1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <linux/posix_acl.h>
36 #include <asm/uaccess.h>
37 
38 #include "internal.h"
39 #include "mount.h"
40 
41 /* [Feb-1997 T. Schoebel-Theuer]
42  * Fundamental changes in the pathname lookup mechanisms (namei)
43  * were necessary because of omirr.  The reason is that omirr needs
44  * to know the _real_ pathname, not the user-supplied one, in case
45  * of symlinks (and also when transname replacements occur).
46  *
47  * The new code replaces the old recursive symlink resolution with
48  * an iterative one (in case of non-nested symlink chains).  It does
49  * this with calls to <fs>_follow_link().
50  * As a side effect, dir_namei(), _namei() and follow_link() are now
51  * replaced with a single function lookup_dentry() that can handle all
52  * the special cases of the former code.
53  *
54  * With the new dcache, the pathname is stored at each inode, at least as
55  * long as the refcount of the inode is positive.  As a side effect, the
56  * size of the dcache depends on the inode cache and thus is dynamic.
57  *
58  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
59  * resolution to correspond with current state of the code.
60  *
61  * Note that the symlink resolution is not *completely* iterative.
62  * There is still a significant amount of tail- and mid- recursion in
63  * the algorithm.  Also, note that <fs>_readlink() is not used in
64  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
65  * may return different results than <fs>_follow_link().  Many virtual
66  * filesystems (including /proc) exhibit this behavior.
67  */
68 
69 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
70  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
71  * and the name already exists in form of a symlink, try to create the new
72  * name indicated by the symlink. The old code always complained that the
73  * name already exists, due to not following the symlink even if its target
74  * is nonexistent.  The new semantics affects also mknod() and link() when
75  * the name is a symlink pointing to a non-existent name.
76  *
77  * I don't know which semantics is the right one, since I have no access
78  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
79  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
80  * "old" one. Personally, I think the new semantics is much more logical.
81  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
82  * file does succeed in both HP-UX and SunOs, but not in Solaris
83  * and in the old Linux semantics.
84  */
85 
86 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
87  * semantics.  See the comments in "open_namei" and "do_link" below.
88  *
89  * [10-Sep-98 Alan Modra] Another symlink change.
90  */
91 
92 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
93  *	inside the path - always follow.
94  *	in the last component in creation/removal/renaming - never follow.
95  *	if LOOKUP_FOLLOW passed - follow.
96  *	if the pathname has trailing slashes - follow.
97  *	otherwise - don't follow.
98  * (applied in that order).
99  *
100  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
101  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
102  * During the 2.4 we need to fix the userland stuff depending on it -
103  * hopefully we will be able to get rid of that wart in 2.5. So far only
104  * XEmacs seems to be relying on it...
105  */
106 /*
107  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
108  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
109  * any extra contention...
110  */
111 
112 /* In order to reduce some races, while at the same time doing additional
113  * checking and hopefully speeding things up, we copy filenames to the
114  * kernel data space before using them..
115  *
116  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
117  * PATH_MAX includes the nul terminator --RR.
118  */
do_getname(const char __user * filename,char * page)119 static int do_getname(const char __user *filename, char *page)
120 {
121 	int retval;
122 	unsigned long len = PATH_MAX;
123 
124 	if (!segment_eq(get_fs(), KERNEL_DS)) {
125 		if ((unsigned long) filename >= TASK_SIZE)
126 			return -EFAULT;
127 		if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
128 			len = TASK_SIZE - (unsigned long) filename;
129 	}
130 
131 	retval = strncpy_from_user(page, filename, len);
132 	if (retval > 0) {
133 		if (retval < len)
134 			return 0;
135 		return -ENAMETOOLONG;
136 	} else if (!retval)
137 		retval = -ENOENT;
138 	return retval;
139 }
140 
getname_flags(const char __user * filename,int flags,int * empty)141 static char *getname_flags(const char __user *filename, int flags, int *empty)
142 {
143 	char *result = __getname();
144 	int retval;
145 
146 	if (!result)
147 		return ERR_PTR(-ENOMEM);
148 
149 	retval = do_getname(filename, result);
150 	if (retval < 0) {
151 		if (retval == -ENOENT && empty)
152 			*empty = 1;
153 		if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) {
154 			__putname(result);
155 			return ERR_PTR(retval);
156 		}
157 	}
158 	audit_getname(result);
159 	return result;
160 }
161 
getname(const char __user * filename)162 char *getname(const char __user * filename)
163 {
164 	return getname_flags(filename, 0, NULL);
165 }
166 
167 #ifdef CONFIG_AUDITSYSCALL
putname(const char * name)168 void putname(const char *name)
169 {
170 	if (unlikely(!audit_dummy_context()))
171 		audit_putname(name);
172 	else
173 		__putname(name);
174 }
175 EXPORT_SYMBOL(putname);
176 #endif
177 
check_acl(struct inode * inode,int mask)178 static int check_acl(struct inode *inode, int mask)
179 {
180 #ifdef CONFIG_FS_POSIX_ACL
181 	struct posix_acl *acl;
182 
183 	if (mask & MAY_NOT_BLOCK) {
184 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
185 	        if (!acl)
186 	                return -EAGAIN;
187 		/* no ->get_acl() calls in RCU mode... */
188 		if (acl == ACL_NOT_CACHED)
189 			return -ECHILD;
190 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
191 	}
192 
193 	acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
194 
195 	/*
196 	 * A filesystem can force a ACL callback by just never filling the
197 	 * ACL cache. But normally you'd fill the cache either at inode
198 	 * instantiation time, or on the first ->get_acl call.
199 	 *
200 	 * If the filesystem doesn't have a get_acl() function at all, we'll
201 	 * just create the negative cache entry.
202 	 */
203 	if (acl == ACL_NOT_CACHED) {
204 	        if (inode->i_op->get_acl) {
205 			acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
206 			if (IS_ERR(acl))
207 				return PTR_ERR(acl);
208 		} else {
209 		        set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
210 		        return -EAGAIN;
211 		}
212 	}
213 
214 	if (acl) {
215 	        int error = posix_acl_permission(inode, acl, mask);
216 	        posix_acl_release(acl);
217 	        return error;
218 	}
219 #endif
220 
221 	return -EAGAIN;
222 }
223 
224 /*
225  * This does the basic permission checking
226  */
acl_permission_check(struct inode * inode,int mask)227 static int acl_permission_check(struct inode *inode, int mask)
228 {
229 	unsigned int mode = inode->i_mode;
230 
231 	if (current_user_ns() != inode_userns(inode))
232 		goto other_perms;
233 
234 	if (likely(current_fsuid() == inode->i_uid))
235 		mode >>= 6;
236 	else {
237 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
238 			int error = check_acl(inode, mask);
239 			if (error != -EAGAIN)
240 				return error;
241 		}
242 
243 		if (in_group_p(inode->i_gid))
244 			mode >>= 3;
245 	}
246 
247 other_perms:
248 	/*
249 	 * If the DACs are ok we don't need any capability check.
250 	 */
251 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
252 		return 0;
253 	return -EACCES;
254 }
255 
256 /**
257  * generic_permission -  check for access rights on a Posix-like filesystem
258  * @inode:	inode to check access rights for
259  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
260  *
261  * Used to check for read/write/execute permissions on a file.
262  * We use "fsuid" for this, letting us set arbitrary permissions
263  * for filesystem access without changing the "normal" uids which
264  * are used for other things.
265  *
266  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
267  * request cannot be satisfied (eg. requires blocking or too much complexity).
268  * It would then be called again in ref-walk mode.
269  */
generic_permission(struct inode * inode,int mask)270 int generic_permission(struct inode *inode, int mask)
271 {
272 	int ret;
273 
274 	/*
275 	 * Do the basic permission checks.
276 	 */
277 	ret = acl_permission_check(inode, mask);
278 	if (ret != -EACCES)
279 		return ret;
280 
281 	if (S_ISDIR(inode->i_mode)) {
282 		/* DACs are overridable for directories */
283 		if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
284 			return 0;
285 		if (!(mask & MAY_WRITE))
286 			if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
287 				return 0;
288 		return -EACCES;
289 	}
290 	/*
291 	 * Read/write DACs are always overridable.
292 	 * Executable DACs are overridable when there is
293 	 * at least one exec bit set.
294 	 */
295 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
296 		if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
297 			return 0;
298 
299 	/*
300 	 * Searching includes executable on directories, else just read.
301 	 */
302 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
303 	if (mask == MAY_READ)
304 		if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
305 			return 0;
306 
307 	return -EACCES;
308 }
309 
310 /*
311  * We _really_ want to just do "generic_permission()" without
312  * even looking at the inode->i_op values. So we keep a cache
313  * flag in inode->i_opflags, that says "this has not special
314  * permission function, use the fast case".
315  */
do_inode_permission(struct inode * inode,int mask)316 static inline int do_inode_permission(struct inode *inode, int mask)
317 {
318 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
319 		if (likely(inode->i_op->permission))
320 			return inode->i_op->permission(inode, mask);
321 
322 		/* This gets set once for the inode lifetime */
323 		spin_lock(&inode->i_lock);
324 		inode->i_opflags |= IOP_FASTPERM;
325 		spin_unlock(&inode->i_lock);
326 	}
327 	return generic_permission(inode, mask);
328 }
329 
330 /**
331  * inode_permission  -  check for access rights to a given inode
332  * @inode:	inode to check permission on
333  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
334  *
335  * Used to check for read/write/execute permissions on an inode.
336  * We use "fsuid" for this, letting us set arbitrary permissions
337  * for filesystem access without changing the "normal" uids which
338  * are used for other things.
339  *
340  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
341  */
inode_permission(struct inode * inode,int mask)342 int inode_permission(struct inode *inode, int mask)
343 {
344 	int retval;
345 
346 	if (unlikely(mask & MAY_WRITE)) {
347 		umode_t mode = inode->i_mode;
348 
349 		/*
350 		 * Nobody gets write access to a read-only fs.
351 		 */
352 		if (IS_RDONLY(inode) &&
353 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
354 			return -EROFS;
355 
356 		/*
357 		 * Nobody gets write access to an immutable file.
358 		 */
359 		if (IS_IMMUTABLE(inode))
360 			return -EACCES;
361 	}
362 
363 	retval = do_inode_permission(inode, mask);
364 	if (retval)
365 		return retval;
366 
367 	retval = devcgroup_inode_permission(inode, mask);
368 	if (retval)
369 		return retval;
370 
371 	return security_inode_permission(inode, mask);
372 }
373 
374 /**
375  * path_get - get a reference to a path
376  * @path: path to get the reference to
377  *
378  * Given a path increment the reference count to the dentry and the vfsmount.
379  */
path_get(struct path * path)380 void path_get(struct path *path)
381 {
382 	mntget(path->mnt);
383 	dget(path->dentry);
384 }
385 EXPORT_SYMBOL(path_get);
386 
387 /**
388  * path_put - put a reference to a path
389  * @path: path to put the reference to
390  *
391  * Given a path decrement the reference count to the dentry and the vfsmount.
392  */
path_put(struct path * path)393 void path_put(struct path *path)
394 {
395 	dput(path->dentry);
396 	mntput(path->mnt);
397 }
398 EXPORT_SYMBOL(path_put);
399 
400 /*
401  * Path walking has 2 modes, rcu-walk and ref-walk (see
402  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
403  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
404  * normal reference counts on dentries and vfsmounts to transition to rcu-walk
405  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
406  * got stuck, so ref-walk may continue from there. If this is not successful
407  * (eg. a seqcount has changed), then failure is returned and it's up to caller
408  * to restart the path walk from the beginning in ref-walk mode.
409  */
410 
411 /**
412  * unlazy_walk - try to switch to ref-walk mode.
413  * @nd: nameidata pathwalk data
414  * @dentry: child of nd->path.dentry or NULL
415  * Returns: 0 on success, -ECHILD on failure
416  *
417  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
418  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
419  * @nd or NULL.  Must be called from rcu-walk context.
420  */
unlazy_walk(struct nameidata * nd,struct dentry * dentry)421 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
422 {
423 	struct fs_struct *fs = current->fs;
424 	struct dentry *parent = nd->path.dentry;
425 	int want_root = 0;
426 
427 	BUG_ON(!(nd->flags & LOOKUP_RCU));
428 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
429 		want_root = 1;
430 		spin_lock(&fs->lock);
431 		if (nd->root.mnt != fs->root.mnt ||
432 				nd->root.dentry != fs->root.dentry)
433 			goto err_root;
434 	}
435 	spin_lock(&parent->d_lock);
436 	if (!dentry) {
437 		if (!__d_rcu_to_refcount(parent, nd->seq))
438 			goto err_parent;
439 		BUG_ON(nd->inode != parent->d_inode);
440 	} else {
441 		if (dentry->d_parent != parent)
442 			goto err_parent;
443 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
444 		if (!__d_rcu_to_refcount(dentry, nd->seq))
445 			goto err_child;
446 		/*
447 		 * If the sequence check on the child dentry passed, then
448 		 * the child has not been removed from its parent. This
449 		 * means the parent dentry must be valid and able to take
450 		 * a reference at this point.
451 		 */
452 		BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
453 		BUG_ON(!parent->d_count);
454 		parent->d_count++;
455 		spin_unlock(&dentry->d_lock);
456 	}
457 	spin_unlock(&parent->d_lock);
458 	if (want_root) {
459 		path_get(&nd->root);
460 		spin_unlock(&fs->lock);
461 	}
462 	mntget(nd->path.mnt);
463 
464 	rcu_read_unlock();
465 	br_read_unlock(vfsmount_lock);
466 	nd->flags &= ~LOOKUP_RCU;
467 	return 0;
468 
469 err_child:
470 	spin_unlock(&dentry->d_lock);
471 err_parent:
472 	spin_unlock(&parent->d_lock);
473 err_root:
474 	if (want_root)
475 		spin_unlock(&fs->lock);
476 	return -ECHILD;
477 }
478 
479 /**
480  * release_open_intent - free up open intent resources
481  * @nd: pointer to nameidata
482  */
release_open_intent(struct nameidata * nd)483 void release_open_intent(struct nameidata *nd)
484 {
485 	struct file *file = nd->intent.open.file;
486 
487 	if (file && !IS_ERR(file)) {
488 		if (file->f_path.dentry == NULL)
489 			put_filp(file);
490 		else
491 			fput(file);
492 	}
493 }
494 
d_revalidate(struct dentry * dentry,struct nameidata * nd)495 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
496 {
497 	return dentry->d_op->d_revalidate(dentry, nd);
498 }
499 
500 /**
501  * complete_walk - successful completion of path walk
502  * @nd:  pointer nameidata
503  *
504  * If we had been in RCU mode, drop out of it and legitimize nd->path.
505  * Revalidate the final result, unless we'd already done that during
506  * the path walk or the filesystem doesn't ask for it.  Return 0 on
507  * success, -error on failure.  In case of failure caller does not
508  * need to drop nd->path.
509  */
complete_walk(struct nameidata * nd)510 static int complete_walk(struct nameidata *nd)
511 {
512 	struct dentry *dentry = nd->path.dentry;
513 	int status;
514 
515 	if (nd->flags & LOOKUP_RCU) {
516 		nd->flags &= ~LOOKUP_RCU;
517 		if (!(nd->flags & LOOKUP_ROOT))
518 			nd->root.mnt = NULL;
519 		spin_lock(&dentry->d_lock);
520 		if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
521 			spin_unlock(&dentry->d_lock);
522 			rcu_read_unlock();
523 			br_read_unlock(vfsmount_lock);
524 			return -ECHILD;
525 		}
526 		BUG_ON(nd->inode != dentry->d_inode);
527 		spin_unlock(&dentry->d_lock);
528 		mntget(nd->path.mnt);
529 		rcu_read_unlock();
530 		br_read_unlock(vfsmount_lock);
531 	}
532 
533 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
534 		return 0;
535 
536 	if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
537 		return 0;
538 
539 	if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
540 		return 0;
541 
542 	/* Note: we do not d_invalidate() */
543 	status = d_revalidate(dentry, nd);
544 	if (status > 0)
545 		return 0;
546 
547 	if (!status)
548 		status = -ESTALE;
549 
550 	path_put(&nd->path);
551 	return status;
552 }
553 
set_root(struct nameidata * nd)554 static __always_inline void set_root(struct nameidata *nd)
555 {
556 	if (!nd->root.mnt)
557 		get_fs_root(current->fs, &nd->root);
558 }
559 
560 static int link_path_walk(const char *, struct nameidata *);
561 
set_root_rcu(struct nameidata * nd)562 static __always_inline void set_root_rcu(struct nameidata *nd)
563 {
564 	if (!nd->root.mnt) {
565 		struct fs_struct *fs = current->fs;
566 		unsigned seq;
567 
568 		do {
569 			seq = read_seqcount_begin(&fs->seq);
570 			nd->root = fs->root;
571 			nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
572 		} while (read_seqcount_retry(&fs->seq, seq));
573 	}
574 }
575 
__vfs_follow_link(struct nameidata * nd,const char * link)576 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
577 {
578 	int ret;
579 
580 	if (IS_ERR(link))
581 		goto fail;
582 
583 	if (*link == '/') {
584 		set_root(nd);
585 		path_put(&nd->path);
586 		nd->path = nd->root;
587 		path_get(&nd->root);
588 		nd->flags |= LOOKUP_JUMPED;
589 	}
590 	nd->inode = nd->path.dentry->d_inode;
591 
592 	ret = link_path_walk(link, nd);
593 	return ret;
594 fail:
595 	path_put(&nd->path);
596 	return PTR_ERR(link);
597 }
598 
path_put_conditional(struct path * path,struct nameidata * nd)599 static void path_put_conditional(struct path *path, struct nameidata *nd)
600 {
601 	dput(path->dentry);
602 	if (path->mnt != nd->path.mnt)
603 		mntput(path->mnt);
604 }
605 
path_to_nameidata(const struct path * path,struct nameidata * nd)606 static inline void path_to_nameidata(const struct path *path,
607 					struct nameidata *nd)
608 {
609 	if (!(nd->flags & LOOKUP_RCU)) {
610 		dput(nd->path.dentry);
611 		if (nd->path.mnt != path->mnt)
612 			mntput(nd->path.mnt);
613 	}
614 	nd->path.mnt = path->mnt;
615 	nd->path.dentry = path->dentry;
616 }
617 
put_link(struct nameidata * nd,struct path * link,void * cookie)618 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
619 {
620 	struct inode *inode = link->dentry->d_inode;
621 	if (!IS_ERR(cookie) && inode->i_op->put_link)
622 		inode->i_op->put_link(link->dentry, nd, cookie);
623 	path_put(link);
624 }
625 
626 static __always_inline int
follow_link(struct path * link,struct nameidata * nd,void ** p)627 follow_link(struct path *link, struct nameidata *nd, void **p)
628 {
629 	int error;
630 	struct dentry *dentry = link->dentry;
631 
632 	BUG_ON(nd->flags & LOOKUP_RCU);
633 
634 	if (link->mnt == nd->path.mnt)
635 		mntget(link->mnt);
636 
637 	if (unlikely(current->total_link_count >= 40)) {
638 		*p = ERR_PTR(-ELOOP); /* no ->put_link(), please */
639 		path_put(&nd->path);
640 		return -ELOOP;
641 	}
642 	cond_resched();
643 	current->total_link_count++;
644 
645 	touch_atime(link);
646 	nd_set_link(nd, NULL);
647 
648 	error = security_inode_follow_link(link->dentry, nd);
649 	if (error) {
650 		*p = ERR_PTR(error); /* no ->put_link(), please */
651 		path_put(&nd->path);
652 		return error;
653 	}
654 
655 	nd->last_type = LAST_BIND;
656 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
657 	error = PTR_ERR(*p);
658 	if (!IS_ERR(*p)) {
659 		char *s = nd_get_link(nd);
660 		error = 0;
661 		if (s)
662 			error = __vfs_follow_link(nd, s);
663 		else if (nd->last_type == LAST_BIND) {
664 			nd->flags |= LOOKUP_JUMPED;
665 			nd->inode = nd->path.dentry->d_inode;
666 			if (nd->inode->i_op->follow_link) {
667 				/* stepped on a _really_ weird one */
668 				path_put(&nd->path);
669 				error = -ELOOP;
670 			}
671 		}
672 	}
673 	return error;
674 }
675 
follow_up_rcu(struct path * path)676 static int follow_up_rcu(struct path *path)
677 {
678 	struct mount *mnt = real_mount(path->mnt);
679 	struct mount *parent;
680 	struct dentry *mountpoint;
681 
682 	parent = mnt->mnt_parent;
683 	if (&parent->mnt == path->mnt)
684 		return 0;
685 	mountpoint = mnt->mnt_mountpoint;
686 	path->dentry = mountpoint;
687 	path->mnt = &parent->mnt;
688 	return 1;
689 }
690 
follow_up(struct path * path)691 int follow_up(struct path *path)
692 {
693 	struct mount *mnt = real_mount(path->mnt);
694 	struct mount *parent;
695 	struct dentry *mountpoint;
696 
697 	br_read_lock(vfsmount_lock);
698 	parent = mnt->mnt_parent;
699 	if (&parent->mnt == path->mnt) {
700 		br_read_unlock(vfsmount_lock);
701 		return 0;
702 	}
703 	mntget(&parent->mnt);
704 	mountpoint = dget(mnt->mnt_mountpoint);
705 	br_read_unlock(vfsmount_lock);
706 	dput(path->dentry);
707 	path->dentry = mountpoint;
708 	mntput(path->mnt);
709 	path->mnt = &parent->mnt;
710 	return 1;
711 }
712 
713 /*
714  * Perform an automount
715  * - return -EISDIR to tell follow_managed() to stop and return the path we
716  *   were called with.
717  */
follow_automount(struct path * path,unsigned flags,bool * need_mntput)718 static int follow_automount(struct path *path, unsigned flags,
719 			    bool *need_mntput)
720 {
721 	struct vfsmount *mnt;
722 	int err;
723 
724 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
725 		return -EREMOTE;
726 
727 	/* We don't want to mount if someone's just doing a stat -
728 	 * unless they're stat'ing a directory and appended a '/' to
729 	 * the name.
730 	 *
731 	 * We do, however, want to mount if someone wants to open or
732 	 * create a file of any type under the mountpoint, wants to
733 	 * traverse through the mountpoint or wants to open the
734 	 * mounted directory.  Also, autofs may mark negative dentries
735 	 * as being automount points.  These will need the attentions
736 	 * of the daemon to instantiate them before they can be used.
737 	 */
738 	if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
739 		     LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
740 	    path->dentry->d_inode)
741 		return -EISDIR;
742 
743 	current->total_link_count++;
744 	if (current->total_link_count >= 40)
745 		return -ELOOP;
746 
747 	mnt = path->dentry->d_op->d_automount(path);
748 	if (IS_ERR(mnt)) {
749 		/*
750 		 * The filesystem is allowed to return -EISDIR here to indicate
751 		 * it doesn't want to automount.  For instance, autofs would do
752 		 * this so that its userspace daemon can mount on this dentry.
753 		 *
754 		 * However, we can only permit this if it's a terminal point in
755 		 * the path being looked up; if it wasn't then the remainder of
756 		 * the path is inaccessible and we should say so.
757 		 */
758 		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
759 			return -EREMOTE;
760 		return PTR_ERR(mnt);
761 	}
762 
763 	if (!mnt) /* mount collision */
764 		return 0;
765 
766 	if (!*need_mntput) {
767 		/* lock_mount() may release path->mnt on error */
768 		mntget(path->mnt);
769 		*need_mntput = true;
770 	}
771 	err = finish_automount(mnt, path);
772 
773 	switch (err) {
774 	case -EBUSY:
775 		/* Someone else made a mount here whilst we were busy */
776 		return 0;
777 	case 0:
778 		path_put(path);
779 		path->mnt = mnt;
780 		path->dentry = dget(mnt->mnt_root);
781 		return 0;
782 	default:
783 		return err;
784 	}
785 
786 }
787 
788 /*
789  * Handle a dentry that is managed in some way.
790  * - Flagged for transit management (autofs)
791  * - Flagged as mountpoint
792  * - Flagged as automount point
793  *
794  * This may only be called in refwalk mode.
795  *
796  * Serialization is taken care of in namespace.c
797  */
follow_managed(struct path * path,unsigned flags)798 static int follow_managed(struct path *path, unsigned flags)
799 {
800 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
801 	unsigned managed;
802 	bool need_mntput = false;
803 	int ret = 0;
804 
805 	/* Given that we're not holding a lock here, we retain the value in a
806 	 * local variable for each dentry as we look at it so that we don't see
807 	 * the components of that value change under us */
808 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
809 	       managed &= DCACHE_MANAGED_DENTRY,
810 	       unlikely(managed != 0)) {
811 		/* Allow the filesystem to manage the transit without i_mutex
812 		 * being held. */
813 		if (managed & DCACHE_MANAGE_TRANSIT) {
814 			BUG_ON(!path->dentry->d_op);
815 			BUG_ON(!path->dentry->d_op->d_manage);
816 			ret = path->dentry->d_op->d_manage(path->dentry, false);
817 			if (ret < 0)
818 				break;
819 		}
820 
821 		/* Transit to a mounted filesystem. */
822 		if (managed & DCACHE_MOUNTED) {
823 			struct vfsmount *mounted = lookup_mnt(path);
824 			if (mounted) {
825 				dput(path->dentry);
826 				if (need_mntput)
827 					mntput(path->mnt);
828 				path->mnt = mounted;
829 				path->dentry = dget(mounted->mnt_root);
830 				need_mntput = true;
831 				continue;
832 			}
833 
834 			/* Something is mounted on this dentry in another
835 			 * namespace and/or whatever was mounted there in this
836 			 * namespace got unmounted before we managed to get the
837 			 * vfsmount_lock */
838 		}
839 
840 		/* Handle an automount point */
841 		if (managed & DCACHE_NEED_AUTOMOUNT) {
842 			ret = follow_automount(path, flags, &need_mntput);
843 			if (ret < 0)
844 				break;
845 			continue;
846 		}
847 
848 		/* We didn't change the current path point */
849 		break;
850 	}
851 
852 	if (need_mntput && path->mnt == mnt)
853 		mntput(path->mnt);
854 	if (ret == -EISDIR)
855 		ret = 0;
856 	return ret < 0 ? ret : need_mntput;
857 }
858 
follow_down_one(struct path * path)859 int follow_down_one(struct path *path)
860 {
861 	struct vfsmount *mounted;
862 
863 	mounted = lookup_mnt(path);
864 	if (mounted) {
865 		dput(path->dentry);
866 		mntput(path->mnt);
867 		path->mnt = mounted;
868 		path->dentry = dget(mounted->mnt_root);
869 		return 1;
870 	}
871 	return 0;
872 }
873 
managed_dentry_might_block(struct dentry * dentry)874 static inline bool managed_dentry_might_block(struct dentry *dentry)
875 {
876 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
877 		dentry->d_op->d_manage(dentry, true) < 0);
878 }
879 
880 /*
881  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
882  * we meet a managed dentry that would need blocking.
883  */
__follow_mount_rcu(struct nameidata * nd,struct path * path,struct inode ** inode)884 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
885 			       struct inode **inode)
886 {
887 	for (;;) {
888 		struct mount *mounted;
889 		/*
890 		 * Don't forget we might have a non-mountpoint managed dentry
891 		 * that wants to block transit.
892 		 */
893 		if (unlikely(managed_dentry_might_block(path->dentry)))
894 			return false;
895 
896 		if (!d_mountpoint(path->dentry))
897 			break;
898 
899 		mounted = __lookup_mnt(path->mnt, path->dentry, 1);
900 		if (!mounted)
901 			break;
902 		path->mnt = &mounted->mnt;
903 		path->dentry = mounted->mnt.mnt_root;
904 		nd->flags |= LOOKUP_JUMPED;
905 		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
906 		/*
907 		 * Update the inode too. We don't need to re-check the
908 		 * dentry sequence number here after this d_inode read,
909 		 * because a mount-point is always pinned.
910 		 */
911 		*inode = path->dentry->d_inode;
912 	}
913 	return true;
914 }
915 
follow_mount_rcu(struct nameidata * nd)916 static void follow_mount_rcu(struct nameidata *nd)
917 {
918 	while (d_mountpoint(nd->path.dentry)) {
919 		struct mount *mounted;
920 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
921 		if (!mounted)
922 			break;
923 		nd->path.mnt = &mounted->mnt;
924 		nd->path.dentry = mounted->mnt.mnt_root;
925 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
926 	}
927 }
928 
follow_dotdot_rcu(struct nameidata * nd)929 static int follow_dotdot_rcu(struct nameidata *nd)
930 {
931 	set_root_rcu(nd);
932 
933 	while (1) {
934 		if (nd->path.dentry == nd->root.dentry &&
935 		    nd->path.mnt == nd->root.mnt) {
936 			break;
937 		}
938 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
939 			struct dentry *old = nd->path.dentry;
940 			struct dentry *parent = old->d_parent;
941 			unsigned seq;
942 
943 			seq = read_seqcount_begin(&parent->d_seq);
944 			if (read_seqcount_retry(&old->d_seq, nd->seq))
945 				goto failed;
946 			nd->path.dentry = parent;
947 			nd->seq = seq;
948 			break;
949 		}
950 		if (!follow_up_rcu(&nd->path))
951 			break;
952 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
953 	}
954 	follow_mount_rcu(nd);
955 	nd->inode = nd->path.dentry->d_inode;
956 	return 0;
957 
958 failed:
959 	nd->flags &= ~LOOKUP_RCU;
960 	if (!(nd->flags & LOOKUP_ROOT))
961 		nd->root.mnt = NULL;
962 	rcu_read_unlock();
963 	br_read_unlock(vfsmount_lock);
964 	return -ECHILD;
965 }
966 
967 /*
968  * Follow down to the covering mount currently visible to userspace.  At each
969  * point, the filesystem owning that dentry may be queried as to whether the
970  * caller is permitted to proceed or not.
971  */
follow_down(struct path * path)972 int follow_down(struct path *path)
973 {
974 	unsigned managed;
975 	int ret;
976 
977 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
978 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
979 		/* Allow the filesystem to manage the transit without i_mutex
980 		 * being held.
981 		 *
982 		 * We indicate to the filesystem if someone is trying to mount
983 		 * something here.  This gives autofs the chance to deny anyone
984 		 * other than its daemon the right to mount on its
985 		 * superstructure.
986 		 *
987 		 * The filesystem may sleep at this point.
988 		 */
989 		if (managed & DCACHE_MANAGE_TRANSIT) {
990 			BUG_ON(!path->dentry->d_op);
991 			BUG_ON(!path->dentry->d_op->d_manage);
992 			ret = path->dentry->d_op->d_manage(
993 				path->dentry, false);
994 			if (ret < 0)
995 				return ret == -EISDIR ? 0 : ret;
996 		}
997 
998 		/* Transit to a mounted filesystem. */
999 		if (managed & DCACHE_MOUNTED) {
1000 			struct vfsmount *mounted = lookup_mnt(path);
1001 			if (!mounted)
1002 				break;
1003 			dput(path->dentry);
1004 			mntput(path->mnt);
1005 			path->mnt = mounted;
1006 			path->dentry = dget(mounted->mnt_root);
1007 			continue;
1008 		}
1009 
1010 		/* Don't handle automount points here */
1011 		break;
1012 	}
1013 	return 0;
1014 }
1015 
1016 /*
1017  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1018  */
follow_mount(struct path * path)1019 static void follow_mount(struct path *path)
1020 {
1021 	while (d_mountpoint(path->dentry)) {
1022 		struct vfsmount *mounted = lookup_mnt(path);
1023 		if (!mounted)
1024 			break;
1025 		dput(path->dentry);
1026 		mntput(path->mnt);
1027 		path->mnt = mounted;
1028 		path->dentry = dget(mounted->mnt_root);
1029 	}
1030 }
1031 
follow_dotdot(struct nameidata * nd)1032 static void follow_dotdot(struct nameidata *nd)
1033 {
1034 	set_root(nd);
1035 
1036 	while(1) {
1037 		struct dentry *old = nd->path.dentry;
1038 
1039 		if (nd->path.dentry == nd->root.dentry &&
1040 		    nd->path.mnt == nd->root.mnt) {
1041 			break;
1042 		}
1043 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1044 			/* rare case of legitimate dget_parent()... */
1045 			nd->path.dentry = dget_parent(nd->path.dentry);
1046 			dput(old);
1047 			break;
1048 		}
1049 		if (!follow_up(&nd->path))
1050 			break;
1051 	}
1052 	follow_mount(&nd->path);
1053 	nd->inode = nd->path.dentry->d_inode;
1054 }
1055 
1056 /*
1057  * This looks up the name in dcache, possibly revalidates the old dentry and
1058  * allocates a new one if not found or not valid.  In the need_lookup argument
1059  * returns whether i_op->lookup is necessary.
1060  *
1061  * dir->d_inode->i_mutex must be held
1062  */
lookup_dcache(struct qstr * name,struct dentry * dir,struct nameidata * nd,bool * need_lookup)1063 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1064 				    struct nameidata *nd, bool *need_lookup)
1065 {
1066 	struct dentry *dentry;
1067 	int error;
1068 
1069 	*need_lookup = false;
1070 	dentry = d_lookup(dir, name);
1071 	if (dentry) {
1072 		if (d_need_lookup(dentry)) {
1073 			*need_lookup = true;
1074 		} else if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1075 			error = d_revalidate(dentry, nd);
1076 			if (unlikely(error <= 0)) {
1077 				if (error < 0) {
1078 					dput(dentry);
1079 					return ERR_PTR(error);
1080 				} else if (!d_invalidate(dentry)) {
1081 					dput(dentry);
1082 					dentry = NULL;
1083 				}
1084 			}
1085 		}
1086 	}
1087 
1088 	if (!dentry) {
1089 		dentry = d_alloc(dir, name);
1090 		if (unlikely(!dentry))
1091 			return ERR_PTR(-ENOMEM);
1092 
1093 		*need_lookup = true;
1094 	}
1095 	return dentry;
1096 }
1097 
1098 /*
1099  * Call i_op->lookup on the dentry.  The dentry must be negative but may be
1100  * hashed if it was pouplated with DCACHE_NEED_LOOKUP.
1101  *
1102  * dir->d_inode->i_mutex must be held
1103  */
lookup_real(struct inode * dir,struct dentry * dentry,struct nameidata * nd)1104 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1105 				  struct nameidata *nd)
1106 {
1107 	struct dentry *old;
1108 
1109 	/* Don't create child dentry for a dead directory. */
1110 	if (unlikely(IS_DEADDIR(dir))) {
1111 		dput(dentry);
1112 		return ERR_PTR(-ENOENT);
1113 	}
1114 
1115 	old = dir->i_op->lookup(dir, dentry, nd);
1116 	if (unlikely(old)) {
1117 		dput(dentry);
1118 		dentry = old;
1119 	}
1120 	return dentry;
1121 }
1122 
__lookup_hash(struct qstr * name,struct dentry * base,struct nameidata * nd)1123 static struct dentry *__lookup_hash(struct qstr *name,
1124 		struct dentry *base, struct nameidata *nd)
1125 {
1126 	bool need_lookup;
1127 	struct dentry *dentry;
1128 
1129 	dentry = lookup_dcache(name, base, nd, &need_lookup);
1130 	if (!need_lookup)
1131 		return dentry;
1132 
1133 	return lookup_real(base->d_inode, dentry, nd);
1134 }
1135 
1136 /*
1137  *  It's more convoluted than I'd like it to be, but... it's still fairly
1138  *  small and for now I'd prefer to have fast path as straight as possible.
1139  *  It _is_ time-critical.
1140  */
do_lookup(struct nameidata * nd,struct qstr * name,struct path * path,struct inode ** inode)1141 static int do_lookup(struct nameidata *nd, struct qstr *name,
1142 			struct path *path, struct inode **inode)
1143 {
1144 	struct vfsmount *mnt = nd->path.mnt;
1145 	struct dentry *dentry, *parent = nd->path.dentry;
1146 	int need_reval = 1;
1147 	int status = 1;
1148 	int err;
1149 
1150 	/*
1151 	 * Rename seqlock is not required here because in the off chance
1152 	 * of a false negative due to a concurrent rename, we're going to
1153 	 * do the non-racy lookup, below.
1154 	 */
1155 	if (nd->flags & LOOKUP_RCU) {
1156 		unsigned seq;
1157 		*inode = nd->inode;
1158 		dentry = __d_lookup_rcu(parent, name, &seq, inode);
1159 		if (!dentry)
1160 			goto unlazy;
1161 
1162 		/* Memory barrier in read_seqcount_begin of child is enough */
1163 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1164 			return -ECHILD;
1165 		nd->seq = seq;
1166 
1167 		if (unlikely(d_need_lookup(dentry)))
1168 			goto unlazy;
1169 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1170 			status = d_revalidate(dentry, nd);
1171 			if (unlikely(status <= 0)) {
1172 				if (status != -ECHILD)
1173 					need_reval = 0;
1174 				goto unlazy;
1175 			}
1176 		}
1177 		path->mnt = mnt;
1178 		path->dentry = dentry;
1179 		if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1180 			goto unlazy;
1181 		if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1182 			goto unlazy;
1183 		return 0;
1184 unlazy:
1185 		if (unlazy_walk(nd, dentry))
1186 			return -ECHILD;
1187 	} else {
1188 		dentry = __d_lookup(parent, name);
1189 	}
1190 
1191 	if (unlikely(!dentry))
1192 		goto need_lookup;
1193 
1194 	if (unlikely(d_need_lookup(dentry))) {
1195 		dput(dentry);
1196 		goto need_lookup;
1197 	}
1198 
1199 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1200 		status = d_revalidate(dentry, nd);
1201 	if (unlikely(status <= 0)) {
1202 		if (status < 0) {
1203 			dput(dentry);
1204 			return status;
1205 		}
1206 		if (!d_invalidate(dentry)) {
1207 			dput(dentry);
1208 			goto need_lookup;
1209 		}
1210 	}
1211 done:
1212 	path->mnt = mnt;
1213 	path->dentry = dentry;
1214 	err = follow_managed(path, nd->flags);
1215 	if (unlikely(err < 0)) {
1216 		path_put_conditional(path, nd);
1217 		return err;
1218 	}
1219 	if (err)
1220 		nd->flags |= LOOKUP_JUMPED;
1221 	*inode = path->dentry->d_inode;
1222 	return 0;
1223 
1224 need_lookup:
1225 	BUG_ON(nd->inode != parent->d_inode);
1226 
1227 	mutex_lock(&parent->d_inode->i_mutex);
1228 	dentry = __lookup_hash(name, parent, nd);
1229 	mutex_unlock(&parent->d_inode->i_mutex);
1230 	if (IS_ERR(dentry))
1231 		return PTR_ERR(dentry);
1232 	goto done;
1233 }
1234 
may_lookup(struct nameidata * nd)1235 static inline int may_lookup(struct nameidata *nd)
1236 {
1237 	if (nd->flags & LOOKUP_RCU) {
1238 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1239 		if (err != -ECHILD)
1240 			return err;
1241 		if (unlazy_walk(nd, NULL))
1242 			return -ECHILD;
1243 	}
1244 	return inode_permission(nd->inode, MAY_EXEC);
1245 }
1246 
handle_dots(struct nameidata * nd,int type)1247 static inline int handle_dots(struct nameidata *nd, int type)
1248 {
1249 	if (type == LAST_DOTDOT) {
1250 		if (nd->flags & LOOKUP_RCU) {
1251 			if (follow_dotdot_rcu(nd))
1252 				return -ECHILD;
1253 		} else
1254 			follow_dotdot(nd);
1255 	}
1256 	return 0;
1257 }
1258 
terminate_walk(struct nameidata * nd)1259 static void terminate_walk(struct nameidata *nd)
1260 {
1261 	if (!(nd->flags & LOOKUP_RCU)) {
1262 		path_put(&nd->path);
1263 	} else {
1264 		nd->flags &= ~LOOKUP_RCU;
1265 		if (!(nd->flags & LOOKUP_ROOT))
1266 			nd->root.mnt = NULL;
1267 		rcu_read_unlock();
1268 		br_read_unlock(vfsmount_lock);
1269 	}
1270 }
1271 
1272 /*
1273  * Do we need to follow links? We _really_ want to be able
1274  * to do this check without having to look at inode->i_op,
1275  * so we keep a cache of "no, this doesn't need follow_link"
1276  * for the common case.
1277  */
should_follow_link(struct inode * inode,int follow)1278 static inline int should_follow_link(struct inode *inode, int follow)
1279 {
1280 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1281 		if (likely(inode->i_op->follow_link))
1282 			return follow;
1283 
1284 		/* This gets set once for the inode lifetime */
1285 		spin_lock(&inode->i_lock);
1286 		inode->i_opflags |= IOP_NOFOLLOW;
1287 		spin_unlock(&inode->i_lock);
1288 	}
1289 	return 0;
1290 }
1291 
walk_component(struct nameidata * nd,struct path * path,struct qstr * name,int type,int follow)1292 static inline int walk_component(struct nameidata *nd, struct path *path,
1293 		struct qstr *name, int type, int follow)
1294 {
1295 	struct inode *inode;
1296 	int err;
1297 	/*
1298 	 * "." and ".." are special - ".." especially so because it has
1299 	 * to be able to know about the current root directory and
1300 	 * parent relationships.
1301 	 */
1302 	if (unlikely(type != LAST_NORM))
1303 		return handle_dots(nd, type);
1304 	err = do_lookup(nd, name, path, &inode);
1305 	if (unlikely(err)) {
1306 		terminate_walk(nd);
1307 		return err;
1308 	}
1309 	if (!inode) {
1310 		path_to_nameidata(path, nd);
1311 		terminate_walk(nd);
1312 		return -ENOENT;
1313 	}
1314 	if (should_follow_link(inode, follow)) {
1315 		if (nd->flags & LOOKUP_RCU) {
1316 			if (unlikely(unlazy_walk(nd, path->dentry))) {
1317 				terminate_walk(nd);
1318 				return -ECHILD;
1319 			}
1320 		}
1321 		BUG_ON(inode != path->dentry->d_inode);
1322 		return 1;
1323 	}
1324 	path_to_nameidata(path, nd);
1325 	nd->inode = inode;
1326 	return 0;
1327 }
1328 
1329 /*
1330  * This limits recursive symlink follows to 8, while
1331  * limiting consecutive symlinks to 40.
1332  *
1333  * Without that kind of total limit, nasty chains of consecutive
1334  * symlinks can cause almost arbitrarily long lookups.
1335  */
nested_symlink(struct path * path,struct nameidata * nd)1336 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1337 {
1338 	int res;
1339 
1340 	if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1341 		path_put_conditional(path, nd);
1342 		path_put(&nd->path);
1343 		return -ELOOP;
1344 	}
1345 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1346 
1347 	nd->depth++;
1348 	current->link_count++;
1349 
1350 	do {
1351 		struct path link = *path;
1352 		void *cookie;
1353 
1354 		res = follow_link(&link, nd, &cookie);
1355 		if (!res)
1356 			res = walk_component(nd, path, &nd->last,
1357 					     nd->last_type, LOOKUP_FOLLOW);
1358 		put_link(nd, &link, cookie);
1359 	} while (res > 0);
1360 
1361 	current->link_count--;
1362 	nd->depth--;
1363 	return res;
1364 }
1365 
1366 /*
1367  * We really don't want to look at inode->i_op->lookup
1368  * when we don't have to. So we keep a cache bit in
1369  * the inode ->i_opflags field that says "yes, we can
1370  * do lookup on this inode".
1371  */
can_lookup(struct inode * inode)1372 static inline int can_lookup(struct inode *inode)
1373 {
1374 	if (likely(inode->i_opflags & IOP_LOOKUP))
1375 		return 1;
1376 	if (likely(!inode->i_op->lookup))
1377 		return 0;
1378 
1379 	/* We do this once for the lifetime of the inode */
1380 	spin_lock(&inode->i_lock);
1381 	inode->i_opflags |= IOP_LOOKUP;
1382 	spin_unlock(&inode->i_lock);
1383 	return 1;
1384 }
1385 
1386 /*
1387  * We can do the critical dentry name comparison and hashing
1388  * operations one word at a time, but we are limited to:
1389  *
1390  * - Architectures with fast unaligned word accesses. We could
1391  *   do a "get_unaligned()" if this helps and is sufficiently
1392  *   fast.
1393  *
1394  * - Little-endian machines (so that we can generate the mask
1395  *   of low bytes efficiently). Again, we *could* do a byte
1396  *   swapping load on big-endian architectures if that is not
1397  *   expensive enough to make the optimization worthless.
1398  *
1399  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1400  *   do not trap on the (extremely unlikely) case of a page
1401  *   crossing operation.
1402  *
1403  * - Furthermore, we need an efficient 64-bit compile for the
1404  *   64-bit case in order to generate the "number of bytes in
1405  *   the final mask". Again, that could be replaced with a
1406  *   efficient population count instruction or similar.
1407  */
1408 #ifdef CONFIG_DCACHE_WORD_ACCESS
1409 
1410 #include <asm/word-at-a-time.h>
1411 
1412 #ifdef CONFIG_64BIT
1413 
fold_hash(unsigned long hash)1414 static inline unsigned int fold_hash(unsigned long hash)
1415 {
1416 	hash += hash >> (8*sizeof(int));
1417 	return hash;
1418 }
1419 
1420 #else	/* 32-bit case */
1421 
1422 #define fold_hash(x) (x)
1423 
1424 #endif
1425 
full_name_hash(const unsigned char * name,unsigned int len)1426 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1427 {
1428 	unsigned long a, mask;
1429 	unsigned long hash = 0;
1430 
1431 	for (;;) {
1432 		a = load_unaligned_zeropad(name);
1433 		if (len < sizeof(unsigned long))
1434 			break;
1435 		hash += a;
1436 		hash *= 9;
1437 		name += sizeof(unsigned long);
1438 		len -= sizeof(unsigned long);
1439 		if (!len)
1440 			goto done;
1441 	}
1442 	mask = ~(~0ul << len*8);
1443 	hash += mask & a;
1444 done:
1445 	return fold_hash(hash);
1446 }
1447 EXPORT_SYMBOL(full_name_hash);
1448 
1449 /*
1450  * Calculate the length and hash of the path component, and
1451  * return the length of the component;
1452  */
hash_name(const char * name,unsigned int * hashp)1453 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1454 {
1455 	unsigned long a, mask, hash, len;
1456 
1457 	hash = a = 0;
1458 	len = -sizeof(unsigned long);
1459 	do {
1460 		hash = (hash + a) * 9;
1461 		len += sizeof(unsigned long);
1462 		a = load_unaligned_zeropad(name+len);
1463 		/* Do we have any NUL or '/' bytes in this word? */
1464 		mask = has_zero(a) | has_zero(a ^ REPEAT_BYTE('/'));
1465 	} while (!mask);
1466 
1467 	/* The mask *below* the first high bit set */
1468 	mask = (mask - 1) & ~mask;
1469 	mask >>= 7;
1470 	hash += a & mask;
1471 	*hashp = fold_hash(hash);
1472 
1473 	return len + count_masked_bytes(mask);
1474 }
1475 
1476 #else
1477 
full_name_hash(const unsigned char * name,unsigned int len)1478 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1479 {
1480 	unsigned long hash = init_name_hash();
1481 	while (len--)
1482 		hash = partial_name_hash(*name++, hash);
1483 	return end_name_hash(hash);
1484 }
1485 EXPORT_SYMBOL(full_name_hash);
1486 
1487 /*
1488  * We know there's a real path component here of at least
1489  * one character.
1490  */
hash_name(const char * name,unsigned int * hashp)1491 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1492 {
1493 	unsigned long hash = init_name_hash();
1494 	unsigned long len = 0, c;
1495 
1496 	c = (unsigned char)*name;
1497 	do {
1498 		len++;
1499 		hash = partial_name_hash(c, hash);
1500 		c = (unsigned char)name[len];
1501 	} while (c && c != '/');
1502 	*hashp = end_name_hash(hash);
1503 	return len;
1504 }
1505 
1506 #endif
1507 
1508 /*
1509  * Name resolution.
1510  * This is the basic name resolution function, turning a pathname into
1511  * the final dentry. We expect 'base' to be positive and a directory.
1512  *
1513  * Returns 0 and nd will have valid dentry and mnt on success.
1514  * Returns error and drops reference to input namei data on failure.
1515  */
link_path_walk(const char * name,struct nameidata * nd)1516 static int link_path_walk(const char *name, struct nameidata *nd)
1517 {
1518 	struct path next;
1519 	int err;
1520 
1521 	while (*name=='/')
1522 		name++;
1523 	if (!*name)
1524 		return 0;
1525 
1526 	/* At this point we know we have a real path component. */
1527 	for(;;) {
1528 		struct qstr this;
1529 		long len;
1530 		int type;
1531 
1532 		err = may_lookup(nd);
1533  		if (err)
1534 			break;
1535 
1536 		len = hash_name(name, &this.hash);
1537 		this.name = name;
1538 		this.len = len;
1539 
1540 		type = LAST_NORM;
1541 		if (name[0] == '.') switch (len) {
1542 			case 2:
1543 				if (name[1] == '.') {
1544 					type = LAST_DOTDOT;
1545 					nd->flags |= LOOKUP_JUMPED;
1546 				}
1547 				break;
1548 			case 1:
1549 				type = LAST_DOT;
1550 		}
1551 		if (likely(type == LAST_NORM)) {
1552 			struct dentry *parent = nd->path.dentry;
1553 			nd->flags &= ~LOOKUP_JUMPED;
1554 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1555 				err = parent->d_op->d_hash(parent, nd->inode,
1556 							   &this);
1557 				if (err < 0)
1558 					break;
1559 			}
1560 		}
1561 
1562 		if (!name[len])
1563 			goto last_component;
1564 		/*
1565 		 * If it wasn't NUL, we know it was '/'. Skip that
1566 		 * slash, and continue until no more slashes.
1567 		 */
1568 		do {
1569 			len++;
1570 		} while (unlikely(name[len] == '/'));
1571 		if (!name[len])
1572 			goto last_component;
1573 		name += len;
1574 
1575 		err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1576 		if (err < 0)
1577 			return err;
1578 
1579 		if (err) {
1580 			err = nested_symlink(&next, nd);
1581 			if (err)
1582 				return err;
1583 		}
1584 		if (can_lookup(nd->inode))
1585 			continue;
1586 		err = -ENOTDIR;
1587 		break;
1588 		/* here ends the main loop */
1589 
1590 last_component:
1591 		nd->last = this;
1592 		nd->last_type = type;
1593 		return 0;
1594 	}
1595 	terminate_walk(nd);
1596 	return err;
1597 }
1598 
path_init(int dfd,const char * name,unsigned int flags,struct nameidata * nd,struct file ** fp)1599 static int path_init(int dfd, const char *name, unsigned int flags,
1600 		     struct nameidata *nd, struct file **fp)
1601 {
1602 	int retval = 0;
1603 	int fput_needed;
1604 	struct file *file;
1605 
1606 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1607 	nd->flags = flags | LOOKUP_JUMPED;
1608 	nd->depth = 0;
1609 	if (flags & LOOKUP_ROOT) {
1610 		struct inode *inode = nd->root.dentry->d_inode;
1611 		if (*name) {
1612 			if (!inode->i_op->lookup)
1613 				return -ENOTDIR;
1614 			retval = inode_permission(inode, MAY_EXEC);
1615 			if (retval)
1616 				return retval;
1617 		}
1618 		nd->path = nd->root;
1619 		nd->inode = inode;
1620 		if (flags & LOOKUP_RCU) {
1621 			br_read_lock(vfsmount_lock);
1622 			rcu_read_lock();
1623 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1624 		} else {
1625 			path_get(&nd->path);
1626 		}
1627 		return 0;
1628 	}
1629 
1630 	nd->root.mnt = NULL;
1631 
1632 	if (*name=='/') {
1633 		if (flags & LOOKUP_RCU) {
1634 			br_read_lock(vfsmount_lock);
1635 			rcu_read_lock();
1636 			set_root_rcu(nd);
1637 		} else {
1638 			set_root(nd);
1639 			path_get(&nd->root);
1640 		}
1641 		nd->path = nd->root;
1642 	} else if (dfd == AT_FDCWD) {
1643 		if (flags & LOOKUP_RCU) {
1644 			struct fs_struct *fs = current->fs;
1645 			unsigned seq;
1646 
1647 			br_read_lock(vfsmount_lock);
1648 			rcu_read_lock();
1649 
1650 			do {
1651 				seq = read_seqcount_begin(&fs->seq);
1652 				nd->path = fs->pwd;
1653 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1654 			} while (read_seqcount_retry(&fs->seq, seq));
1655 		} else {
1656 			get_fs_pwd(current->fs, &nd->path);
1657 		}
1658 	} else {
1659 		struct dentry *dentry;
1660 
1661 		file = fget_raw_light(dfd, &fput_needed);
1662 		retval = -EBADF;
1663 		if (!file)
1664 			goto out_fail;
1665 
1666 		dentry = file->f_path.dentry;
1667 
1668 		if (*name) {
1669 			retval = -ENOTDIR;
1670 			if (!S_ISDIR(dentry->d_inode->i_mode))
1671 				goto fput_fail;
1672 
1673 			retval = inode_permission(dentry->d_inode, MAY_EXEC);
1674 			if (retval)
1675 				goto fput_fail;
1676 		}
1677 
1678 		nd->path = file->f_path;
1679 		if (flags & LOOKUP_RCU) {
1680 			if (fput_needed)
1681 				*fp = file;
1682 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1683 			br_read_lock(vfsmount_lock);
1684 			rcu_read_lock();
1685 		} else {
1686 			path_get(&file->f_path);
1687 			fput_light(file, fput_needed);
1688 		}
1689 	}
1690 
1691 	nd->inode = nd->path.dentry->d_inode;
1692 	return 0;
1693 
1694 fput_fail:
1695 	fput_light(file, fput_needed);
1696 out_fail:
1697 	return retval;
1698 }
1699 
lookup_last(struct nameidata * nd,struct path * path)1700 static inline int lookup_last(struct nameidata *nd, struct path *path)
1701 {
1702 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1703 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1704 
1705 	nd->flags &= ~LOOKUP_PARENT;
1706 	return walk_component(nd, path, &nd->last, nd->last_type,
1707 					nd->flags & LOOKUP_FOLLOW);
1708 }
1709 
1710 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
path_lookupat(int dfd,const char * name,unsigned int flags,struct nameidata * nd)1711 static int path_lookupat(int dfd, const char *name,
1712 				unsigned int flags, struct nameidata *nd)
1713 {
1714 	struct file *base = NULL;
1715 	struct path path;
1716 	int err;
1717 
1718 	/*
1719 	 * Path walking is largely split up into 2 different synchronisation
1720 	 * schemes, rcu-walk and ref-walk (explained in
1721 	 * Documentation/filesystems/path-lookup.txt). These share much of the
1722 	 * path walk code, but some things particularly setup, cleanup, and
1723 	 * following mounts are sufficiently divergent that functions are
1724 	 * duplicated. Typically there is a function foo(), and its RCU
1725 	 * analogue, foo_rcu().
1726 	 *
1727 	 * -ECHILD is the error number of choice (just to avoid clashes) that
1728 	 * is returned if some aspect of an rcu-walk fails. Such an error must
1729 	 * be handled by restarting a traditional ref-walk (which will always
1730 	 * be able to complete).
1731 	 */
1732 	err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1733 
1734 	if (unlikely(err))
1735 		return err;
1736 
1737 	current->total_link_count = 0;
1738 	err = link_path_walk(name, nd);
1739 
1740 	if (!err && !(flags & LOOKUP_PARENT)) {
1741 		err = lookup_last(nd, &path);
1742 		while (err > 0) {
1743 			void *cookie;
1744 			struct path link = path;
1745 			nd->flags |= LOOKUP_PARENT;
1746 			err = follow_link(&link, nd, &cookie);
1747 			if (!err)
1748 				err = lookup_last(nd, &path);
1749 			put_link(nd, &link, cookie);
1750 		}
1751 	}
1752 
1753 	if (!err)
1754 		err = complete_walk(nd);
1755 
1756 	if (!err && nd->flags & LOOKUP_DIRECTORY) {
1757 		if (!nd->inode->i_op->lookup) {
1758 			path_put(&nd->path);
1759 			err = -ENOTDIR;
1760 		}
1761 	}
1762 
1763 	if (base)
1764 		fput(base);
1765 
1766 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1767 		path_put(&nd->root);
1768 		nd->root.mnt = NULL;
1769 	}
1770 	return err;
1771 }
1772 
do_path_lookup(int dfd,const char * name,unsigned int flags,struct nameidata * nd)1773 static int do_path_lookup(int dfd, const char *name,
1774 				unsigned int flags, struct nameidata *nd)
1775 {
1776 	int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1777 	if (unlikely(retval == -ECHILD))
1778 		retval = path_lookupat(dfd, name, flags, nd);
1779 	if (unlikely(retval == -ESTALE))
1780 		retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1781 
1782 	if (likely(!retval)) {
1783 		if (unlikely(!audit_dummy_context())) {
1784 			if (nd->path.dentry && nd->inode)
1785 				audit_inode(name, nd->path.dentry);
1786 		}
1787 	}
1788 	return retval;
1789 }
1790 
kern_path_parent(const char * name,struct nameidata * nd)1791 int kern_path_parent(const char *name, struct nameidata *nd)
1792 {
1793 	return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1794 }
1795 
kern_path(const char * name,unsigned int flags,struct path * path)1796 int kern_path(const char *name, unsigned int flags, struct path *path)
1797 {
1798 	struct nameidata nd;
1799 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1800 	if (!res)
1801 		*path = nd.path;
1802 	return res;
1803 }
1804 
1805 /**
1806  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1807  * @dentry:  pointer to dentry of the base directory
1808  * @mnt: pointer to vfs mount of the base directory
1809  * @name: pointer to file name
1810  * @flags: lookup flags
1811  * @path: pointer to struct path to fill
1812  */
vfs_path_lookup(struct dentry * dentry,struct vfsmount * mnt,const char * name,unsigned int flags,struct path * path)1813 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1814 		    const char *name, unsigned int flags,
1815 		    struct path *path)
1816 {
1817 	struct nameidata nd;
1818 	int err;
1819 	nd.root.dentry = dentry;
1820 	nd.root.mnt = mnt;
1821 	BUG_ON(flags & LOOKUP_PARENT);
1822 	/* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1823 	err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
1824 	if (!err)
1825 		*path = nd.path;
1826 	return err;
1827 }
1828 
1829 /*
1830  * Restricted form of lookup. Doesn't follow links, single-component only,
1831  * needs parent already locked. Doesn't follow mounts.
1832  * SMP-safe.
1833  */
lookup_hash(struct nameidata * nd)1834 static struct dentry *lookup_hash(struct nameidata *nd)
1835 {
1836 	return __lookup_hash(&nd->last, nd->path.dentry, nd);
1837 }
1838 
1839 /**
1840  * lookup_one_len - filesystem helper to lookup single pathname component
1841  * @name:	pathname component to lookup
1842  * @base:	base directory to lookup from
1843  * @len:	maximum length @len should be interpreted to
1844  *
1845  * Note that this routine is purely a helper for filesystem usage and should
1846  * not be called by generic code.  Also note that by using this function the
1847  * nameidata argument is passed to the filesystem methods and a filesystem
1848  * using this helper needs to be prepared for that.
1849  */
lookup_one_len(const char * name,struct dentry * base,int len)1850 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1851 {
1852 	struct qstr this;
1853 	unsigned int c;
1854 	int err;
1855 
1856 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1857 
1858 	this.name = name;
1859 	this.len = len;
1860 	this.hash = full_name_hash(name, len);
1861 	if (!len)
1862 		return ERR_PTR(-EACCES);
1863 
1864 	while (len--) {
1865 		c = *(const unsigned char *)name++;
1866 		if (c == '/' || c == '\0')
1867 			return ERR_PTR(-EACCES);
1868 	}
1869 	/*
1870 	 * See if the low-level filesystem might want
1871 	 * to use its own hash..
1872 	 */
1873 	if (base->d_flags & DCACHE_OP_HASH) {
1874 		int err = base->d_op->d_hash(base, base->d_inode, &this);
1875 		if (err < 0)
1876 			return ERR_PTR(err);
1877 	}
1878 
1879 	err = inode_permission(base->d_inode, MAY_EXEC);
1880 	if (err)
1881 		return ERR_PTR(err);
1882 
1883 	return __lookup_hash(&this, base, NULL);
1884 }
1885 
user_path_at_empty(int dfd,const char __user * name,unsigned flags,struct path * path,int * empty)1886 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
1887 		 struct path *path, int *empty)
1888 {
1889 	struct nameidata nd;
1890 	char *tmp = getname_flags(name, flags, empty);
1891 	int err = PTR_ERR(tmp);
1892 	if (!IS_ERR(tmp)) {
1893 
1894 		BUG_ON(flags & LOOKUP_PARENT);
1895 
1896 		err = do_path_lookup(dfd, tmp, flags, &nd);
1897 		putname(tmp);
1898 		if (!err)
1899 			*path = nd.path;
1900 	}
1901 	return err;
1902 }
1903 
user_path_at(int dfd,const char __user * name,unsigned flags,struct path * path)1904 int user_path_at(int dfd, const char __user *name, unsigned flags,
1905 		 struct path *path)
1906 {
1907 	return user_path_at_empty(dfd, name, flags, path, NULL);
1908 }
1909 
user_path_parent(int dfd,const char __user * path,struct nameidata * nd,char ** name)1910 static int user_path_parent(int dfd, const char __user *path,
1911 			struct nameidata *nd, char **name)
1912 {
1913 	char *s = getname(path);
1914 	int error;
1915 
1916 	if (IS_ERR(s))
1917 		return PTR_ERR(s);
1918 
1919 	error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1920 	if (error)
1921 		putname(s);
1922 	else
1923 		*name = s;
1924 
1925 	return error;
1926 }
1927 
1928 /*
1929  * It's inline, so penalty for filesystems that don't use sticky bit is
1930  * minimal.
1931  */
check_sticky(struct inode * dir,struct inode * inode)1932 static inline int check_sticky(struct inode *dir, struct inode *inode)
1933 {
1934 	uid_t fsuid = current_fsuid();
1935 
1936 	if (!(dir->i_mode & S_ISVTX))
1937 		return 0;
1938 	if (current_user_ns() != inode_userns(inode))
1939 		goto other_userns;
1940 	if (inode->i_uid == fsuid)
1941 		return 0;
1942 	if (dir->i_uid == fsuid)
1943 		return 0;
1944 
1945 other_userns:
1946 	return !ns_capable(inode_userns(inode), CAP_FOWNER);
1947 }
1948 
1949 /*
1950  *	Check whether we can remove a link victim from directory dir, check
1951  *  whether the type of victim is right.
1952  *  1. We can't do it if dir is read-only (done in permission())
1953  *  2. We should have write and exec permissions on dir
1954  *  3. We can't remove anything from append-only dir
1955  *  4. We can't do anything with immutable dir (done in permission())
1956  *  5. If the sticky bit on dir is set we should either
1957  *	a. be owner of dir, or
1958  *	b. be owner of victim, or
1959  *	c. have CAP_FOWNER capability
1960  *  6. If the victim is append-only or immutable we can't do antyhing with
1961  *     links pointing to it.
1962  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1963  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1964  *  9. We can't remove a root or mountpoint.
1965  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1966  *     nfs_async_unlink().
1967  */
may_delete(struct inode * dir,struct dentry * victim,int isdir)1968 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1969 {
1970 	int error;
1971 
1972 	if (!victim->d_inode)
1973 		return -ENOENT;
1974 
1975 	BUG_ON(victim->d_parent->d_inode != dir);
1976 	audit_inode_child(victim, dir);
1977 
1978 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1979 	if (error)
1980 		return error;
1981 	if (IS_APPEND(dir))
1982 		return -EPERM;
1983 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1984 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1985 		return -EPERM;
1986 	if (isdir) {
1987 		if (!S_ISDIR(victim->d_inode->i_mode))
1988 			return -ENOTDIR;
1989 		if (IS_ROOT(victim))
1990 			return -EBUSY;
1991 	} else if (S_ISDIR(victim->d_inode->i_mode))
1992 		return -EISDIR;
1993 	if (IS_DEADDIR(dir))
1994 		return -ENOENT;
1995 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1996 		return -EBUSY;
1997 	return 0;
1998 }
1999 
2000 /*	Check whether we can create an object with dentry child in directory
2001  *  dir.
2002  *  1. We can't do it if child already exists (open has special treatment for
2003  *     this case, but since we are inlined it's OK)
2004  *  2. We can't do it if dir is read-only (done in permission())
2005  *  3. We should have write and exec permissions on dir
2006  *  4. We can't do it if dir is immutable (done in permission())
2007  */
may_create(struct inode * dir,struct dentry * child)2008 static inline int may_create(struct inode *dir, struct dentry *child)
2009 {
2010 	if (child->d_inode)
2011 		return -EEXIST;
2012 	if (IS_DEADDIR(dir))
2013 		return -ENOENT;
2014 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2015 }
2016 
2017 /*
2018  * p1 and p2 should be directories on the same fs.
2019  */
lock_rename(struct dentry * p1,struct dentry * p2)2020 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2021 {
2022 	struct dentry *p;
2023 
2024 	if (p1 == p2) {
2025 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2026 		return NULL;
2027 	}
2028 
2029 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2030 
2031 	p = d_ancestor(p2, p1);
2032 	if (p) {
2033 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2034 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2035 		return p;
2036 	}
2037 
2038 	p = d_ancestor(p1, p2);
2039 	if (p) {
2040 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2041 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2042 		return p;
2043 	}
2044 
2045 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2046 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2047 	return NULL;
2048 }
2049 
unlock_rename(struct dentry * p1,struct dentry * p2)2050 void unlock_rename(struct dentry *p1, struct dentry *p2)
2051 {
2052 	mutex_unlock(&p1->d_inode->i_mutex);
2053 	if (p1 != p2) {
2054 		mutex_unlock(&p2->d_inode->i_mutex);
2055 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2056 	}
2057 }
2058 
vfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,struct nameidata * nd)2059 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2060 		struct nameidata *nd)
2061 {
2062 	int error = may_create(dir, dentry);
2063 
2064 	if (error)
2065 		return error;
2066 
2067 	if (!dir->i_op->create)
2068 		return -EACCES;	/* shouldn't it be ENOSYS? */
2069 	mode &= S_IALLUGO;
2070 	mode |= S_IFREG;
2071 	error = security_inode_create(dir, dentry, mode);
2072 	if (error)
2073 		return error;
2074 	error = dir->i_op->create(dir, dentry, mode, nd);
2075 	if (!error)
2076 		fsnotify_create(dir, dentry);
2077 	return error;
2078 }
2079 
may_open(struct path * path,int acc_mode,int flag)2080 static int may_open(struct path *path, int acc_mode, int flag)
2081 {
2082 	struct dentry *dentry = path->dentry;
2083 	struct inode *inode = dentry->d_inode;
2084 	int error;
2085 
2086 	/* O_PATH? */
2087 	if (!acc_mode)
2088 		return 0;
2089 
2090 	if (!inode)
2091 		return -ENOENT;
2092 
2093 	switch (inode->i_mode & S_IFMT) {
2094 	case S_IFLNK:
2095 		return -ELOOP;
2096 	case S_IFDIR:
2097 		if (acc_mode & MAY_WRITE)
2098 			return -EISDIR;
2099 		break;
2100 	case S_IFBLK:
2101 	case S_IFCHR:
2102 		if (path->mnt->mnt_flags & MNT_NODEV)
2103 			return -EACCES;
2104 		/*FALLTHRU*/
2105 	case S_IFIFO:
2106 	case S_IFSOCK:
2107 		flag &= ~O_TRUNC;
2108 		break;
2109 	}
2110 
2111 	error = inode_permission(inode, acc_mode);
2112 	if (error)
2113 		return error;
2114 
2115 	/*
2116 	 * An append-only file must be opened in append mode for writing.
2117 	 */
2118 	if (IS_APPEND(inode)) {
2119 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2120 			return -EPERM;
2121 		if (flag & O_TRUNC)
2122 			return -EPERM;
2123 	}
2124 
2125 	/* O_NOATIME can only be set by the owner or superuser */
2126 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2127 		return -EPERM;
2128 
2129 	return 0;
2130 }
2131 
handle_truncate(struct file * filp)2132 static int handle_truncate(struct file *filp)
2133 {
2134 	struct path *path = &filp->f_path;
2135 	struct inode *inode = path->dentry->d_inode;
2136 	int error = get_write_access(inode);
2137 	if (error)
2138 		return error;
2139 	/*
2140 	 * Refuse to truncate files with mandatory locks held on them.
2141 	 */
2142 	error = locks_verify_locked(inode);
2143 	if (!error)
2144 		error = security_path_truncate(path);
2145 	if (!error) {
2146 		error = do_truncate(path->dentry, 0,
2147 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2148 				    filp);
2149 	}
2150 	put_write_access(inode);
2151 	return error;
2152 }
2153 
open_to_namei_flags(int flag)2154 static inline int open_to_namei_flags(int flag)
2155 {
2156 	if ((flag & O_ACCMODE) == 3)
2157 		flag--;
2158 	return flag;
2159 }
2160 
2161 /*
2162  * Handle the last step of open()
2163  */
do_last(struct nameidata * nd,struct path * path,const struct open_flags * op,const char * pathname)2164 static struct file *do_last(struct nameidata *nd, struct path *path,
2165 			    const struct open_flags *op, const char *pathname)
2166 {
2167 	struct dentry *dir = nd->path.dentry;
2168 	struct dentry *dentry;
2169 	int open_flag = op->open_flag;
2170 	int will_truncate = open_flag & O_TRUNC;
2171 	int want_write = 0;
2172 	int acc_mode = op->acc_mode;
2173 	struct file *filp;
2174 	int error;
2175 
2176 	nd->flags &= ~LOOKUP_PARENT;
2177 	nd->flags |= op->intent;
2178 
2179 	switch (nd->last_type) {
2180 	case LAST_DOTDOT:
2181 	case LAST_DOT:
2182 		error = handle_dots(nd, nd->last_type);
2183 		if (error)
2184 			return ERR_PTR(error);
2185 		/* fallthrough */
2186 	case LAST_ROOT:
2187 		error = complete_walk(nd);
2188 		if (error)
2189 			return ERR_PTR(error);
2190 		audit_inode(pathname, nd->path.dentry);
2191 		if (open_flag & O_CREAT) {
2192 			error = -EISDIR;
2193 			goto exit;
2194 		}
2195 		goto ok;
2196 	case LAST_BIND:
2197 		error = complete_walk(nd);
2198 		if (error)
2199 			return ERR_PTR(error);
2200 		audit_inode(pathname, dir);
2201 		goto ok;
2202 	}
2203 
2204 	if (!(open_flag & O_CREAT)) {
2205 		int symlink_ok = 0;
2206 		if (nd->last.name[nd->last.len])
2207 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2208 		if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2209 			symlink_ok = 1;
2210 		/* we _can_ be in RCU mode here */
2211 		error = walk_component(nd, path, &nd->last, LAST_NORM,
2212 					!symlink_ok);
2213 		if (error < 0)
2214 			return ERR_PTR(error);
2215 		if (error) /* symlink */
2216 			return NULL;
2217 		/* sayonara */
2218 		error = complete_walk(nd);
2219 		if (error)
2220 			return ERR_PTR(error);
2221 
2222 		error = -ENOTDIR;
2223 		if (nd->flags & LOOKUP_DIRECTORY) {
2224 			if (!nd->inode->i_op->lookup)
2225 				goto exit;
2226 		}
2227 		audit_inode(pathname, nd->path.dentry);
2228 		goto ok;
2229 	}
2230 
2231 	/* create side of things */
2232 	/*
2233 	 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED has been
2234 	 * cleared when we got to the last component we are about to look up
2235 	 */
2236 	error = complete_walk(nd);
2237 	if (error)
2238 		return ERR_PTR(error);
2239 
2240 	audit_inode(pathname, dir);
2241 	error = -EISDIR;
2242 	/* trailing slashes? */
2243 	if (nd->last.name[nd->last.len])
2244 		goto exit;
2245 
2246 	mutex_lock(&dir->d_inode->i_mutex);
2247 
2248 	dentry = lookup_hash(nd);
2249 	error = PTR_ERR(dentry);
2250 	if (IS_ERR(dentry)) {
2251 		mutex_unlock(&dir->d_inode->i_mutex);
2252 		goto exit;
2253 	}
2254 
2255 	path->dentry = dentry;
2256 	path->mnt = nd->path.mnt;
2257 
2258 	/* Negative dentry, just create the file */
2259 	if (!dentry->d_inode) {
2260 		umode_t mode = op->mode;
2261 		if (!IS_POSIXACL(dir->d_inode))
2262 			mode &= ~current_umask();
2263 		/*
2264 		 * This write is needed to ensure that a
2265 		 * rw->ro transition does not occur between
2266 		 * the time when the file is created and when
2267 		 * a permanent write count is taken through
2268 		 * the 'struct file' in nameidata_to_filp().
2269 		 */
2270 		error = mnt_want_write(nd->path.mnt);
2271 		if (error)
2272 			goto exit_mutex_unlock;
2273 		want_write = 1;
2274 		/* Don't check for write permission, don't truncate */
2275 		open_flag &= ~O_TRUNC;
2276 		will_truncate = 0;
2277 		acc_mode = MAY_OPEN;
2278 		error = security_path_mknod(&nd->path, dentry, mode, 0);
2279 		if (error)
2280 			goto exit_mutex_unlock;
2281 		error = vfs_create(dir->d_inode, dentry, mode, nd);
2282 		if (error)
2283 			goto exit_mutex_unlock;
2284 		mutex_unlock(&dir->d_inode->i_mutex);
2285 		dput(nd->path.dentry);
2286 		nd->path.dentry = dentry;
2287 		goto common;
2288 	}
2289 
2290 	/*
2291 	 * It already exists.
2292 	 */
2293 	mutex_unlock(&dir->d_inode->i_mutex);
2294 	audit_inode(pathname, path->dentry);
2295 
2296 	error = -EEXIST;
2297 	if (open_flag & O_EXCL)
2298 		goto exit_dput;
2299 
2300 	error = follow_managed(path, nd->flags);
2301 	if (error < 0)
2302 		goto exit_dput;
2303 
2304 	if (error)
2305 		nd->flags |= LOOKUP_JUMPED;
2306 
2307 	error = -ENOENT;
2308 	if (!path->dentry->d_inode)
2309 		goto exit_dput;
2310 
2311 	if (path->dentry->d_inode->i_op->follow_link)
2312 		return NULL;
2313 
2314 	path_to_nameidata(path, nd);
2315 	nd->inode = path->dentry->d_inode;
2316 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
2317 	error = complete_walk(nd);
2318 	if (error)
2319 		return ERR_PTR(error);
2320 	error = -EISDIR;
2321 	if (S_ISDIR(nd->inode->i_mode))
2322 		goto exit;
2323 ok:
2324 	if (!S_ISREG(nd->inode->i_mode))
2325 		will_truncate = 0;
2326 
2327 	if (will_truncate) {
2328 		error = mnt_want_write(nd->path.mnt);
2329 		if (error)
2330 			goto exit;
2331 		want_write = 1;
2332 	}
2333 common:
2334 	error = may_open(&nd->path, acc_mode, open_flag);
2335 	if (error)
2336 		goto exit;
2337 	filp = nameidata_to_filp(nd);
2338 	if (!IS_ERR(filp)) {
2339 		error = ima_file_check(filp, op->acc_mode);
2340 		if (error) {
2341 			fput(filp);
2342 			filp = ERR_PTR(error);
2343 		}
2344 	}
2345 	if (!IS_ERR(filp)) {
2346 		if (will_truncate) {
2347 			error = handle_truncate(filp);
2348 			if (error) {
2349 				fput(filp);
2350 				filp = ERR_PTR(error);
2351 			}
2352 		}
2353 	}
2354 out:
2355 	if (want_write)
2356 		mnt_drop_write(nd->path.mnt);
2357 	path_put(&nd->path);
2358 	return filp;
2359 
2360 exit_mutex_unlock:
2361 	mutex_unlock(&dir->d_inode->i_mutex);
2362 exit_dput:
2363 	path_put_conditional(path, nd);
2364 exit:
2365 	filp = ERR_PTR(error);
2366 	goto out;
2367 }
2368 
path_openat(int dfd,const char * pathname,struct nameidata * nd,const struct open_flags * op,int flags)2369 static struct file *path_openat(int dfd, const char *pathname,
2370 		struct nameidata *nd, const struct open_flags *op, int flags)
2371 {
2372 	struct file *base = NULL;
2373 	struct file *filp;
2374 	struct path path;
2375 	int error;
2376 
2377 	filp = get_empty_filp();
2378 	if (!filp)
2379 		return ERR_PTR(-ENFILE);
2380 
2381 	filp->f_flags = op->open_flag;
2382 	nd->intent.open.file = filp;
2383 	nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2384 	nd->intent.open.create_mode = op->mode;
2385 
2386 	error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2387 	if (unlikely(error))
2388 		goto out_filp;
2389 
2390 	current->total_link_count = 0;
2391 	error = link_path_walk(pathname, nd);
2392 	if (unlikely(error))
2393 		goto out_filp;
2394 
2395 	filp = do_last(nd, &path, op, pathname);
2396 	while (unlikely(!filp)) { /* trailing symlink */
2397 		struct path link = path;
2398 		void *cookie;
2399 		if (!(nd->flags & LOOKUP_FOLLOW)) {
2400 			path_put_conditional(&path, nd);
2401 			path_put(&nd->path);
2402 			filp = ERR_PTR(-ELOOP);
2403 			break;
2404 		}
2405 		nd->flags |= LOOKUP_PARENT;
2406 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2407 		error = follow_link(&link, nd, &cookie);
2408 		if (unlikely(error))
2409 			filp = ERR_PTR(error);
2410 		else
2411 			filp = do_last(nd, &path, op, pathname);
2412 		put_link(nd, &link, cookie);
2413 	}
2414 out:
2415 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2416 		path_put(&nd->root);
2417 	if (base)
2418 		fput(base);
2419 	release_open_intent(nd);
2420 	return filp;
2421 
2422 out_filp:
2423 	filp = ERR_PTR(error);
2424 	goto out;
2425 }
2426 
do_filp_open(int dfd,const char * pathname,const struct open_flags * op,int flags)2427 struct file *do_filp_open(int dfd, const char *pathname,
2428 		const struct open_flags *op, int flags)
2429 {
2430 	struct nameidata nd;
2431 	struct file *filp;
2432 
2433 	filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2434 	if (unlikely(filp == ERR_PTR(-ECHILD)))
2435 		filp = path_openat(dfd, pathname, &nd, op, flags);
2436 	if (unlikely(filp == ERR_PTR(-ESTALE)))
2437 		filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2438 	return filp;
2439 }
2440 
do_file_open_root(struct dentry * dentry,struct vfsmount * mnt,const char * name,const struct open_flags * op,int flags)2441 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2442 		const char *name, const struct open_flags *op, int flags)
2443 {
2444 	struct nameidata nd;
2445 	struct file *file;
2446 
2447 	nd.root.mnt = mnt;
2448 	nd.root.dentry = dentry;
2449 
2450 	flags |= LOOKUP_ROOT;
2451 
2452 	if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2453 		return ERR_PTR(-ELOOP);
2454 
2455 	file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2456 	if (unlikely(file == ERR_PTR(-ECHILD)))
2457 		file = path_openat(-1, name, &nd, op, flags);
2458 	if (unlikely(file == ERR_PTR(-ESTALE)))
2459 		file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2460 	return file;
2461 }
2462 
kern_path_create(int dfd,const char * pathname,struct path * path,int is_dir)2463 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
2464 {
2465 	struct dentry *dentry = ERR_PTR(-EEXIST);
2466 	struct nameidata nd;
2467 	int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
2468 	if (error)
2469 		return ERR_PTR(error);
2470 
2471 	/*
2472 	 * Yucky last component or no last component at all?
2473 	 * (foo/., foo/.., /////)
2474 	 */
2475 	if (nd.last_type != LAST_NORM)
2476 		goto out;
2477 	nd.flags &= ~LOOKUP_PARENT;
2478 	nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2479 	nd.intent.open.flags = O_EXCL;
2480 
2481 	/*
2482 	 * Do the final lookup.
2483 	 */
2484 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2485 	dentry = lookup_hash(&nd);
2486 	if (IS_ERR(dentry))
2487 		goto fail;
2488 
2489 	if (dentry->d_inode)
2490 		goto eexist;
2491 	/*
2492 	 * Special case - lookup gave negative, but... we had foo/bar/
2493 	 * From the vfs_mknod() POV we just have a negative dentry -
2494 	 * all is fine. Let's be bastards - you had / on the end, you've
2495 	 * been asking for (non-existent) directory. -ENOENT for you.
2496 	 */
2497 	if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
2498 		dput(dentry);
2499 		dentry = ERR_PTR(-ENOENT);
2500 		goto fail;
2501 	}
2502 	*path = nd.path;
2503 	return dentry;
2504 eexist:
2505 	dput(dentry);
2506 	dentry = ERR_PTR(-EEXIST);
2507 fail:
2508 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2509 out:
2510 	path_put(&nd.path);
2511 	return dentry;
2512 }
2513 EXPORT_SYMBOL(kern_path_create);
2514 
user_path_create(int dfd,const char __user * pathname,struct path * path,int is_dir)2515 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
2516 {
2517 	char *tmp = getname(pathname);
2518 	struct dentry *res;
2519 	if (IS_ERR(tmp))
2520 		return ERR_CAST(tmp);
2521 	res = kern_path_create(dfd, tmp, path, is_dir);
2522 	putname(tmp);
2523 	return res;
2524 }
2525 EXPORT_SYMBOL(user_path_create);
2526 
vfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)2527 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2528 {
2529 	int error = may_create(dir, dentry);
2530 
2531 	if (error)
2532 		return error;
2533 
2534 	if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
2535 	    !ns_capable(inode_userns(dir), CAP_MKNOD))
2536 		return -EPERM;
2537 
2538 	if (!dir->i_op->mknod)
2539 		return -EPERM;
2540 
2541 	error = devcgroup_inode_mknod(mode, dev);
2542 	if (error)
2543 		return error;
2544 
2545 	error = security_inode_mknod(dir, dentry, mode, dev);
2546 	if (error)
2547 		return error;
2548 
2549 	error = dir->i_op->mknod(dir, dentry, mode, dev);
2550 	if (!error)
2551 		fsnotify_create(dir, dentry);
2552 	return error;
2553 }
2554 
may_mknod(umode_t mode)2555 static int may_mknod(umode_t mode)
2556 {
2557 	switch (mode & S_IFMT) {
2558 	case S_IFREG:
2559 	case S_IFCHR:
2560 	case S_IFBLK:
2561 	case S_IFIFO:
2562 	case S_IFSOCK:
2563 	case 0: /* zero mode translates to S_IFREG */
2564 		return 0;
2565 	case S_IFDIR:
2566 		return -EPERM;
2567 	default:
2568 		return -EINVAL;
2569 	}
2570 }
2571 
SYSCALL_DEFINE4(mknodat,int,dfd,const char __user *,filename,umode_t,mode,unsigned,dev)2572 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
2573 		unsigned, dev)
2574 {
2575 	struct dentry *dentry;
2576 	struct path path;
2577 	int error;
2578 
2579 	if (S_ISDIR(mode))
2580 		return -EPERM;
2581 
2582 	dentry = user_path_create(dfd, filename, &path, 0);
2583 	if (IS_ERR(dentry))
2584 		return PTR_ERR(dentry);
2585 
2586 	if (!IS_POSIXACL(path.dentry->d_inode))
2587 		mode &= ~current_umask();
2588 	error = may_mknod(mode);
2589 	if (error)
2590 		goto out_dput;
2591 	error = mnt_want_write(path.mnt);
2592 	if (error)
2593 		goto out_dput;
2594 	error = security_path_mknod(&path, dentry, mode, dev);
2595 	if (error)
2596 		goto out_drop_write;
2597 	switch (mode & S_IFMT) {
2598 		case 0: case S_IFREG:
2599 			error = vfs_create(path.dentry->d_inode,dentry,mode,NULL);
2600 			break;
2601 		case S_IFCHR: case S_IFBLK:
2602 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
2603 					new_decode_dev(dev));
2604 			break;
2605 		case S_IFIFO: case S_IFSOCK:
2606 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
2607 			break;
2608 	}
2609 out_drop_write:
2610 	mnt_drop_write(path.mnt);
2611 out_dput:
2612 	dput(dentry);
2613 	mutex_unlock(&path.dentry->d_inode->i_mutex);
2614 	path_put(&path);
2615 
2616 	return error;
2617 }
2618 
SYSCALL_DEFINE3(mknod,const char __user *,filename,umode_t,mode,unsigned,dev)2619 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
2620 {
2621 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
2622 }
2623 
vfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)2624 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2625 {
2626 	int error = may_create(dir, dentry);
2627 	unsigned max_links = dir->i_sb->s_max_links;
2628 
2629 	if (error)
2630 		return error;
2631 
2632 	if (!dir->i_op->mkdir)
2633 		return -EPERM;
2634 
2635 	mode &= (S_IRWXUGO|S_ISVTX);
2636 	error = security_inode_mkdir(dir, dentry, mode);
2637 	if (error)
2638 		return error;
2639 
2640 	if (max_links && dir->i_nlink >= max_links)
2641 		return -EMLINK;
2642 
2643 	error = dir->i_op->mkdir(dir, dentry, mode);
2644 	if (!error)
2645 		fsnotify_mkdir(dir, dentry);
2646 	return error;
2647 }
2648 
SYSCALL_DEFINE3(mkdirat,int,dfd,const char __user *,pathname,umode_t,mode)2649 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
2650 {
2651 	struct dentry *dentry;
2652 	struct path path;
2653 	int error;
2654 
2655 	dentry = user_path_create(dfd, pathname, &path, 1);
2656 	if (IS_ERR(dentry))
2657 		return PTR_ERR(dentry);
2658 
2659 	if (!IS_POSIXACL(path.dentry->d_inode))
2660 		mode &= ~current_umask();
2661 	error = mnt_want_write(path.mnt);
2662 	if (error)
2663 		goto out_dput;
2664 	error = security_path_mkdir(&path, dentry, mode);
2665 	if (error)
2666 		goto out_drop_write;
2667 	error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
2668 out_drop_write:
2669 	mnt_drop_write(path.mnt);
2670 out_dput:
2671 	dput(dentry);
2672 	mutex_unlock(&path.dentry->d_inode->i_mutex);
2673 	path_put(&path);
2674 	return error;
2675 }
2676 
SYSCALL_DEFINE2(mkdir,const char __user *,pathname,umode_t,mode)2677 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
2678 {
2679 	return sys_mkdirat(AT_FDCWD, pathname, mode);
2680 }
2681 
2682 /*
2683  * The dentry_unhash() helper will try to drop the dentry early: we
2684  * should have a usage count of 1 if we're the only user of this
2685  * dentry, and if that is true (possibly after pruning the dcache),
2686  * then we drop the dentry now.
2687  *
2688  * A low-level filesystem can, if it choses, legally
2689  * do a
2690  *
2691  *	if (!d_unhashed(dentry))
2692  *		return -EBUSY;
2693  *
2694  * if it cannot handle the case of removing a directory
2695  * that is still in use by something else..
2696  */
dentry_unhash(struct dentry * dentry)2697 void dentry_unhash(struct dentry *dentry)
2698 {
2699 	shrink_dcache_parent(dentry);
2700 	spin_lock(&dentry->d_lock);
2701 	if (dentry->d_count == 1)
2702 		__d_drop(dentry);
2703 	spin_unlock(&dentry->d_lock);
2704 }
2705 
vfs_rmdir(struct inode * dir,struct dentry * dentry)2706 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2707 {
2708 	int error = may_delete(dir, dentry, 1);
2709 
2710 	if (error)
2711 		return error;
2712 
2713 	if (!dir->i_op->rmdir)
2714 		return -EPERM;
2715 
2716 	dget(dentry);
2717 	mutex_lock(&dentry->d_inode->i_mutex);
2718 
2719 	error = -EBUSY;
2720 	if (d_mountpoint(dentry))
2721 		goto out;
2722 
2723 	error = security_inode_rmdir(dir, dentry);
2724 	if (error)
2725 		goto out;
2726 
2727 	shrink_dcache_parent(dentry);
2728 	error = dir->i_op->rmdir(dir, dentry);
2729 	if (error)
2730 		goto out;
2731 
2732 	dentry->d_inode->i_flags |= S_DEAD;
2733 	dont_mount(dentry);
2734 
2735 out:
2736 	mutex_unlock(&dentry->d_inode->i_mutex);
2737 	dput(dentry);
2738 	if (!error)
2739 		d_delete(dentry);
2740 	return error;
2741 }
2742 
do_rmdir(int dfd,const char __user * pathname)2743 static long do_rmdir(int dfd, const char __user *pathname)
2744 {
2745 	int error = 0;
2746 	char * name;
2747 	struct dentry *dentry;
2748 	struct nameidata nd;
2749 
2750 	error = user_path_parent(dfd, pathname, &nd, &name);
2751 	if (error)
2752 		return error;
2753 
2754 	switch(nd.last_type) {
2755 	case LAST_DOTDOT:
2756 		error = -ENOTEMPTY;
2757 		goto exit1;
2758 	case LAST_DOT:
2759 		error = -EINVAL;
2760 		goto exit1;
2761 	case LAST_ROOT:
2762 		error = -EBUSY;
2763 		goto exit1;
2764 	}
2765 
2766 	nd.flags &= ~LOOKUP_PARENT;
2767 
2768 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2769 	dentry = lookup_hash(&nd);
2770 	error = PTR_ERR(dentry);
2771 	if (IS_ERR(dentry))
2772 		goto exit2;
2773 	if (!dentry->d_inode) {
2774 		error = -ENOENT;
2775 		goto exit3;
2776 	}
2777 	error = mnt_want_write(nd.path.mnt);
2778 	if (error)
2779 		goto exit3;
2780 	error = security_path_rmdir(&nd.path, dentry);
2781 	if (error)
2782 		goto exit4;
2783 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2784 exit4:
2785 	mnt_drop_write(nd.path.mnt);
2786 exit3:
2787 	dput(dentry);
2788 exit2:
2789 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2790 exit1:
2791 	path_put(&nd.path);
2792 	putname(name);
2793 	return error;
2794 }
2795 
SYSCALL_DEFINE1(rmdir,const char __user *,pathname)2796 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2797 {
2798 	return do_rmdir(AT_FDCWD, pathname);
2799 }
2800 
vfs_unlink(struct inode * dir,struct dentry * dentry)2801 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2802 {
2803 	int error = may_delete(dir, dentry, 0);
2804 
2805 	if (error)
2806 		return error;
2807 
2808 	if (!dir->i_op->unlink)
2809 		return -EPERM;
2810 
2811 	mutex_lock(&dentry->d_inode->i_mutex);
2812 	if (d_mountpoint(dentry))
2813 		error = -EBUSY;
2814 	else {
2815 		error = security_inode_unlink(dir, dentry);
2816 		if (!error) {
2817 			error = dir->i_op->unlink(dir, dentry);
2818 			if (!error)
2819 				dont_mount(dentry);
2820 		}
2821 	}
2822 	mutex_unlock(&dentry->d_inode->i_mutex);
2823 
2824 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
2825 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2826 		fsnotify_link_count(dentry->d_inode);
2827 		d_delete(dentry);
2828 	}
2829 
2830 	return error;
2831 }
2832 
2833 /*
2834  * Make sure that the actual truncation of the file will occur outside its
2835  * directory's i_mutex.  Truncate can take a long time if there is a lot of
2836  * writeout happening, and we don't want to prevent access to the directory
2837  * while waiting on the I/O.
2838  */
do_unlinkat(int dfd,const char __user * pathname)2839 static long do_unlinkat(int dfd, const char __user *pathname)
2840 {
2841 	int error;
2842 	char *name;
2843 	struct dentry *dentry;
2844 	struct nameidata nd;
2845 	struct inode *inode = NULL;
2846 
2847 	error = user_path_parent(dfd, pathname, &nd, &name);
2848 	if (error)
2849 		return error;
2850 
2851 	error = -EISDIR;
2852 	if (nd.last_type != LAST_NORM)
2853 		goto exit1;
2854 
2855 	nd.flags &= ~LOOKUP_PARENT;
2856 
2857 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2858 	dentry = lookup_hash(&nd);
2859 	error = PTR_ERR(dentry);
2860 	if (!IS_ERR(dentry)) {
2861 		/* Why not before? Because we want correct error value */
2862 		if (nd.last.name[nd.last.len])
2863 			goto slashes;
2864 		inode = dentry->d_inode;
2865 		if (!inode)
2866 			goto slashes;
2867 		ihold(inode);
2868 		error = mnt_want_write(nd.path.mnt);
2869 		if (error)
2870 			goto exit2;
2871 		error = security_path_unlink(&nd.path, dentry);
2872 		if (error)
2873 			goto exit3;
2874 		error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2875 exit3:
2876 		mnt_drop_write(nd.path.mnt);
2877 	exit2:
2878 		dput(dentry);
2879 	}
2880 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2881 	if (inode)
2882 		iput(inode);	/* truncate the inode here */
2883 exit1:
2884 	path_put(&nd.path);
2885 	putname(name);
2886 	return error;
2887 
2888 slashes:
2889 	error = !dentry->d_inode ? -ENOENT :
2890 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2891 	goto exit2;
2892 }
2893 
SYSCALL_DEFINE3(unlinkat,int,dfd,const char __user *,pathname,int,flag)2894 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2895 {
2896 	if ((flag & ~AT_REMOVEDIR) != 0)
2897 		return -EINVAL;
2898 
2899 	if (flag & AT_REMOVEDIR)
2900 		return do_rmdir(dfd, pathname);
2901 
2902 	return do_unlinkat(dfd, pathname);
2903 }
2904 
SYSCALL_DEFINE1(unlink,const char __user *,pathname)2905 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2906 {
2907 	return do_unlinkat(AT_FDCWD, pathname);
2908 }
2909 
vfs_symlink(struct inode * dir,struct dentry * dentry,const char * oldname)2910 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2911 {
2912 	int error = may_create(dir, dentry);
2913 
2914 	if (error)
2915 		return error;
2916 
2917 	if (!dir->i_op->symlink)
2918 		return -EPERM;
2919 
2920 	error = security_inode_symlink(dir, dentry, oldname);
2921 	if (error)
2922 		return error;
2923 
2924 	error = dir->i_op->symlink(dir, dentry, oldname);
2925 	if (!error)
2926 		fsnotify_create(dir, dentry);
2927 	return error;
2928 }
2929 
SYSCALL_DEFINE3(symlinkat,const char __user *,oldname,int,newdfd,const char __user *,newname)2930 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2931 		int, newdfd, const char __user *, newname)
2932 {
2933 	int error;
2934 	char *from;
2935 	struct dentry *dentry;
2936 	struct path path;
2937 
2938 	from = getname(oldname);
2939 	if (IS_ERR(from))
2940 		return PTR_ERR(from);
2941 
2942 	dentry = user_path_create(newdfd, newname, &path, 0);
2943 	error = PTR_ERR(dentry);
2944 	if (IS_ERR(dentry))
2945 		goto out_putname;
2946 
2947 	error = mnt_want_write(path.mnt);
2948 	if (error)
2949 		goto out_dput;
2950 	error = security_path_symlink(&path, dentry, from);
2951 	if (error)
2952 		goto out_drop_write;
2953 	error = vfs_symlink(path.dentry->d_inode, dentry, from);
2954 out_drop_write:
2955 	mnt_drop_write(path.mnt);
2956 out_dput:
2957 	dput(dentry);
2958 	mutex_unlock(&path.dentry->d_inode->i_mutex);
2959 	path_put(&path);
2960 out_putname:
2961 	putname(from);
2962 	return error;
2963 }
2964 
SYSCALL_DEFINE2(symlink,const char __user *,oldname,const char __user *,newname)2965 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2966 {
2967 	return sys_symlinkat(oldname, AT_FDCWD, newname);
2968 }
2969 
vfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * new_dentry)2970 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2971 {
2972 	struct inode *inode = old_dentry->d_inode;
2973 	unsigned max_links = dir->i_sb->s_max_links;
2974 	int error;
2975 
2976 	if (!inode)
2977 		return -ENOENT;
2978 
2979 	error = may_create(dir, new_dentry);
2980 	if (error)
2981 		return error;
2982 
2983 	if (dir->i_sb != inode->i_sb)
2984 		return -EXDEV;
2985 
2986 	/*
2987 	 * A link to an append-only or immutable file cannot be created.
2988 	 */
2989 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2990 		return -EPERM;
2991 	if (!dir->i_op->link)
2992 		return -EPERM;
2993 	if (S_ISDIR(inode->i_mode))
2994 		return -EPERM;
2995 
2996 	error = security_inode_link(old_dentry, dir, new_dentry);
2997 	if (error)
2998 		return error;
2999 
3000 	mutex_lock(&inode->i_mutex);
3001 	/* Make sure we don't allow creating hardlink to an unlinked file */
3002 	if (inode->i_nlink == 0)
3003 		error =  -ENOENT;
3004 	else if (max_links && inode->i_nlink >= max_links)
3005 		error = -EMLINK;
3006 	else
3007 		error = dir->i_op->link(old_dentry, dir, new_dentry);
3008 	mutex_unlock(&inode->i_mutex);
3009 	if (!error)
3010 		fsnotify_link(dir, inode, new_dentry);
3011 	return error;
3012 }
3013 
3014 /*
3015  * Hardlinks are often used in delicate situations.  We avoid
3016  * security-related surprises by not following symlinks on the
3017  * newname.  --KAB
3018  *
3019  * We don't follow them on the oldname either to be compatible
3020  * with linux 2.0, and to avoid hard-linking to directories
3021  * and other special files.  --ADM
3022  */
SYSCALL_DEFINE5(linkat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,int,flags)3023 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3024 		int, newdfd, const char __user *, newname, int, flags)
3025 {
3026 	struct dentry *new_dentry;
3027 	struct path old_path, new_path;
3028 	int how = 0;
3029 	int error;
3030 
3031 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3032 		return -EINVAL;
3033 	/*
3034 	 * To use null names we require CAP_DAC_READ_SEARCH
3035 	 * This ensures that not everyone will be able to create
3036 	 * handlink using the passed filedescriptor.
3037 	 */
3038 	if (flags & AT_EMPTY_PATH) {
3039 		if (!capable(CAP_DAC_READ_SEARCH))
3040 			return -ENOENT;
3041 		how = LOOKUP_EMPTY;
3042 	}
3043 
3044 	if (flags & AT_SYMLINK_FOLLOW)
3045 		how |= LOOKUP_FOLLOW;
3046 
3047 	error = user_path_at(olddfd, oldname, how, &old_path);
3048 	if (error)
3049 		return error;
3050 
3051 	new_dentry = user_path_create(newdfd, newname, &new_path, 0);
3052 	error = PTR_ERR(new_dentry);
3053 	if (IS_ERR(new_dentry))
3054 		goto out;
3055 
3056 	error = -EXDEV;
3057 	if (old_path.mnt != new_path.mnt)
3058 		goto out_dput;
3059 	error = mnt_want_write(new_path.mnt);
3060 	if (error)
3061 		goto out_dput;
3062 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
3063 	if (error)
3064 		goto out_drop_write;
3065 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3066 out_drop_write:
3067 	mnt_drop_write(new_path.mnt);
3068 out_dput:
3069 	dput(new_dentry);
3070 	mutex_unlock(&new_path.dentry->d_inode->i_mutex);
3071 	path_put(&new_path);
3072 out:
3073 	path_put(&old_path);
3074 
3075 	return error;
3076 }
3077 
SYSCALL_DEFINE2(link,const char __user *,oldname,const char __user *,newname)3078 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3079 {
3080 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3081 }
3082 
3083 /*
3084  * The worst of all namespace operations - renaming directory. "Perverted"
3085  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3086  * Problems:
3087  *	a) we can get into loop creation. Check is done in is_subdir().
3088  *	b) race potential - two innocent renames can create a loop together.
3089  *	   That's where 4.4 screws up. Current fix: serialization on
3090  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3091  *	   story.
3092  *	c) we have to lock _three_ objects - parents and victim (if it exists).
3093  *	   And that - after we got ->i_mutex on parents (until then we don't know
3094  *	   whether the target exists).  Solution: try to be smart with locking
3095  *	   order for inodes.  We rely on the fact that tree topology may change
3096  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
3097  *	   move will be locked.  Thus we can rank directories by the tree
3098  *	   (ancestors first) and rank all non-directories after them.
3099  *	   That works since everybody except rename does "lock parent, lookup,
3100  *	   lock child" and rename is under ->s_vfs_rename_mutex.
3101  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
3102  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
3103  *	   we'd better make sure that there's no link(2) for them.
3104  *	d) conversion from fhandle to dentry may come in the wrong moment - when
3105  *	   we are removing the target. Solution: we will have to grab ->i_mutex
3106  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3107  *	   ->i_mutex on parents, which works but leads to some truly excessive
3108  *	   locking].
3109  */
vfs_rename_dir(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)3110 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3111 			  struct inode *new_dir, struct dentry *new_dentry)
3112 {
3113 	int error = 0;
3114 	struct inode *target = new_dentry->d_inode;
3115 	unsigned max_links = new_dir->i_sb->s_max_links;
3116 
3117 	/*
3118 	 * If we are going to change the parent - check write permissions,
3119 	 * we'll need to flip '..'.
3120 	 */
3121 	if (new_dir != old_dir) {
3122 		error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3123 		if (error)
3124 			return error;
3125 	}
3126 
3127 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3128 	if (error)
3129 		return error;
3130 
3131 	dget(new_dentry);
3132 	if (target)
3133 		mutex_lock(&target->i_mutex);
3134 
3135 	error = -EBUSY;
3136 	if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3137 		goto out;
3138 
3139 	error = -EMLINK;
3140 	if (max_links && !target && new_dir != old_dir &&
3141 	    new_dir->i_nlink >= max_links)
3142 		goto out;
3143 
3144 	if (target)
3145 		shrink_dcache_parent(new_dentry);
3146 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3147 	if (error)
3148 		goto out;
3149 
3150 	if (target) {
3151 		target->i_flags |= S_DEAD;
3152 		dont_mount(new_dentry);
3153 	}
3154 out:
3155 	if (target)
3156 		mutex_unlock(&target->i_mutex);
3157 	dput(new_dentry);
3158 	if (!error)
3159 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3160 			d_move(old_dentry,new_dentry);
3161 	return error;
3162 }
3163 
vfs_rename_other(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)3164 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3165 			    struct inode *new_dir, struct dentry *new_dentry)
3166 {
3167 	struct inode *target = new_dentry->d_inode;
3168 	int error;
3169 
3170 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3171 	if (error)
3172 		return error;
3173 
3174 	dget(new_dentry);
3175 	if (target)
3176 		mutex_lock(&target->i_mutex);
3177 
3178 	error = -EBUSY;
3179 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3180 		goto out;
3181 
3182 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3183 	if (error)
3184 		goto out;
3185 
3186 	if (target)
3187 		dont_mount(new_dentry);
3188 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3189 		d_move(old_dentry, new_dentry);
3190 out:
3191 	if (target)
3192 		mutex_unlock(&target->i_mutex);
3193 	dput(new_dentry);
3194 	return error;
3195 }
3196 
vfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)3197 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3198 	       struct inode *new_dir, struct dentry *new_dentry)
3199 {
3200 	int error;
3201 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3202 	const unsigned char *old_name;
3203 
3204 	if (old_dentry->d_inode == new_dentry->d_inode)
3205  		return 0;
3206 
3207 	error = may_delete(old_dir, old_dentry, is_dir);
3208 	if (error)
3209 		return error;
3210 
3211 	if (!new_dentry->d_inode)
3212 		error = may_create(new_dir, new_dentry);
3213 	else
3214 		error = may_delete(new_dir, new_dentry, is_dir);
3215 	if (error)
3216 		return error;
3217 
3218 	if (!old_dir->i_op->rename)
3219 		return -EPERM;
3220 
3221 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3222 
3223 	if (is_dir)
3224 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3225 	else
3226 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3227 	if (!error)
3228 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
3229 			      new_dentry->d_inode, old_dentry);
3230 	fsnotify_oldname_free(old_name);
3231 
3232 	return error;
3233 }
3234 
SYSCALL_DEFINE4(renameat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname)3235 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3236 		int, newdfd, const char __user *, newname)
3237 {
3238 	struct dentry *old_dir, *new_dir;
3239 	struct dentry *old_dentry, *new_dentry;
3240 	struct dentry *trap;
3241 	struct nameidata oldnd, newnd;
3242 	char *from;
3243 	char *to;
3244 	int error;
3245 
3246 	error = user_path_parent(olddfd, oldname, &oldnd, &from);
3247 	if (error)
3248 		goto exit;
3249 
3250 	error = user_path_parent(newdfd, newname, &newnd, &to);
3251 	if (error)
3252 		goto exit1;
3253 
3254 	error = -EXDEV;
3255 	if (oldnd.path.mnt != newnd.path.mnt)
3256 		goto exit2;
3257 
3258 	old_dir = oldnd.path.dentry;
3259 	error = -EBUSY;
3260 	if (oldnd.last_type != LAST_NORM)
3261 		goto exit2;
3262 
3263 	new_dir = newnd.path.dentry;
3264 	if (newnd.last_type != LAST_NORM)
3265 		goto exit2;
3266 
3267 	oldnd.flags &= ~LOOKUP_PARENT;
3268 	newnd.flags &= ~LOOKUP_PARENT;
3269 	newnd.flags |= LOOKUP_RENAME_TARGET;
3270 
3271 	trap = lock_rename(new_dir, old_dir);
3272 
3273 	old_dentry = lookup_hash(&oldnd);
3274 	error = PTR_ERR(old_dentry);
3275 	if (IS_ERR(old_dentry))
3276 		goto exit3;
3277 	/* source must exist */
3278 	error = -ENOENT;
3279 	if (!old_dentry->d_inode)
3280 		goto exit4;
3281 	/* unless the source is a directory trailing slashes give -ENOTDIR */
3282 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3283 		error = -ENOTDIR;
3284 		if (oldnd.last.name[oldnd.last.len])
3285 			goto exit4;
3286 		if (newnd.last.name[newnd.last.len])
3287 			goto exit4;
3288 	}
3289 	/* source should not be ancestor of target */
3290 	error = -EINVAL;
3291 	if (old_dentry == trap)
3292 		goto exit4;
3293 	new_dentry = lookup_hash(&newnd);
3294 	error = PTR_ERR(new_dentry);
3295 	if (IS_ERR(new_dentry))
3296 		goto exit4;
3297 	/* target should not be an ancestor of source */
3298 	error = -ENOTEMPTY;
3299 	if (new_dentry == trap)
3300 		goto exit5;
3301 
3302 	error = mnt_want_write(oldnd.path.mnt);
3303 	if (error)
3304 		goto exit5;
3305 	error = security_path_rename(&oldnd.path, old_dentry,
3306 				     &newnd.path, new_dentry);
3307 	if (error)
3308 		goto exit6;
3309 	error = vfs_rename(old_dir->d_inode, old_dentry,
3310 				   new_dir->d_inode, new_dentry);
3311 exit6:
3312 	mnt_drop_write(oldnd.path.mnt);
3313 exit5:
3314 	dput(new_dentry);
3315 exit4:
3316 	dput(old_dentry);
3317 exit3:
3318 	unlock_rename(new_dir, old_dir);
3319 exit2:
3320 	path_put(&newnd.path);
3321 	putname(to);
3322 exit1:
3323 	path_put(&oldnd.path);
3324 	putname(from);
3325 exit:
3326 	return error;
3327 }
3328 
SYSCALL_DEFINE2(rename,const char __user *,oldname,const char __user *,newname)3329 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3330 {
3331 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3332 }
3333 
vfs_readlink(struct dentry * dentry,char __user * buffer,int buflen,const char * link)3334 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3335 {
3336 	int len;
3337 
3338 	len = PTR_ERR(link);
3339 	if (IS_ERR(link))
3340 		goto out;
3341 
3342 	len = strlen(link);
3343 	if (len > (unsigned) buflen)
3344 		len = buflen;
3345 	if (copy_to_user(buffer, link, len))
3346 		len = -EFAULT;
3347 out:
3348 	return len;
3349 }
3350 
3351 /*
3352  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
3353  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
3354  * using) it for any given inode is up to filesystem.
3355  */
generic_readlink(struct dentry * dentry,char __user * buffer,int buflen)3356 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3357 {
3358 	struct nameidata nd;
3359 	void *cookie;
3360 	int res;
3361 
3362 	nd.depth = 0;
3363 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3364 	if (IS_ERR(cookie))
3365 		return PTR_ERR(cookie);
3366 
3367 	res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3368 	if (dentry->d_inode->i_op->put_link)
3369 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3370 	return res;
3371 }
3372 
vfs_follow_link(struct nameidata * nd,const char * link)3373 int vfs_follow_link(struct nameidata *nd, const char *link)
3374 {
3375 	return __vfs_follow_link(nd, link);
3376 }
3377 
3378 /* get the link contents into pagecache */
page_getlink(struct dentry * dentry,struct page ** ppage)3379 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3380 {
3381 	char *kaddr;
3382 	struct page *page;
3383 	struct address_space *mapping = dentry->d_inode->i_mapping;
3384 	page = read_mapping_page(mapping, 0, NULL);
3385 	if (IS_ERR(page))
3386 		return (char*)page;
3387 	*ppage = page;
3388 	kaddr = kmap(page);
3389 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3390 	return kaddr;
3391 }
3392 
page_readlink(struct dentry * dentry,char __user * buffer,int buflen)3393 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3394 {
3395 	struct page *page = NULL;
3396 	char *s = page_getlink(dentry, &page);
3397 	int res = vfs_readlink(dentry,buffer,buflen,s);
3398 	if (page) {
3399 		kunmap(page);
3400 		page_cache_release(page);
3401 	}
3402 	return res;
3403 }
3404 
page_follow_link_light(struct dentry * dentry,struct nameidata * nd)3405 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3406 {
3407 	struct page *page = NULL;
3408 	nd_set_link(nd, page_getlink(dentry, &page));
3409 	return page;
3410 }
3411 
page_put_link(struct dentry * dentry,struct nameidata * nd,void * cookie)3412 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3413 {
3414 	struct page *page = cookie;
3415 
3416 	if (page) {
3417 		kunmap(page);
3418 		page_cache_release(page);
3419 	}
3420 }
3421 
3422 /*
3423  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3424  */
__page_symlink(struct inode * inode,const char * symname,int len,int nofs)3425 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3426 {
3427 	struct address_space *mapping = inode->i_mapping;
3428 	struct page *page;
3429 	void *fsdata;
3430 	int err;
3431 	char *kaddr;
3432 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3433 	if (nofs)
3434 		flags |= AOP_FLAG_NOFS;
3435 
3436 retry:
3437 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
3438 				flags, &page, &fsdata);
3439 	if (err)
3440 		goto fail;
3441 
3442 	kaddr = kmap_atomic(page);
3443 	memcpy(kaddr, symname, len-1);
3444 	kunmap_atomic(kaddr);
3445 
3446 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3447 							page, fsdata);
3448 	if (err < 0)
3449 		goto fail;
3450 	if (err < len-1)
3451 		goto retry;
3452 
3453 	mark_inode_dirty(inode);
3454 	return 0;
3455 fail:
3456 	return err;
3457 }
3458 
page_symlink(struct inode * inode,const char * symname,int len)3459 int page_symlink(struct inode *inode, const char *symname, int len)
3460 {
3461 	return __page_symlink(inode, symname, len,
3462 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3463 }
3464 
3465 const struct inode_operations page_symlink_inode_operations = {
3466 	.readlink	= generic_readlink,
3467 	.follow_link	= page_follow_link_light,
3468 	.put_link	= page_put_link,
3469 };
3470 
3471 EXPORT_SYMBOL(user_path_at);
3472 EXPORT_SYMBOL(follow_down_one);
3473 EXPORT_SYMBOL(follow_down);
3474 EXPORT_SYMBOL(follow_up);
3475 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3476 EXPORT_SYMBOL(getname);
3477 EXPORT_SYMBOL(lock_rename);
3478 EXPORT_SYMBOL(lookup_one_len);
3479 EXPORT_SYMBOL(page_follow_link_light);
3480 EXPORT_SYMBOL(page_put_link);
3481 EXPORT_SYMBOL(page_readlink);
3482 EXPORT_SYMBOL(__page_symlink);
3483 EXPORT_SYMBOL(page_symlink);
3484 EXPORT_SYMBOL(page_symlink_inode_operations);
3485 EXPORT_SYMBOL(kern_path);
3486 EXPORT_SYMBOL(vfs_path_lookup);
3487 EXPORT_SYMBOL(inode_permission);
3488 EXPORT_SYMBOL(unlock_rename);
3489 EXPORT_SYMBOL(vfs_create);
3490 EXPORT_SYMBOL(vfs_follow_link);
3491 EXPORT_SYMBOL(vfs_link);
3492 EXPORT_SYMBOL(vfs_mkdir);
3493 EXPORT_SYMBOL(vfs_mknod);
3494 EXPORT_SYMBOL(generic_permission);
3495 EXPORT_SYMBOL(vfs_readlink);
3496 EXPORT_SYMBOL(vfs_rename);
3497 EXPORT_SYMBOL(vfs_rmdir);
3498 EXPORT_SYMBOL(vfs_symlink);
3499 EXPORT_SYMBOL(vfs_unlink);
3500 EXPORT_SYMBOL(dentry_unhash);
3501 EXPORT_SYMBOL(generic_readlink);
3502