
1221 task_unlock(tsk);
1222 return buf;
1223 }
1224 EXPORT_SYMBOL_GPL(__get_task_comm);
1225
1226 /*
1227 * These functions flushes out all traces of the currently running executable
1228 * so that a new one can be started
1229 */
1230
__set_task_comm(struct task_struct * tsk,const char * buf,bool exec)1231 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1232 {
1233 task_lock(tsk);
1234 trace_task_rename(tsk, buf);
1235 strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1236 task_unlock(tsk);
1237 perf_event_comm(tsk, exec);
1238 }
1239
1240 /*
1241 * Calling this is the point of no return. None of the failures will be
1242 * seen by userspace since either the process is already taking a fatal
1243 * signal (via de_thread() or coredump), or will have SEGV raised
1244 * (after exec_mmap()) by search_binary_handler (see below).
1245 */
begin_new_exec(struct linux_binprm * bprm)1246 int begin_new_exec(struct linux_binprm * bprm)
1247 {
1248 struct task_struct *me = current;
1249 int retval;
1250
1251 /* Once we are committed compute the creds */
1252 retval = bprm_creds_from_file(bprm);
1253 if (retval)
1254 return retval;
1255
1256 /*
1257 * Ensure all future errors are fatal.
1258 */
1259 bprm->point_of_no_return = true;
1260
1261 /*
1262 * Make this the only thread in the thread group.
1263 */
1264 retval = de_thread(me);
1265 if (retval)
1266 goto out;
1267
1268 /*
1269 * Cancel any io_uring activity across execve
1270 */
1271 io_uring_task_cancel();
1272
1273 /* Ensure the files table is not shared. */
1274 retval = unshare_files();
1275 if (retval)
1276 goto out;
1277
1278 /*
1279 * Must be called _before_ exec_mmap() as bprm->mm is
1280 * not visible until then. Doing it here also ensures
1281 * we don't race against replace_mm_exe_file().
1282 */
1283 retval = set_mm_exe_file(bprm->mm, bprm->file);
1284 if (retval)
1285 goto out;
1286
1287 /* If the binary is not readable then enforce mm->dumpable=0 */
1288 would_dump(bprm, bprm->file);
1289 if (bprm->have_execfd)
1290 would_dump(bprm, bprm->executable);
1291
1292 /*
1293 * Release all of the old mmap stuff
1294 */
1295 acct_arg_size(bprm, 0);
1296 retval = exec_mmap(bprm->mm);
1297 if (retval)
1298 goto out;
1299
1300 bprm->mm = NULL;
1301
1302 retval = exec_task_namespaces();
1303 if (retval)
1304 goto out_unlock;
1305
1306 #ifdef CONFIG_POSIX_TIMERS
1307 spin_lock_irq(&me->sighand->siglock);
1308 posix_cpu_timers_exit(me);
1309 spin_unlock_irq(&me->sighand->siglock);
1310 exit_itimers(me);
1311 flush_itimer_signals();
1312 #endif
1313
1314 /*
1315 * Make the signal table private.
1316 */
1317 retval = unshare_sighand(me);
1318 if (retval)
1319 goto out_unlock;
1320
1321 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1322 PF_NOFREEZE | PF_NO_SETAFFINITY);
1323 flush_thread();
1324 me->personality &= ~bprm->per_clear;
1325
1326 clear_syscall_work_syscall_user_dispatch(me);
1327
1328 /*
1329 * We have to apply CLOEXEC before we change whether the process is
1330 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1331 * trying to access the should-be-closed file descriptors of a process
1332 * undergoing exec(2).
1333 */
1334 do_close_on_exec(me->files);
1335
1336 if (bprm->secureexec) {
1337 /* Make sure parent cannot signal privileged process. */
1338 me->pdeath_signal = 0;
1339
1340 /*
1341 * For secureexec, reset the stack limit to sane default to
1342 * avoid bad behavior from the prior rlimits. This has to
1343 * happen before arch_pick_mmap_layout(), which examines
1344 * RLIMIT_STACK, but after the point of no return to avoid
1345 * needing to clean up the change on failure.
1346 */
1347 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1348 bprm->rlim_stack.rlim_cur = _STK_LIM;
1349 }
1350
1351 me->sas_ss_sp = me->sas_ss_size = 0;
1352
1353 /*
1354 * Figure out dumpability. Note that this checking only of current
1355 * is wrong, but userspace depends on it. This should be testing
1356 * bprm->secureexec instead.
1357 */
1358 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1359 !(uid_eq(current_euid(), current_uid()) &&
1360 gid_eq(current_egid(), current_gid())))
1361 set_dumpable(current->mm, suid_dumpable);
1362 else
1363 set_dumpable(current->mm, SUID_DUMP_USER);
1364
1365 perf_event_exec();
1366 __set_task_comm(me, kbasename(bprm->filename), true);
1367
1368 /* An exec changes our domain. We are no longer part of the thread
1369 group */
1370 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1371 flush_signal_handlers(me, 0);
1372
1373 retval = set_cred_ucounts(bprm->cred);
1374 if (retval < 0)
1375 goto out_unlock;
1376
1377 /*
1378 * install the new credentials for this executable
1379 */
1380 security_bprm_committing_creds(bprm);
1381
1382 commit_creds(bprm->cred);
1383 bprm->cred = NULL;
1384
1385 /*
1386 * Disable monitoring for regular users
1387 * when executing setuid binaries. Must
1388 * wait until new credentials are committed
1389 * by commit_creds() above
1390 */
1391 if (get_dumpable(me->mm) != SUID_DUMP_USER)
1392 perf_event_exit_task(me);
1393 /*
1394 * cred_guard_mutex must be held at least to this point to prevent
1395 * ptrace_attach() from altering our determination of the task's
1396 * credentials; any time after this it may be unlocked.
1397 */
1398 security_bprm_committed_creds(bprm);
1399
1400 /* Pass the opened binary to the interpreter. */
1401 if (bprm->have_execfd) {
1402 retval = get_unused_fd_flags(0);
1403 if (retval < 0)
1404 goto out_unlock;
1405 fd_install(retval, bprm->executable);
1406 bprm->executable = NULL;
1407 bprm->execfd = retval;
1408 }
1409 return 0;
1410
1411 out_unlock:
1412 up_write(&me->signal->exec_update_lock);
1413 if (!bprm->cred)
1414 mutex_unlock(&me->signal->cred_guard_mutex);
1415
1416 out:
1417 return retval;
1418 }
1419 EXPORT_SYMBOL(begin_new_exec);
1420
would_dump(struct linux_binprm * bprm,struct file * file)1421 void would_dump(struct linux_binprm *bprm, struct file *file)
1422 {
1423 struct inode *inode = file_inode(file);
1424 struct mnt_idmap *idmap = file_mnt_idmap(file);
1425 if (inode_permission(idmap, inode, MAY_READ) < 0) {
1426 struct user_namespace *old, *user_ns;
1427 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1428
1429 /* Ensure mm->user_ns contains the executable */
1430 user_ns = old = bprm->mm->user_ns;
1431 while ((user_ns != &init_user_ns) &&
1432 !privileged_wrt_inode_uidgid(user_ns, idmap, inode))
1433 user_ns = user_ns->parent;
1434
1435 if (old != user_ns) {
1436 bprm->mm->user_ns = get_user_ns(user_ns);
1437 put_user_ns(old);
1438 }
1439 }
1440 }
1441 EXPORT_SYMBOL(would_dump);
1442
setup_new_exec(struct linux_binprm * bprm)1443 void setup_new_exec(struct linux_binprm * bprm)
1444 {
1445 /* Setup things that can depend upon the personality */
1446 struct task_struct *me = current;
1447
1448 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1449
1450 arch_setup_new_exec();
1451
1452 /* Set the new mm task size. We have to do that late because it may
1453 * depend on TIF_32BIT which is only updated in flush_thread() on
1454 * some architectures like powerpc
1455 */
1456 me->mm->task_size = TASK_SIZE;
1457 up_write(&me->signal->exec_update_lock);
1458 mutex_unlock(&me->signal->cred_guard_mutex);
1459 }
1460 EXPORT_SYMBOL(setup_new_exec);
1461
1462 /* Runs immediately before start_thread() takes over. */
finalize_exec(struct linux_binprm * bprm)1463 void finalize_exec(struct linux_binprm *bprm)
1464 {
1465 /* Store any stack rlimit changes before starting thread. */
1466 task_lock(current->group_leader);
1467 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1468 task_unlock(current->group_leader);
1469 }
1470 EXPORT_SYMBOL(finalize_exec);
1471
1472 /*
1473 * Prepare credentials and lock ->cred_guard_mutex.
1474 * setup_new_exec() commits the new creds and drops the lock.
1475 * Or, if exec fails before, free_bprm() should release ->cred
1476 * and unlock.
1477 */
prepare_bprm_creds(struct linux_binprm * bprm)1478 static int prepare_bprm_creds(struct linux_binprm *bprm)
1479 {
1480 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1481 return -ERESTARTNOINTR;
1482
1483 bprm->cred = prepare_exec_creds();
1484 if (likely(bprm->cred))
1485 return 0;
1486
1487 mutex_unlock(¤t->signal->cred_guard_mutex);
1488 return -ENOMEM;
1489 }
1490
free_bprm(struct linux_binprm * bprm)1491 static void free_bprm(struct linux_binprm *bprm)
1492 {
1493 if (bprm->mm) {
1494 acct_arg_size(bprm, 0);
1495 mmput(bprm->mm);
1496 }
1497 free_arg_pages(bprm);
1498 if (bprm->cred) {
1499 mutex_unlock(¤t->signal->cred_guard_mutex);
1500 abort_creds(bprm->cred);
1501 }
1502 if (bprm->file) {
1503 allow_write_access(bprm->file);
1504 fput(bprm->file);
1505 }
1506 if (bprm->executable)
1507 fput(bprm->executable);
1508 /* If a binfmt changed the interp, free it. */
1509 if (bprm->interp != bprm->filename)
1510 kfree(bprm->interp);
1511 kfree(bprm->fdpath);
1512 kfree(bprm);
1513 }
1514
alloc_bprm(int fd,struct filename * filename)1515 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1516 {
1517 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1518 int retval = -ENOMEM;
1519 if (!bprm)
1520 goto out;
1521
1522 if (fd == AT_FDCWD || filename->name[0] == '/') {
1523 bprm->filename = filename->name;
1524 } else {
1525 if (filename->name[0] == '\0')
1526 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1527 else
1528 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1529 fd, filename->name);
1530 if (!bprm->fdpath)
1531 goto out_free;
1532
1533 bprm->filename = bprm->fdpath;
1534 }
1535 bprm->interp = bprm->filename;
1536
1537 retval = bprm_mm_init(bprm);
1538 if (retval)
1539 goto out_free;
1540 return bprm;
1541
1542 out_free:
1543 free_bprm(bprm);
1544 out:
1545 return ERR_PTR(retval);
1546 }
1547
bprm_change_interp(const char * interp,struct linux_binprm * bprm)1548 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1549 {
1550 /* If a binfmt changed the interp, free it first. */
1551 if (bprm->interp != bprm->filename)
1552 kfree(bprm->interp);
1553 bprm->interp = kstrdup(interp, GFP_KERNEL);
1554 if (!bprm->interp)
1555 return -ENOMEM;
1556 return 0;
1557 }
1558 EXPORT_SYMBOL(bprm_change_interp);
1559
1560 /*
1561 * determine how safe it is to execute the proposed program
1562 * - the caller must hold ->cred_guard_mutex to protect against
1563 * PTRACE_ATTACH or seccomp thread-sync
1564 */
check_unsafe_exec(struct linux_binprm * bprm)1565 static void check_unsafe_exec(struct linux_binprm *bprm)
1566 {
1567 struct task_struct *p = current, *t;
1568 unsigned n_fs;
1569
1570 if (p->ptrace)
1571 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1572
1573 /*
1574 * This isn't strictly necessary, but it makes it harder for LSMs to
1575 * mess up.
1576 */
1577 if (task_no_new_privs(current))
1578 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1579
1580 /*
1581 * If another task is sharing our fs, we cannot safely
1582 * suid exec because the differently privileged task
1583 * will be able to manipulate the current directory, etc.
1584 * It would be nice to force an unshare instead...
1585 */
1586 t = p;
1587 n_fs = 1;
1588 spin_lock(&p->fs->lock);
1589 rcu_read_lock();
1590 while_each_thread(p, t) {
1591 if (t->fs == p->fs)
1592 n_fs++;
1593 }
1594 rcu_read_unlock();
1595
1596 if (p->fs->users > n_fs)
1597 bprm->unsafe |= LSM_UNSAFE_SHARE;
1598 else
1599 p->fs->in_exec = 1;
1600 spin_unlock(&p->fs->lock);
1601 }
1602
bprm_fill_uid(struct linux_binprm * bprm,struct file * file)1603 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1604 {
1605 /* Handle suid and sgid on files */
1606 struct mnt_idmap *idmap;
1607 struct inode *inode = file_inode(file);
1608 unsigned int mode;
1609 vfsuid_t vfsuid;
1610 vfsgid_t vfsgid;
1611
1612 if (!mnt_may_suid(file->f_path.mnt))
1613 return;
1614
1615 if (task_no_new_privs(current))
1616 return;
1617
1618 mode = READ_ONCE(inode->i_mode);
1619 if (!(mode & (S_ISUID|S_ISGID)))
1620 return;
1621
1622 idmap = file_mnt_idmap(file);
1623
1624 /* Be careful if suid/sgid is set */
1625 inode_lock(inode);
1626
1627 /* reload atomically mode/uid/gid now that lock held */
1628 mode = inode->i_mode;
1629 vfsuid = i_uid_into_vfsuid(idmap, inode);
1630 vfsgid = i_gid_into_vfsgid(idmap, inode);
1631 inode_unlock(inode);
1632
1633 /* We ignore suid/sgid if there are no mappings for them in the ns */
1634 if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
1635 !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
1636 return;
1637
1638 if (mode & S_ISUID) {
1639 bprm->per_clear |= PER_CLEAR_ON_SETID;
1640 bprm->cred->euid = vfsuid_into_kuid(vfsuid);
1641 }
1642
1643 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1644 bprm->per_clear |= PER_CLEAR_ON_SETID;
1645 bprm->cred->egid = vfsgid_into_kgid(vfsgid);
1646 }
1647 }
1648
1649 /*
1650 * Compute brpm->cred based upon the final binary.
1651 */
bprm_creds_from_file(struct linux_binprm * bprm)1652 static int bprm_creds_from_file(struct linux_binprm *bprm)
1653 {
1654 /* Compute creds based on which file? */
1655 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1656
1657 bprm_fill_uid(bprm, file);
1658 return security_bprm_creds_from_file(bprm, file);
1659 }
1660
1661 /*
1662 * Fill the binprm structure from the inode.
1663 * Read the first BINPRM_BUF_SIZE bytes
1664 *
1665 * This may be called multiple times for binary chains (scripts for example).
1666 */
prepare_binprm(struct linux_binprm * bprm)1667 static int prepare_binprm(struct linux_binprm *bprm)
1668 {
1669 loff_t pos = 0;
1670
1671 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1672 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1673 }
1674
1675 /*
1676 * Arguments are '\0' separated strings found at the location bprm->p
1677 * points to; chop off the first by relocating brpm->p to right after
1678 * the first '\0' encountered.
1679 */
remove_arg_zero(struct linux_binprm * bprm)1680 int remove_arg_zero(struct linux_binprm *bprm)
1681 {
1682 int ret = 0;
1683 unsigned long offset;
1684 char *kaddr;
1685 struct page *page;
1686
1687 if (!bprm->argc)
1688 return 0;
1689
1690 do {
1691 offset = bprm->p & ~PAGE_MASK;
1692 page = get_arg_page(bprm, bprm->p, 0);
1693 if (!page) {
1694 ret = -EFAULT;
1695 goto out;
1696 }
1697 kaddr = kmap_local_page(page);
1698
1699 for (; offset < PAGE_SIZE && kaddr[offset];
1700 offset++, bprm->p++)
1701 ;
1702
1703 kunmap_local(kaddr);
1704 put_arg_page(page);
1705 } while (offset == PAGE_SIZE);
1706
1707 bprm->p++;
1708 bprm->argc--;
1709 ret = 0;
1710
1711 out:
1712 return ret;
1713 }
1714 EXPORT_SYMBOL(remove_arg_zero);
1715
1716 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1717 /*
1718 * cycle the list of binary formats handler, until one recognizes the image
1719 */
search_binary_handler(struct linux_binprm * bprm)1720 static int search_binary_handler(struct linux_binprm *bprm)
1721 {
1722 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1723 struct linux_binfmt *fmt;
1724 int retval;
1725
1726 retval = prepare_binprm(bprm);
1727 if (retval < 0)
1728 return retval;
1729
1730 retval = security_bprm_check(bprm);
1731 if (retval)
1732 return retval;
1733
1734 retval = -ENOENT;
1735 retry:
1736 read_lock(&binfmt_lock);
1737 list_for_each_entry(fmt, &formats, lh) {
1738 if (!try_module_get(fmt->module))
1739 continue;
1740 read_unlock(&binfmt_lock);
1741
1742 retval = fmt->load_binary(bprm);
1743
1744 read_lock(&binfmt_lock);
1745 put_binfmt(fmt);
1746 if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1747 read_unlock(&binfmt_lock);
1748 return retval;
1749 }
1750 }
1751 read_unlock(&binfmt_lock);
1752
1753 if (need_retry) {
1754 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1755 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1756 return retval;
1757 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1758 return retval;
1759 need_retry = false;
1760 goto retry;
1761 }
1762
1763 return retval;
1764 }
1765
1766 /* binfmt handlers will call back into begin_new_exec() on success. */
exec_binprm(struct linux_binprm * bprm)1767 static int exec_binprm(struct linux_binprm *bprm)
1768 {
1769 pid_t old_pid, old_vpid;
1770 int ret, depth;
1771
1772 /* Need to fetch pid before load_binary changes it */
1773 old_pid = current->pid;
1774 rcu_read_lock();
1775 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1776 rcu_read_unlock();
1777
1778 /* This allows 4 levels of binfmt rewrites before failing hard. */
1779 for (depth = 0;; depth++) {
1780 struct file *exec;
1781 if (depth > 5)
1782 return -ELOOP;
1783
1784 ret = search_binary_handler(bprm);
1785 if (ret < 0)
1786 return ret;
1787 if (!bprm->interpreter)
1788 break;
1789
1790 exec = bprm->file;
1791 bprm->file = bprm->interpreter;
1792 bprm->interpreter = NULL;
1793
1794 allow_write_access(exec);
1795 if (unlikely(bprm->have_execfd)) {
1796 if (bprm->executable) {
1797 fput(exec);
1798 return -ENOEXEC;
1799 }
1800 bprm->executable = exec;
1801 } else
1802 fput(exec);
1803 }
1804
1805 audit_bprm(bprm);
1806 trace_sched_process_exec(current, old_pid, bprm);
1807 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1808 proc_exec_connector(current);
1809 return 0;
1810 }
1811
1812 /*
1813 * sys_execve() executes a new program.
1814 */
bprm_execve(struct linux_binprm * bprm,int fd,struct filename * filename,int flags)1815 static int bprm_execve(struct linux_binprm *bprm,
1816 int fd, struct filename *filename, int flags)
1817 {
1818 struct file *file;
1819 int retval;
1820
1821 retval = prepare_bprm_creds(bprm);
1822 if (retval)
1823 return retval;
1824
1825 /*
1826 * Check for unsafe execution states before exec_binprm(), which
1827 * will call back into begin_new_exec(), into bprm_creds_from_file(),
1828 * where setuid-ness is evaluated.
1829 */
1830 check_unsafe_exec(bprm);
1831 current->in_execve = 1;
1832 sched_mm_cid_before_execve(current);
1833
1834 file = do_open_execat(fd, filename, flags);
1835 retval = PTR_ERR(file);
1836 if (IS_ERR(file))
1837 goto out_unmark;
1838
1839 sched_exec();
1840
1841 bprm->file = file;
1842 /*
1843 * Record that a name derived from an O_CLOEXEC fd will be
1844 * inaccessible after exec. This allows the code in exec to
1845 * choose to fail when the executable is not mmaped into the
1846 * interpreter and an open file descriptor is not passed to
1847 * the interpreter. This makes for a better user experience
1848 * than having the interpreter start and then immediately fail
1849 * when it finds the executable is inaccessible.
1850 */
1851 if (bprm->fdpath && get_close_on_exec(fd))
1852 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1853
1854 /* Set the unchanging part of bprm->cred */
1855 retval = security_bprm_creds_for_exec(bprm);
1856 if (retval)
1857 goto out;
1858
1859 retval = exec_binprm(bprm);
1860 if (retval < 0)
1861 goto out;
1862
1863 sched_mm_cid_after_execve(current);
1864 /* execve succeeded */
1865 current->fs->in_exec = 0;
1866 current->in_execve = 0;
1867 rseq_execve(current);
1868 user_events_execve(current);
1869 acct_update_integrals(current);
1870 task_numa_free(current, false);
1871 return retval;
1872
1873 out:
1874 /*
1875 * If past the point of no return ensure the code never
1876 * returns to the userspace process. Use an existing fatal
1877 * signal if present otherwise terminate the process with
1878 * SIGSEGV.
1879 */
1880 if (bprm->point_of_no_return && !fatal_signal_pending(current))
1881 force_fatal_sig(SIGSEGV);
1882
1883 out_unmark:
1884 sched_mm_cid_after_execve(current);
1885 current->fs->in_exec = 0;
1886 current->in_execve = 0;
1887
1888 return retval;
1889 }
1890
do_execveat_common(int fd,struct filename * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,int flags)1891 static int do_execveat_common(int fd, struct filename *filename,
1892 struct user_arg_ptr argv,
1893 struct user_arg_ptr envp,
1894 int flags)
1895 {
1896 struct linux_binprm *bprm;
1897 int retval;
1898
1899 if (IS_ERR(filename))
1900 return PTR_ERR(filename);
1901
1902 /*
1903 * We move the actual failure in case of RLIMIT_NPROC excess from
1904 * set*uid() to execve() because too many poorly written programs
1905 * don't check setuid() return code. Here we additionally recheck
1906 * whether NPROC limit is still exceeded.
1907 */
1908 if ((current->flags & PF_NPROC_EXCEEDED) &&
1909 is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1910 retval = -EAGAIN;
1911 goto out_ret;
1912 }
1913
1914 /* We're below the limit (still or again), so we don't want to make
1915 * further execve() calls fail. */
1916 current->flags &= ~PF_NPROC_EXCEEDED;
1917
1918 bprm = alloc_bprm(fd, filename);
1919 if (IS_ERR(bprm)) {
1920 retval = PTR_ERR(bprm);
1921 goto out_ret;
1922 }
1923
1924 retval = count(argv, MAX_ARG_STRINGS);
1925 if (retval == 0)
1926 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1927 current->comm, bprm->filename);
1928 if (retval < 0)
1929 goto out_free;
1930 bprm->argc = retval;
1931
1932 retval = count(envp, MAX_ARG_STRINGS);
1933 if (retval < 0)
1934 goto out_free;
1935 bprm->envc = retval;
1936
1937 retval = bprm_stack_limits(bprm);
1938 if (retval < 0)
1939 goto out_free;
1940
1941 retval = copy_string_kernel(bprm->filename, bprm);
1942 if (retval < 0)
1943 goto out_free;
1944 bprm->exec = bprm->p;
1945
1946 retval = copy_strings(bprm->envc, envp, bprm);
1947 if (retval < 0)
1948 goto out_free;
1949
1950 retval = copy_strings(bprm->argc, argv, bprm);
1951 if (retval < 0)
1952 goto out_free;
1953
1954 /*
1955 * When argv is empty, add an empty string ("") as argv[0] to
1956 * ensure confused userspace programs that start processing
1957 * from argv[1] won't end up walking envp. See also
1958 * bprm_stack_limits().
1959 */
1960 if (bprm->argc == 0) {
1961 retval = copy_string_kernel("", bprm);
1962 if (retval < 0)
1963 goto out_free;
1964 bprm->argc = 1;
1965 }
1966
1967 retval = bprm_execve(bprm, fd, filename, flags);
1968 out_free:
1969 free_bprm(bprm);
1970
1971 out_ret:
1972 putname(filename);
1973 return retval;
1974 }
1975
kernel_execve(const char * kernel_filename,const char * const * argv,const char * const * envp)1976 int kernel_execve(const char *kernel_filename,
1977 const char *const *argv, const char *const *envp)
1978 {
1979 struct filename *filename;
1980 struct linux_binprm *bprm;
1981 int fd = AT_FDCWD;
1982 int retval;
1983
1984 /* It is non-sense for kernel threads to call execve */
1985 if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
1986 return -EINVAL;
1987
1988 filename = getname_kernel(kernel_filename);
1989 if (IS_ERR(filename))
1990 return PTR_ERR(filename);
1991
1992 bprm = alloc_bprm(fd, filename);
1993 if (IS_ERR(bprm)) {
1994 retval = PTR_ERR(bprm);
1995 goto out_ret;
1996 }
1997
1998 retval = count_strings_kernel(argv);
1999 if (WARN_ON_ONCE(retval == 0))
2000 retval = -EINVAL;
2001 if (retval < 0)
2002 goto out_free;
2003 bprm->argc = retval;
2004
2005 retval = count_strings_kernel(envp);
2006 if (retval < 0)
2007 goto out_free;
2008 bprm->envc = retval;
2009
2010 retval = bprm_stack_limits(bprm);
2011 if (retval < 0)
2012 goto out_free;
2013
2014 retval = copy_string_kernel(bprm->filename, bprm);
2015 if (retval < 0)
2016 goto out_free;
2017 bprm->exec = bprm->p;
2018
2019 retval = copy_strings_kernel(bprm->envc, envp, bprm);
2020 if (retval < 0)
2021 goto out_free;
2022
2023 retval = copy_strings_kernel(bprm->argc, argv, bprm);
2024 if (retval < 0)
2025 goto out_free;
2026
2027 retval = bprm_execve(bprm, fd, filename, 0);
2028 out_free:
2029 free_bprm(bprm);
2030 out_ret:
2031 putname(filename);
2032 return retval;
2033 }
2034
do_execve(struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp)2035 static int do_execve(struct filename *filename,
2036 const char __user *const __user *__argv,
2037 const char __user *const __user *__envp)
2038 {
2039 struct user_arg_ptr argv = { .ptr.native = __argv };
2040 struct user_arg_ptr envp = { .ptr.native = __envp };
2041 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2042 }
2043
do_execveat(int fd,struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp,int flags)2044 static int do_execveat(int fd, struct filename *filename,
2045 const char __user *const __user *__argv,
2046 const char __user *const __user *__envp,
2047 int flags)
2048 {
2049 struct user_arg_ptr argv = { .ptr.native = __argv };
2050 struct user_arg_ptr envp = { .ptr.native = __envp };
2051
2052 return do_execveat_common(fd, filename, argv, envp, flags);
2053 }
2054
2055 #ifdef CONFIG_COMPAT
compat_do_execve(struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp)2056 static int compat_do_execve(struct filename *filename,
2057 const compat_uptr_t __user *__argv,
2058 const compat_uptr_t __user *__envp)
2059 {
2060 struct user_arg_ptr argv = {
2061 .is_compat = true,
2062 .ptr.compat = __argv,
2063 };
2064 struct user_arg_ptr envp = {
2065 .is_compat = true,
2066 .ptr.compat = __envp,
2067 };
2068 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2069 }
2070
compat_do_execveat(int fd,struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp,int flags)2071 static int compat_do_execveat(int fd, struct filename *filename,
2072 const compat_uptr_t __user *__argv,
2073 const compat_uptr_t __user *__envp,
2074 int flags)
2075 {
2076 struct user_arg_ptr argv = {
2077 .is_compat = true,
2078 .ptr.compat = __argv,
2079 };
2080 struct user_arg_ptr envp = {
2081 .is_compat = true,
2082 .ptr.compat = __envp,
2083 };
2084 return do_execveat_common(fd, filename, argv, envp, flags);
2085 }
2086 #endif
2087
set_binfmt(struct linux_binfmt * new)2088 void set_binfmt(struct linux_binfmt *new)
2089 {
2090 struct mm_struct *mm = current->mm;
2091
2092 if (mm->binfmt)
2093 module_put(mm->binfmt->module);
2094
2095 mm->binfmt = new;
2096 if (new)
2097 __module_get(new->module);
2098 }
2099 EXPORT_SYMBOL(set_binfmt);
2100
2101 /*
2102 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2103 */
set_dumpable(struct mm_struct * mm,int value)2104 void set_dumpable(struct mm_struct *mm, int value)
2105 {
2106 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2107 return;
2108
2109 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2110 }
2111
SYSCALL_DEFINE3(execve,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp)2112 SYSCALL_DEFINE3(execve,
2113 const char __user *, filename,
2114 const char __user *const __user *, argv,
2115 const char __user *const __user *, envp)
2116 {
2117 return do_execve(getname(filename), argv, envp);
2118 }
2119
SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp,int,flags)2120 SYSCALL_DEFINE5(execveat,
2121 int, fd, const char __user *, filename,
2122 const char __user *const __user *, argv,
2123 const char __user *const __user *, envp,
2124 int, flags)
2125 {
2126 return do_execveat(fd,
2127 getname_uflags(filename, flags),
2128 argv, envp, flags);
2129 }
2130
2131 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(execve,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp)2132 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2133 const compat_uptr_t __user *, argv,
2134 const compat_uptr_t __user *, envp)
2135 {
2136 return compat_do_execve(getname(filename), argv, envp);
2137 }
2138
COMPAT_SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp,int,flags)2139 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2140 const char __user *, filename,
2141 const compat_uptr_t __user *, argv,
2142 const compat_uptr_t __user *, envp,
2143 int, flags)
2144 {
2145 return compat_do_execveat(fd,
2146 getname_uflags(filename, flags),
2147 argv, envp, flags);
2148 }
2149 #endif
2150
2151 #ifdef CONFIG_SYSCTL
2152
proc_dointvec_minmax_coredump(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2153 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
2154 void *buffer, size_t *lenp, loff_t *ppos)
2155 {
2156 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2157
2158 if (!error)
2159 validate_coredump_safety();
2160 return error;
2161 }
2162
2163 static struct ctl_table fs_exec_sysctls[] = {
2164 {
2165 .procname = "suid_dumpable",
2166 .data = &suid_dumpable,
2167 .maxlen = sizeof(int),
2168 .mode = 0644,
2169 .proc_handler = proc_dointvec_minmax_coredump,
2170 .extra1 = SYSCTL_ZERO,
2171 .extra2 = SYSCTL_TWO,
2172 },
2173 { }
2174 };
2175
init_fs_exec_sysctls(void)2176 static int __init init_fs_exec_sysctls(void)
2177 {
2178 register_sysctl_init("fs", fs_exec_sysctls);
2179 return 0;
2180 }
2181
2182 fs_initcall(init_fs_exec_sysctls);
2183 #endif /* CONFIG_SYSCTL */
2184