1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <linux/posix_acl.h>
36 #include <asm/uaccess.h>
37
38 #include "internal.h"
39 #include "mount.h"
40
41 /* [Feb-1997 T. Schoebel-Theuer]
42 * Fundamental changes in the pathname lookup mechanisms (namei)
43 * were necessary because of omirr. The reason is that omirr needs
44 * to know the _real_ pathname, not the user-supplied one, in case
45 * of symlinks (and also when transname replacements occur).
46 *
47 * The new code replaces the old recursive symlink resolution with
48 * an iterative one (in case of non-nested symlink chains). It does
49 * this with calls to <fs>_follow_link().
50 * As a side effect, dir_namei(), _namei() and follow_link() are now
51 * replaced with a single function lookup_dentry() that can handle all
52 * the special cases of the former code.
53 *
54 * With the new dcache, the pathname is stored at each inode, at least as
55 * long as the refcount of the inode is positive. As a side effect, the
56 * size of the dcache depends on the inode cache and thus is dynamic.
57 *
58 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
59 * resolution to correspond with current state of the code.
60 *
61 * Note that the symlink resolution is not *completely* iterative.
62 * There is still a significant amount of tail- and mid- recursion in
63 * the algorithm. Also, note that <fs>_readlink() is not used in
64 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
65 * may return different results than <fs>_follow_link(). Many virtual
66 * filesystems (including /proc) exhibit this behavior.
67 */
68
69 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
70 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
71 * and the name already exists in form of a symlink, try to create the new
72 * name indicated by the symlink. The old code always complained that the
73 * name already exists, due to not following the symlink even if its target
74 * is nonexistent. The new semantics affects also mknod() and link() when
75 * the name is a symlink pointing to a non-existent name.
76 *
77 * I don't know which semantics is the right one, since I have no access
78 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
79 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
80 * "old" one. Personally, I think the new semantics is much more logical.
81 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
82 * file does succeed in both HP-UX and SunOs, but not in Solaris
83 * and in the old Linux semantics.
84 */
85
86 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
87 * semantics. See the comments in "open_namei" and "do_link" below.
88 *
89 * [10-Sep-98 Alan Modra] Another symlink change.
90 */
91
92 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
93 * inside the path - always follow.
94 * in the last component in creation/removal/renaming - never follow.
95 * if LOOKUP_FOLLOW passed - follow.
96 * if the pathname has trailing slashes - follow.
97 * otherwise - don't follow.
98 * (applied in that order).
99 *
100 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
101 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
102 * During the 2.4 we need to fix the userland stuff depending on it -
103 * hopefully we will be able to get rid of that wart in 2.5. So far only
104 * XEmacs seems to be relying on it...
105 */
106 /*
107 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
108 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
109 * any extra contention...
110 */
111
112 /* In order to reduce some races, while at the same time doing additional
113 * checking and hopefully speeding things up, we copy filenames to the
114 * kernel data space before using them..
115 *
116 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
117 * PATH_MAX includes the nul terminator --RR.
118 */
do_getname(const char __user * filename,char * page)119 static int do_getname(const char __user *filename, char *page)
120 {
121 int retval;
122 unsigned long len = PATH_MAX;
123
124 if (!segment_eq(get_fs(), KERNEL_DS)) {
125 if ((unsigned long) filename >= TASK_SIZE)
126 return -EFAULT;
127 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
128 len = TASK_SIZE - (unsigned long) filename;
129 }
130
131 retval = strncpy_from_user(page, filename, len);
132 if (retval > 0) {
133 if (retval < len)
134 return 0;
135 return -ENAMETOOLONG;
136 } else if (!retval)
137 retval = -ENOENT;
138 return retval;
139 }
140
getname_flags(const char __user * filename,int flags,int * empty)141 static char *getname_flags(const char __user *filename, int flags, int *empty)
142 {
143 char *result = __getname();
144 int retval;
145
146 if (!result)
147 return ERR_PTR(-ENOMEM);
148
149 retval = do_getname(filename, result);
150 if (retval < 0) {
151 if (retval == -ENOENT && empty)
152 *empty = 1;
153 if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) {
154 __putname(result);
155 return ERR_PTR(retval);
156 }
157 }
158 audit_getname(result);
159 return result;
160 }
161
getname(const char __user * filename)162 char *getname(const char __user * filename)
163 {
164 return getname_flags(filename, 0, NULL);
165 }
166
167 #ifdef CONFIG_AUDITSYSCALL
putname(const char * name)168 void putname(const char *name)
169 {
170 if (unlikely(!audit_dummy_context()))
171 audit_putname(name);
172 else
173 __putname(name);
174 }
175 EXPORT_SYMBOL(putname);
176 #endif
177
check_acl(struct inode * inode,int mask)178 static int check_acl(struct inode *inode, int mask)
179 {
180 #ifdef CONFIG_FS_POSIX_ACL
181 struct posix_acl *acl;
182
183 if (mask & MAY_NOT_BLOCK) {
184 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
185 if (!acl)
186 return -EAGAIN;
187 /* no ->get_acl() calls in RCU mode... */
188 if (acl == ACL_NOT_CACHED)
189 return -ECHILD;
190 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
191 }
192
193 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
194
195 /*
196 * A filesystem can force a ACL callback by just never filling the
197 * ACL cache. But normally you'd fill the cache either at inode
198 * instantiation time, or on the first ->get_acl call.
199 *
200 * If the filesystem doesn't have a get_acl() function at all, we'll
201 * just create the negative cache entry.
202 */
203 if (acl == ACL_NOT_CACHED) {
204 if (inode->i_op->get_acl) {
205 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
206 if (IS_ERR(acl))
207 return PTR_ERR(acl);
208 } else {
209 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
210 return -EAGAIN;
211 }
212 }
213
214 if (acl) {
215 int error = posix_acl_permission(inode, acl, mask);
216 posix_acl_release(acl);
217 return error;
218 }
219 #endif
220
221 return -EAGAIN;
222 }
223
224 /*
225 * This does the basic permission checking
226 */
acl_permission_check(struct inode * inode,int mask)227 static int acl_permission_check(struct inode *inode, int mask)
228 {
229 unsigned int mode = inode->i_mode;
230
231 if (current_user_ns() != inode_userns(inode))
232 goto other_perms;
233
234 if (likely(current_fsuid() == inode->i_uid))
235 mode >>= 6;
236 else {
237 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
238 int error = check_acl(inode, mask);
239 if (error != -EAGAIN)
240 return error;
241 }
242
243 if (in_group_p(inode->i_gid))
244 mode >>= 3;
245 }
246
247 other_perms:
248 /*
249 * If the DACs are ok we don't need any capability check.
250 */
251 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
252 return 0;
253 return -EACCES;
254 }
255
256 /**
257 * generic_permission - check for access rights on a Posix-like filesystem
258 * @inode: inode to check access rights for
259 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
260 *
261 * Used to check for read/write/execute permissions on a file.
262 * We use "fsuid" for this, letting us set arbitrary permissions
263 * for filesystem access without changing the "normal" uids which
264 * are used for other things.
265 *
266 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
267 * request cannot be satisfied (eg. requires blocking or too much complexity).
268 * It would then be called again in ref-walk mode.
269 */
generic_permission(struct inode * inode,int mask)270 int generic_permission(struct inode *inode, int mask)
271 {
272 int ret;
273
274 /*
275 * Do the basic permission checks.
276 */
277 ret = acl_permission_check(inode, mask);
278 if (ret != -EACCES)
279 return ret;
280
281 if (S_ISDIR(inode->i_mode)) {
282 /* DACs are overridable for directories */
283 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
284 return 0;
285 if (!(mask & MAY_WRITE))
286 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
287 return 0;
288 return -EACCES;
289 }
290 /*
291 * Read/write DACs are always overridable.
292 * Executable DACs are overridable when there is
293 * at least one exec bit set.
294 */
295 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
296 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
297 return 0;
298
299 /*
300 * Searching includes executable on directories, else just read.
301 */
302 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
303 if (mask == MAY_READ)
304 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
305 return 0;
306
307 return -EACCES;
308 }
309
310 /*
311 * We _really_ want to just do "generic_permission()" without
312 * even looking at the inode->i_op values. So we keep a cache
313 * flag in inode->i_opflags, that says "this has not special
314 * permission function, use the fast case".
315 */
do_inode_permission(struct inode * inode,int mask)316 static inline int do_inode_permission(struct inode *inode, int mask)
317 {
318 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
319 if (likely(inode->i_op->permission))
320 return inode->i_op->permission(inode, mask);
321
322 /* This gets set once for the inode lifetime */
323 spin_lock(&inode->i_lock);
324 inode->i_opflags |= IOP_FASTPERM;
325 spin_unlock(&inode->i_lock);
326 }
327 return generic_permission(inode, mask);
328 }
329
330 /**
331 * inode_permission - check for access rights to a given inode
332 * @inode: inode to check permission on
333 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
334 *
335 * Used to check for read/write/execute permissions on an inode.
336 * We use "fsuid" for this, letting us set arbitrary permissions
337 * for filesystem access without changing the "normal" uids which
338 * are used for other things.
339 *
340 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
341 */
inode_permission(struct inode * inode,int mask)342 int inode_permission(struct inode *inode, int mask)
343 {
344 int retval;
345
346 if (unlikely(mask & MAY_WRITE)) {
347 umode_t mode = inode->i_mode;
348
349 /*
350 * Nobody gets write access to a read-only fs.
351 */
352 if (IS_RDONLY(inode) &&
353 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
354 return -EROFS;
355
356 /*
357 * Nobody gets write access to an immutable file.
358 */
359 if (IS_IMMUTABLE(inode))
360 return -EACCES;
361 }
362
363 retval = do_inode_permission(inode, mask);
364 if (retval)
365 return retval;
366
367 retval = devcgroup_inode_permission(inode, mask);
368 if (retval)
369 return retval;
370
371 return security_inode_permission(inode, mask);
372 }
373
374 /**
375 * path_get - get a reference to a path
376 * @path: path to get the reference to
377 *
378 * Given a path increment the reference count to the dentry and the vfsmount.
379 */
path_get(struct path * path)380 void path_get(struct path *path)
381 {
382 mntget(path->mnt);
383 dget(path->dentry);
384 }
385 EXPORT_SYMBOL(path_get);
386
387 /**
388 * path_put - put a reference to a path
389 * @path: path to put the reference to
390 *
391 * Given a path decrement the reference count to the dentry and the vfsmount.
392 */
path_put(struct path * path)393 void path_put(struct path *path)
394 {
395 dput(path->dentry);
396 mntput(path->mnt);
397 }
398 EXPORT_SYMBOL(path_put);
399
400 /*
401 * Path walking has 2 modes, rcu-walk and ref-walk (see
402 * Documentation/filesystems/path-lookup.txt). In situations when we can't
403 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
404 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
405 * mode. Refcounts are grabbed at the last known good point before rcu-walk
406 * got stuck, so ref-walk may continue from there. If this is not successful
407 * (eg. a seqcount has changed), then failure is returned and it's up to caller
408 * to restart the path walk from the beginning in ref-walk mode.
409 */
410
411 /**
412 * unlazy_walk - try to switch to ref-walk mode.
413 * @nd: nameidata pathwalk data
414 * @dentry: child of nd->path.dentry or NULL
415 * Returns: 0 on success, -ECHILD on failure
416 *
417 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
418 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
419 * @nd or NULL. Must be called from rcu-walk context.
420 */
unlazy_walk(struct nameidata * nd,struct dentry * dentry)421 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
422 {
423 struct fs_struct *fs = current->fs;
424 struct dentry *parent = nd->path.dentry;
425 int want_root = 0;
426
427 BUG_ON(!(nd->flags & LOOKUP_RCU));
428 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
429 want_root = 1;
430 spin_lock(&fs->lock);
431 if (nd->root.mnt != fs->root.mnt ||
432 nd->root.dentry != fs->root.dentry)
433 goto err_root;
434 }
435 spin_lock(&parent->d_lock);
436 if (!dentry) {
437 if (!__d_rcu_to_refcount(parent, nd->seq))
438 goto err_parent;
439 BUG_ON(nd->inode != parent->d_inode);
440 } else {
441 if (dentry->d_parent != parent)
442 goto err_parent;
443 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
444 if (!__d_rcu_to_refcount(dentry, nd->seq))
445 goto err_child;
446 /*
447 * If the sequence check on the child dentry passed, then
448 * the child has not been removed from its parent. This
449 * means the parent dentry must be valid and able to take
450 * a reference at this point.
451 */
452 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
453 BUG_ON(!parent->d_count);
454 parent->d_count++;
455 spin_unlock(&dentry->d_lock);
456 }
457 spin_unlock(&parent->d_lock);
458 if (want_root) {
459 path_get(&nd->root);
460 spin_unlock(&fs->lock);
461 }
462 mntget(nd->path.mnt);
463
464 rcu_read_unlock();
465 br_read_unlock(vfsmount_lock);
466 nd->flags &= ~LOOKUP_RCU;
467 return 0;
468
469 err_child:
470 spin_unlock(&dentry->d_lock);
471 err_parent:
472 spin_unlock(&parent->d_lock);
473 err_root:
474 if (want_root)
475 spin_unlock(&fs->lock);
476 return -ECHILD;
477 }
478
479 /**
480 * release_open_intent - free up open intent resources
481 * @nd: pointer to nameidata
482 */
release_open_intent(struct nameidata * nd)483 void release_open_intent(struct nameidata *nd)
484 {
485 struct file *file = nd->intent.open.file;
486
487 if (file && !IS_ERR(file)) {
488 if (file->f_path.dentry == NULL)
489 put_filp(file);
490 else
491 fput(file);
492 }
493 }
494
d_revalidate(struct dentry * dentry,struct nameidata * nd)495 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
496 {
497 return dentry->d_op->d_revalidate(dentry, nd);
498 }
499
500 /**
501 * complete_walk - successful completion of path walk
502 * @nd: pointer nameidata
503 *
504 * If we had been in RCU mode, drop out of it and legitimize nd->path.
505 * Revalidate the final result, unless we'd already done that during
506 * the path walk or the filesystem doesn't ask for it. Return 0 on
507 * success, -error on failure. In case of failure caller does not
508 * need to drop nd->path.
509 */
complete_walk(struct nameidata * nd)510 static int complete_walk(struct nameidata *nd)
511 {
512 struct dentry *dentry = nd->path.dentry;
513 int status;
514
515 if (nd->flags & LOOKUP_RCU) {
516 nd->flags &= ~LOOKUP_RCU;
517 if (!(nd->flags & LOOKUP_ROOT))
518 nd->root.mnt = NULL;
519 spin_lock(&dentry->d_lock);
520 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
521 spin_unlock(&dentry->d_lock);
522 rcu_read_unlock();
523 br_read_unlock(vfsmount_lock);
524 return -ECHILD;
525 }
526 BUG_ON(nd->inode != dentry->d_inode);
527 spin_unlock(&dentry->d_lock);
528 mntget(nd->path.mnt);
529 rcu_read_unlock();
530 br_read_unlock(vfsmount_lock);
531 }
532
533 if (likely(!(nd->flags & LOOKUP_JUMPED)))
534 return 0;
535
536 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
537 return 0;
538
539 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
540 return 0;
541
542 /* Note: we do not d_invalidate() */
543 status = d_revalidate(dentry, nd);
544 if (status > 0)
545 return 0;
546
547 if (!status)
548 status = -ESTALE;
549
550 path_put(&nd->path);
551 return status;
552 }
553
set_root(struct nameidata * nd)554 static __always_inline void set_root(struct nameidata *nd)
555 {
556 if (!nd->root.mnt)
557 get_fs_root(current->fs, &nd->root);
558 }
559
560 static int link_path_walk(const char *, struct nameidata *);
561
set_root_rcu(struct nameidata * nd)562 static __always_inline void set_root_rcu(struct nameidata *nd)
563 {
564 if (!nd->root.mnt) {
565 struct fs_struct *fs = current->fs;
566 unsigned seq;
567
568 do {
569 seq = read_seqcount_begin(&fs->seq);
570 nd->root = fs->root;
571 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
572 } while (read_seqcount_retry(&fs->seq, seq));
573 }
574 }
575
__vfs_follow_link(struct nameidata * nd,const char * link)576 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
577 {
578 int ret;
579
580 if (IS_ERR(link))
581 goto fail;
582
583 if (*link == '/') {
584 set_root(nd);
585 path_put(&nd->path);
586 nd->path = nd->root;
587 path_get(&nd->root);
588 nd->flags |= LOOKUP_JUMPED;
589 }
590 nd->inode = nd->path.dentry->d_inode;
591
592 ret = link_path_walk(link, nd);
593 return ret;
594 fail:
595 path_put(&nd->path);
596 return PTR_ERR(link);
597 }
598
path_put_conditional(struct path * path,struct nameidata * nd)599 static void path_put_conditional(struct path *path, struct nameidata *nd)
600 {
601 dput(path->dentry);
602 if (path->mnt != nd->path.mnt)
603 mntput(path->mnt);
604 }
605
path_to_nameidata(const struct path * path,struct nameidata * nd)606 static inline void path_to_nameidata(const struct path *path,
607 struct nameidata *nd)
608 {
609 if (!(nd->flags & LOOKUP_RCU)) {
610 dput(nd->path.dentry);
611 if (nd->path.mnt != path->mnt)
612 mntput(nd->path.mnt);
613 }
614 nd->path.mnt = path->mnt;
615 nd->path.dentry = path->dentry;
616 }
617
put_link(struct nameidata * nd,struct path * link,void * cookie)618 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
619 {
620 struct inode *inode = link->dentry->d_inode;
621 if (!IS_ERR(cookie) && inode->i_op->put_link)
622 inode->i_op->put_link(link->dentry, nd, cookie);
623 path_put(link);
624 }
625
626 static __always_inline int
follow_link(struct path * link,struct nameidata * nd,void ** p)627 follow_link(struct path *link, struct nameidata *nd, void **p)
628 {
629 int error;
630 struct dentry *dentry = link->dentry;
631
632 BUG_ON(nd->flags & LOOKUP_RCU);
633
634 if (link->mnt == nd->path.mnt)
635 mntget(link->mnt);
636
637 if (unlikely(current->total_link_count >= 40)) {
638 *p = ERR_PTR(-ELOOP); /* no ->put_link(), please */
639 path_put(&nd->path);
640 return -ELOOP;
641 }
642 cond_resched();
643 current->total_link_count++;
644
645 touch_atime(link);
646 nd_set_link(nd, NULL);
647
648 error = security_inode_follow_link(link->dentry, nd);
649 if (error) {
650 *p = ERR_PTR(error); /* no ->put_link(), please */
651 path_put(&nd->path);
652 return error;
653 }
654
655 nd->last_type = LAST_BIND;
656 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
657 error = PTR_ERR(*p);
658 if (!IS_ERR(*p)) {
659 char *s = nd_get_link(nd);
660 error = 0;
661 if (s)
662 error = __vfs_follow_link(nd, s);
663 else if (nd->last_type == LAST_BIND) {
664 nd->flags |= LOOKUP_JUMPED;
665 nd->inode = nd->path.dentry->d_inode;
666 if (nd->inode->i_op->follow_link) {
667 /* stepped on a _really_ weird one */
668 path_put(&nd->path);
669 error = -ELOOP;
670 }
671 }
672 }
673 return error;
674 }
675
follow_up_rcu(struct path * path)676 static int follow_up_rcu(struct path *path)
677 {
678 struct mount *mnt = real_mount(path->mnt);
679 struct mount *parent;
680 struct dentry *mountpoint;
681
682 parent = mnt->mnt_parent;
683 if (&parent->mnt == path->mnt)
684 return 0;
685 mountpoint = mnt->mnt_mountpoint;
686 path->dentry = mountpoint;
687 path->mnt = &parent->mnt;
688 return 1;
689 }
690
follow_up(struct path * path)691 int follow_up(struct path *path)
692 {
693 struct mount *mnt = real_mount(path->mnt);
694 struct mount *parent;
695 struct dentry *mountpoint;
696
697 br_read_lock(vfsmount_lock);
698 parent = mnt->mnt_parent;
699 if (&parent->mnt == path->mnt) {
700 br_read_unlock(vfsmount_lock);
701 return 0;
702 }
703 mntget(&parent->mnt);
704 mountpoint = dget(mnt->mnt_mountpoint);
705 br_read_unlock(vfsmount_lock);
706 dput(path->dentry);
707 path->dentry = mountpoint;
708 mntput(path->mnt);
709 path->mnt = &parent->mnt;
710 return 1;
711 }
712
713 /*
714 * Perform an automount
715 * - return -EISDIR to tell follow_managed() to stop and return the path we
716 * were called with.
717 */
follow_automount(struct path * path,unsigned flags,bool * need_mntput)718 static int follow_automount(struct path *path, unsigned flags,
719 bool *need_mntput)
720 {
721 struct vfsmount *mnt;
722 int err;
723
724 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
725 return -EREMOTE;
726
727 /* We don't want to mount if someone's just doing a stat -
728 * unless they're stat'ing a directory and appended a '/' to
729 * the name.
730 *
731 * We do, however, want to mount if someone wants to open or
732 * create a file of any type under the mountpoint, wants to
733 * traverse through the mountpoint or wants to open the
734 * mounted directory. Also, autofs may mark negative dentries
735 * as being automount points. These will need the attentions
736 * of the daemon to instantiate them before they can be used.
737 */
738 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
739 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
740 path->dentry->d_inode)
741 return -EISDIR;
742
743 current->total_link_count++;
744 if (current->total_link_count >= 40)
745 return -ELOOP;
746
747 mnt = path->dentry->d_op->d_automount(path);
748 if (IS_ERR(mnt)) {
749 /*
750 * The filesystem is allowed to return -EISDIR here to indicate
751 * it doesn't want to automount. For instance, autofs would do
752 * this so that its userspace daemon can mount on this dentry.
753 *
754 * However, we can only permit this if it's a terminal point in
755 * the path being looked up; if it wasn't then the remainder of
756 * the path is inaccessible and we should say so.
757 */
758 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
759 return -EREMOTE;
760 return PTR_ERR(mnt);
761 }
762
763 if (!mnt) /* mount collision */
764 return 0;
765
766 if (!*need_mntput) {
767 /* lock_mount() may release path->mnt on error */
768 mntget(path->mnt);
769 *need_mntput = true;
770 }
771 err = finish_automount(mnt, path);
772
773 switch (err) {
774 case -EBUSY:
775 /* Someone else made a mount here whilst we were busy */
776 return 0;
777 case 0:
778 path_put(path);
779 path->mnt = mnt;
780 path->dentry = dget(mnt->mnt_root);
781 return 0;
782 default:
783 return err;
784 }
785
786 }
787
788 /*
789 * Handle a dentry that is managed in some way.
790 * - Flagged for transit management (autofs)
791 * - Flagged as mountpoint
792 * - Flagged as automount point
793 *
794 * This may only be called in refwalk mode.
795 *
796 * Serialization is taken care of in namespace.c
797 */
follow_managed(struct path * path,unsigned flags)798 static int follow_managed(struct path *path, unsigned flags)
799 {
800 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
801 unsigned managed;
802 bool need_mntput = false;
803 int ret = 0;
804
805 /* Given that we're not holding a lock here, we retain the value in a
806 * local variable for each dentry as we look at it so that we don't see
807 * the components of that value change under us */
808 while (managed = ACCESS_ONCE(path->dentry->d_flags),
809 managed &= DCACHE_MANAGED_DENTRY,
810 unlikely(managed != 0)) {
811 /* Allow the filesystem to manage the transit without i_mutex
812 * being held. */
813 if (managed & DCACHE_MANAGE_TRANSIT) {
814 BUG_ON(!path->dentry->d_op);
815 BUG_ON(!path->dentry->d_op->d_manage);
816 ret = path->dentry->d_op->d_manage(path->dentry, false);
817 if (ret < 0)
818 break;
819 }
820
821 /* Transit to a mounted filesystem. */
822 if (managed & DCACHE_MOUNTED) {
823 struct vfsmount *mounted = lookup_mnt(path);
824 if (mounted) {
825 dput(path->dentry);
826 if (need_mntput)
827 mntput(path->mnt);
828 path->mnt = mounted;
829 path->dentry = dget(mounted->mnt_root);
830 need_mntput = true;
831 continue;
832 }
833
834 /* Something is mounted on this dentry in another
835 * namespace and/or whatever was mounted there in this
836 * namespace got unmounted before we managed to get the
837 * vfsmount_lock */
838 }
839
840 /* Handle an automount point */
841 if (managed & DCACHE_NEED_AUTOMOUNT) {
842 ret = follow_automount(path, flags, &need_mntput);
843 if (ret < 0)
844 break;
845 continue;
846 }
847
848 /* We didn't change the current path point */
849 break;
850 }
851
852 if (need_mntput && path->mnt == mnt)
853 mntput(path->mnt);
854 if (ret == -EISDIR)
855 ret = 0;
856 return ret < 0 ? ret : need_mntput;
857 }
858
follow_down_one(struct path * path)859 int follow_down_one(struct path *path)
860 {
861 struct vfsmount *mounted;
862
863 mounted = lookup_mnt(path);
864 if (mounted) {
865 dput(path->dentry);
866 mntput(path->mnt);
867 path->mnt = mounted;
868 path->dentry = dget(mounted->mnt_root);
869 return 1;
870 }
871 return 0;
872 }
873
managed_dentry_might_block(struct dentry * dentry)874 static inline bool managed_dentry_might_block(struct dentry *dentry)
875 {
876 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
877 dentry->d_op->d_manage(dentry, true) < 0);
878 }
879
880 /*
881 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
882 * we meet a managed dentry that would need blocking.
883 */
__follow_mount_rcu(struct nameidata * nd,struct path * path,struct inode ** inode)884 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
885 struct inode **inode)
886 {
887 for (;;) {
888 struct mount *mounted;
889 /*
890 * Don't forget we might have a non-mountpoint managed dentry
891 * that wants to block transit.
892 */
893 if (unlikely(managed_dentry_might_block(path->dentry)))
894 return false;
895
896 if (!d_mountpoint(path->dentry))
897 break;
898
899 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
900 if (!mounted)
901 break;
902 path->mnt = &mounted->mnt;
903 path->dentry = mounted->mnt.mnt_root;
904 nd->flags |= LOOKUP_JUMPED;
905 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
906 /*
907 * Update the inode too. We don't need to re-check the
908 * dentry sequence number here after this d_inode read,
909 * because a mount-point is always pinned.
910 */
911 *inode = path->dentry->d_inode;
912 }
913 return true;
914 }
915
follow_mount_rcu(struct nameidata * nd)916 static void follow_mount_rcu(struct nameidata *nd)
917 {
918 while (d_mountpoint(nd->path.dentry)) {
919 struct mount *mounted;
920 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
921 if (!mounted)
922 break;
923 nd->path.mnt = &mounted->mnt;
924 nd->path.dentry = mounted->mnt.mnt_root;
925 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
926 }
927 }
928
follow_dotdot_rcu(struct nameidata * nd)929 static int follow_dotdot_rcu(struct nameidata *nd)
930 {
931 set_root_rcu(nd);
932
933 while (1) {
934 if (nd->path.dentry == nd->root.dentry &&
935 nd->path.mnt == nd->root.mnt) {
936 break;
937 }
938 if (nd->path.dentry != nd->path.mnt->mnt_root) {
939 struct dentry *old = nd->path.dentry;
940 struct dentry *parent = old->d_parent;
941 unsigned seq;
942
943 seq = read_seqcount_begin(&parent->d_seq);
944 if (read_seqcount_retry(&old->d_seq, nd->seq))
945 goto failed;
946 nd->path.dentry = parent;
947 nd->seq = seq;
948 break;
949 }
950 if (!follow_up_rcu(&nd->path))
951 break;
952 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
953 }
954 follow_mount_rcu(nd);
955 nd->inode = nd->path.dentry->d_inode;
956 return 0;
957
958 failed:
959 nd->flags &= ~LOOKUP_RCU;
960 if (!(nd->flags & LOOKUP_ROOT))
961 nd->root.mnt = NULL;
962 rcu_read_unlock();
963 br_read_unlock(vfsmount_lock);
964 return -ECHILD;
965 }
966
967 /*
968 * Follow down to the covering mount currently visible to userspace. At each
969 * point, the filesystem owning that dentry may be queried as to whether the
970 * caller is permitted to proceed or not.
971 */
follow_down(struct path * path)972 int follow_down(struct path *path)
973 {
974 unsigned managed;
975 int ret;
976
977 while (managed = ACCESS_ONCE(path->dentry->d_flags),
978 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
979 /* Allow the filesystem to manage the transit without i_mutex
980 * being held.
981 *
982 * We indicate to the filesystem if someone is trying to mount
983 * something here. This gives autofs the chance to deny anyone
984 * other than its daemon the right to mount on its
985 * superstructure.
986 *
987 * The filesystem may sleep at this point.
988 */
989 if (managed & DCACHE_MANAGE_TRANSIT) {
990 BUG_ON(!path->dentry->d_op);
991 BUG_ON(!path->dentry->d_op->d_manage);
992 ret = path->dentry->d_op->d_manage(
993 path->dentry, false);
994 if (ret < 0)
995 return ret == -EISDIR ? 0 : ret;
996 }
997
998 /* Transit to a mounted filesystem. */
999 if (managed & DCACHE_MOUNTED) {
1000 struct vfsmount *mounted = lookup_mnt(path);
1001 if (!mounted)
1002 break;
1003 dput(path->dentry);
1004 mntput(path->mnt);
1005 path->mnt = mounted;
1006 path->dentry = dget(mounted->mnt_root);
1007 continue;
1008 }
1009
1010 /* Don't handle automount points here */
1011 break;
1012 }
1013 return 0;
1014 }
1015
1016 /*
1017 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1018 */
follow_mount(struct path * path)1019 static void follow_mount(struct path *path)
1020 {
1021 while (d_mountpoint(path->dentry)) {
1022 struct vfsmount *mounted = lookup_mnt(path);
1023 if (!mounted)
1024 break;
1025 dput(path->dentry);
1026 mntput(path->mnt);
1027 path->mnt = mounted;
1028 path->dentry = dget(mounted->mnt_root);
1029 }
1030 }
1031
follow_dotdot(struct nameidata * nd)1032 static void follow_dotdot(struct nameidata *nd)
1033 {
1034 set_root(nd);
1035
1036 while(1) {
1037 struct dentry *old = nd->path.dentry;
1038
1039 if (nd->path.dentry == nd->root.dentry &&
1040 nd->path.mnt == nd->root.mnt) {
1041 break;
1042 }
1043 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1044 /* rare case of legitimate dget_parent()... */
1045 nd->path.dentry = dget_parent(nd->path.dentry);
1046 dput(old);
1047 break;
1048 }
1049 if (!follow_up(&nd->path))
1050 break;
1051 }
1052 follow_mount(&nd->path);
1053 nd->inode = nd->path.dentry->d_inode;
1054 }
1055
1056 /*
1057 * This looks up the name in dcache, possibly revalidates the old dentry and
1058 * allocates a new one if not found or not valid. In the need_lookup argument
1059 * returns whether i_op->lookup is necessary.
1060 *
1061 * dir->d_inode->i_mutex must be held
1062 */
lookup_dcache(struct qstr * name,struct dentry * dir,struct nameidata * nd,bool * need_lookup)1063 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1064 struct nameidata *nd, bool *need_lookup)
1065 {
1066 struct dentry *dentry;
1067 int error;
1068
1069 *need_lookup = false;
1070 dentry = d_lookup(dir, name);
1071 if (dentry) {
1072 if (d_need_lookup(dentry)) {
1073 *need_lookup = true;
1074 } else if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1075 error = d_revalidate(dentry, nd);
1076 if (unlikely(error <= 0)) {
1077 if (error < 0) {
1078 dput(dentry);
1079 return ERR_PTR(error);
1080 } else if (!d_invalidate(dentry)) {
1081 dput(dentry);
1082 dentry = NULL;
1083 }
1084 }
1085 }
1086 }
1087
1088 if (!dentry) {
1089 dentry = d_alloc(dir, name);
1090 if (unlikely(!dentry))
1091 return ERR_PTR(-ENOMEM);
1092
1093 *need_lookup = true;
1094 }
1095 return dentry;
1096 }
1097
1098 /*
1099 * Call i_op->lookup on the dentry. The dentry must be negative but may be
1100 * hashed if it was pouplated with DCACHE_NEED_LOOKUP.
1101 *
1102 * dir->d_inode->i_mutex must be held
1103 */
lookup_real(struct inode * dir,struct dentry * dentry,struct nameidata * nd)1104 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1105 struct nameidata *nd)
1106 {
1107 struct dentry *old;
1108
1109 /* Don't create child dentry for a dead directory. */
1110 if (unlikely(IS_DEADDIR(dir))) {
1111 dput(dentry);
1112 return ERR_PTR(-ENOENT);
1113 }
1114
1115 old = dir->i_op->lookup(dir, dentry, nd);
1116 if (unlikely(old)) {
1117 dput(dentry);
1118 dentry = old;
1119 }
1120 return dentry;
1121 }
1122
__lookup_hash(struct qstr * name,struct dentry * base,struct nameidata * nd)1123 static struct dentry *__lookup_hash(struct qstr *name,
1124 struct dentry *base, struct nameidata *nd)
1125 {
1126 bool need_lookup;
1127 struct dentry *dentry;
1128
1129 dentry = lookup_dcache(name, base, nd, &need_lookup);
1130 if (!need_lookup)
1131 return dentry;
1132
1133 return lookup_real(base->d_inode, dentry, nd);
1134 }
1135
1136 /*
1137 * It's more convoluted than I'd like it to be, but... it's still fairly
1138 * small and for now I'd prefer to have fast path as straight as possible.
1139 * It _is_ time-critical.
1140 */
do_lookup(struct nameidata * nd,struct qstr * name,struct path * path,struct inode ** inode)1141 static int do_lookup(struct nameidata *nd, struct qstr *name,
1142 struct path *path, struct inode **inode)
1143 {
1144 struct vfsmount *mnt = nd->path.mnt;
1145 struct dentry *dentry, *parent = nd->path.dentry;
1146 int need_reval = 1;
1147 int status = 1;
1148 int err;
1149
1150 /*
1151 * Rename seqlock is not required here because in the off chance
1152 * of a false negative due to a concurrent rename, we're going to
1153 * do the non-racy lookup, below.
1154 */
1155 if (nd->flags & LOOKUP_RCU) {
1156 unsigned seq;
1157 *inode = nd->inode;
1158 dentry = __d_lookup_rcu(parent, name, &seq, inode);
1159 if (!dentry)
1160 goto unlazy;
1161
1162 /* Memory barrier in read_seqcount_begin of child is enough */
1163 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1164 return -ECHILD;
1165 nd->seq = seq;
1166
1167 if (unlikely(d_need_lookup(dentry)))
1168 goto unlazy;
1169 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1170 status = d_revalidate(dentry, nd);
1171 if (unlikely(status <= 0)) {
1172 if (status != -ECHILD)
1173 need_reval = 0;
1174 goto unlazy;
1175 }
1176 }
1177 path->mnt = mnt;
1178 path->dentry = dentry;
1179 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1180 goto unlazy;
1181 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1182 goto unlazy;
1183 return 0;
1184 unlazy:
1185 if (unlazy_walk(nd, dentry))
1186 return -ECHILD;
1187 } else {
1188 dentry = __d_lookup(parent, name);
1189 }
1190
1191 if (unlikely(!dentry))
1192 goto need_lookup;
1193
1194 if (unlikely(d_need_lookup(dentry))) {
1195 dput(dentry);
1196 goto need_lookup;
1197 }
1198
1199 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1200 status = d_revalidate(dentry, nd);
1201 if (unlikely(status <= 0)) {
1202 if (status < 0) {
1203 dput(dentry);
1204 return status;
1205 }
1206 if (!d_invalidate(dentry)) {
1207 dput(dentry);
1208 goto need_lookup;
1209 }
1210 }
1211 done:
1212 path->mnt = mnt;
1213 path->dentry = dentry;
1214 err = follow_managed(path, nd->flags);
1215 if (unlikely(err < 0)) {
1216 path_put_conditional(path, nd);
1217 return err;
1218 }
1219 if (err)
1220 nd->flags |= LOOKUP_JUMPED;
1221 *inode = path->dentry->d_inode;
1222 return 0;
1223
1224 need_lookup:
1225 BUG_ON(nd->inode != parent->d_inode);
1226
1227 mutex_lock(&parent->d_inode->i_mutex);
1228 dentry = __lookup_hash(name, parent, nd);
1229 mutex_unlock(&parent->d_inode->i_mutex);
1230 if (IS_ERR(dentry))
1231 return PTR_ERR(dentry);
1232 goto done;
1233 }
1234
may_lookup(struct nameidata * nd)1235 static inline int may_lookup(struct nameidata *nd)
1236 {
1237 if (nd->flags & LOOKUP_RCU) {
1238 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1239 if (err != -ECHILD)
1240 return err;
1241 if (unlazy_walk(nd, NULL))
1242 return -ECHILD;
1243 }
1244 return inode_permission(nd->inode, MAY_EXEC);
1245 }
1246
handle_dots(struct nameidata * nd,int type)1247 static inline int handle_dots(struct nameidata *nd, int type)
1248 {
1249 if (type == LAST_DOTDOT) {
1250 if (nd->flags & LOOKUP_RCU) {
1251 if (follow_dotdot_rcu(nd))
1252 return -ECHILD;
1253 } else
1254 follow_dotdot(nd);
1255 }
1256 return 0;
1257 }
1258
terminate_walk(struct nameidata * nd)1259 static void terminate_walk(struct nameidata *nd)
1260 {
1261 if (!(nd->flags & LOOKUP_RCU)) {
1262 path_put(&nd->path);
1263 } else {
1264 nd->flags &= ~LOOKUP_RCU;
1265 if (!(nd->flags & LOOKUP_ROOT))
1266 nd->root.mnt = NULL;
1267 rcu_read_unlock();
1268 br_read_unlock(vfsmount_lock);
1269 }
1270 }
1271
1272 /*
1273 * Do we need to follow links? We _really_ want to be able
1274 * to do this check without having to look at inode->i_op,
1275 * so we keep a cache of "no, this doesn't need follow_link"
1276 * for the common case.
1277 */
should_follow_link(struct inode * inode,int follow)1278 static inline int should_follow_link(struct inode *inode, int follow)
1279 {
1280 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1281 if (likely(inode->i_op->follow_link))
1282 return follow;
1283
1284 /* This gets set once for the inode lifetime */
1285 spin_lock(&inode->i_lock);
1286 inode->i_opflags |= IOP_NOFOLLOW;
1287 spin_unlock(&inode->i_lock);
1288 }
1289 return 0;
1290 }
1291
walk_component(struct nameidata * nd,struct path * path,struct qstr * name,int type,int follow)1292 static inline int walk_component(struct nameidata *nd, struct path *path,
1293 struct qstr *name, int type, int follow)
1294 {
1295 struct inode *inode;
1296 int err;
1297 /*
1298 * "." and ".." are special - ".." especially so because it has
1299 * to be able to know about the current root directory and
1300 * parent relationships.
1301 */
1302 if (unlikely(type != LAST_NORM))
1303 return handle_dots(nd, type);
1304 err = do_lookup(nd, name, path, &inode);
1305 if (unlikely(err)) {
1306 terminate_walk(nd);
1307 return err;
1308 }
1309 if (!inode) {
1310 path_to_nameidata(path, nd);
1311 terminate_walk(nd);
1312 return -ENOENT;
1313 }
1314 if (should_follow_link(inode, follow)) {
1315 if (nd->flags & LOOKUP_RCU) {
1316 if (unlikely(unlazy_walk(nd, path->dentry))) {
1317 terminate_walk(nd);
1318 return -ECHILD;
1319 }
1320 }
1321 BUG_ON(inode != path->dentry->d_inode);
1322 return 1;
1323 }
1324 path_to_nameidata(path, nd);
1325 nd->inode = inode;
1326 return 0;
1327 }
1328
1329 /*
1330 * This limits recursive symlink follows to 8, while
1331 * limiting consecutive symlinks to 40.
1332 *
1333 * Without that kind of total limit, nasty chains of consecutive
1334 * symlinks can cause almost arbitrarily long lookups.
1335 */
nested_symlink(struct path * path,struct nameidata * nd)1336 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1337 {
1338 int res;
1339
1340 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1341 path_put_conditional(path, nd);
1342 path_put(&nd->path);
1343 return -ELOOP;
1344 }
1345 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1346
1347 nd->depth++;
1348 current->link_count++;
1349
1350 do {
1351 struct path link = *path;
1352 void *cookie;
1353
1354 res = follow_link(&link, nd, &cookie);
1355 if (!res)
1356 res = walk_component(nd, path, &nd->last,
1357 nd->last_type, LOOKUP_FOLLOW);
1358 put_link(nd, &link, cookie);
1359 } while (res > 0);
1360
1361 current->link_count--;
1362 nd->depth--;
1363 return res;
1364 }
1365
1366 /*
1367 * We really don't want to look at inode->i_op->lookup
1368 * when we don't have to. So we keep a cache bit in
1369 * the inode ->i_opflags field that says "yes, we can
1370 * do lookup on this inode".
1371 */
can_lookup(struct inode * inode)1372 static inline int can_lookup(struct inode *inode)
1373 {
1374 if (likely(inode->i_opflags & IOP_LOOKUP))
1375 return 1;
1376 if (likely(!inode->i_op->lookup))
1377 return 0;
1378
1379 /* We do this once for the lifetime of the inode */
1380 spin_lock(&inode->i_lock);
1381 inode->i_opflags |= IOP_LOOKUP;
1382 spin_unlock(&inode->i_lock);
1383 return 1;
1384 }
1385
1386 /*
1387 * We can do the critical dentry name comparison and hashing
1388 * operations one word at a time, but we are limited to:
1389 *
1390 * - Architectures with fast unaligned word accesses. We could
1391 * do a "get_unaligned()" if this helps and is sufficiently
1392 * fast.
1393 *
1394 * - Little-endian machines (so that we can generate the mask
1395 * of low bytes efficiently). Again, we *could* do a byte
1396 * swapping load on big-endian architectures if that is not
1397 * expensive enough to make the optimization worthless.
1398 *
1399 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1400 * do not trap on the (extremely unlikely) case of a page
1401 * crossing operation.
1402 *
1403 * - Furthermore, we need an efficient 64-bit compile for the
1404 * 64-bit case in order to generate the "number of bytes in
1405 * the final mask". Again, that could be replaced with a
1406 * efficient population count instruction or similar.
1407 */
1408 #ifdef CONFIG_DCACHE_WORD_ACCESS
1409
1410 #include <asm/word-at-a-time.h>
1411
1412 #ifdef CONFIG_64BIT
1413
fold_hash(unsigned long hash)1414 static inline unsigned int fold_hash(unsigned long hash)
1415 {
1416 hash += hash >> (8*sizeof(int));
1417 return hash;
1418 }
1419
1420 #else /* 32-bit case */
1421
1422 #define fold_hash(x) (x)
1423
1424 #endif
1425
full_name_hash(const unsigned char * name,unsigned int len)1426 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1427 {
1428 unsigned long a, mask;
1429 unsigned long hash = 0;
1430
1431 for (;;) {
1432 a = load_unaligned_zeropad(name);
1433 if (len < sizeof(unsigned long))
1434 break;
1435 hash += a;
1436 hash *= 9;
1437 name += sizeof(unsigned long);
1438 len -= sizeof(unsigned long);
1439 if (!len)
1440 goto done;
1441 }
1442 mask = ~(~0ul << len*8);
1443 hash += mask & a;
1444 done:
1445 return fold_hash(hash);
1446 }
1447 EXPORT_SYMBOL(full_name_hash);
1448
1449 /*
1450 * Calculate the length and hash of the path component, and
1451 * return the length of the component;
1452 */
hash_name(const char * name,unsigned int * hashp)1453 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1454 {
1455 unsigned long a, mask, hash, len;
1456
1457 hash = a = 0;
1458 len = -sizeof(unsigned long);
1459 do {
1460 hash = (hash + a) * 9;
1461 len += sizeof(unsigned long);
1462 a = load_unaligned_zeropad(name+len);
1463 /* Do we have any NUL or '/' bytes in this word? */
1464 mask = has_zero(a) | has_zero(a ^ REPEAT_BYTE('/'));
1465 } while (!mask);
1466
1467 /* The mask *below* the first high bit set */
1468 mask = (mask - 1) & ~mask;
1469 mask >>= 7;
1470 hash += a & mask;
1471 *hashp = fold_hash(hash);
1472
1473 return len + count_masked_bytes(mask);
1474 }
1475
1476 #else
1477
full_name_hash(const unsigned char * name,unsigned int len)1478 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1479 {
1480 unsigned long hash = init_name_hash();
1481 while (len--)
1482 hash = partial_name_hash(*name++, hash);
1483 return end_name_hash(hash);
1484 }
1485 EXPORT_SYMBOL(full_name_hash);
1486
1487 /*
1488 * We know there's a real path component here of at least
1489 * one character.
1490 */
hash_name(const char * name,unsigned int * hashp)1491 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1492 {
1493 unsigned long hash = init_name_hash();
1494 unsigned long len = 0, c;
1495
1496 c = (unsigned char)*name;
1497 do {
1498 len++;
1499 hash = partial_name_hash(c, hash);
1500 c = (unsigned char)name[len];
1501 } while (c && c != '/');
1502 *hashp = end_name_hash(hash);
1503 return len;
1504 }
1505
1506 #endif
1507
1508 /*
1509 * Name resolution.
1510 * This is the basic name resolution function, turning a pathname into
1511 * the final dentry. We expect 'base' to be positive and a directory.
1512 *
1513 * Returns 0 and nd will have valid dentry and mnt on success.
1514 * Returns error and drops reference to input namei data on failure.
1515 */
link_path_walk(const char * name,struct nameidata * nd)1516 static int link_path_walk(const char *name, struct nameidata *nd)
1517 {
1518 struct path next;
1519 int err;
1520
1521 while (*name=='/')
1522 name++;
1523 if (!*name)
1524 return 0;
1525
1526 /* At this point we know we have a real path component. */
1527 for(;;) {
1528 struct qstr this;
1529 long len;
1530 int type;
1531
1532 err = may_lookup(nd);
1533 if (err)
1534 break;
1535
1536 len = hash_name(name, &this.hash);
1537 this.name = name;
1538 this.len = len;
1539
1540 type = LAST_NORM;
1541 if (name[0] == '.') switch (len) {
1542 case 2:
1543 if (name[1] == '.') {
1544 type = LAST_DOTDOT;
1545 nd->flags |= LOOKUP_JUMPED;
1546 }
1547 break;
1548 case 1:
1549 type = LAST_DOT;
1550 }
1551 if (likely(type == LAST_NORM)) {
1552 struct dentry *parent = nd->path.dentry;
1553 nd->flags &= ~LOOKUP_JUMPED;
1554 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1555 err = parent->d_op->d_hash(parent, nd->inode,
1556 &this);
1557 if (err < 0)
1558 break;
1559 }
1560 }
1561
1562 if (!name[len])
1563 goto last_component;
1564 /*
1565 * If it wasn't NUL, we know it was '/'. Skip that
1566 * slash, and continue until no more slashes.
1567 */
1568 do {
1569 len++;
1570 } while (unlikely(name[len] == '/'));
1571 if (!name[len])
1572 goto last_component;
1573 name += len;
1574
1575 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1576 if (err < 0)
1577 return err;
1578
1579 if (err) {
1580 err = nested_symlink(&next, nd);
1581 if (err)
1582 return err;
1583 }
1584 if (can_lookup(nd->inode))
1585 continue;
1586 err = -ENOTDIR;
1587 break;
1588 /* here ends the main loop */
1589
1590 last_component:
1591 nd->last = this;
1592 nd->last_type = type;
1593 return 0;
1594 }
1595 terminate_walk(nd);
1596 return err;
1597 }
1598
path_init(int dfd,const char * name,unsigned int flags,struct nameidata * nd,struct file ** fp)1599 static int path_init(int dfd, const char *name, unsigned int flags,
1600 struct nameidata *nd, struct file **fp)
1601 {
1602 int retval = 0;
1603 int fput_needed;
1604 struct file *file;
1605
1606 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1607 nd->flags = flags | LOOKUP_JUMPED;
1608 nd->depth = 0;
1609 if (flags & LOOKUP_ROOT) {
1610 struct inode *inode = nd->root.dentry->d_inode;
1611 if (*name) {
1612 if (!inode->i_op->lookup)
1613 return -ENOTDIR;
1614 retval = inode_permission(inode, MAY_EXEC);
1615 if (retval)
1616 return retval;
1617 }
1618 nd->path = nd->root;
1619 nd->inode = inode;
1620 if (flags & LOOKUP_RCU) {
1621 br_read_lock(vfsmount_lock);
1622 rcu_read_lock();
1623 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1624 } else {
1625 path_get(&nd->path);
1626 }
1627 return 0;
1628 }
1629
1630 nd->root.mnt = NULL;
1631
1632 if (*name=='/') {
1633 if (flags & LOOKUP_RCU) {
1634 br_read_lock(vfsmount_lock);
1635 rcu_read_lock();
1636 set_root_rcu(nd);
1637 } else {
1638 set_root(nd);
1639 path_get(&nd->root);
1640 }
1641 nd->path = nd->root;
1642 } else if (dfd == AT_FDCWD) {
1643 if (flags & LOOKUP_RCU) {
1644 struct fs_struct *fs = current->fs;
1645 unsigned seq;
1646
1647 br_read_lock(vfsmount_lock);
1648 rcu_read_lock();
1649
1650 do {
1651 seq = read_seqcount_begin(&fs->seq);
1652 nd->path = fs->pwd;
1653 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1654 } while (read_seqcount_retry(&fs->seq, seq));
1655 } else {
1656 get_fs_pwd(current->fs, &nd->path);
1657 }
1658 } else {
1659 struct dentry *dentry;
1660
1661 file = fget_raw_light(dfd, &fput_needed);
1662 retval = -EBADF;
1663 if (!file)
1664 goto out_fail;
1665
1666 dentry = file->f_path.dentry;
1667
1668 if (*name) {
1669 retval = -ENOTDIR;
1670 if (!S_ISDIR(dentry->d_inode->i_mode))
1671 goto fput_fail;
1672
1673 retval = inode_permission(dentry->d_inode, MAY_EXEC);
1674 if (retval)
1675 goto fput_fail;
1676 }
1677
1678 nd->path = file->f_path;
1679 if (flags & LOOKUP_RCU) {
1680 if (fput_needed)
1681 *fp = file;
1682 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1683 br_read_lock(vfsmount_lock);
1684 rcu_read_lock();
1685 } else {
1686 path_get(&file->f_path);
1687 fput_light(file, fput_needed);
1688 }
1689 }
1690
1691 nd->inode = nd->path.dentry->d_inode;
1692 return 0;
1693
1694 fput_fail:
1695 fput_light(file, fput_needed);
1696 out_fail:
1697 return retval;
1698 }
1699
lookup_last(struct nameidata * nd,struct path * path)1700 static inline int lookup_last(struct nameidata *nd, struct path *path)
1701 {
1702 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1703 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1704
1705 nd->flags &= ~LOOKUP_PARENT;
1706 return walk_component(nd, path, &nd->last, nd->last_type,
1707 nd->flags & LOOKUP_FOLLOW);
1708 }
1709
1710 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
path_lookupat(int dfd,const char * name,unsigned int flags,struct nameidata * nd)1711 static int path_lookupat(int dfd, const char *name,
1712 unsigned int flags, struct nameidata *nd)
1713 {
1714 struct file *base = NULL;
1715 struct path path;
1716 int err;
1717
1718 /*
1719 * Path walking is largely split up into 2 different synchronisation
1720 * schemes, rcu-walk and ref-walk (explained in
1721 * Documentation/filesystems/path-lookup.txt). These share much of the
1722 * path walk code, but some things particularly setup, cleanup, and
1723 * following mounts are sufficiently divergent that functions are
1724 * duplicated. Typically there is a function foo(), and its RCU
1725 * analogue, foo_rcu().
1726 *
1727 * -ECHILD is the error number of choice (just to avoid clashes) that
1728 * is returned if some aspect of an rcu-walk fails. Such an error must
1729 * be handled by restarting a traditional ref-walk (which will always
1730 * be able to complete).
1731 */
1732 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1733
1734 if (unlikely(err))
1735 return err;
1736
1737 current->total_link_count = 0;
1738 err = link_path_walk(name, nd);
1739
1740 if (!err && !(flags & LOOKUP_PARENT)) {
1741 err = lookup_last(nd, &path);
1742 while (err > 0) {
1743 void *cookie;
1744 struct path link = path;
1745 nd->flags |= LOOKUP_PARENT;
1746 err = follow_link(&link, nd, &cookie);
1747 if (!err)
1748 err = lookup_last(nd, &path);
1749 put_link(nd, &link, cookie);
1750 }
1751 }
1752
1753 if (!err)
1754 err = complete_walk(nd);
1755
1756 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1757 if (!nd->inode->i_op->lookup) {
1758 path_put(&nd->path);
1759 err = -ENOTDIR;
1760 }
1761 }
1762
1763 if (base)
1764 fput(base);
1765
1766 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1767 path_put(&nd->root);
1768 nd->root.mnt = NULL;
1769 }
1770 return err;
1771 }
1772
do_path_lookup(int dfd,const char * name,unsigned int flags,struct nameidata * nd)1773 static int do_path_lookup(int dfd, const char *name,
1774 unsigned int flags, struct nameidata *nd)
1775 {
1776 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1777 if (unlikely(retval == -ECHILD))
1778 retval = path_lookupat(dfd, name, flags, nd);
1779 if (unlikely(retval == -ESTALE))
1780 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1781
1782 if (likely(!retval)) {
1783 if (unlikely(!audit_dummy_context())) {
1784 if (nd->path.dentry && nd->inode)
1785 audit_inode(name, nd->path.dentry);
1786 }
1787 }
1788 return retval;
1789 }
1790
kern_path_parent(const char * name,struct nameidata * nd)1791 int kern_path_parent(const char *name, struct nameidata *nd)
1792 {
1793 return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1794 }
1795
kern_path(const char * name,unsigned int flags,struct path * path)1796 int kern_path(const char *name, unsigned int flags, struct path *path)
1797 {
1798 struct nameidata nd;
1799 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1800 if (!res)
1801 *path = nd.path;
1802 return res;
1803 }
1804
1805 /**
1806 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1807 * @dentry: pointer to dentry of the base directory
1808 * @mnt: pointer to vfs mount of the base directory
1809 * @name: pointer to file name
1810 * @flags: lookup flags
1811 * @path: pointer to struct path to fill
1812 */
vfs_path_lookup(struct dentry * dentry,struct vfsmount * mnt,const char * name,unsigned int flags,struct path * path)1813 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1814 const char *name, unsigned int flags,
1815 struct path *path)
1816 {
1817 struct nameidata nd;
1818 int err;
1819 nd.root.dentry = dentry;
1820 nd.root.mnt = mnt;
1821 BUG_ON(flags & LOOKUP_PARENT);
1822 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1823 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
1824 if (!err)
1825 *path = nd.path;
1826 return err;
1827 }
1828
1829 /*
1830 * Restricted form of lookup. Doesn't follow links, single-component only,
1831 * needs parent already locked. Doesn't follow mounts.
1832 * SMP-safe.
1833 */
lookup_hash(struct nameidata * nd)1834 static struct dentry *lookup_hash(struct nameidata *nd)
1835 {
1836 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1837 }
1838
1839 /**
1840 * lookup_one_len - filesystem helper to lookup single pathname component
1841 * @name: pathname component to lookup
1842 * @base: base directory to lookup from
1843 * @len: maximum length @len should be interpreted to
1844 *
1845 * Note that this routine is purely a helper for filesystem usage and should
1846 * not be called by generic code. Also note that by using this function the
1847 * nameidata argument is passed to the filesystem methods and a filesystem
1848 * using this helper needs to be prepared for that.
1849 */
lookup_one_len(const char * name,struct dentry * base,int len)1850 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1851 {
1852 struct qstr this;
1853 unsigned int c;
1854 int err;
1855
1856 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1857
1858 this.name = name;
1859 this.len = len;
1860 this.hash = full_name_hash(name, len);
1861 if (!len)
1862 return ERR_PTR(-EACCES);
1863
1864 while (len--) {
1865 c = *(const unsigned char *)name++;
1866 if (c == '/' || c == '\0')
1867 return ERR_PTR(-EACCES);
1868 }
1869 /*
1870 * See if the low-level filesystem might want
1871 * to use its own hash..
1872 */
1873 if (base->d_flags & DCACHE_OP_HASH) {
1874 int err = base->d_op->d_hash(base, base->d_inode, &this);
1875 if (err < 0)
1876 return ERR_PTR(err);
1877 }
1878
1879 err = inode_permission(base->d_inode, MAY_EXEC);
1880 if (err)
1881 return ERR_PTR(err);
1882
1883 return __lookup_hash(&this, base, NULL);
1884 }
1885
user_path_at_empty(int dfd,const char __user * name,unsigned flags,struct path * path,int * empty)1886 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
1887 struct path *path, int *empty)
1888 {
1889 struct nameidata nd;
1890 char *tmp = getname_flags(name, flags, empty);
1891 int err = PTR_ERR(tmp);
1892 if (!IS_ERR(tmp)) {
1893
1894 BUG_ON(flags & LOOKUP_PARENT);
1895
1896 err = do_path_lookup(dfd, tmp, flags, &nd);
1897 putname(tmp);
1898 if (!err)
1899 *path = nd.path;
1900 }
1901 return err;
1902 }
1903
user_path_at(int dfd,const char __user * name,unsigned flags,struct path * path)1904 int user_path_at(int dfd, const char __user *name, unsigned flags,
1905 struct path *path)
1906 {
1907 return user_path_at_empty(dfd, name, flags, path, NULL);
1908 }
1909
user_path_parent(int dfd,const char __user * path,struct nameidata * nd,char ** name)1910 static int user_path_parent(int dfd, const char __user *path,
1911 struct nameidata *nd, char **name)
1912 {
1913 char *s = getname(path);
1914 int error;
1915
1916 if (IS_ERR(s))
1917 return PTR_ERR(s);
1918
1919 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1920 if (error)
1921 putname(s);
1922 else
1923 *name = s;
1924
1925 return error;
1926 }
1927
1928 /*
1929 * It's inline, so penalty for filesystems that don't use sticky bit is
1930 * minimal.
1931 */
check_sticky(struct inode * dir,struct inode * inode)1932 static inline int check_sticky(struct inode *dir, struct inode *inode)
1933 {
1934 uid_t fsuid = current_fsuid();
1935
1936 if (!(dir->i_mode & S_ISVTX))
1937 return 0;
1938 if (current_user_ns() != inode_userns(inode))
1939 goto other_userns;
1940 if (inode->i_uid == fsuid)
1941 return 0;
1942 if (dir->i_uid == fsuid)
1943 return 0;
1944
1945 other_userns:
1946 return !ns_capable(inode_userns(inode), CAP_FOWNER);
1947 }
1948
1949 /*
1950 * Check whether we can remove a link victim from directory dir, check
1951 * whether the type of victim is right.
1952 * 1. We can't do it if dir is read-only (done in permission())
1953 * 2. We should have write and exec permissions on dir
1954 * 3. We can't remove anything from append-only dir
1955 * 4. We can't do anything with immutable dir (done in permission())
1956 * 5. If the sticky bit on dir is set we should either
1957 * a. be owner of dir, or
1958 * b. be owner of victim, or
1959 * c. have CAP_FOWNER capability
1960 * 6. If the victim is append-only or immutable we can't do antyhing with
1961 * links pointing to it.
1962 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1963 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1964 * 9. We can't remove a root or mountpoint.
1965 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1966 * nfs_async_unlink().
1967 */
may_delete(struct inode * dir,struct dentry * victim,int isdir)1968 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1969 {
1970 int error;
1971
1972 if (!victim->d_inode)
1973 return -ENOENT;
1974
1975 BUG_ON(victim->d_parent->d_inode != dir);
1976 audit_inode_child(victim, dir);
1977
1978 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1979 if (error)
1980 return error;
1981 if (IS_APPEND(dir))
1982 return -EPERM;
1983 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1984 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1985 return -EPERM;
1986 if (isdir) {
1987 if (!S_ISDIR(victim->d_inode->i_mode))
1988 return -ENOTDIR;
1989 if (IS_ROOT(victim))
1990 return -EBUSY;
1991 } else if (S_ISDIR(victim->d_inode->i_mode))
1992 return -EISDIR;
1993 if (IS_DEADDIR(dir))
1994 return -ENOENT;
1995 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1996 return -EBUSY;
1997 return 0;
1998 }
1999
2000 /* Check whether we can create an object with dentry child in directory
2001 * dir.
2002 * 1. We can't do it if child already exists (open has special treatment for
2003 * this case, but since we are inlined it's OK)
2004 * 2. We can't do it if dir is read-only (done in permission())
2005 * 3. We should have write and exec permissions on dir
2006 * 4. We can't do it if dir is immutable (done in permission())
2007 */
may_create(struct inode * dir,struct dentry * child)2008 static inline int may_create(struct inode *dir, struct dentry *child)
2009 {
2010 if (child->d_inode)
2011 return -EEXIST;
2012 if (IS_DEADDIR(dir))
2013 return -ENOENT;
2014 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2015 }
2016
2017 /*
2018 * p1 and p2 should be directories on the same fs.
2019 */
lock_rename(struct dentry * p1,struct dentry * p2)2020 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2021 {
2022 struct dentry *p;
2023
2024 if (p1 == p2) {
2025 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2026 return NULL;
2027 }
2028
2029 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2030
2031 p = d_ancestor(p2, p1);
2032 if (p) {
2033 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2034 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2035 return p;
2036 }
2037
2038 p = d_ancestor(p1, p2);
2039 if (p) {
2040 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2041 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2042 return p;
2043 }
2044
2045 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2046 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2047 return NULL;
2048 }
2049
unlock_rename(struct dentry * p1,struct dentry * p2)2050 void unlock_rename(struct dentry *p1, struct dentry *p2)
2051 {
2052 mutex_unlock(&p1->d_inode->i_mutex);
2053 if (p1 != p2) {
2054 mutex_unlock(&p2->d_inode->i_mutex);
2055 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2056 }
2057 }
2058
vfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,struct nameidata * nd)2059 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2060 struct nameidata *nd)
2061 {
2062 int error = may_create(dir, dentry);
2063
2064 if (error)
2065 return error;
2066
2067 if (!dir->i_op->create)
2068 return -EACCES; /* shouldn't it be ENOSYS? */
2069 mode &= S_IALLUGO;
2070 mode |= S_IFREG;
2071 error = security_inode_create(dir, dentry, mode);
2072 if (error)
2073 return error;
2074 error = dir->i_op->create(dir, dentry, mode, nd);
2075 if (!error)
2076 fsnotify_create(dir, dentry);
2077 return error;
2078 }
2079
may_open(struct path * path,int acc_mode,int flag)2080 static int may_open(struct path *path, int acc_mode, int flag)
2081 {
2082 struct dentry *dentry = path->dentry;
2083 struct inode *inode = dentry->d_inode;
2084 int error;
2085
2086 /* O_PATH? */
2087 if (!acc_mode)
2088 return 0;
2089
2090 if (!inode)
2091 return -ENOENT;
2092
2093 switch (inode->i_mode & S_IFMT) {
2094 case S_IFLNK:
2095 return -ELOOP;
2096 case S_IFDIR:
2097 if (acc_mode & MAY_WRITE)
2098 return -EISDIR;
2099 break;
2100 case S_IFBLK:
2101 case S_IFCHR:
2102 if (path->mnt->mnt_flags & MNT_NODEV)
2103 return -EACCES;
2104 /*FALLTHRU*/
2105 case S_IFIFO:
2106 case S_IFSOCK:
2107 flag &= ~O_TRUNC;
2108 break;
2109 }
2110
2111 error = inode_permission(inode, acc_mode);
2112 if (error)
2113 return error;
2114
2115 /*
2116 * An append-only file must be opened in append mode for writing.
2117 */
2118 if (IS_APPEND(inode)) {
2119 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2120 return -EPERM;
2121 if (flag & O_TRUNC)
2122 return -EPERM;
2123 }
2124
2125 /* O_NOATIME can only be set by the owner or superuser */
2126 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2127 return -EPERM;
2128
2129 return 0;
2130 }
2131
handle_truncate(struct file * filp)2132 static int handle_truncate(struct file *filp)
2133 {
2134 struct path *path = &filp->f_path;
2135 struct inode *inode = path->dentry->d_inode;
2136 int error = get_write_access(inode);
2137 if (error)
2138 return error;
2139 /*
2140 * Refuse to truncate files with mandatory locks held on them.
2141 */
2142 error = locks_verify_locked(inode);
2143 if (!error)
2144 error = security_path_truncate(path);
2145 if (!error) {
2146 error = do_truncate(path->dentry, 0,
2147 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2148 filp);
2149 }
2150 put_write_access(inode);
2151 return error;
2152 }
2153
open_to_namei_flags(int flag)2154 static inline int open_to_namei_flags(int flag)
2155 {
2156 if ((flag & O_ACCMODE) == 3)
2157 flag--;
2158 return flag;
2159 }
2160
2161 /*
2162 * Handle the last step of open()
2163 */
do_last(struct nameidata * nd,struct path * path,const struct open_flags * op,const char * pathname)2164 static struct file *do_last(struct nameidata *nd, struct path *path,
2165 const struct open_flags *op, const char *pathname)
2166 {
2167 struct dentry *dir = nd->path.dentry;
2168 struct dentry *dentry;
2169 int open_flag = op->open_flag;
2170 int will_truncate = open_flag & O_TRUNC;
2171 int want_write = 0;
2172 int acc_mode = op->acc_mode;
2173 struct file *filp;
2174 int error;
2175
2176 nd->flags &= ~LOOKUP_PARENT;
2177 nd->flags |= op->intent;
2178
2179 switch (nd->last_type) {
2180 case LAST_DOTDOT:
2181 case LAST_DOT:
2182 error = handle_dots(nd, nd->last_type);
2183 if (error)
2184 return ERR_PTR(error);
2185 /* fallthrough */
2186 case LAST_ROOT:
2187 error = complete_walk(nd);
2188 if (error)
2189 return ERR_PTR(error);
2190 audit_inode(pathname, nd->path.dentry);
2191 if (open_flag & O_CREAT) {
2192 error = -EISDIR;
2193 goto exit;
2194 }
2195 goto ok;
2196 case LAST_BIND:
2197 error = complete_walk(nd);
2198 if (error)
2199 return ERR_PTR(error);
2200 audit_inode(pathname, dir);
2201 goto ok;
2202 }
2203
2204 if (!(open_flag & O_CREAT)) {
2205 int symlink_ok = 0;
2206 if (nd->last.name[nd->last.len])
2207 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2208 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2209 symlink_ok = 1;
2210 /* we _can_ be in RCU mode here */
2211 error = walk_component(nd, path, &nd->last, LAST_NORM,
2212 !symlink_ok);
2213 if (error < 0)
2214 return ERR_PTR(error);
2215 if (error) /* symlink */
2216 return NULL;
2217 /* sayonara */
2218 error = complete_walk(nd);
2219 if (error)
2220 return ERR_PTR(error);
2221
2222 error = -ENOTDIR;
2223 if (nd->flags & LOOKUP_DIRECTORY) {
2224 if (!nd->inode->i_op->lookup)
2225 goto exit;
2226 }
2227 audit_inode(pathname, nd->path.dentry);
2228 goto ok;
2229 }
2230
2231 /* create side of things */
2232 /*
2233 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED has been
2234 * cleared when we got to the last component we are about to look up
2235 */
2236 error = complete_walk(nd);
2237 if (error)
2238 return ERR_PTR(error);
2239
2240 audit_inode(pathname, dir);
2241 error = -EISDIR;
2242 /* trailing slashes? */
2243 if (nd->last.name[nd->last.len])
2244 goto exit;
2245
2246 mutex_lock(&dir->d_inode->i_mutex);
2247
2248 dentry = lookup_hash(nd);
2249 error = PTR_ERR(dentry);
2250 if (IS_ERR(dentry)) {
2251 mutex_unlock(&dir->d_inode->i_mutex);
2252 goto exit;
2253 }
2254
2255 path->dentry = dentry;
2256 path->mnt = nd->path.mnt;
2257
2258 /* Negative dentry, just create the file */
2259 if (!dentry->d_inode) {
2260 umode_t mode = op->mode;
2261 if (!IS_POSIXACL(dir->d_inode))
2262 mode &= ~current_umask();
2263 /*
2264 * This write is needed to ensure that a
2265 * rw->ro transition does not occur between
2266 * the time when the file is created and when
2267 * a permanent write count is taken through
2268 * the 'struct file' in nameidata_to_filp().
2269 */
2270 error = mnt_want_write(nd->path.mnt);
2271 if (error)
2272 goto exit_mutex_unlock;
2273 want_write = 1;
2274 /* Don't check for write permission, don't truncate */
2275 open_flag &= ~O_TRUNC;
2276 will_truncate = 0;
2277 acc_mode = MAY_OPEN;
2278 error = security_path_mknod(&nd->path, dentry, mode, 0);
2279 if (error)
2280 goto exit_mutex_unlock;
2281 error = vfs_create(dir->d_inode, dentry, mode, nd);
2282 if (error)
2283 goto exit_mutex_unlock;
2284 mutex_unlock(&dir->d_inode->i_mutex);
2285 dput(nd->path.dentry);
2286 nd->path.dentry = dentry;
2287 goto common;
2288 }
2289
2290 /*
2291 * It already exists.
2292 */
2293 mutex_unlock(&dir->d_inode->i_mutex);
2294 audit_inode(pathname, path->dentry);
2295
2296 error = -EEXIST;
2297 if (open_flag & O_EXCL)
2298 goto exit_dput;
2299
2300 error = follow_managed(path, nd->flags);
2301 if (error < 0)
2302 goto exit_dput;
2303
2304 if (error)
2305 nd->flags |= LOOKUP_JUMPED;
2306
2307 error = -ENOENT;
2308 if (!path->dentry->d_inode)
2309 goto exit_dput;
2310
2311 if (path->dentry->d_inode->i_op->follow_link)
2312 return NULL;
2313
2314 path_to_nameidata(path, nd);
2315 nd->inode = path->dentry->d_inode;
2316 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
2317 error = complete_walk(nd);
2318 if (error)
2319 return ERR_PTR(error);
2320 error = -EISDIR;
2321 if (S_ISDIR(nd->inode->i_mode))
2322 goto exit;
2323 ok:
2324 if (!S_ISREG(nd->inode->i_mode))
2325 will_truncate = 0;
2326
2327 if (will_truncate) {
2328 error = mnt_want_write(nd->path.mnt);
2329 if (error)
2330 goto exit;
2331 want_write = 1;
2332 }
2333 common:
2334 error = may_open(&nd->path, acc_mode, open_flag);
2335 if (error)
2336 goto exit;
2337 filp = nameidata_to_filp(nd);
2338 if (!IS_ERR(filp)) {
2339 error = ima_file_check(filp, op->acc_mode);
2340 if (error) {
2341 fput(filp);
2342 filp = ERR_PTR(error);
2343 }
2344 }
2345 if (!IS_ERR(filp)) {
2346 if (will_truncate) {
2347 error = handle_truncate(filp);
2348 if (error) {
2349 fput(filp);
2350 filp = ERR_PTR(error);
2351 }
2352 }
2353 }
2354 out:
2355 if (want_write)
2356 mnt_drop_write(nd->path.mnt);
2357 path_put(&nd->path);
2358 return filp;
2359
2360 exit_mutex_unlock:
2361 mutex_unlock(&dir->d_inode->i_mutex);
2362 exit_dput:
2363 path_put_conditional(path, nd);
2364 exit:
2365 filp = ERR_PTR(error);
2366 goto out;
2367 }
2368
path_openat(int dfd,const char * pathname,struct nameidata * nd,const struct open_flags * op,int flags)2369 static struct file *path_openat(int dfd, const char *pathname,
2370 struct nameidata *nd, const struct open_flags *op, int flags)
2371 {
2372 struct file *base = NULL;
2373 struct file *filp;
2374 struct path path;
2375 int error;
2376
2377 filp = get_empty_filp();
2378 if (!filp)
2379 return ERR_PTR(-ENFILE);
2380
2381 filp->f_flags = op->open_flag;
2382 nd->intent.open.file = filp;
2383 nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2384 nd->intent.open.create_mode = op->mode;
2385
2386 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2387 if (unlikely(error))
2388 goto out_filp;
2389
2390 current->total_link_count = 0;
2391 error = link_path_walk(pathname, nd);
2392 if (unlikely(error))
2393 goto out_filp;
2394
2395 filp = do_last(nd, &path, op, pathname);
2396 while (unlikely(!filp)) { /* trailing symlink */
2397 struct path link = path;
2398 void *cookie;
2399 if (!(nd->flags & LOOKUP_FOLLOW)) {
2400 path_put_conditional(&path, nd);
2401 path_put(&nd->path);
2402 filp = ERR_PTR(-ELOOP);
2403 break;
2404 }
2405 nd->flags |= LOOKUP_PARENT;
2406 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2407 error = follow_link(&link, nd, &cookie);
2408 if (unlikely(error))
2409 filp = ERR_PTR(error);
2410 else
2411 filp = do_last(nd, &path, op, pathname);
2412 put_link(nd, &link, cookie);
2413 }
2414 out:
2415 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2416 path_put(&nd->root);
2417 if (base)
2418 fput(base);
2419 release_open_intent(nd);
2420 return filp;
2421
2422 out_filp:
2423 filp = ERR_PTR(error);
2424 goto out;
2425 }
2426
do_filp_open(int dfd,const char * pathname,const struct open_flags * op,int flags)2427 struct file *do_filp_open(int dfd, const char *pathname,
2428 const struct open_flags *op, int flags)
2429 {
2430 struct nameidata nd;
2431 struct file *filp;
2432
2433 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2434 if (unlikely(filp == ERR_PTR(-ECHILD)))
2435 filp = path_openat(dfd, pathname, &nd, op, flags);
2436 if (unlikely(filp == ERR_PTR(-ESTALE)))
2437 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2438 return filp;
2439 }
2440
do_file_open_root(struct dentry * dentry,struct vfsmount * mnt,const char * name,const struct open_flags * op,int flags)2441 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2442 const char *name, const struct open_flags *op, int flags)
2443 {
2444 struct nameidata nd;
2445 struct file *file;
2446
2447 nd.root.mnt = mnt;
2448 nd.root.dentry = dentry;
2449
2450 flags |= LOOKUP_ROOT;
2451
2452 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2453 return ERR_PTR(-ELOOP);
2454
2455 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2456 if (unlikely(file == ERR_PTR(-ECHILD)))
2457 file = path_openat(-1, name, &nd, op, flags);
2458 if (unlikely(file == ERR_PTR(-ESTALE)))
2459 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2460 return file;
2461 }
2462
kern_path_create(int dfd,const char * pathname,struct path * path,int is_dir)2463 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
2464 {
2465 struct dentry *dentry = ERR_PTR(-EEXIST);
2466 struct nameidata nd;
2467 int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
2468 if (error)
2469 return ERR_PTR(error);
2470
2471 /*
2472 * Yucky last component or no last component at all?
2473 * (foo/., foo/.., /////)
2474 */
2475 if (nd.last_type != LAST_NORM)
2476 goto out;
2477 nd.flags &= ~LOOKUP_PARENT;
2478 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2479 nd.intent.open.flags = O_EXCL;
2480
2481 /*
2482 * Do the final lookup.
2483 */
2484 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2485 dentry = lookup_hash(&nd);
2486 if (IS_ERR(dentry))
2487 goto fail;
2488
2489 if (dentry->d_inode)
2490 goto eexist;
2491 /*
2492 * Special case - lookup gave negative, but... we had foo/bar/
2493 * From the vfs_mknod() POV we just have a negative dentry -
2494 * all is fine. Let's be bastards - you had / on the end, you've
2495 * been asking for (non-existent) directory. -ENOENT for you.
2496 */
2497 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
2498 dput(dentry);
2499 dentry = ERR_PTR(-ENOENT);
2500 goto fail;
2501 }
2502 *path = nd.path;
2503 return dentry;
2504 eexist:
2505 dput(dentry);
2506 dentry = ERR_PTR(-EEXIST);
2507 fail:
2508 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2509 out:
2510 path_put(&nd.path);
2511 return dentry;
2512 }
2513 EXPORT_SYMBOL(kern_path_create);
2514
user_path_create(int dfd,const char __user * pathname,struct path * path,int is_dir)2515 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
2516 {
2517 char *tmp = getname(pathname);
2518 struct dentry *res;
2519 if (IS_ERR(tmp))
2520 return ERR_CAST(tmp);
2521 res = kern_path_create(dfd, tmp, path, is_dir);
2522 putname(tmp);
2523 return res;
2524 }
2525 EXPORT_SYMBOL(user_path_create);
2526
vfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)2527 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2528 {
2529 int error = may_create(dir, dentry);
2530
2531 if (error)
2532 return error;
2533
2534 if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
2535 !ns_capable(inode_userns(dir), CAP_MKNOD))
2536 return -EPERM;
2537
2538 if (!dir->i_op->mknod)
2539 return -EPERM;
2540
2541 error = devcgroup_inode_mknod(mode, dev);
2542 if (error)
2543 return error;
2544
2545 error = security_inode_mknod(dir, dentry, mode, dev);
2546 if (error)
2547 return error;
2548
2549 error = dir->i_op->mknod(dir, dentry, mode, dev);
2550 if (!error)
2551 fsnotify_create(dir, dentry);
2552 return error;
2553 }
2554
may_mknod(umode_t mode)2555 static int may_mknod(umode_t mode)
2556 {
2557 switch (mode & S_IFMT) {
2558 case S_IFREG:
2559 case S_IFCHR:
2560 case S_IFBLK:
2561 case S_IFIFO:
2562 case S_IFSOCK:
2563 case 0: /* zero mode translates to S_IFREG */
2564 return 0;
2565 case S_IFDIR:
2566 return -EPERM;
2567 default:
2568 return -EINVAL;
2569 }
2570 }
2571
SYSCALL_DEFINE4(mknodat,int,dfd,const char __user *,filename,umode_t,mode,unsigned,dev)2572 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
2573 unsigned, dev)
2574 {
2575 struct dentry *dentry;
2576 struct path path;
2577 int error;
2578
2579 if (S_ISDIR(mode))
2580 return -EPERM;
2581
2582 dentry = user_path_create(dfd, filename, &path, 0);
2583 if (IS_ERR(dentry))
2584 return PTR_ERR(dentry);
2585
2586 if (!IS_POSIXACL(path.dentry->d_inode))
2587 mode &= ~current_umask();
2588 error = may_mknod(mode);
2589 if (error)
2590 goto out_dput;
2591 error = mnt_want_write(path.mnt);
2592 if (error)
2593 goto out_dput;
2594 error = security_path_mknod(&path, dentry, mode, dev);
2595 if (error)
2596 goto out_drop_write;
2597 switch (mode & S_IFMT) {
2598 case 0: case S_IFREG:
2599 error = vfs_create(path.dentry->d_inode,dentry,mode,NULL);
2600 break;
2601 case S_IFCHR: case S_IFBLK:
2602 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
2603 new_decode_dev(dev));
2604 break;
2605 case S_IFIFO: case S_IFSOCK:
2606 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
2607 break;
2608 }
2609 out_drop_write:
2610 mnt_drop_write(path.mnt);
2611 out_dput:
2612 dput(dentry);
2613 mutex_unlock(&path.dentry->d_inode->i_mutex);
2614 path_put(&path);
2615
2616 return error;
2617 }
2618
SYSCALL_DEFINE3(mknod,const char __user *,filename,umode_t,mode,unsigned,dev)2619 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
2620 {
2621 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2622 }
2623
vfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)2624 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2625 {
2626 int error = may_create(dir, dentry);
2627 unsigned max_links = dir->i_sb->s_max_links;
2628
2629 if (error)
2630 return error;
2631
2632 if (!dir->i_op->mkdir)
2633 return -EPERM;
2634
2635 mode &= (S_IRWXUGO|S_ISVTX);
2636 error = security_inode_mkdir(dir, dentry, mode);
2637 if (error)
2638 return error;
2639
2640 if (max_links && dir->i_nlink >= max_links)
2641 return -EMLINK;
2642
2643 error = dir->i_op->mkdir(dir, dentry, mode);
2644 if (!error)
2645 fsnotify_mkdir(dir, dentry);
2646 return error;
2647 }
2648
SYSCALL_DEFINE3(mkdirat,int,dfd,const char __user *,pathname,umode_t,mode)2649 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
2650 {
2651 struct dentry *dentry;
2652 struct path path;
2653 int error;
2654
2655 dentry = user_path_create(dfd, pathname, &path, 1);
2656 if (IS_ERR(dentry))
2657 return PTR_ERR(dentry);
2658
2659 if (!IS_POSIXACL(path.dentry->d_inode))
2660 mode &= ~current_umask();
2661 error = mnt_want_write(path.mnt);
2662 if (error)
2663 goto out_dput;
2664 error = security_path_mkdir(&path, dentry, mode);
2665 if (error)
2666 goto out_drop_write;
2667 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
2668 out_drop_write:
2669 mnt_drop_write(path.mnt);
2670 out_dput:
2671 dput(dentry);
2672 mutex_unlock(&path.dentry->d_inode->i_mutex);
2673 path_put(&path);
2674 return error;
2675 }
2676
SYSCALL_DEFINE2(mkdir,const char __user *,pathname,umode_t,mode)2677 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
2678 {
2679 return sys_mkdirat(AT_FDCWD, pathname, mode);
2680 }
2681
2682 /*
2683 * The dentry_unhash() helper will try to drop the dentry early: we
2684 * should have a usage count of 1 if we're the only user of this
2685 * dentry, and if that is true (possibly after pruning the dcache),
2686 * then we drop the dentry now.
2687 *
2688 * A low-level filesystem can, if it choses, legally
2689 * do a
2690 *
2691 * if (!d_unhashed(dentry))
2692 * return -EBUSY;
2693 *
2694 * if it cannot handle the case of removing a directory
2695 * that is still in use by something else..
2696 */
dentry_unhash(struct dentry * dentry)2697 void dentry_unhash(struct dentry *dentry)
2698 {
2699 shrink_dcache_parent(dentry);
2700 spin_lock(&dentry->d_lock);
2701 if (dentry->d_count == 1)
2702 __d_drop(dentry);
2703 spin_unlock(&dentry->d_lock);
2704 }
2705
vfs_rmdir(struct inode * dir,struct dentry * dentry)2706 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2707 {
2708 int error = may_delete(dir, dentry, 1);
2709
2710 if (error)
2711 return error;
2712
2713 if (!dir->i_op->rmdir)
2714 return -EPERM;
2715
2716 dget(dentry);
2717 mutex_lock(&dentry->d_inode->i_mutex);
2718
2719 error = -EBUSY;
2720 if (d_mountpoint(dentry))
2721 goto out;
2722
2723 error = security_inode_rmdir(dir, dentry);
2724 if (error)
2725 goto out;
2726
2727 shrink_dcache_parent(dentry);
2728 error = dir->i_op->rmdir(dir, dentry);
2729 if (error)
2730 goto out;
2731
2732 dentry->d_inode->i_flags |= S_DEAD;
2733 dont_mount(dentry);
2734
2735 out:
2736 mutex_unlock(&dentry->d_inode->i_mutex);
2737 dput(dentry);
2738 if (!error)
2739 d_delete(dentry);
2740 return error;
2741 }
2742
do_rmdir(int dfd,const char __user * pathname)2743 static long do_rmdir(int dfd, const char __user *pathname)
2744 {
2745 int error = 0;
2746 char * name;
2747 struct dentry *dentry;
2748 struct nameidata nd;
2749
2750 error = user_path_parent(dfd, pathname, &nd, &name);
2751 if (error)
2752 return error;
2753
2754 switch(nd.last_type) {
2755 case LAST_DOTDOT:
2756 error = -ENOTEMPTY;
2757 goto exit1;
2758 case LAST_DOT:
2759 error = -EINVAL;
2760 goto exit1;
2761 case LAST_ROOT:
2762 error = -EBUSY;
2763 goto exit1;
2764 }
2765
2766 nd.flags &= ~LOOKUP_PARENT;
2767
2768 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2769 dentry = lookup_hash(&nd);
2770 error = PTR_ERR(dentry);
2771 if (IS_ERR(dentry))
2772 goto exit2;
2773 if (!dentry->d_inode) {
2774 error = -ENOENT;
2775 goto exit3;
2776 }
2777 error = mnt_want_write(nd.path.mnt);
2778 if (error)
2779 goto exit3;
2780 error = security_path_rmdir(&nd.path, dentry);
2781 if (error)
2782 goto exit4;
2783 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2784 exit4:
2785 mnt_drop_write(nd.path.mnt);
2786 exit3:
2787 dput(dentry);
2788 exit2:
2789 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2790 exit1:
2791 path_put(&nd.path);
2792 putname(name);
2793 return error;
2794 }
2795
SYSCALL_DEFINE1(rmdir,const char __user *,pathname)2796 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2797 {
2798 return do_rmdir(AT_FDCWD, pathname);
2799 }
2800
vfs_unlink(struct inode * dir,struct dentry * dentry)2801 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2802 {
2803 int error = may_delete(dir, dentry, 0);
2804
2805 if (error)
2806 return error;
2807
2808 if (!dir->i_op->unlink)
2809 return -EPERM;
2810
2811 mutex_lock(&dentry->d_inode->i_mutex);
2812 if (d_mountpoint(dentry))
2813 error = -EBUSY;
2814 else {
2815 error = security_inode_unlink(dir, dentry);
2816 if (!error) {
2817 error = dir->i_op->unlink(dir, dentry);
2818 if (!error)
2819 dont_mount(dentry);
2820 }
2821 }
2822 mutex_unlock(&dentry->d_inode->i_mutex);
2823
2824 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2825 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2826 fsnotify_link_count(dentry->d_inode);
2827 d_delete(dentry);
2828 }
2829
2830 return error;
2831 }
2832
2833 /*
2834 * Make sure that the actual truncation of the file will occur outside its
2835 * directory's i_mutex. Truncate can take a long time if there is a lot of
2836 * writeout happening, and we don't want to prevent access to the directory
2837 * while waiting on the I/O.
2838 */
do_unlinkat(int dfd,const char __user * pathname)2839 static long do_unlinkat(int dfd, const char __user *pathname)
2840 {
2841 int error;
2842 char *name;
2843 struct dentry *dentry;
2844 struct nameidata nd;
2845 struct inode *inode = NULL;
2846
2847 error = user_path_parent(dfd, pathname, &nd, &name);
2848 if (error)
2849 return error;
2850
2851 error = -EISDIR;
2852 if (nd.last_type != LAST_NORM)
2853 goto exit1;
2854
2855 nd.flags &= ~LOOKUP_PARENT;
2856
2857 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2858 dentry = lookup_hash(&nd);
2859 error = PTR_ERR(dentry);
2860 if (!IS_ERR(dentry)) {
2861 /* Why not before? Because we want correct error value */
2862 if (nd.last.name[nd.last.len])
2863 goto slashes;
2864 inode = dentry->d_inode;
2865 if (!inode)
2866 goto slashes;
2867 ihold(inode);
2868 error = mnt_want_write(nd.path.mnt);
2869 if (error)
2870 goto exit2;
2871 error = security_path_unlink(&nd.path, dentry);
2872 if (error)
2873 goto exit3;
2874 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2875 exit3:
2876 mnt_drop_write(nd.path.mnt);
2877 exit2:
2878 dput(dentry);
2879 }
2880 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2881 if (inode)
2882 iput(inode); /* truncate the inode here */
2883 exit1:
2884 path_put(&nd.path);
2885 putname(name);
2886 return error;
2887
2888 slashes:
2889 error = !dentry->d_inode ? -ENOENT :
2890 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2891 goto exit2;
2892 }
2893
SYSCALL_DEFINE3(unlinkat,int,dfd,const char __user *,pathname,int,flag)2894 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2895 {
2896 if ((flag & ~AT_REMOVEDIR) != 0)
2897 return -EINVAL;
2898
2899 if (flag & AT_REMOVEDIR)
2900 return do_rmdir(dfd, pathname);
2901
2902 return do_unlinkat(dfd, pathname);
2903 }
2904
SYSCALL_DEFINE1(unlink,const char __user *,pathname)2905 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2906 {
2907 return do_unlinkat(AT_FDCWD, pathname);
2908 }
2909
vfs_symlink(struct inode * dir,struct dentry * dentry,const char * oldname)2910 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2911 {
2912 int error = may_create(dir, dentry);
2913
2914 if (error)
2915 return error;
2916
2917 if (!dir->i_op->symlink)
2918 return -EPERM;
2919
2920 error = security_inode_symlink(dir, dentry, oldname);
2921 if (error)
2922 return error;
2923
2924 error = dir->i_op->symlink(dir, dentry, oldname);
2925 if (!error)
2926 fsnotify_create(dir, dentry);
2927 return error;
2928 }
2929
SYSCALL_DEFINE3(symlinkat,const char __user *,oldname,int,newdfd,const char __user *,newname)2930 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2931 int, newdfd, const char __user *, newname)
2932 {
2933 int error;
2934 char *from;
2935 struct dentry *dentry;
2936 struct path path;
2937
2938 from = getname(oldname);
2939 if (IS_ERR(from))
2940 return PTR_ERR(from);
2941
2942 dentry = user_path_create(newdfd, newname, &path, 0);
2943 error = PTR_ERR(dentry);
2944 if (IS_ERR(dentry))
2945 goto out_putname;
2946
2947 error = mnt_want_write(path.mnt);
2948 if (error)
2949 goto out_dput;
2950 error = security_path_symlink(&path, dentry, from);
2951 if (error)
2952 goto out_drop_write;
2953 error = vfs_symlink(path.dentry->d_inode, dentry, from);
2954 out_drop_write:
2955 mnt_drop_write(path.mnt);
2956 out_dput:
2957 dput(dentry);
2958 mutex_unlock(&path.dentry->d_inode->i_mutex);
2959 path_put(&path);
2960 out_putname:
2961 putname(from);
2962 return error;
2963 }
2964
SYSCALL_DEFINE2(symlink,const char __user *,oldname,const char __user *,newname)2965 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2966 {
2967 return sys_symlinkat(oldname, AT_FDCWD, newname);
2968 }
2969
vfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * new_dentry)2970 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2971 {
2972 struct inode *inode = old_dentry->d_inode;
2973 unsigned max_links = dir->i_sb->s_max_links;
2974 int error;
2975
2976 if (!inode)
2977 return -ENOENT;
2978
2979 error = may_create(dir, new_dentry);
2980 if (error)
2981 return error;
2982
2983 if (dir->i_sb != inode->i_sb)
2984 return -EXDEV;
2985
2986 /*
2987 * A link to an append-only or immutable file cannot be created.
2988 */
2989 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2990 return -EPERM;
2991 if (!dir->i_op->link)
2992 return -EPERM;
2993 if (S_ISDIR(inode->i_mode))
2994 return -EPERM;
2995
2996 error = security_inode_link(old_dentry, dir, new_dentry);
2997 if (error)
2998 return error;
2999
3000 mutex_lock(&inode->i_mutex);
3001 /* Make sure we don't allow creating hardlink to an unlinked file */
3002 if (inode->i_nlink == 0)
3003 error = -ENOENT;
3004 else if (max_links && inode->i_nlink >= max_links)
3005 error = -EMLINK;
3006 else
3007 error = dir->i_op->link(old_dentry, dir, new_dentry);
3008 mutex_unlock(&inode->i_mutex);
3009 if (!error)
3010 fsnotify_link(dir, inode, new_dentry);
3011 return error;
3012 }
3013
3014 /*
3015 * Hardlinks are often used in delicate situations. We avoid
3016 * security-related surprises by not following symlinks on the
3017 * newname. --KAB
3018 *
3019 * We don't follow them on the oldname either to be compatible
3020 * with linux 2.0, and to avoid hard-linking to directories
3021 * and other special files. --ADM
3022 */
SYSCALL_DEFINE5(linkat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,int,flags)3023 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3024 int, newdfd, const char __user *, newname, int, flags)
3025 {
3026 struct dentry *new_dentry;
3027 struct path old_path, new_path;
3028 int how = 0;
3029 int error;
3030
3031 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3032 return -EINVAL;
3033 /*
3034 * To use null names we require CAP_DAC_READ_SEARCH
3035 * This ensures that not everyone will be able to create
3036 * handlink using the passed filedescriptor.
3037 */
3038 if (flags & AT_EMPTY_PATH) {
3039 if (!capable(CAP_DAC_READ_SEARCH))
3040 return -ENOENT;
3041 how = LOOKUP_EMPTY;
3042 }
3043
3044 if (flags & AT_SYMLINK_FOLLOW)
3045 how |= LOOKUP_FOLLOW;
3046
3047 error = user_path_at(olddfd, oldname, how, &old_path);
3048 if (error)
3049 return error;
3050
3051 new_dentry = user_path_create(newdfd, newname, &new_path, 0);
3052 error = PTR_ERR(new_dentry);
3053 if (IS_ERR(new_dentry))
3054 goto out;
3055
3056 error = -EXDEV;
3057 if (old_path.mnt != new_path.mnt)
3058 goto out_dput;
3059 error = mnt_want_write(new_path.mnt);
3060 if (error)
3061 goto out_dput;
3062 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3063 if (error)
3064 goto out_drop_write;
3065 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3066 out_drop_write:
3067 mnt_drop_write(new_path.mnt);
3068 out_dput:
3069 dput(new_dentry);
3070 mutex_unlock(&new_path.dentry->d_inode->i_mutex);
3071 path_put(&new_path);
3072 out:
3073 path_put(&old_path);
3074
3075 return error;
3076 }
3077
SYSCALL_DEFINE2(link,const char __user *,oldname,const char __user *,newname)3078 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3079 {
3080 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3081 }
3082
3083 /*
3084 * The worst of all namespace operations - renaming directory. "Perverted"
3085 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3086 * Problems:
3087 * a) we can get into loop creation. Check is done in is_subdir().
3088 * b) race potential - two innocent renames can create a loop together.
3089 * That's where 4.4 screws up. Current fix: serialization on
3090 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3091 * story.
3092 * c) we have to lock _three_ objects - parents and victim (if it exists).
3093 * And that - after we got ->i_mutex on parents (until then we don't know
3094 * whether the target exists). Solution: try to be smart with locking
3095 * order for inodes. We rely on the fact that tree topology may change
3096 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3097 * move will be locked. Thus we can rank directories by the tree
3098 * (ancestors first) and rank all non-directories after them.
3099 * That works since everybody except rename does "lock parent, lookup,
3100 * lock child" and rename is under ->s_vfs_rename_mutex.
3101 * HOWEVER, it relies on the assumption that any object with ->lookup()
3102 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3103 * we'd better make sure that there's no link(2) for them.
3104 * d) conversion from fhandle to dentry may come in the wrong moment - when
3105 * we are removing the target. Solution: we will have to grab ->i_mutex
3106 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3107 * ->i_mutex on parents, which works but leads to some truly excessive
3108 * locking].
3109 */
vfs_rename_dir(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)3110 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3111 struct inode *new_dir, struct dentry *new_dentry)
3112 {
3113 int error = 0;
3114 struct inode *target = new_dentry->d_inode;
3115 unsigned max_links = new_dir->i_sb->s_max_links;
3116
3117 /*
3118 * If we are going to change the parent - check write permissions,
3119 * we'll need to flip '..'.
3120 */
3121 if (new_dir != old_dir) {
3122 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3123 if (error)
3124 return error;
3125 }
3126
3127 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3128 if (error)
3129 return error;
3130
3131 dget(new_dentry);
3132 if (target)
3133 mutex_lock(&target->i_mutex);
3134
3135 error = -EBUSY;
3136 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3137 goto out;
3138
3139 error = -EMLINK;
3140 if (max_links && !target && new_dir != old_dir &&
3141 new_dir->i_nlink >= max_links)
3142 goto out;
3143
3144 if (target)
3145 shrink_dcache_parent(new_dentry);
3146 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3147 if (error)
3148 goto out;
3149
3150 if (target) {
3151 target->i_flags |= S_DEAD;
3152 dont_mount(new_dentry);
3153 }
3154 out:
3155 if (target)
3156 mutex_unlock(&target->i_mutex);
3157 dput(new_dentry);
3158 if (!error)
3159 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3160 d_move(old_dentry,new_dentry);
3161 return error;
3162 }
3163
vfs_rename_other(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)3164 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3165 struct inode *new_dir, struct dentry *new_dentry)
3166 {
3167 struct inode *target = new_dentry->d_inode;
3168 int error;
3169
3170 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3171 if (error)
3172 return error;
3173
3174 dget(new_dentry);
3175 if (target)
3176 mutex_lock(&target->i_mutex);
3177
3178 error = -EBUSY;
3179 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3180 goto out;
3181
3182 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3183 if (error)
3184 goto out;
3185
3186 if (target)
3187 dont_mount(new_dentry);
3188 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3189 d_move(old_dentry, new_dentry);
3190 out:
3191 if (target)
3192 mutex_unlock(&target->i_mutex);
3193 dput(new_dentry);
3194 return error;
3195 }
3196
vfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)3197 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3198 struct inode *new_dir, struct dentry *new_dentry)
3199 {
3200 int error;
3201 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3202 const unsigned char *old_name;
3203
3204 if (old_dentry->d_inode == new_dentry->d_inode)
3205 return 0;
3206
3207 error = may_delete(old_dir, old_dentry, is_dir);
3208 if (error)
3209 return error;
3210
3211 if (!new_dentry->d_inode)
3212 error = may_create(new_dir, new_dentry);
3213 else
3214 error = may_delete(new_dir, new_dentry, is_dir);
3215 if (error)
3216 return error;
3217
3218 if (!old_dir->i_op->rename)
3219 return -EPERM;
3220
3221 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3222
3223 if (is_dir)
3224 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3225 else
3226 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3227 if (!error)
3228 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3229 new_dentry->d_inode, old_dentry);
3230 fsnotify_oldname_free(old_name);
3231
3232 return error;
3233 }
3234
SYSCALL_DEFINE4(renameat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname)3235 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3236 int, newdfd, const char __user *, newname)
3237 {
3238 struct dentry *old_dir, *new_dir;
3239 struct dentry *old_dentry, *new_dentry;
3240 struct dentry *trap;
3241 struct nameidata oldnd, newnd;
3242 char *from;
3243 char *to;
3244 int error;
3245
3246 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3247 if (error)
3248 goto exit;
3249
3250 error = user_path_parent(newdfd, newname, &newnd, &to);
3251 if (error)
3252 goto exit1;
3253
3254 error = -EXDEV;
3255 if (oldnd.path.mnt != newnd.path.mnt)
3256 goto exit2;
3257
3258 old_dir = oldnd.path.dentry;
3259 error = -EBUSY;
3260 if (oldnd.last_type != LAST_NORM)
3261 goto exit2;
3262
3263 new_dir = newnd.path.dentry;
3264 if (newnd.last_type != LAST_NORM)
3265 goto exit2;
3266
3267 oldnd.flags &= ~LOOKUP_PARENT;
3268 newnd.flags &= ~LOOKUP_PARENT;
3269 newnd.flags |= LOOKUP_RENAME_TARGET;
3270
3271 trap = lock_rename(new_dir, old_dir);
3272
3273 old_dentry = lookup_hash(&oldnd);
3274 error = PTR_ERR(old_dentry);
3275 if (IS_ERR(old_dentry))
3276 goto exit3;
3277 /* source must exist */
3278 error = -ENOENT;
3279 if (!old_dentry->d_inode)
3280 goto exit4;
3281 /* unless the source is a directory trailing slashes give -ENOTDIR */
3282 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3283 error = -ENOTDIR;
3284 if (oldnd.last.name[oldnd.last.len])
3285 goto exit4;
3286 if (newnd.last.name[newnd.last.len])
3287 goto exit4;
3288 }
3289 /* source should not be ancestor of target */
3290 error = -EINVAL;
3291 if (old_dentry == trap)
3292 goto exit4;
3293 new_dentry = lookup_hash(&newnd);
3294 error = PTR_ERR(new_dentry);
3295 if (IS_ERR(new_dentry))
3296 goto exit4;
3297 /* target should not be an ancestor of source */
3298 error = -ENOTEMPTY;
3299 if (new_dentry == trap)
3300 goto exit5;
3301
3302 error = mnt_want_write(oldnd.path.mnt);
3303 if (error)
3304 goto exit5;
3305 error = security_path_rename(&oldnd.path, old_dentry,
3306 &newnd.path, new_dentry);
3307 if (error)
3308 goto exit6;
3309 error = vfs_rename(old_dir->d_inode, old_dentry,
3310 new_dir->d_inode, new_dentry);
3311 exit6:
3312 mnt_drop_write(oldnd.path.mnt);
3313 exit5:
3314 dput(new_dentry);
3315 exit4:
3316 dput(old_dentry);
3317 exit3:
3318 unlock_rename(new_dir, old_dir);
3319 exit2:
3320 path_put(&newnd.path);
3321 putname(to);
3322 exit1:
3323 path_put(&oldnd.path);
3324 putname(from);
3325 exit:
3326 return error;
3327 }
3328
SYSCALL_DEFINE2(rename,const char __user *,oldname,const char __user *,newname)3329 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3330 {
3331 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3332 }
3333
vfs_readlink(struct dentry * dentry,char __user * buffer,int buflen,const char * link)3334 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3335 {
3336 int len;
3337
3338 len = PTR_ERR(link);
3339 if (IS_ERR(link))
3340 goto out;
3341
3342 len = strlen(link);
3343 if (len > (unsigned) buflen)
3344 len = buflen;
3345 if (copy_to_user(buffer, link, len))
3346 len = -EFAULT;
3347 out:
3348 return len;
3349 }
3350
3351 /*
3352 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3353 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3354 * using) it for any given inode is up to filesystem.
3355 */
generic_readlink(struct dentry * dentry,char __user * buffer,int buflen)3356 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3357 {
3358 struct nameidata nd;
3359 void *cookie;
3360 int res;
3361
3362 nd.depth = 0;
3363 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3364 if (IS_ERR(cookie))
3365 return PTR_ERR(cookie);
3366
3367 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3368 if (dentry->d_inode->i_op->put_link)
3369 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3370 return res;
3371 }
3372
vfs_follow_link(struct nameidata * nd,const char * link)3373 int vfs_follow_link(struct nameidata *nd, const char *link)
3374 {
3375 return __vfs_follow_link(nd, link);
3376 }
3377
3378 /* get the link contents into pagecache */
page_getlink(struct dentry * dentry,struct page ** ppage)3379 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3380 {
3381 char *kaddr;
3382 struct page *page;
3383 struct address_space *mapping = dentry->d_inode->i_mapping;
3384 page = read_mapping_page(mapping, 0, NULL);
3385 if (IS_ERR(page))
3386 return (char*)page;
3387 *ppage = page;
3388 kaddr = kmap(page);
3389 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3390 return kaddr;
3391 }
3392
page_readlink(struct dentry * dentry,char __user * buffer,int buflen)3393 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3394 {
3395 struct page *page = NULL;
3396 char *s = page_getlink(dentry, &page);
3397 int res = vfs_readlink(dentry,buffer,buflen,s);
3398 if (page) {
3399 kunmap(page);
3400 page_cache_release(page);
3401 }
3402 return res;
3403 }
3404
page_follow_link_light(struct dentry * dentry,struct nameidata * nd)3405 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3406 {
3407 struct page *page = NULL;
3408 nd_set_link(nd, page_getlink(dentry, &page));
3409 return page;
3410 }
3411
page_put_link(struct dentry * dentry,struct nameidata * nd,void * cookie)3412 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3413 {
3414 struct page *page = cookie;
3415
3416 if (page) {
3417 kunmap(page);
3418 page_cache_release(page);
3419 }
3420 }
3421
3422 /*
3423 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3424 */
__page_symlink(struct inode * inode,const char * symname,int len,int nofs)3425 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3426 {
3427 struct address_space *mapping = inode->i_mapping;
3428 struct page *page;
3429 void *fsdata;
3430 int err;
3431 char *kaddr;
3432 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3433 if (nofs)
3434 flags |= AOP_FLAG_NOFS;
3435
3436 retry:
3437 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3438 flags, &page, &fsdata);
3439 if (err)
3440 goto fail;
3441
3442 kaddr = kmap_atomic(page);
3443 memcpy(kaddr, symname, len-1);
3444 kunmap_atomic(kaddr);
3445
3446 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3447 page, fsdata);
3448 if (err < 0)
3449 goto fail;
3450 if (err < len-1)
3451 goto retry;
3452
3453 mark_inode_dirty(inode);
3454 return 0;
3455 fail:
3456 return err;
3457 }
3458
page_symlink(struct inode * inode,const char * symname,int len)3459 int page_symlink(struct inode *inode, const char *symname, int len)
3460 {
3461 return __page_symlink(inode, symname, len,
3462 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3463 }
3464
3465 const struct inode_operations page_symlink_inode_operations = {
3466 .readlink = generic_readlink,
3467 .follow_link = page_follow_link_light,
3468 .put_link = page_put_link,
3469 };
3470
3471 EXPORT_SYMBOL(user_path_at);
3472 EXPORT_SYMBOL(follow_down_one);
3473 EXPORT_SYMBOL(follow_down);
3474 EXPORT_SYMBOL(follow_up);
3475 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3476 EXPORT_SYMBOL(getname);
3477 EXPORT_SYMBOL(lock_rename);
3478 EXPORT_SYMBOL(lookup_one_len);
3479 EXPORT_SYMBOL(page_follow_link_light);
3480 EXPORT_SYMBOL(page_put_link);
3481 EXPORT_SYMBOL(page_readlink);
3482 EXPORT_SYMBOL(__page_symlink);
3483 EXPORT_SYMBOL(page_symlink);
3484 EXPORT_SYMBOL(page_symlink_inode_operations);
3485 EXPORT_SYMBOL(kern_path);
3486 EXPORT_SYMBOL(vfs_path_lookup);
3487 EXPORT_SYMBOL(inode_permission);
3488 EXPORT_SYMBOL(unlock_rename);
3489 EXPORT_SYMBOL(vfs_create);
3490 EXPORT_SYMBOL(vfs_follow_link);
3491 EXPORT_SYMBOL(vfs_link);
3492 EXPORT_SYMBOL(vfs_mkdir);
3493 EXPORT_SYMBOL(vfs_mknod);
3494 EXPORT_SYMBOL(generic_permission);
3495 EXPORT_SYMBOL(vfs_readlink);
3496 EXPORT_SYMBOL(vfs_rename);
3497 EXPORT_SYMBOL(vfs_rmdir);
3498 EXPORT_SYMBOL(vfs_symlink);
3499 EXPORT_SYMBOL(vfs_unlink);
3500 EXPORT_SYMBOL(dentry_unhash);
3501 EXPORT_SYMBOL(generic_readlink);
3502