1 /*
2    Copyright (C) 2002 Richard Henderson
3    Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
4 
5     This program is free software; you can redistribute it and/or modify
6     it under the terms of the GNU General Public License as published by
7     the Free Software Foundation; either version 2 of the License, or
8     (at your option) any later version.
9 
10     This program is distributed in the hope that it will be useful,
11     but WITHOUT ANY WARRANTY; without even the implied warranty of
12     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13     GNU General Public License for more details.
14 
15     You should have received a copy of the GNU General Public License
16     along with this program; if not, write to the Free Software
17     Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18 */
19 #include <linux/export.h>
20 #include <linux/moduleloader.h>
21 #include <linux/ftrace_event.h>
22 #include <linux/init.h>
23 #include <linux/kallsyms.h>
24 #include <linux/fs.h>
25 #include <linux/sysfs.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/elf.h>
30 #include <linux/proc_fs.h>
31 #include <linux/seq_file.h>
32 #include <linux/syscalls.h>
33 #include <linux/fcntl.h>
34 #include <linux/rcupdate.h>
35 #include <linux/capability.h>
36 #include <linux/cpu.h>
37 #include <linux/moduleparam.h>
38 #include <linux/errno.h>
39 #include <linux/err.h>
40 #include <linux/vermagic.h>
41 #include <linux/notifier.h>
42 #include <linux/sched.h>
43 #include <linux/stop_machine.h>
44 #include <linux/device.h>
45 #include <linux/string.h>
46 #include <linux/mutex.h>
47 #include <linux/rculist.h>
48 #include <asm/uaccess.h>
49 #include <asm/cacheflush.h>
50 #include <asm/mmu_context.h>
51 #include <linux/license.h>
52 #include <asm/sections.h>
53 #include <linux/tracepoint.h>
54 #include <linux/ftrace.h>
55 #include <linux/async.h>
56 #include <linux/percpu.h>
57 #include <linux/kmemleak.h>
58 #include <linux/jump_label.h>
59 #include <linux/pfn.h>
60 #include <linux/bsearch.h>
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/module.h>
64 
65 #ifndef ARCH_SHF_SMALL
66 #define ARCH_SHF_SMALL 0
67 #endif
68 
69 /*
70  * Modules' sections will be aligned on page boundaries
71  * to ensure complete separation of code and data, but
72  * only when CONFIG_DEBUG_SET_MODULE_RONX=y
73  */
74 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
75 # define debug_align(X) ALIGN(X, PAGE_SIZE)
76 #else
77 # define debug_align(X) (X)
78 #endif
79 
80 /*
81  * Given BASE and SIZE this macro calculates the number of pages the
82  * memory regions occupies
83  */
84 #define MOD_NUMBER_OF_PAGES(BASE, SIZE) (((SIZE) > 0) ?		\
85 		(PFN_DOWN((unsigned long)(BASE) + (SIZE) - 1) -	\
86 			 PFN_DOWN((unsigned long)BASE) + 1)	\
87 		: (0UL))
88 
89 /* If this is set, the section belongs in the init part of the module */
90 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
91 
92 /*
93  * Mutex protects:
94  * 1) List of modules (also safely readable with preempt_disable),
95  * 2) module_use links,
96  * 3) module_addr_min/module_addr_max.
97  * (delete uses stop_machine/add uses RCU list operations). */
98 DEFINE_MUTEX(module_mutex);
99 EXPORT_SYMBOL_GPL(module_mutex);
100 static LIST_HEAD(modules);
101 #ifdef CONFIG_KGDB_KDB
102 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
103 #endif /* CONFIG_KGDB_KDB */
104 
105 
106 /* Block module loading/unloading? */
107 int modules_disabled = 0;
108 core_param(nomodule, modules_disabled, bint, 0);
109 
110 /* Waiting for a module to finish initializing? */
111 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
112 
113 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
114 
115 /* Bounds of module allocation, for speeding __module_address.
116  * Protected by module_mutex. */
117 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
118 
register_module_notifier(struct notifier_block * nb)119 int register_module_notifier(struct notifier_block * nb)
120 {
121 	return blocking_notifier_chain_register(&module_notify_list, nb);
122 }
123 EXPORT_SYMBOL(register_module_notifier);
124 
unregister_module_notifier(struct notifier_block * nb)125 int unregister_module_notifier(struct notifier_block * nb)
126 {
127 	return blocking_notifier_chain_unregister(&module_notify_list, nb);
128 }
129 EXPORT_SYMBOL(unregister_module_notifier);
130 
131 struct load_info {
132 	Elf_Ehdr *hdr;
133 	unsigned long len;
134 	Elf_Shdr *sechdrs;
135 	char *secstrings, *strtab;
136 	unsigned long symoffs, stroffs;
137 	struct _ddebug *debug;
138 	unsigned int num_debug;
139 	struct {
140 		unsigned int sym, str, mod, vers, info, pcpu;
141 	} index;
142 };
143 
144 /* We require a truly strong try_module_get(): 0 means failure due to
145    ongoing or failed initialization etc. */
strong_try_module_get(struct module * mod)146 static inline int strong_try_module_get(struct module *mod)
147 {
148 	if (mod && mod->state == MODULE_STATE_COMING)
149 		return -EBUSY;
150 	if (try_module_get(mod))
151 		return 0;
152 	else
153 		return -ENOENT;
154 }
155 
add_taint_module(struct module * mod,unsigned flag)156 static inline void add_taint_module(struct module *mod, unsigned flag)
157 {
158 	add_taint(flag);
159 	mod->taints |= (1U << flag);
160 }
161 
162 /*
163  * A thread that wants to hold a reference to a module only while it
164  * is running can call this to safely exit.  nfsd and lockd use this.
165  */
__module_put_and_exit(struct module * mod,long code)166 void __module_put_and_exit(struct module *mod, long code)
167 {
168 	module_put(mod);
169 	do_exit(code);
170 }
171 EXPORT_SYMBOL(__module_put_and_exit);
172 
173 /* Find a module section: 0 means not found. */
find_sec(const struct load_info * info,const char * name)174 static unsigned int find_sec(const struct load_info *info, const char *name)
175 {
176 	unsigned int i;
177 
178 	for (i = 1; i < info->hdr->e_shnum; i++) {
179 		Elf_Shdr *shdr = &info->sechdrs[i];
180 		/* Alloc bit cleared means "ignore it." */
181 		if ((shdr->sh_flags & SHF_ALLOC)
182 		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
183 			return i;
184 	}
185 	return 0;
186 }
187 
188 /* Find a module section, or NULL. */
section_addr(const struct load_info * info,const char * name)189 static void *section_addr(const struct load_info *info, const char *name)
190 {
191 	/* Section 0 has sh_addr 0. */
192 	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
193 }
194 
195 /* Find a module section, or NULL.  Fill in number of "objects" in section. */
section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)196 static void *section_objs(const struct load_info *info,
197 			  const char *name,
198 			  size_t object_size,
199 			  unsigned int *num)
200 {
201 	unsigned int sec = find_sec(info, name);
202 
203 	/* Section 0 has sh_addr 0 and sh_size 0. */
204 	*num = info->sechdrs[sec].sh_size / object_size;
205 	return (void *)info->sechdrs[sec].sh_addr;
206 }
207 
208 /* Provided by the linker */
209 extern const struct kernel_symbol __start___ksymtab[];
210 extern const struct kernel_symbol __stop___ksymtab[];
211 extern const struct kernel_symbol __start___ksymtab_gpl[];
212 extern const struct kernel_symbol __stop___ksymtab_gpl[];
213 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
214 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
215 extern const unsigned long __start___kcrctab[];
216 extern const unsigned long __start___kcrctab_gpl[];
217 extern const unsigned long __start___kcrctab_gpl_future[];
218 #ifdef CONFIG_UNUSED_SYMBOLS
219 extern const struct kernel_symbol __start___ksymtab_unused[];
220 extern const struct kernel_symbol __stop___ksymtab_unused[];
221 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
222 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
223 extern const unsigned long __start___kcrctab_unused[];
224 extern const unsigned long __start___kcrctab_unused_gpl[];
225 #endif
226 
227 #ifndef CONFIG_MODVERSIONS
228 #define symversion(base, idx) NULL
229 #else
230 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
231 #endif
232 
each_symbol_in_section(const struct symsearch * arr,unsigned int arrsize,struct module * owner,bool (* fn)(const struct symsearch * syms,struct module * owner,void * data),void * data)233 static bool each_symbol_in_section(const struct symsearch *arr,
234 				   unsigned int arrsize,
235 				   struct module *owner,
236 				   bool (*fn)(const struct symsearch *syms,
237 					      struct module *owner,
238 					      void *data),
239 				   void *data)
240 {
241 	unsigned int j;
242 
243 	for (j = 0; j < arrsize; j++) {
244 		if (fn(&arr[j], owner, data))
245 			return true;
246 	}
247 
248 	return false;
249 }
250 
251 /* Returns true as soon as fn returns true, otherwise false. */
each_symbol_section(bool (* fn)(const struct symsearch * arr,struct module * owner,void * data),void * data)252 bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
253 				    struct module *owner,
254 				    void *data),
255 			 void *data)
256 {
257 	struct module *mod;
258 	static const struct symsearch arr[] = {
259 		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
260 		  NOT_GPL_ONLY, false },
261 		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
262 		  __start___kcrctab_gpl,
263 		  GPL_ONLY, false },
264 		{ __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
265 		  __start___kcrctab_gpl_future,
266 		  WILL_BE_GPL_ONLY, false },
267 #ifdef CONFIG_UNUSED_SYMBOLS
268 		{ __start___ksymtab_unused, __stop___ksymtab_unused,
269 		  __start___kcrctab_unused,
270 		  NOT_GPL_ONLY, true },
271 		{ __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
272 		  __start___kcrctab_unused_gpl,
273 		  GPL_ONLY, true },
274 #endif
275 	};
276 
277 	if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
278 		return true;
279 
280 	list_for_each_entry_rcu(mod, &modules, list) {
281 		struct symsearch arr[] = {
282 			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
283 			  NOT_GPL_ONLY, false },
284 			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
285 			  mod->gpl_crcs,
286 			  GPL_ONLY, false },
287 			{ mod->gpl_future_syms,
288 			  mod->gpl_future_syms + mod->num_gpl_future_syms,
289 			  mod->gpl_future_crcs,
290 			  WILL_BE_GPL_ONLY, false },
291 #ifdef CONFIG_UNUSED_SYMBOLS
292 			{ mod->unused_syms,
293 			  mod->unused_syms + mod->num_unused_syms,
294 			  mod->unused_crcs,
295 			  NOT_GPL_ONLY, true },
296 			{ mod->unused_gpl_syms,
297 			  mod->unused_gpl_syms + mod->num_unused_gpl_syms,
298 			  mod->unused_gpl_crcs,
299 			  GPL_ONLY, true },
300 #endif
301 		};
302 
303 		if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
304 			return true;
305 	}
306 	return false;
307 }
308 EXPORT_SYMBOL_GPL(each_symbol_section);
309 
310 struct find_symbol_arg {
311 	/* Input */
312 	const char *name;
313 	bool gplok;
314 	bool warn;
315 
316 	/* Output */
317 	struct module *owner;
318 	const unsigned long *crc;
319 	const struct kernel_symbol *sym;
320 };
321 
check_symbol(const struct symsearch * syms,struct module * owner,unsigned int symnum,void * data)322 static bool check_symbol(const struct symsearch *syms,
323 				 struct module *owner,
324 				 unsigned int symnum, void *data)
325 {
326 	struct find_symbol_arg *fsa = data;
327 
328 	if (!fsa->gplok) {
329 		if (syms->licence == GPL_ONLY)
330 			return false;
331 		if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
332 			printk(KERN_WARNING "Symbol %s is being used "
333 			       "by a non-GPL module, which will not "
334 			       "be allowed in the future\n", fsa->name);
335 			printk(KERN_WARNING "Please see the file "
336 			       "Documentation/feature-removal-schedule.txt "
337 			       "in the kernel source tree for more details.\n");
338 		}
339 	}
340 
341 #ifdef CONFIG_UNUSED_SYMBOLS
342 	if (syms->unused && fsa->warn) {
343 		printk(KERN_WARNING "Symbol %s is marked as UNUSED, "
344 		       "however this module is using it.\n", fsa->name);
345 		printk(KERN_WARNING
346 		       "This symbol will go away in the future.\n");
347 		printk(KERN_WARNING
348 		       "Please evalute if this is the right api to use and if "
349 		       "it really is, submit a report the linux kernel "
350 		       "mailinglist together with submitting your code for "
351 		       "inclusion.\n");
352 	}
353 #endif
354 
355 	fsa->owner = owner;
356 	fsa->crc = symversion(syms->crcs, symnum);
357 	fsa->sym = &syms->start[symnum];
358 	return true;
359 }
360 
cmp_name(const void * va,const void * vb)361 static int cmp_name(const void *va, const void *vb)
362 {
363 	const char *a;
364 	const struct kernel_symbol *b;
365 	a = va; b = vb;
366 	return strcmp(a, b->name);
367 }
368 
find_symbol_in_section(const struct symsearch * syms,struct module * owner,void * data)369 static bool find_symbol_in_section(const struct symsearch *syms,
370 				   struct module *owner,
371 				   void *data)
372 {
373 	struct find_symbol_arg *fsa = data;
374 	struct kernel_symbol *sym;
375 
376 	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
377 			sizeof(struct kernel_symbol), cmp_name);
378 
379 	if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
380 		return true;
381 
382 	return false;
383 }
384 
385 /* Find a symbol and return it, along with, (optional) crc and
386  * (optional) module which owns it.  Needs preempt disabled or module_mutex. */
find_symbol(const char * name,struct module ** owner,const unsigned long ** crc,bool gplok,bool warn)387 const struct kernel_symbol *find_symbol(const char *name,
388 					struct module **owner,
389 					const unsigned long **crc,
390 					bool gplok,
391 					bool warn)
392 {
393 	struct find_symbol_arg fsa;
394 
395 	fsa.name = name;
396 	fsa.gplok = gplok;
397 	fsa.warn = warn;
398 
399 	if (each_symbol_section(find_symbol_in_section, &fsa)) {
400 		if (owner)
401 			*owner = fsa.owner;
402 		if (crc)
403 			*crc = fsa.crc;
404 		return fsa.sym;
405 	}
406 
407 	pr_debug("Failed to find symbol %s\n", name);
408 	return NULL;
409 }
410 EXPORT_SYMBOL_GPL(find_symbol);
411 
412 /* Search for module by name: must hold module_mutex. */
find_module(const char * name)413 struct module *find_module(const char *name)
414 {
415 	struct module *mod;
416 
417 	list_for_each_entry(mod, &modules, list) {
418 		if (strcmp(mod->name, name) == 0)
419 			return mod;
420 	}
421 	return NULL;
422 }
423 EXPORT_SYMBOL_GPL(find_module);
424 
425 #ifdef CONFIG_SMP
426 
mod_percpu(struct module * mod)427 static inline void __percpu *mod_percpu(struct module *mod)
428 {
429 	return mod->percpu;
430 }
431 
percpu_modalloc(struct module * mod,unsigned long size,unsigned long align)432 static int percpu_modalloc(struct module *mod,
433 			   unsigned long size, unsigned long align)
434 {
435 	if (align > PAGE_SIZE) {
436 		printk(KERN_WARNING "%s: per-cpu alignment %li > %li\n",
437 		       mod->name, align, PAGE_SIZE);
438 		align = PAGE_SIZE;
439 	}
440 
441 	mod->percpu = __alloc_reserved_percpu(size, align);
442 	if (!mod->percpu) {
443 		printk(KERN_WARNING
444 		       "%s: Could not allocate %lu bytes percpu data\n",
445 		       mod->name, size);
446 		return -ENOMEM;
447 	}
448 	mod->percpu_size = size;
449 	return 0;
450 }
451 
percpu_modfree(struct module * mod)452 static void percpu_modfree(struct module *mod)
453 {
454 	free_percpu(mod->percpu);
455 }
456 
find_pcpusec(struct load_info * info)457 static unsigned int find_pcpusec(struct load_info *info)
458 {
459 	return find_sec(info, ".data..percpu");
460 }
461 
percpu_modcopy(struct module * mod,const void * from,unsigned long size)462 static void percpu_modcopy(struct module *mod,
463 			   const void *from, unsigned long size)
464 {
465 	int cpu;
466 
467 	for_each_possible_cpu(cpu)
468 		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
469 }
470 
471 /**
472  * is_module_percpu_address - test whether address is from module static percpu
473  * @addr: address to test
474  *
475  * Test whether @addr belongs to module static percpu area.
476  *
477  * RETURNS:
478  * %true if @addr is from module static percpu area
479  */
is_module_percpu_address(unsigned long addr)480 bool is_module_percpu_address(unsigned long addr)
481 {
482 	struct module *mod;
483 	unsigned int cpu;
484 
485 	preempt_disable();
486 
487 	list_for_each_entry_rcu(mod, &modules, list) {
488 		if (!mod->percpu_size)
489 			continue;
490 		for_each_possible_cpu(cpu) {
491 			void *start = per_cpu_ptr(mod->percpu, cpu);
492 
493 			if ((void *)addr >= start &&
494 			    (void *)addr < start + mod->percpu_size) {
495 				preempt_enable();
496 				return true;
497 			}
498 		}
499 	}
500 
501 	preempt_enable();
502 	return false;
503 }
504 
505 #else /* ... !CONFIG_SMP */
506 
mod_percpu(struct module * mod)507 static inline void __percpu *mod_percpu(struct module *mod)
508 {
509 	return NULL;
510 }
percpu_modalloc(struct module * mod,unsigned long size,unsigned long align)511 static inline int percpu_modalloc(struct module *mod,
512 				  unsigned long size, unsigned long align)
513 {
514 	return -ENOMEM;
515 }
percpu_modfree(struct module * mod)516 static inline void percpu_modfree(struct module *mod)
517 {
518 }
find_pcpusec(struct load_info * info)519 static unsigned int find_pcpusec(struct load_info *info)
520 {
521 	return 0;
522 }
percpu_modcopy(struct module * mod,const void * from,unsigned long size)523 static inline void percpu_modcopy(struct module *mod,
524 				  const void *from, unsigned long size)
525 {
526 	/* pcpusec should be 0, and size of that section should be 0. */
527 	BUG_ON(size != 0);
528 }
is_module_percpu_address(unsigned long addr)529 bool is_module_percpu_address(unsigned long addr)
530 {
531 	return false;
532 }
533 
534 #endif /* CONFIG_SMP */
535 
536 #define MODINFO_ATTR(field)	\
537 static void setup_modinfo_##field(struct module *mod, const char *s)  \
538 {                                                                     \
539 	mod->field = kstrdup(s, GFP_KERNEL);                          \
540 }                                                                     \
541 static ssize_t show_modinfo_##field(struct module_attribute *mattr,   \
542 			struct module_kobject *mk, char *buffer)      \
543 {                                                                     \
544 	return sprintf(buffer, "%s\n", mk->mod->field);               \
545 }                                                                     \
546 static int modinfo_##field##_exists(struct module *mod)               \
547 {                                                                     \
548 	return mod->field != NULL;                                    \
549 }                                                                     \
550 static void free_modinfo_##field(struct module *mod)                  \
551 {                                                                     \
552 	kfree(mod->field);                                            \
553 	mod->field = NULL;                                            \
554 }                                                                     \
555 static struct module_attribute modinfo_##field = {                    \
556 	.attr = { .name = __stringify(field), .mode = 0444 },         \
557 	.show = show_modinfo_##field,                                 \
558 	.setup = setup_modinfo_##field,                               \
559 	.test = modinfo_##field##_exists,                             \
560 	.free = free_modinfo_##field,                                 \
561 };
562 
563 MODINFO_ATTR(version);
564 MODINFO_ATTR(srcversion);
565 
566 static char last_unloaded_module[MODULE_NAME_LEN+1];
567 
568 #ifdef CONFIG_MODULE_UNLOAD
569 
570 EXPORT_TRACEPOINT_SYMBOL(module_get);
571 
572 /* Init the unload section of the module. */
module_unload_init(struct module * mod)573 static int module_unload_init(struct module *mod)
574 {
575 	mod->refptr = alloc_percpu(struct module_ref);
576 	if (!mod->refptr)
577 		return -ENOMEM;
578 
579 	INIT_LIST_HEAD(&mod->source_list);
580 	INIT_LIST_HEAD(&mod->target_list);
581 
582 	/* Hold reference count during initialization. */
583 	__this_cpu_write(mod->refptr->incs, 1);
584 	/* Backwards compatibility macros put refcount during init. */
585 	mod->waiter = current;
586 
587 	return 0;
588 }
589 
590 /* Does a already use b? */
already_uses(struct module * a,struct module * b)591 static int already_uses(struct module *a, struct module *b)
592 {
593 	struct module_use *use;
594 
595 	list_for_each_entry(use, &b->source_list, source_list) {
596 		if (use->source == a) {
597 			pr_debug("%s uses %s!\n", a->name, b->name);
598 			return 1;
599 		}
600 	}
601 	pr_debug("%s does not use %s!\n", a->name, b->name);
602 	return 0;
603 }
604 
605 /*
606  * Module a uses b
607  *  - we add 'a' as a "source", 'b' as a "target" of module use
608  *  - the module_use is added to the list of 'b' sources (so
609  *    'b' can walk the list to see who sourced them), and of 'a'
610  *    targets (so 'a' can see what modules it targets).
611  */
add_module_usage(struct module * a,struct module * b)612 static int add_module_usage(struct module *a, struct module *b)
613 {
614 	struct module_use *use;
615 
616 	pr_debug("Allocating new usage for %s.\n", a->name);
617 	use = kmalloc(sizeof(*use), GFP_ATOMIC);
618 	if (!use) {
619 		printk(KERN_WARNING "%s: out of memory loading\n", a->name);
620 		return -ENOMEM;
621 	}
622 
623 	use->source = a;
624 	use->target = b;
625 	list_add(&use->source_list, &b->source_list);
626 	list_add(&use->target_list, &a->target_list);
627 	return 0;
628 }
629 
630 /* Module a uses b: caller needs module_mutex() */
ref_module(struct module * a,struct module * b)631 int ref_module(struct module *a, struct module *b)
632 {
633 	int err;
634 
635 	if (b == NULL || already_uses(a, b))
636 		return 0;
637 
638 	/* If module isn't available, we fail. */
639 	err = strong_try_module_get(b);
640 	if (err)
641 		return err;
642 
643 	err = add_module_usage(a, b);
644 	if (err) {
645 		module_put(b);
646 		return err;
647 	}
648 	return 0;
649 }
650 EXPORT_SYMBOL_GPL(ref_module);
651 
652 /* Clear the unload stuff of the module. */
module_unload_free(struct module * mod)653 static void module_unload_free(struct module *mod)
654 {
655 	struct module_use *use, *tmp;
656 
657 	mutex_lock(&module_mutex);
658 	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
659 		struct module *i = use->target;
660 		pr_debug("%s unusing %s\n", mod->name, i->name);
661 		module_put(i);
662 		list_del(&use->source_list);
663 		list_del(&use->target_list);
664 		kfree(use);
665 	}
666 	mutex_unlock(&module_mutex);
667 
668 	free_percpu(mod->refptr);
669 }
670 
671 #ifdef CONFIG_MODULE_FORCE_UNLOAD
try_force_unload(unsigned int flags)672 static inline int try_force_unload(unsigned int flags)
673 {
674 	int ret = (flags & O_TRUNC);
675 	if (ret)
676 		add_taint(TAINT_FORCED_RMMOD);
677 	return ret;
678 }
679 #else
try_force_unload(unsigned int flags)680 static inline int try_force_unload(unsigned int flags)
681 {
682 	return 0;
683 }
684 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
685 
686 struct stopref
687 {
688 	struct module *mod;
689 	int flags;
690 	int *forced;
691 };
692 
693 /* Whole machine is stopped with interrupts off when this runs. */
__try_stop_module(void * _sref)694 static int __try_stop_module(void *_sref)
695 {
696 	struct stopref *sref = _sref;
697 
698 	/* If it's not unused, quit unless we're forcing. */
699 	if (module_refcount(sref->mod) != 0) {
700 		if (!(*sref->forced = try_force_unload(sref->flags)))
701 			return -EWOULDBLOCK;
702 	}
703 
704 	/* Mark it as dying. */
705 	sref->mod->state = MODULE_STATE_GOING;
706 	return 0;
707 }
708 
try_stop_module(struct module * mod,int flags,int * forced)709 static int try_stop_module(struct module *mod, int flags, int *forced)
710 {
711 	if (flags & O_NONBLOCK) {
712 		struct stopref sref = { mod, flags, forced };
713 
714 		return stop_machine(__try_stop_module, &sref, NULL);
715 	} else {
716 		/* We don't need to stop the machine for this. */
717 		mod->state = MODULE_STATE_GOING;
718 		synchronize_sched();
719 		return 0;
720 	}
721 }
722 
module_refcount(struct module * mod)723 unsigned long module_refcount(struct module *mod)
724 {
725 	unsigned long incs = 0, decs = 0;
726 	int cpu;
727 
728 	for_each_possible_cpu(cpu)
729 		decs += per_cpu_ptr(mod->refptr, cpu)->decs;
730 	/*
731 	 * ensure the incs are added up after the decs.
732 	 * module_put ensures incs are visible before decs with smp_wmb.
733 	 *
734 	 * This 2-count scheme avoids the situation where the refcount
735 	 * for CPU0 is read, then CPU0 increments the module refcount,
736 	 * then CPU1 drops that refcount, then the refcount for CPU1 is
737 	 * read. We would record a decrement but not its corresponding
738 	 * increment so we would see a low count (disaster).
739 	 *
740 	 * Rare situation? But module_refcount can be preempted, and we
741 	 * might be tallying up 4096+ CPUs. So it is not impossible.
742 	 */
743 	smp_rmb();
744 	for_each_possible_cpu(cpu)
745 		incs += per_cpu_ptr(mod->refptr, cpu)->incs;
746 	return incs - decs;
747 }
748 EXPORT_SYMBOL(module_refcount);
749 
750 /* This exists whether we can unload or not */
751 static void free_module(struct module *mod);
752 
wait_for_zero_refcount(struct module * mod)753 static void wait_for_zero_refcount(struct module *mod)
754 {
755 	/* Since we might sleep for some time, release the mutex first */
756 	mutex_unlock(&module_mutex);
757 	for (;;) {
758 		pr_debug("Looking at refcount...\n");
759 		set_current_state(TASK_UNINTERRUPTIBLE);
760 		if (module_refcount(mod) == 0)
761 			break;
762 		schedule();
763 	}
764 	current->state = TASK_RUNNING;
765 	mutex_lock(&module_mutex);
766 }
767 
SYSCALL_DEFINE2(delete_module,const char __user *,name_user,unsigned int,flags)768 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
769 		unsigned int, flags)
770 {
771 	struct module *mod;
772 	char name[MODULE_NAME_LEN];
773 	int ret, forced = 0;
774 
775 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
776 		return -EPERM;
777 
778 	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
779 		return -EFAULT;
780 	name[MODULE_NAME_LEN-1] = '\0';
781 
782 	if (mutex_lock_interruptible(&module_mutex) != 0)
783 		return -EINTR;
784 
785 	mod = find_module(name);
786 	if (!mod) {
787 		ret = -ENOENT;
788 		goto out;
789 	}
790 
791 	if (!list_empty(&mod->source_list)) {
792 		/* Other modules depend on us: get rid of them first. */
793 		ret = -EWOULDBLOCK;
794 		goto out;
795 	}
796 
797 	/* Doing init or already dying? */
798 	if (mod->state != MODULE_STATE_LIVE) {
799 		/* FIXME: if (force), slam module count and wake up
800                    waiter --RR */
801 		pr_debug("%s already dying\n", mod->name);
802 		ret = -EBUSY;
803 		goto out;
804 	}
805 
806 	/* If it has an init func, it must have an exit func to unload */
807 	if (mod->init && !mod->exit) {
808 		forced = try_force_unload(flags);
809 		if (!forced) {
810 			/* This module can't be removed */
811 			ret = -EBUSY;
812 			goto out;
813 		}
814 	}
815 
816 	/* Set this up before setting mod->state */
817 	mod->waiter = current;
818 
819 	/* Stop the machine so refcounts can't move and disable module. */
820 	ret = try_stop_module(mod, flags, &forced);
821 	if (ret != 0)
822 		goto out;
823 
824 	/* Never wait if forced. */
825 	if (!forced && module_refcount(mod) != 0)
826 		wait_for_zero_refcount(mod);
827 
828 	mutex_unlock(&module_mutex);
829 	/* Final destruction now no one is using it. */
830 	if (mod->exit != NULL)
831 		mod->exit();
832 	blocking_notifier_call_chain(&module_notify_list,
833 				     MODULE_STATE_GOING, mod);
834 	async_synchronize_full();
835 
836 	/* Store the name of the last unloaded module for diagnostic purposes */
837 	strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
838 
839 	free_module(mod);
840 	return 0;
841 out:
842 	mutex_unlock(&module_mutex);
843 	return ret;
844 }
845 
print_unload_info(struct seq_file * m,struct module * mod)846 static inline void print_unload_info(struct seq_file *m, struct module *mod)
847 {
848 	struct module_use *use;
849 	int printed_something = 0;
850 
851 	seq_printf(m, " %lu ", module_refcount(mod));
852 
853 	/* Always include a trailing , so userspace can differentiate
854            between this and the old multi-field proc format. */
855 	list_for_each_entry(use, &mod->source_list, source_list) {
856 		printed_something = 1;
857 		seq_printf(m, "%s,", use->source->name);
858 	}
859 
860 	if (mod->init != NULL && mod->exit == NULL) {
861 		printed_something = 1;
862 		seq_printf(m, "[permanent],");
863 	}
864 
865 	if (!printed_something)
866 		seq_printf(m, "-");
867 }
868 
__symbol_put(const char * symbol)869 void __symbol_put(const char *symbol)
870 {
871 	struct module *owner;
872 
873 	preempt_disable();
874 	if (!find_symbol(symbol, &owner, NULL, true, false))
875 		BUG();
876 	module_put(owner);
877 	preempt_enable();
878 }
879 EXPORT_SYMBOL(__symbol_put);
880 
881 /* Note this assumes addr is a function, which it currently always is. */
symbol_put_addr(void * addr)882 void symbol_put_addr(void *addr)
883 {
884 	struct module *modaddr;
885 	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
886 
887 	if (core_kernel_text(a))
888 		return;
889 
890 	/* module_text_address is safe here: we're supposed to have reference
891 	 * to module from symbol_get, so it can't go away. */
892 	modaddr = __module_text_address(a);
893 	BUG_ON(!modaddr);
894 	module_put(modaddr);
895 }
896 EXPORT_SYMBOL_GPL(symbol_put_addr);
897 
show_refcnt(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)898 static ssize_t show_refcnt(struct module_attribute *mattr,
899 			   struct module_kobject *mk, char *buffer)
900 {
901 	return sprintf(buffer, "%lu\n", module_refcount(mk->mod));
902 }
903 
904 static struct module_attribute modinfo_refcnt =
905 	__ATTR(refcnt, 0444, show_refcnt, NULL);
906 
__module_get(struct module * module)907 void __module_get(struct module *module)
908 {
909 	if (module) {
910 		preempt_disable();
911 		__this_cpu_inc(module->refptr->incs);
912 		trace_module_get(module, _RET_IP_);
913 		preempt_enable();
914 	}
915 }
916 EXPORT_SYMBOL(__module_get);
917 
try_module_get(struct module * module)918 bool try_module_get(struct module *module)
919 {
920 	bool ret = true;
921 
922 	if (module) {
923 		preempt_disable();
924 
925 		if (likely(module_is_live(module))) {
926 			__this_cpu_inc(module->refptr->incs);
927 			trace_module_get(module, _RET_IP_);
928 		} else
929 			ret = false;
930 
931 		preempt_enable();
932 	}
933 	return ret;
934 }
935 EXPORT_SYMBOL(try_module_get);
936 
module_put(struct module * module)937 void module_put(struct module *module)
938 {
939 	if (module) {
940 		preempt_disable();
941 		smp_wmb(); /* see comment in module_refcount */
942 		__this_cpu_inc(module->refptr->decs);
943 
944 		trace_module_put(module, _RET_IP_);
945 		/* Maybe they're waiting for us to drop reference? */
946 		if (unlikely(!module_is_live(module)))
947 			wake_up_process(module->waiter);
948 		preempt_enable();
949 	}
950 }
951 EXPORT_SYMBOL(module_put);
952 
953 #else /* !CONFIG_MODULE_UNLOAD */
print_unload_info(struct seq_file * m,struct module * mod)954 static inline void print_unload_info(struct seq_file *m, struct module *mod)
955 {
956 	/* We don't know the usage count, or what modules are using. */
957 	seq_printf(m, " - -");
958 }
959 
module_unload_free(struct module * mod)960 static inline void module_unload_free(struct module *mod)
961 {
962 }
963 
ref_module(struct module * a,struct module * b)964 int ref_module(struct module *a, struct module *b)
965 {
966 	return strong_try_module_get(b);
967 }
968 EXPORT_SYMBOL_GPL(ref_module);
969 
module_unload_init(struct module * mod)970 static inline int module_unload_init(struct module *mod)
971 {
972 	return 0;
973 }
974 #endif /* CONFIG_MODULE_UNLOAD */
975 
module_flags_taint(struct module * mod,char * buf)976 static size_t module_flags_taint(struct module *mod, char *buf)
977 {
978 	size_t l = 0;
979 
980 	if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
981 		buf[l++] = 'P';
982 	if (mod->taints & (1 << TAINT_OOT_MODULE))
983 		buf[l++] = 'O';
984 	if (mod->taints & (1 << TAINT_FORCED_MODULE))
985 		buf[l++] = 'F';
986 	if (mod->taints & (1 << TAINT_CRAP))
987 		buf[l++] = 'C';
988 	/*
989 	 * TAINT_FORCED_RMMOD: could be added.
990 	 * TAINT_UNSAFE_SMP, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
991 	 * apply to modules.
992 	 */
993 	return l;
994 }
995 
show_initstate(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)996 static ssize_t show_initstate(struct module_attribute *mattr,
997 			      struct module_kobject *mk, char *buffer)
998 {
999 	const char *state = "unknown";
1000 
1001 	switch (mk->mod->state) {
1002 	case MODULE_STATE_LIVE:
1003 		state = "live";
1004 		break;
1005 	case MODULE_STATE_COMING:
1006 		state = "coming";
1007 		break;
1008 	case MODULE_STATE_GOING:
1009 		state = "going";
1010 		break;
1011 	}
1012 	return sprintf(buffer, "%s\n", state);
1013 }
1014 
1015 static struct module_attribute modinfo_initstate =
1016 	__ATTR(initstate, 0444, show_initstate, NULL);
1017 
store_uevent(struct module_attribute * mattr,struct module_kobject * mk,const char * buffer,size_t count)1018 static ssize_t store_uevent(struct module_attribute *mattr,
1019 			    struct module_kobject *mk,
1020 			    const char *buffer, size_t count)
1021 {
1022 	enum kobject_action action;
1023 
1024 	if (kobject_action_type(buffer, count, &action) == 0)
1025 		kobject_uevent(&mk->kobj, action);
1026 	return count;
1027 }
1028 
1029 struct module_attribute module_uevent =
1030 	__ATTR(uevent, 0200, NULL, store_uevent);
1031 
show_coresize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1032 static ssize_t show_coresize(struct module_attribute *mattr,
1033 			     struct module_kobject *mk, char *buffer)
1034 {
1035 	return sprintf(buffer, "%u\n", mk->mod->core_size);
1036 }
1037 
1038 static struct module_attribute modinfo_coresize =
1039 	__ATTR(coresize, 0444, show_coresize, NULL);
1040 
show_initsize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1041 static ssize_t show_initsize(struct module_attribute *mattr,
1042 			     struct module_kobject *mk, char *buffer)
1043 {
1044 	return sprintf(buffer, "%u\n", mk->mod->init_size);
1045 }
1046 
1047 static struct module_attribute modinfo_initsize =
1048 	__ATTR(initsize, 0444, show_initsize, NULL);
1049 
show_taint(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1050 static ssize_t show_taint(struct module_attribute *mattr,
1051 			  struct module_kobject *mk, char *buffer)
1052 {
1053 	size_t l;
1054 
1055 	l = module_flags_taint(mk->mod, buffer);
1056 	buffer[l++] = '\n';
1057 	return l;
1058 }
1059 
1060 static struct module_attribute modinfo_taint =
1061 	__ATTR(taint, 0444, show_taint, NULL);
1062 
1063 static struct module_attribute *modinfo_attrs[] = {
1064 	&module_uevent,
1065 	&modinfo_version,
1066 	&modinfo_srcversion,
1067 	&modinfo_initstate,
1068 	&modinfo_coresize,
1069 	&modinfo_initsize,
1070 	&modinfo_taint,
1071 #ifdef CONFIG_MODULE_UNLOAD
1072 	&modinfo_refcnt,
1073 #endif
1074 	NULL,
1075 };
1076 
1077 static const char vermagic[] = VERMAGIC_STRING;
1078 
try_to_force_load(struct module * mod,const char * reason)1079 static int try_to_force_load(struct module *mod, const char *reason)
1080 {
1081 #ifdef CONFIG_MODULE_FORCE_LOAD
1082 	if (!test_taint(TAINT_FORCED_MODULE))
1083 		printk(KERN_WARNING "%s: %s: kernel tainted.\n",
1084 		       mod->name, reason);
1085 	add_taint_module(mod, TAINT_FORCED_MODULE);
1086 	return 0;
1087 #else
1088 	return -ENOEXEC;
1089 #endif
1090 }
1091 
1092 #ifdef CONFIG_MODVERSIONS
1093 /* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
maybe_relocated(unsigned long crc,const struct module * crc_owner)1094 static unsigned long maybe_relocated(unsigned long crc,
1095 				     const struct module *crc_owner)
1096 {
1097 #ifdef ARCH_RELOCATES_KCRCTAB
1098 	if (crc_owner == NULL)
1099 		return crc - (unsigned long)reloc_start;
1100 #endif
1101 	return crc;
1102 }
1103 
check_version(Elf_Shdr * sechdrs,unsigned int versindex,const char * symname,struct module * mod,const unsigned long * crc,const struct module * crc_owner)1104 static int check_version(Elf_Shdr *sechdrs,
1105 			 unsigned int versindex,
1106 			 const char *symname,
1107 			 struct module *mod,
1108 			 const unsigned long *crc,
1109 			 const struct module *crc_owner)
1110 {
1111 	unsigned int i, num_versions;
1112 	struct modversion_info *versions;
1113 
1114 	/* Exporting module didn't supply crcs?  OK, we're already tainted. */
1115 	if (!crc)
1116 		return 1;
1117 
1118 	/* No versions at all?  modprobe --force does this. */
1119 	if (versindex == 0)
1120 		return try_to_force_load(mod, symname) == 0;
1121 
1122 	versions = (void *) sechdrs[versindex].sh_addr;
1123 	num_versions = sechdrs[versindex].sh_size
1124 		/ sizeof(struct modversion_info);
1125 
1126 	for (i = 0; i < num_versions; i++) {
1127 		if (strcmp(versions[i].name, symname) != 0)
1128 			continue;
1129 
1130 		if (versions[i].crc == maybe_relocated(*crc, crc_owner))
1131 			return 1;
1132 		pr_debug("Found checksum %lX vs module %lX\n",
1133 		       maybe_relocated(*crc, crc_owner), versions[i].crc);
1134 		goto bad_version;
1135 	}
1136 
1137 	printk(KERN_WARNING "%s: no symbol version for %s\n",
1138 	       mod->name, symname);
1139 	return 0;
1140 
1141 bad_version:
1142 	printk("%s: disagrees about version of symbol %s\n",
1143 	       mod->name, symname);
1144 	return 0;
1145 }
1146 
check_modstruct_version(Elf_Shdr * sechdrs,unsigned int versindex,struct module * mod)1147 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1148 					  unsigned int versindex,
1149 					  struct module *mod)
1150 {
1151 	const unsigned long *crc;
1152 
1153 	/* Since this should be found in kernel (which can't be removed),
1154 	 * no locking is necessary. */
1155 	if (!find_symbol(MODULE_SYMBOL_PREFIX "module_layout", NULL,
1156 			 &crc, true, false))
1157 		BUG();
1158 	return check_version(sechdrs, versindex, "module_layout", mod, crc,
1159 			     NULL);
1160 }
1161 
1162 /* First part is kernel version, which we ignore if module has crcs. */
same_magic(const char * amagic,const char * bmagic,bool has_crcs)1163 static inline int same_magic(const char *amagic, const char *bmagic,
1164 			     bool has_crcs)
1165 {
1166 	if (has_crcs) {
1167 		amagic += strcspn(amagic, " ");
1168 		bmagic += strcspn(bmagic, " ");
1169 	}
1170 	return strcmp(amagic, bmagic) == 0;
1171 }
1172 #else
check_version(Elf_Shdr * sechdrs,unsigned int versindex,const char * symname,struct module * mod,const unsigned long * crc,const struct module * crc_owner)1173 static inline int check_version(Elf_Shdr *sechdrs,
1174 				unsigned int versindex,
1175 				const char *symname,
1176 				struct module *mod,
1177 				const unsigned long *crc,
1178 				const struct module *crc_owner)
1179 {
1180 	return 1;
1181 }
1182 
check_modstruct_version(Elf_Shdr * sechdrs,unsigned int versindex,struct module * mod)1183 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1184 					  unsigned int versindex,
1185 					  struct module *mod)
1186 {
1187 	return 1;
1188 }
1189 
same_magic(const char * amagic,const char * bmagic,bool has_crcs)1190 static inline int same_magic(const char *amagic, const char *bmagic,
1191 			     bool has_crcs)
1192 {
1193 	return strcmp(amagic, bmagic) == 0;
1194 }
1195 #endif /* CONFIG_MODVERSIONS */
1196 
1197 /* Resolve a symbol for this module.  I.e. if we find one, record usage. */
resolve_symbol(struct module * mod,const struct load_info * info,const char * name,char ownername[])1198 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1199 						  const struct load_info *info,
1200 						  const char *name,
1201 						  char ownername[])
1202 {
1203 	struct module *owner;
1204 	const struct kernel_symbol *sym;
1205 	const unsigned long *crc;
1206 	int err;
1207 
1208 	mutex_lock(&module_mutex);
1209 	sym = find_symbol(name, &owner, &crc,
1210 			  !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1211 	if (!sym)
1212 		goto unlock;
1213 
1214 	if (!check_version(info->sechdrs, info->index.vers, name, mod, crc,
1215 			   owner)) {
1216 		sym = ERR_PTR(-EINVAL);
1217 		goto getname;
1218 	}
1219 
1220 	err = ref_module(mod, owner);
1221 	if (err) {
1222 		sym = ERR_PTR(err);
1223 		goto getname;
1224 	}
1225 
1226 getname:
1227 	/* We must make copy under the lock if we failed to get ref. */
1228 	strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1229 unlock:
1230 	mutex_unlock(&module_mutex);
1231 	return sym;
1232 }
1233 
1234 static const struct kernel_symbol *
resolve_symbol_wait(struct module * mod,const struct load_info * info,const char * name)1235 resolve_symbol_wait(struct module *mod,
1236 		    const struct load_info *info,
1237 		    const char *name)
1238 {
1239 	const struct kernel_symbol *ksym;
1240 	char owner[MODULE_NAME_LEN];
1241 
1242 	if (wait_event_interruptible_timeout(module_wq,
1243 			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1244 			|| PTR_ERR(ksym) != -EBUSY,
1245 					     30 * HZ) <= 0) {
1246 		printk(KERN_WARNING "%s: gave up waiting for init of module %s.\n",
1247 		       mod->name, owner);
1248 	}
1249 	return ksym;
1250 }
1251 
1252 /*
1253  * /sys/module/foo/sections stuff
1254  * J. Corbet <corbet@lwn.net>
1255  */
1256 #ifdef CONFIG_SYSFS
1257 
1258 #ifdef CONFIG_KALLSYMS
sect_empty(const Elf_Shdr * sect)1259 static inline bool sect_empty(const Elf_Shdr *sect)
1260 {
1261 	return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1262 }
1263 
1264 struct module_sect_attr
1265 {
1266 	struct module_attribute mattr;
1267 	char *name;
1268 	unsigned long address;
1269 };
1270 
1271 struct module_sect_attrs
1272 {
1273 	struct attribute_group grp;
1274 	unsigned int nsections;
1275 	struct module_sect_attr attrs[0];
1276 };
1277 
module_sect_show(struct module_attribute * mattr,struct module_kobject * mk,char * buf)1278 static ssize_t module_sect_show(struct module_attribute *mattr,
1279 				struct module_kobject *mk, char *buf)
1280 {
1281 	struct module_sect_attr *sattr =
1282 		container_of(mattr, struct module_sect_attr, mattr);
1283 	return sprintf(buf, "0x%pK\n", (void *)sattr->address);
1284 }
1285 
free_sect_attrs(struct module_sect_attrs * sect_attrs)1286 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1287 {
1288 	unsigned int section;
1289 
1290 	for (section = 0; section < sect_attrs->nsections; section++)
1291 		kfree(sect_attrs->attrs[section].name);
1292 	kfree(sect_attrs);
1293 }
1294 
add_sect_attrs(struct module * mod,const struct load_info * info)1295 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1296 {
1297 	unsigned int nloaded = 0, i, size[2];
1298 	struct module_sect_attrs *sect_attrs;
1299 	struct module_sect_attr *sattr;
1300 	struct attribute **gattr;
1301 
1302 	/* Count loaded sections and allocate structures */
1303 	for (i = 0; i < info->hdr->e_shnum; i++)
1304 		if (!sect_empty(&info->sechdrs[i]))
1305 			nloaded++;
1306 	size[0] = ALIGN(sizeof(*sect_attrs)
1307 			+ nloaded * sizeof(sect_attrs->attrs[0]),
1308 			sizeof(sect_attrs->grp.attrs[0]));
1309 	size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1310 	sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1311 	if (sect_attrs == NULL)
1312 		return;
1313 
1314 	/* Setup section attributes. */
1315 	sect_attrs->grp.name = "sections";
1316 	sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1317 
1318 	sect_attrs->nsections = 0;
1319 	sattr = &sect_attrs->attrs[0];
1320 	gattr = &sect_attrs->grp.attrs[0];
1321 	for (i = 0; i < info->hdr->e_shnum; i++) {
1322 		Elf_Shdr *sec = &info->sechdrs[i];
1323 		if (sect_empty(sec))
1324 			continue;
1325 		sattr->address = sec->sh_addr;
1326 		sattr->name = kstrdup(info->secstrings + sec->sh_name,
1327 					GFP_KERNEL);
1328 		if (sattr->name == NULL)
1329 			goto out;
1330 		sect_attrs->nsections++;
1331 		sysfs_attr_init(&sattr->mattr.attr);
1332 		sattr->mattr.show = module_sect_show;
1333 		sattr->mattr.store = NULL;
1334 		sattr->mattr.attr.name = sattr->name;
1335 		sattr->mattr.attr.mode = S_IRUGO;
1336 		*(gattr++) = &(sattr++)->mattr.attr;
1337 	}
1338 	*gattr = NULL;
1339 
1340 	if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1341 		goto out;
1342 
1343 	mod->sect_attrs = sect_attrs;
1344 	return;
1345   out:
1346 	free_sect_attrs(sect_attrs);
1347 }
1348 
remove_sect_attrs(struct module * mod)1349 static void remove_sect_attrs(struct module *mod)
1350 {
1351 	if (mod->sect_attrs) {
1352 		sysfs_remove_group(&mod->mkobj.kobj,
1353 				   &mod->sect_attrs->grp);
1354 		/* We are positive that no one is using any sect attrs
1355 		 * at this point.  Deallocate immediately. */
1356 		free_sect_attrs(mod->sect_attrs);
1357 		mod->sect_attrs = NULL;
1358 	}
1359 }
1360 
1361 /*
1362  * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1363  */
1364 
1365 struct module_notes_attrs {
1366 	struct kobject *dir;
1367 	unsigned int notes;
1368 	struct bin_attribute attrs[0];
1369 };
1370 
module_notes_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t pos,size_t count)1371 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1372 				 struct bin_attribute *bin_attr,
1373 				 char *buf, loff_t pos, size_t count)
1374 {
1375 	/*
1376 	 * The caller checked the pos and count against our size.
1377 	 */
1378 	memcpy(buf, bin_attr->private + pos, count);
1379 	return count;
1380 }
1381 
free_notes_attrs(struct module_notes_attrs * notes_attrs,unsigned int i)1382 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1383 			     unsigned int i)
1384 {
1385 	if (notes_attrs->dir) {
1386 		while (i-- > 0)
1387 			sysfs_remove_bin_file(notes_attrs->dir,
1388 					      &notes_attrs->attrs[i]);
1389 		kobject_put(notes_attrs->dir);
1390 	}
1391 	kfree(notes_attrs);
1392 }
1393 
add_notes_attrs(struct module * mod,const struct load_info * info)1394 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1395 {
1396 	unsigned int notes, loaded, i;
1397 	struct module_notes_attrs *notes_attrs;
1398 	struct bin_attribute *nattr;
1399 
1400 	/* failed to create section attributes, so can't create notes */
1401 	if (!mod->sect_attrs)
1402 		return;
1403 
1404 	/* Count notes sections and allocate structures.  */
1405 	notes = 0;
1406 	for (i = 0; i < info->hdr->e_shnum; i++)
1407 		if (!sect_empty(&info->sechdrs[i]) &&
1408 		    (info->sechdrs[i].sh_type == SHT_NOTE))
1409 			++notes;
1410 
1411 	if (notes == 0)
1412 		return;
1413 
1414 	notes_attrs = kzalloc(sizeof(*notes_attrs)
1415 			      + notes * sizeof(notes_attrs->attrs[0]),
1416 			      GFP_KERNEL);
1417 	if (notes_attrs == NULL)
1418 		return;
1419 
1420 	notes_attrs->notes = notes;
1421 	nattr = &notes_attrs->attrs[0];
1422 	for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1423 		if (sect_empty(&info->sechdrs[i]))
1424 			continue;
1425 		if (info->sechdrs[i].sh_type == SHT_NOTE) {
1426 			sysfs_bin_attr_init(nattr);
1427 			nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1428 			nattr->attr.mode = S_IRUGO;
1429 			nattr->size = info->sechdrs[i].sh_size;
1430 			nattr->private = (void *) info->sechdrs[i].sh_addr;
1431 			nattr->read = module_notes_read;
1432 			++nattr;
1433 		}
1434 		++loaded;
1435 	}
1436 
1437 	notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1438 	if (!notes_attrs->dir)
1439 		goto out;
1440 
1441 	for (i = 0; i < notes; ++i)
1442 		if (sysfs_create_bin_file(notes_attrs->dir,
1443 					  &notes_attrs->attrs[i]))
1444 			goto out;
1445 
1446 	mod->notes_attrs = notes_attrs;
1447 	return;
1448 
1449   out:
1450 	free_notes_attrs(notes_attrs, i);
1451 }
1452 
remove_notes_attrs(struct module * mod)1453 static void remove_notes_attrs(struct module *mod)
1454 {
1455 	if (mod->notes_attrs)
1456 		free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1457 }
1458 
1459 #else
1460 
add_sect_attrs(struct module * mod,const struct load_info * info)1461 static inline void add_sect_attrs(struct module *mod,
1462 				  const struct load_info *info)
1463 {
1464 }
1465 
remove_sect_attrs(struct module * mod)1466 static inline void remove_sect_attrs(struct module *mod)
1467 {
1468 }
1469 
add_notes_attrs(struct module * mod,const struct load_info * info)1470 static inline void add_notes_attrs(struct module *mod,
1471 				   const struct load_info *info)
1472 {
1473 }
1474 
remove_notes_attrs(struct module * mod)1475 static inline void remove_notes_attrs(struct module *mod)
1476 {
1477 }
1478 #endif /* CONFIG_KALLSYMS */
1479 
add_usage_links(struct module * mod)1480 static void add_usage_links(struct module *mod)
1481 {
1482 #ifdef CONFIG_MODULE_UNLOAD
1483 	struct module_use *use;
1484 	int nowarn;
1485 
1486 	mutex_lock(&module_mutex);
1487 	list_for_each_entry(use, &mod->target_list, target_list) {
1488 		nowarn = sysfs_create_link(use->target->holders_dir,
1489 					   &mod->mkobj.kobj, mod->name);
1490 	}
1491 	mutex_unlock(&module_mutex);
1492 #endif
1493 }
1494 
del_usage_links(struct module * mod)1495 static void del_usage_links(struct module *mod)
1496 {
1497 #ifdef CONFIG_MODULE_UNLOAD
1498 	struct module_use *use;
1499 
1500 	mutex_lock(&module_mutex);
1501 	list_for_each_entry(use, &mod->target_list, target_list)
1502 		sysfs_remove_link(use->target->holders_dir, mod->name);
1503 	mutex_unlock(&module_mutex);
1504 #endif
1505 }
1506 
module_add_modinfo_attrs(struct module * mod)1507 static int module_add_modinfo_attrs(struct module *mod)
1508 {
1509 	struct module_attribute *attr;
1510 	struct module_attribute *temp_attr;
1511 	int error = 0;
1512 	int i;
1513 
1514 	mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1515 					(ARRAY_SIZE(modinfo_attrs) + 1)),
1516 					GFP_KERNEL);
1517 	if (!mod->modinfo_attrs)
1518 		return -ENOMEM;
1519 
1520 	temp_attr = mod->modinfo_attrs;
1521 	for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1522 		if (!attr->test ||
1523 		    (attr->test && attr->test(mod))) {
1524 			memcpy(temp_attr, attr, sizeof(*temp_attr));
1525 			sysfs_attr_init(&temp_attr->attr);
1526 			error = sysfs_create_file(&mod->mkobj.kobj,&temp_attr->attr);
1527 			++temp_attr;
1528 		}
1529 	}
1530 	return error;
1531 }
1532 
module_remove_modinfo_attrs(struct module * mod)1533 static void module_remove_modinfo_attrs(struct module *mod)
1534 {
1535 	struct module_attribute *attr;
1536 	int i;
1537 
1538 	for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1539 		/* pick a field to test for end of list */
1540 		if (!attr->attr.name)
1541 			break;
1542 		sysfs_remove_file(&mod->mkobj.kobj,&attr->attr);
1543 		if (attr->free)
1544 			attr->free(mod);
1545 	}
1546 	kfree(mod->modinfo_attrs);
1547 }
1548 
mod_sysfs_init(struct module * mod)1549 static int mod_sysfs_init(struct module *mod)
1550 {
1551 	int err;
1552 	struct kobject *kobj;
1553 
1554 	if (!module_sysfs_initialized) {
1555 		printk(KERN_ERR "%s: module sysfs not initialized\n",
1556 		       mod->name);
1557 		err = -EINVAL;
1558 		goto out;
1559 	}
1560 
1561 	kobj = kset_find_obj(module_kset, mod->name);
1562 	if (kobj) {
1563 		printk(KERN_ERR "%s: module is already loaded\n", mod->name);
1564 		kobject_put(kobj);
1565 		err = -EINVAL;
1566 		goto out;
1567 	}
1568 
1569 	mod->mkobj.mod = mod;
1570 
1571 	memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1572 	mod->mkobj.kobj.kset = module_kset;
1573 	err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1574 				   "%s", mod->name);
1575 	if (err)
1576 		kobject_put(&mod->mkobj.kobj);
1577 
1578 	/* delay uevent until full sysfs population */
1579 out:
1580 	return err;
1581 }
1582 
mod_sysfs_setup(struct module * mod,const struct load_info * info,struct kernel_param * kparam,unsigned int num_params)1583 static int mod_sysfs_setup(struct module *mod,
1584 			   const struct load_info *info,
1585 			   struct kernel_param *kparam,
1586 			   unsigned int num_params)
1587 {
1588 	int err;
1589 
1590 	err = mod_sysfs_init(mod);
1591 	if (err)
1592 		goto out;
1593 
1594 	mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1595 	if (!mod->holders_dir) {
1596 		err = -ENOMEM;
1597 		goto out_unreg;
1598 	}
1599 
1600 	err = module_param_sysfs_setup(mod, kparam, num_params);
1601 	if (err)
1602 		goto out_unreg_holders;
1603 
1604 	err = module_add_modinfo_attrs(mod);
1605 	if (err)
1606 		goto out_unreg_param;
1607 
1608 	add_usage_links(mod);
1609 	add_sect_attrs(mod, info);
1610 	add_notes_attrs(mod, info);
1611 
1612 	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1613 	return 0;
1614 
1615 out_unreg_param:
1616 	module_param_sysfs_remove(mod);
1617 out_unreg_holders:
1618 	kobject_put(mod->holders_dir);
1619 out_unreg:
1620 	kobject_put(&mod->mkobj.kobj);
1621 out:
1622 	return err;
1623 }
1624 
mod_sysfs_fini(struct module * mod)1625 static void mod_sysfs_fini(struct module *mod)
1626 {
1627 	remove_notes_attrs(mod);
1628 	remove_sect_attrs(mod);
1629 	kobject_put(&mod->mkobj.kobj);
1630 }
1631 
1632 #else /* !CONFIG_SYSFS */
1633 
mod_sysfs_setup(struct module * mod,const struct load_info * info,struct kernel_param * kparam,unsigned int num_params)1634 static int mod_sysfs_setup(struct module *mod,
1635 			   const struct load_info *info,
1636 			   struct kernel_param *kparam,
1637 			   unsigned int num_params)
1638 {
1639 	return 0;
1640 }
1641 
mod_sysfs_fini(struct module * mod)1642 static void mod_sysfs_fini(struct module *mod)
1643 {
1644 }
1645 
module_remove_modinfo_attrs(struct module * mod)1646 static void module_remove_modinfo_attrs(struct module *mod)
1647 {
1648 }
1649 
del_usage_links(struct module * mod)1650 static void del_usage_links(struct module *mod)
1651 {
1652 }
1653 
1654 #endif /* CONFIG_SYSFS */
1655 
mod_sysfs_teardown(struct module * mod)1656 static void mod_sysfs_teardown(struct module *mod)
1657 {
1658 	del_usage_links(mod);
1659 	module_remove_modinfo_attrs(mod);
1660 	module_param_sysfs_remove(mod);
1661 	kobject_put(mod->mkobj.drivers_dir);
1662 	kobject_put(mod->holders_dir);
1663 	mod_sysfs_fini(mod);
1664 }
1665 
1666 /*
1667  * unlink the module with the whole machine is stopped with interrupts off
1668  * - this defends against kallsyms not taking locks
1669  */
__unlink_module(void * _mod)1670 static int __unlink_module(void *_mod)
1671 {
1672 	struct module *mod = _mod;
1673 	list_del(&mod->list);
1674 	module_bug_cleanup(mod);
1675 	return 0;
1676 }
1677 
1678 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
1679 /*
1680  * LKM RO/NX protection: protect module's text/ro-data
1681  * from modification and any data from execution.
1682  */
set_page_attributes(void * start,void * end,int (* set)(unsigned long start,int num_pages))1683 void set_page_attributes(void *start, void *end, int (*set)(unsigned long start, int num_pages))
1684 {
1685 	unsigned long begin_pfn = PFN_DOWN((unsigned long)start);
1686 	unsigned long end_pfn = PFN_DOWN((unsigned long)end);
1687 
1688 	if (end_pfn > begin_pfn)
1689 		set(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1690 }
1691 
set_section_ro_nx(void * base,unsigned long text_size,unsigned long ro_size,unsigned long total_size)1692 static void set_section_ro_nx(void *base,
1693 			unsigned long text_size,
1694 			unsigned long ro_size,
1695 			unsigned long total_size)
1696 {
1697 	/* begin and end PFNs of the current subsection */
1698 	unsigned long begin_pfn;
1699 	unsigned long end_pfn;
1700 
1701 	/*
1702 	 * Set RO for module text and RO-data:
1703 	 * - Always protect first page.
1704 	 * - Do not protect last partial page.
1705 	 */
1706 	if (ro_size > 0)
1707 		set_page_attributes(base, base + ro_size, set_memory_ro);
1708 
1709 	/*
1710 	 * Set NX permissions for module data:
1711 	 * - Do not protect first partial page.
1712 	 * - Always protect last page.
1713 	 */
1714 	if (total_size > text_size) {
1715 		begin_pfn = PFN_UP((unsigned long)base + text_size);
1716 		end_pfn = PFN_UP((unsigned long)base + total_size);
1717 		if (end_pfn > begin_pfn)
1718 			set_memory_nx(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1719 	}
1720 }
1721 
unset_module_core_ro_nx(struct module * mod)1722 static void unset_module_core_ro_nx(struct module *mod)
1723 {
1724 	set_page_attributes(mod->module_core + mod->core_text_size,
1725 		mod->module_core + mod->core_size,
1726 		set_memory_x);
1727 	set_page_attributes(mod->module_core,
1728 		mod->module_core + mod->core_ro_size,
1729 		set_memory_rw);
1730 }
1731 
unset_module_init_ro_nx(struct module * mod)1732 static void unset_module_init_ro_nx(struct module *mod)
1733 {
1734 	set_page_attributes(mod->module_init + mod->init_text_size,
1735 		mod->module_init + mod->init_size,
1736 		set_memory_x);
1737 	set_page_attributes(mod->module_init,
1738 		mod->module_init + mod->init_ro_size,
1739 		set_memory_rw);
1740 }
1741 
1742 /* Iterate through all modules and set each module's text as RW */
set_all_modules_text_rw(void)1743 void set_all_modules_text_rw(void)
1744 {
1745 	struct module *mod;
1746 
1747 	mutex_lock(&module_mutex);
1748 	list_for_each_entry_rcu(mod, &modules, list) {
1749 		if ((mod->module_core) && (mod->core_text_size)) {
1750 			set_page_attributes(mod->module_core,
1751 						mod->module_core + mod->core_text_size,
1752 						set_memory_rw);
1753 		}
1754 		if ((mod->module_init) && (mod->init_text_size)) {
1755 			set_page_attributes(mod->module_init,
1756 						mod->module_init + mod->init_text_size,
1757 						set_memory_rw);
1758 		}
1759 	}
1760 	mutex_unlock(&module_mutex);
1761 }
1762 
1763 /* Iterate through all modules and set each module's text as RO */
set_all_modules_text_ro(void)1764 void set_all_modules_text_ro(void)
1765 {
1766 	struct module *mod;
1767 
1768 	mutex_lock(&module_mutex);
1769 	list_for_each_entry_rcu(mod, &modules, list) {
1770 		if ((mod->module_core) && (mod->core_text_size)) {
1771 			set_page_attributes(mod->module_core,
1772 						mod->module_core + mod->core_text_size,
1773 						set_memory_ro);
1774 		}
1775 		if ((mod->module_init) && (mod->init_text_size)) {
1776 			set_page_attributes(mod->module_init,
1777 						mod->module_init + mod->init_text_size,
1778 						set_memory_ro);
1779 		}
1780 	}
1781 	mutex_unlock(&module_mutex);
1782 }
1783 #else
set_section_ro_nx(void * base,unsigned long text_size,unsigned long ro_size,unsigned long total_size)1784 static inline void set_section_ro_nx(void *base, unsigned long text_size, unsigned long ro_size, unsigned long total_size) { }
unset_module_core_ro_nx(struct module * mod)1785 static void unset_module_core_ro_nx(struct module *mod) { }
unset_module_init_ro_nx(struct module * mod)1786 static void unset_module_init_ro_nx(struct module *mod) { }
1787 #endif
1788 
module_free(struct module * mod,void * module_region)1789 void __weak module_free(struct module *mod, void *module_region)
1790 {
1791 	vfree(module_region);
1792 }
1793 
module_arch_cleanup(struct module * mod)1794 void __weak module_arch_cleanup(struct module *mod)
1795 {
1796 }
1797 
1798 /* Free a module, remove from lists, etc. */
free_module(struct module * mod)1799 static void free_module(struct module *mod)
1800 {
1801 	trace_module_free(mod);
1802 
1803 	/* Delete from various lists */
1804 	mutex_lock(&module_mutex);
1805 	stop_machine(__unlink_module, mod, NULL);
1806 	mutex_unlock(&module_mutex);
1807 	mod_sysfs_teardown(mod);
1808 
1809 	/* Remove dynamic debug info */
1810 	ddebug_remove_module(mod->name);
1811 
1812 	/* Arch-specific cleanup. */
1813 	module_arch_cleanup(mod);
1814 
1815 	/* Module unload stuff */
1816 	module_unload_free(mod);
1817 
1818 	/* Free any allocated parameters. */
1819 	destroy_params(mod->kp, mod->num_kp);
1820 
1821 	/* This may be NULL, but that's OK */
1822 	unset_module_init_ro_nx(mod);
1823 	module_free(mod, mod->module_init);
1824 	kfree(mod->args);
1825 	percpu_modfree(mod);
1826 
1827 	/* Free lock-classes: */
1828 	lockdep_free_key_range(mod->module_core, mod->core_size);
1829 
1830 	/* Finally, free the core (containing the module structure) */
1831 	unset_module_core_ro_nx(mod);
1832 	module_free(mod, mod->module_core);
1833 
1834 #ifdef CONFIG_MPU
1835 	update_protections(current->mm);
1836 #endif
1837 }
1838 
__symbol_get(const char * symbol)1839 void *__symbol_get(const char *symbol)
1840 {
1841 	struct module *owner;
1842 	const struct kernel_symbol *sym;
1843 
1844 	preempt_disable();
1845 	sym = find_symbol(symbol, &owner, NULL, true, true);
1846 	if (sym && strong_try_module_get(owner))
1847 		sym = NULL;
1848 	preempt_enable();
1849 
1850 	return sym ? (void *)sym->value : NULL;
1851 }
1852 EXPORT_SYMBOL_GPL(__symbol_get);
1853 
1854 /*
1855  * Ensure that an exported symbol [global namespace] does not already exist
1856  * in the kernel or in some other module's exported symbol table.
1857  *
1858  * You must hold the module_mutex.
1859  */
verify_export_symbols(struct module * mod)1860 static int verify_export_symbols(struct module *mod)
1861 {
1862 	unsigned int i;
1863 	struct module *owner;
1864 	const struct kernel_symbol *s;
1865 	struct {
1866 		const struct kernel_symbol *sym;
1867 		unsigned int num;
1868 	} arr[] = {
1869 		{ mod->syms, mod->num_syms },
1870 		{ mod->gpl_syms, mod->num_gpl_syms },
1871 		{ mod->gpl_future_syms, mod->num_gpl_future_syms },
1872 #ifdef CONFIG_UNUSED_SYMBOLS
1873 		{ mod->unused_syms, mod->num_unused_syms },
1874 		{ mod->unused_gpl_syms, mod->num_unused_gpl_syms },
1875 #endif
1876 	};
1877 
1878 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
1879 		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1880 			if (find_symbol(s->name, &owner, NULL, true, false)) {
1881 				printk(KERN_ERR
1882 				       "%s: exports duplicate symbol %s"
1883 				       " (owned by %s)\n",
1884 				       mod->name, s->name, module_name(owner));
1885 				return -ENOEXEC;
1886 			}
1887 		}
1888 	}
1889 	return 0;
1890 }
1891 
1892 /* Change all symbols so that st_value encodes the pointer directly. */
simplify_symbols(struct module * mod,const struct load_info * info)1893 static int simplify_symbols(struct module *mod, const struct load_info *info)
1894 {
1895 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1896 	Elf_Sym *sym = (void *)symsec->sh_addr;
1897 	unsigned long secbase;
1898 	unsigned int i;
1899 	int ret = 0;
1900 	const struct kernel_symbol *ksym;
1901 
1902 	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1903 		const char *name = info->strtab + sym[i].st_name;
1904 
1905 		switch (sym[i].st_shndx) {
1906 		case SHN_COMMON:
1907 			/* We compiled with -fno-common.  These are not
1908 			   supposed to happen.  */
1909 			pr_debug("Common symbol: %s\n", name);
1910 			printk("%s: please compile with -fno-common\n",
1911 			       mod->name);
1912 			ret = -ENOEXEC;
1913 			break;
1914 
1915 		case SHN_ABS:
1916 			/* Don't need to do anything */
1917 			pr_debug("Absolute symbol: 0x%08lx\n",
1918 			       (long)sym[i].st_value);
1919 			break;
1920 
1921 		case SHN_UNDEF:
1922 			ksym = resolve_symbol_wait(mod, info, name);
1923 			/* Ok if resolved.  */
1924 			if (ksym && !IS_ERR(ksym)) {
1925 				sym[i].st_value = ksym->value;
1926 				break;
1927 			}
1928 
1929 			/* Ok if weak.  */
1930 			if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
1931 				break;
1932 
1933 			printk(KERN_WARNING "%s: Unknown symbol %s (err %li)\n",
1934 			       mod->name, name, PTR_ERR(ksym));
1935 			ret = PTR_ERR(ksym) ?: -ENOENT;
1936 			break;
1937 
1938 		default:
1939 			/* Divert to percpu allocation if a percpu var. */
1940 			if (sym[i].st_shndx == info->index.pcpu)
1941 				secbase = (unsigned long)mod_percpu(mod);
1942 			else
1943 				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1944 			sym[i].st_value += secbase;
1945 			break;
1946 		}
1947 	}
1948 
1949 	return ret;
1950 }
1951 
apply_relocate(Elf_Shdr * sechdrs,const char * strtab,unsigned int symindex,unsigned int relsec,struct module * me)1952 int __weak apply_relocate(Elf_Shdr *sechdrs,
1953 			  const char *strtab,
1954 			  unsigned int symindex,
1955 			  unsigned int relsec,
1956 			  struct module *me)
1957 {
1958 	pr_err("module %s: REL relocation unsupported\n", me->name);
1959 	return -ENOEXEC;
1960 }
1961 
apply_relocate_add(Elf_Shdr * sechdrs,const char * strtab,unsigned int symindex,unsigned int relsec,struct module * me)1962 int __weak apply_relocate_add(Elf_Shdr *sechdrs,
1963 			      const char *strtab,
1964 			      unsigned int symindex,
1965 			      unsigned int relsec,
1966 			      struct module *me)
1967 {
1968 	pr_err("module %s: RELA relocation unsupported\n", me->name);
1969 	return -ENOEXEC;
1970 }
1971 
apply_relocations(struct module * mod,const struct load_info * info)1972 static int apply_relocations(struct module *mod, const struct load_info *info)
1973 {
1974 	unsigned int i;
1975 	int err = 0;
1976 
1977 	/* Now do relocations. */
1978 	for (i = 1; i < info->hdr->e_shnum; i++) {
1979 		unsigned int infosec = info->sechdrs[i].sh_info;
1980 
1981 		/* Not a valid relocation section? */
1982 		if (infosec >= info->hdr->e_shnum)
1983 			continue;
1984 
1985 		/* Don't bother with non-allocated sections */
1986 		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
1987 			continue;
1988 
1989 		if (info->sechdrs[i].sh_type == SHT_REL)
1990 			err = apply_relocate(info->sechdrs, info->strtab,
1991 					     info->index.sym, i, mod);
1992 		else if (info->sechdrs[i].sh_type == SHT_RELA)
1993 			err = apply_relocate_add(info->sechdrs, info->strtab,
1994 						 info->index.sym, i, mod);
1995 		if (err < 0)
1996 			break;
1997 	}
1998 	return err;
1999 }
2000 
2001 /* Additional bytes needed by arch in front of individual sections */
arch_mod_section_prepend(struct module * mod,unsigned int section)2002 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2003 					     unsigned int section)
2004 {
2005 	/* default implementation just returns zero */
2006 	return 0;
2007 }
2008 
2009 /* Update size with this section: return offset. */
get_offset(struct module * mod,unsigned int * size,Elf_Shdr * sechdr,unsigned int section)2010 static long get_offset(struct module *mod, unsigned int *size,
2011 		       Elf_Shdr *sechdr, unsigned int section)
2012 {
2013 	long ret;
2014 
2015 	*size += arch_mod_section_prepend(mod, section);
2016 	ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2017 	*size = ret + sechdr->sh_size;
2018 	return ret;
2019 }
2020 
2021 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2022    might -- code, read-only data, read-write data, small data.  Tally
2023    sizes, and place the offsets into sh_entsize fields: high bit means it
2024    belongs in init. */
layout_sections(struct module * mod,struct load_info * info)2025 static void layout_sections(struct module *mod, struct load_info *info)
2026 {
2027 	static unsigned long const masks[][2] = {
2028 		/* NOTE: all executable code must be the first section
2029 		 * in this array; otherwise modify the text_size
2030 		 * finder in the two loops below */
2031 		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2032 		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2033 		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2034 		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2035 	};
2036 	unsigned int m, i;
2037 
2038 	for (i = 0; i < info->hdr->e_shnum; i++)
2039 		info->sechdrs[i].sh_entsize = ~0UL;
2040 
2041 	pr_debug("Core section allocation order:\n");
2042 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2043 		for (i = 0; i < info->hdr->e_shnum; ++i) {
2044 			Elf_Shdr *s = &info->sechdrs[i];
2045 			const char *sname = info->secstrings + s->sh_name;
2046 
2047 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2048 			    || (s->sh_flags & masks[m][1])
2049 			    || s->sh_entsize != ~0UL
2050 			    || strstarts(sname, ".init"))
2051 				continue;
2052 			s->sh_entsize = get_offset(mod, &mod->core_size, s, i);
2053 			pr_debug("\t%s\n", sname);
2054 		}
2055 		switch (m) {
2056 		case 0: /* executable */
2057 			mod->core_size = debug_align(mod->core_size);
2058 			mod->core_text_size = mod->core_size;
2059 			break;
2060 		case 1: /* RO: text and ro-data */
2061 			mod->core_size = debug_align(mod->core_size);
2062 			mod->core_ro_size = mod->core_size;
2063 			break;
2064 		case 3: /* whole core */
2065 			mod->core_size = debug_align(mod->core_size);
2066 			break;
2067 		}
2068 	}
2069 
2070 	pr_debug("Init section allocation order:\n");
2071 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2072 		for (i = 0; i < info->hdr->e_shnum; ++i) {
2073 			Elf_Shdr *s = &info->sechdrs[i];
2074 			const char *sname = info->secstrings + s->sh_name;
2075 
2076 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2077 			    || (s->sh_flags & masks[m][1])
2078 			    || s->sh_entsize != ~0UL
2079 			    || !strstarts(sname, ".init"))
2080 				continue;
2081 			s->sh_entsize = (get_offset(mod, &mod->init_size, s, i)
2082 					 | INIT_OFFSET_MASK);
2083 			pr_debug("\t%s\n", sname);
2084 		}
2085 		switch (m) {
2086 		case 0: /* executable */
2087 			mod->init_size = debug_align(mod->init_size);
2088 			mod->init_text_size = mod->init_size;
2089 			break;
2090 		case 1: /* RO: text and ro-data */
2091 			mod->init_size = debug_align(mod->init_size);
2092 			mod->init_ro_size = mod->init_size;
2093 			break;
2094 		case 3: /* whole init */
2095 			mod->init_size = debug_align(mod->init_size);
2096 			break;
2097 		}
2098 	}
2099 }
2100 
set_license(struct module * mod,const char * license)2101 static void set_license(struct module *mod, const char *license)
2102 {
2103 	if (!license)
2104 		license = "unspecified";
2105 
2106 	if (!license_is_gpl_compatible(license)) {
2107 		if (!test_taint(TAINT_PROPRIETARY_MODULE))
2108 			printk(KERN_WARNING "%s: module license '%s' taints "
2109 				"kernel.\n", mod->name, license);
2110 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE);
2111 	}
2112 }
2113 
2114 /* Parse tag=value strings from .modinfo section */
next_string(char * string,unsigned long * secsize)2115 static char *next_string(char *string, unsigned long *secsize)
2116 {
2117 	/* Skip non-zero chars */
2118 	while (string[0]) {
2119 		string++;
2120 		if ((*secsize)-- <= 1)
2121 			return NULL;
2122 	}
2123 
2124 	/* Skip any zero padding. */
2125 	while (!string[0]) {
2126 		string++;
2127 		if ((*secsize)-- <= 1)
2128 			return NULL;
2129 	}
2130 	return string;
2131 }
2132 
get_modinfo(struct load_info * info,const char * tag)2133 static char *get_modinfo(struct load_info *info, const char *tag)
2134 {
2135 	char *p;
2136 	unsigned int taglen = strlen(tag);
2137 	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2138 	unsigned long size = infosec->sh_size;
2139 
2140 	for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
2141 		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2142 			return p + taglen + 1;
2143 	}
2144 	return NULL;
2145 }
2146 
setup_modinfo(struct module * mod,struct load_info * info)2147 static void setup_modinfo(struct module *mod, struct load_info *info)
2148 {
2149 	struct module_attribute *attr;
2150 	int i;
2151 
2152 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2153 		if (attr->setup)
2154 			attr->setup(mod, get_modinfo(info, attr->attr.name));
2155 	}
2156 }
2157 
free_modinfo(struct module * mod)2158 static void free_modinfo(struct module *mod)
2159 {
2160 	struct module_attribute *attr;
2161 	int i;
2162 
2163 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2164 		if (attr->free)
2165 			attr->free(mod);
2166 	}
2167 }
2168 
2169 #ifdef CONFIG_KALLSYMS
2170 
2171 /* lookup symbol in given range of kernel_symbols */
lookup_symbol(const char * name,const struct kernel_symbol * start,const struct kernel_symbol * stop)2172 static const struct kernel_symbol *lookup_symbol(const char *name,
2173 	const struct kernel_symbol *start,
2174 	const struct kernel_symbol *stop)
2175 {
2176 	return bsearch(name, start, stop - start,
2177 			sizeof(struct kernel_symbol), cmp_name);
2178 }
2179 
is_exported(const char * name,unsigned long value,const struct module * mod)2180 static int is_exported(const char *name, unsigned long value,
2181 		       const struct module *mod)
2182 {
2183 	const struct kernel_symbol *ks;
2184 	if (!mod)
2185 		ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2186 	else
2187 		ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2188 	return ks != NULL && ks->value == value;
2189 }
2190 
2191 /* As per nm */
elf_type(const Elf_Sym * sym,const struct load_info * info)2192 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2193 {
2194 	const Elf_Shdr *sechdrs = info->sechdrs;
2195 
2196 	if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2197 		if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2198 			return 'v';
2199 		else
2200 			return 'w';
2201 	}
2202 	if (sym->st_shndx == SHN_UNDEF)
2203 		return 'U';
2204 	if (sym->st_shndx == SHN_ABS)
2205 		return 'a';
2206 	if (sym->st_shndx >= SHN_LORESERVE)
2207 		return '?';
2208 	if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2209 		return 't';
2210 	if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2211 	    && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2212 		if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2213 			return 'r';
2214 		else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2215 			return 'g';
2216 		else
2217 			return 'd';
2218 	}
2219 	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2220 		if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2221 			return 's';
2222 		else
2223 			return 'b';
2224 	}
2225 	if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2226 		      ".debug")) {
2227 		return 'n';
2228 	}
2229 	return '?';
2230 }
2231 
is_core_symbol(const Elf_Sym * src,const Elf_Shdr * sechdrs,unsigned int shnum)2232 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2233                            unsigned int shnum)
2234 {
2235 	const Elf_Shdr *sec;
2236 
2237 	if (src->st_shndx == SHN_UNDEF
2238 	    || src->st_shndx >= shnum
2239 	    || !src->st_name)
2240 		return false;
2241 
2242 	sec = sechdrs + src->st_shndx;
2243 	if (!(sec->sh_flags & SHF_ALLOC)
2244 #ifndef CONFIG_KALLSYMS_ALL
2245 	    || !(sec->sh_flags & SHF_EXECINSTR)
2246 #endif
2247 	    || (sec->sh_entsize & INIT_OFFSET_MASK))
2248 		return false;
2249 
2250 	return true;
2251 }
2252 
2253 /*
2254  * We only allocate and copy the strings needed by the parts of symtab
2255  * we keep.  This is simple, but has the effect of making multiple
2256  * copies of duplicates.  We could be more sophisticated, see
2257  * linux-kernel thread starting with
2258  * <73defb5e4bca04a6431392cc341112b1@localhost>.
2259  */
layout_symtab(struct module * mod,struct load_info * info)2260 static void layout_symtab(struct module *mod, struct load_info *info)
2261 {
2262 	Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2263 	Elf_Shdr *strsect = info->sechdrs + info->index.str;
2264 	const Elf_Sym *src;
2265 	unsigned int i, nsrc, ndst, strtab_size;
2266 
2267 	/* Put symbol section at end of init part of module. */
2268 	symsect->sh_flags |= SHF_ALLOC;
2269 	symsect->sh_entsize = get_offset(mod, &mod->init_size, symsect,
2270 					 info->index.sym) | INIT_OFFSET_MASK;
2271 	pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2272 
2273 	src = (void *)info->hdr + symsect->sh_offset;
2274 	nsrc = symsect->sh_size / sizeof(*src);
2275 
2276 	/* strtab always starts with a nul, so offset 0 is the empty string. */
2277 	strtab_size = 1;
2278 
2279 	/* Compute total space required for the core symbols' strtab. */
2280 	for (ndst = i = 0; i < nsrc; i++) {
2281 		if (i == 0 ||
2282 		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum)) {
2283 			strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2284 			ndst++;
2285 		}
2286 	}
2287 
2288 	/* Append room for core symbols at end of core part. */
2289 	info->symoffs = ALIGN(mod->core_size, symsect->sh_addralign ?: 1);
2290 	info->stroffs = mod->core_size = info->symoffs + ndst * sizeof(Elf_Sym);
2291 	mod->core_size += strtab_size;
2292 
2293 	/* Put string table section at end of init part of module. */
2294 	strsect->sh_flags |= SHF_ALLOC;
2295 	strsect->sh_entsize = get_offset(mod, &mod->init_size, strsect,
2296 					 info->index.str) | INIT_OFFSET_MASK;
2297 	pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2298 }
2299 
add_kallsyms(struct module * mod,const struct load_info * info)2300 static void add_kallsyms(struct module *mod, const struct load_info *info)
2301 {
2302 	unsigned int i, ndst;
2303 	const Elf_Sym *src;
2304 	Elf_Sym *dst;
2305 	char *s;
2306 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2307 
2308 	mod->symtab = (void *)symsec->sh_addr;
2309 	mod->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2310 	/* Make sure we get permanent strtab: don't use info->strtab. */
2311 	mod->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2312 
2313 	/* Set types up while we still have access to sections. */
2314 	for (i = 0; i < mod->num_symtab; i++)
2315 		mod->symtab[i].st_info = elf_type(&mod->symtab[i], info);
2316 
2317 	mod->core_symtab = dst = mod->module_core + info->symoffs;
2318 	mod->core_strtab = s = mod->module_core + info->stroffs;
2319 	src = mod->symtab;
2320 	*s++ = 0;
2321 	for (ndst = i = 0; i < mod->num_symtab; i++) {
2322 		if (i == 0 ||
2323 		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum)) {
2324 			dst[ndst] = src[i];
2325 			dst[ndst++].st_name = s - mod->core_strtab;
2326 			s += strlcpy(s, &mod->strtab[src[i].st_name],
2327 				     KSYM_NAME_LEN) + 1;
2328 		}
2329 	}
2330 	mod->core_num_syms = ndst;
2331 }
2332 #else
layout_symtab(struct module * mod,struct load_info * info)2333 static inline void layout_symtab(struct module *mod, struct load_info *info)
2334 {
2335 }
2336 
add_kallsyms(struct module * mod,const struct load_info * info)2337 static void add_kallsyms(struct module *mod, const struct load_info *info)
2338 {
2339 }
2340 #endif /* CONFIG_KALLSYMS */
2341 
dynamic_debug_setup(struct _ddebug * debug,unsigned int num)2342 static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
2343 {
2344 	if (!debug)
2345 		return;
2346 #ifdef CONFIG_DYNAMIC_DEBUG
2347 	if (ddebug_add_module(debug, num, debug->modname))
2348 		printk(KERN_ERR "dynamic debug error adding module: %s\n",
2349 					debug->modname);
2350 #endif
2351 }
2352 
dynamic_debug_remove(struct _ddebug * debug)2353 static void dynamic_debug_remove(struct _ddebug *debug)
2354 {
2355 	if (debug)
2356 		ddebug_remove_module(debug->modname);
2357 }
2358 
module_alloc(unsigned long size)2359 void * __weak module_alloc(unsigned long size)
2360 {
2361 	return size == 0 ? NULL : vmalloc_exec(size);
2362 }
2363 
module_alloc_update_bounds(unsigned long size)2364 static void *module_alloc_update_bounds(unsigned long size)
2365 {
2366 	void *ret = module_alloc(size);
2367 
2368 	if (ret) {
2369 		mutex_lock(&module_mutex);
2370 		/* Update module bounds. */
2371 		if ((unsigned long)ret < module_addr_min)
2372 			module_addr_min = (unsigned long)ret;
2373 		if ((unsigned long)ret + size > module_addr_max)
2374 			module_addr_max = (unsigned long)ret + size;
2375 		mutex_unlock(&module_mutex);
2376 	}
2377 	return ret;
2378 }
2379 
2380 #ifdef CONFIG_DEBUG_KMEMLEAK
kmemleak_load_module(const struct module * mod,const struct load_info * info)2381 static void kmemleak_load_module(const struct module *mod,
2382 				 const struct load_info *info)
2383 {
2384 	unsigned int i;
2385 
2386 	/* only scan the sections containing data */
2387 	kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2388 
2389 	for (i = 1; i < info->hdr->e_shnum; i++) {
2390 		const char *name = info->secstrings + info->sechdrs[i].sh_name;
2391 		if (!(info->sechdrs[i].sh_flags & SHF_ALLOC))
2392 			continue;
2393 		if (!strstarts(name, ".data") && !strstarts(name, ".bss"))
2394 			continue;
2395 
2396 		kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2397 				   info->sechdrs[i].sh_size, GFP_KERNEL);
2398 	}
2399 }
2400 #else
kmemleak_load_module(const struct module * mod,const struct load_info * info)2401 static inline void kmemleak_load_module(const struct module *mod,
2402 					const struct load_info *info)
2403 {
2404 }
2405 #endif
2406 
2407 /* Sets info->hdr and info->len. */
copy_and_check(struct load_info * info,const void __user * umod,unsigned long len,const char __user * uargs)2408 static int copy_and_check(struct load_info *info,
2409 			  const void __user *umod, unsigned long len,
2410 			  const char __user *uargs)
2411 {
2412 	int err;
2413 	Elf_Ehdr *hdr;
2414 
2415 	if (len < sizeof(*hdr))
2416 		return -ENOEXEC;
2417 
2418 	/* Suck in entire file: we'll want most of it. */
2419 	if ((hdr = vmalloc(len)) == NULL)
2420 		return -ENOMEM;
2421 
2422 	if (copy_from_user(hdr, umod, len) != 0) {
2423 		err = -EFAULT;
2424 		goto free_hdr;
2425 	}
2426 
2427 	/* Sanity checks against insmoding binaries or wrong arch,
2428 	   weird elf version */
2429 	if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0
2430 	    || hdr->e_type != ET_REL
2431 	    || !elf_check_arch(hdr)
2432 	    || hdr->e_shentsize != sizeof(Elf_Shdr)) {
2433 		err = -ENOEXEC;
2434 		goto free_hdr;
2435 	}
2436 
2437 	if (len < hdr->e_shoff + hdr->e_shnum * sizeof(Elf_Shdr)) {
2438 		err = -ENOEXEC;
2439 		goto free_hdr;
2440 	}
2441 
2442 	info->hdr = hdr;
2443 	info->len = len;
2444 	return 0;
2445 
2446 free_hdr:
2447 	vfree(hdr);
2448 	return err;
2449 }
2450 
free_copy(struct load_info * info)2451 static void free_copy(struct load_info *info)
2452 {
2453 	vfree(info->hdr);
2454 }
2455 
rewrite_section_headers(struct load_info * info)2456 static int rewrite_section_headers(struct load_info *info)
2457 {
2458 	unsigned int i;
2459 
2460 	/* This should always be true, but let's be sure. */
2461 	info->sechdrs[0].sh_addr = 0;
2462 
2463 	for (i = 1; i < info->hdr->e_shnum; i++) {
2464 		Elf_Shdr *shdr = &info->sechdrs[i];
2465 		if (shdr->sh_type != SHT_NOBITS
2466 		    && info->len < shdr->sh_offset + shdr->sh_size) {
2467 			printk(KERN_ERR "Module len %lu truncated\n",
2468 			       info->len);
2469 			return -ENOEXEC;
2470 		}
2471 
2472 		/* Mark all sections sh_addr with their address in the
2473 		   temporary image. */
2474 		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2475 
2476 #ifndef CONFIG_MODULE_UNLOAD
2477 		/* Don't load .exit sections */
2478 		if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2479 			shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2480 #endif
2481 	}
2482 
2483 	/* Track but don't keep modinfo and version sections. */
2484 	info->index.vers = find_sec(info, "__versions");
2485 	info->index.info = find_sec(info, ".modinfo");
2486 	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2487 	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2488 	return 0;
2489 }
2490 
2491 /*
2492  * Set up our basic convenience variables (pointers to section headers,
2493  * search for module section index etc), and do some basic section
2494  * verification.
2495  *
2496  * Return the temporary module pointer (we'll replace it with the final
2497  * one when we move the module sections around).
2498  */
setup_load_info(struct load_info * info)2499 static struct module *setup_load_info(struct load_info *info)
2500 {
2501 	unsigned int i;
2502 	int err;
2503 	struct module *mod;
2504 
2505 	/* Set up the convenience variables */
2506 	info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2507 	info->secstrings = (void *)info->hdr
2508 		+ info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2509 
2510 	err = rewrite_section_headers(info);
2511 	if (err)
2512 		return ERR_PTR(err);
2513 
2514 	/* Find internal symbols and strings. */
2515 	for (i = 1; i < info->hdr->e_shnum; i++) {
2516 		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2517 			info->index.sym = i;
2518 			info->index.str = info->sechdrs[i].sh_link;
2519 			info->strtab = (char *)info->hdr
2520 				+ info->sechdrs[info->index.str].sh_offset;
2521 			break;
2522 		}
2523 	}
2524 
2525 	info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2526 	if (!info->index.mod) {
2527 		printk(KERN_WARNING "No module found in object\n");
2528 		return ERR_PTR(-ENOEXEC);
2529 	}
2530 	/* This is temporary: point mod into copy of data. */
2531 	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2532 
2533 	if (info->index.sym == 0) {
2534 		printk(KERN_WARNING "%s: module has no symbols (stripped?)\n",
2535 		       mod->name);
2536 		return ERR_PTR(-ENOEXEC);
2537 	}
2538 
2539 	info->index.pcpu = find_pcpusec(info);
2540 
2541 	/* Check module struct version now, before we try to use module. */
2542 	if (!check_modstruct_version(info->sechdrs, info->index.vers, mod))
2543 		return ERR_PTR(-ENOEXEC);
2544 
2545 	return mod;
2546 }
2547 
check_modinfo(struct module * mod,struct load_info * info)2548 static int check_modinfo(struct module *mod, struct load_info *info)
2549 {
2550 	const char *modmagic = get_modinfo(info, "vermagic");
2551 	int err;
2552 
2553 	/* This is allowed: modprobe --force will invalidate it. */
2554 	if (!modmagic) {
2555 		err = try_to_force_load(mod, "bad vermagic");
2556 		if (err)
2557 			return err;
2558 	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2559 		printk(KERN_ERR "%s: version magic '%s' should be '%s'\n",
2560 		       mod->name, modmagic, vermagic);
2561 		return -ENOEXEC;
2562 	}
2563 
2564 	if (!get_modinfo(info, "intree"))
2565 		add_taint_module(mod, TAINT_OOT_MODULE);
2566 
2567 	if (get_modinfo(info, "staging")) {
2568 		add_taint_module(mod, TAINT_CRAP);
2569 		printk(KERN_WARNING "%s: module is from the staging directory,"
2570 		       " the quality is unknown, you have been warned.\n",
2571 		       mod->name);
2572 	}
2573 
2574 	/* Set up license info based on the info section */
2575 	set_license(mod, get_modinfo(info, "license"));
2576 
2577 	return 0;
2578 }
2579 
find_module_sections(struct module * mod,struct load_info * info)2580 static void find_module_sections(struct module *mod, struct load_info *info)
2581 {
2582 	mod->kp = section_objs(info, "__param",
2583 			       sizeof(*mod->kp), &mod->num_kp);
2584 	mod->syms = section_objs(info, "__ksymtab",
2585 				 sizeof(*mod->syms), &mod->num_syms);
2586 	mod->crcs = section_addr(info, "__kcrctab");
2587 	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2588 				     sizeof(*mod->gpl_syms),
2589 				     &mod->num_gpl_syms);
2590 	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2591 	mod->gpl_future_syms = section_objs(info,
2592 					    "__ksymtab_gpl_future",
2593 					    sizeof(*mod->gpl_future_syms),
2594 					    &mod->num_gpl_future_syms);
2595 	mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
2596 
2597 #ifdef CONFIG_UNUSED_SYMBOLS
2598 	mod->unused_syms = section_objs(info, "__ksymtab_unused",
2599 					sizeof(*mod->unused_syms),
2600 					&mod->num_unused_syms);
2601 	mod->unused_crcs = section_addr(info, "__kcrctab_unused");
2602 	mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
2603 					    sizeof(*mod->unused_gpl_syms),
2604 					    &mod->num_unused_gpl_syms);
2605 	mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
2606 #endif
2607 #ifdef CONFIG_CONSTRUCTORS
2608 	mod->ctors = section_objs(info, ".ctors",
2609 				  sizeof(*mod->ctors), &mod->num_ctors);
2610 #endif
2611 
2612 #ifdef CONFIG_TRACEPOINTS
2613 	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2614 					     sizeof(*mod->tracepoints_ptrs),
2615 					     &mod->num_tracepoints);
2616 #endif
2617 #ifdef HAVE_JUMP_LABEL
2618 	mod->jump_entries = section_objs(info, "__jump_table",
2619 					sizeof(*mod->jump_entries),
2620 					&mod->num_jump_entries);
2621 #endif
2622 #ifdef CONFIG_EVENT_TRACING
2623 	mod->trace_events = section_objs(info, "_ftrace_events",
2624 					 sizeof(*mod->trace_events),
2625 					 &mod->num_trace_events);
2626 	/*
2627 	 * This section contains pointers to allocated objects in the trace
2628 	 * code and not scanning it leads to false positives.
2629 	 */
2630 	kmemleak_scan_area(mod->trace_events, sizeof(*mod->trace_events) *
2631 			   mod->num_trace_events, GFP_KERNEL);
2632 #endif
2633 #ifdef CONFIG_TRACING
2634 	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2635 					 sizeof(*mod->trace_bprintk_fmt_start),
2636 					 &mod->num_trace_bprintk_fmt);
2637 	/*
2638 	 * This section contains pointers to allocated objects in the trace
2639 	 * code and not scanning it leads to false positives.
2640 	 */
2641 	kmemleak_scan_area(mod->trace_bprintk_fmt_start,
2642 			   sizeof(*mod->trace_bprintk_fmt_start) *
2643 			   mod->num_trace_bprintk_fmt, GFP_KERNEL);
2644 #endif
2645 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2646 	/* sechdrs[0].sh_size is always zero */
2647 	mod->ftrace_callsites = section_objs(info, "__mcount_loc",
2648 					     sizeof(*mod->ftrace_callsites),
2649 					     &mod->num_ftrace_callsites);
2650 #endif
2651 
2652 	mod->extable = section_objs(info, "__ex_table",
2653 				    sizeof(*mod->extable), &mod->num_exentries);
2654 
2655 	if (section_addr(info, "__obsparm"))
2656 		printk(KERN_WARNING "%s: Ignoring obsolete parameters\n",
2657 		       mod->name);
2658 
2659 	info->debug = section_objs(info, "__verbose",
2660 				   sizeof(*info->debug), &info->num_debug);
2661 }
2662 
move_module(struct module * mod,struct load_info * info)2663 static int move_module(struct module *mod, struct load_info *info)
2664 {
2665 	int i;
2666 	void *ptr;
2667 
2668 	/* Do the allocs. */
2669 	ptr = module_alloc_update_bounds(mod->core_size);
2670 	/*
2671 	 * The pointer to this block is stored in the module structure
2672 	 * which is inside the block. Just mark it as not being a
2673 	 * leak.
2674 	 */
2675 	kmemleak_not_leak(ptr);
2676 	if (!ptr)
2677 		return -ENOMEM;
2678 
2679 	memset(ptr, 0, mod->core_size);
2680 	mod->module_core = ptr;
2681 
2682 	ptr = module_alloc_update_bounds(mod->init_size);
2683 	/*
2684 	 * The pointer to this block is stored in the module structure
2685 	 * which is inside the block. This block doesn't need to be
2686 	 * scanned as it contains data and code that will be freed
2687 	 * after the module is initialized.
2688 	 */
2689 	kmemleak_ignore(ptr);
2690 	if (!ptr && mod->init_size) {
2691 		module_free(mod, mod->module_core);
2692 		return -ENOMEM;
2693 	}
2694 	memset(ptr, 0, mod->init_size);
2695 	mod->module_init = ptr;
2696 
2697 	/* Transfer each section which specifies SHF_ALLOC */
2698 	pr_debug("final section addresses:\n");
2699 	for (i = 0; i < info->hdr->e_shnum; i++) {
2700 		void *dest;
2701 		Elf_Shdr *shdr = &info->sechdrs[i];
2702 
2703 		if (!(shdr->sh_flags & SHF_ALLOC))
2704 			continue;
2705 
2706 		if (shdr->sh_entsize & INIT_OFFSET_MASK)
2707 			dest = mod->module_init
2708 				+ (shdr->sh_entsize & ~INIT_OFFSET_MASK);
2709 		else
2710 			dest = mod->module_core + shdr->sh_entsize;
2711 
2712 		if (shdr->sh_type != SHT_NOBITS)
2713 			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2714 		/* Update sh_addr to point to copy in image. */
2715 		shdr->sh_addr = (unsigned long)dest;
2716 		pr_debug("\t0x%lx %s\n",
2717 			 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
2718 	}
2719 
2720 	return 0;
2721 }
2722 
check_module_license_and_versions(struct module * mod)2723 static int check_module_license_and_versions(struct module *mod)
2724 {
2725 	/*
2726 	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2727 	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2728 	 * using GPL-only symbols it needs.
2729 	 */
2730 	if (strcmp(mod->name, "ndiswrapper") == 0)
2731 		add_taint(TAINT_PROPRIETARY_MODULE);
2732 
2733 	/* driverloader was caught wrongly pretending to be under GPL */
2734 	if (strcmp(mod->name, "driverloader") == 0)
2735 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE);
2736 
2737 	/* lve claims to be GPL but upstream won't provide source */
2738 	if (strcmp(mod->name, "lve") == 0)
2739 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE);
2740 
2741 #ifdef CONFIG_MODVERSIONS
2742 	if ((mod->num_syms && !mod->crcs)
2743 	    || (mod->num_gpl_syms && !mod->gpl_crcs)
2744 	    || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
2745 #ifdef CONFIG_UNUSED_SYMBOLS
2746 	    || (mod->num_unused_syms && !mod->unused_crcs)
2747 	    || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
2748 #endif
2749 		) {
2750 		return try_to_force_load(mod,
2751 					 "no versions for exported symbols");
2752 	}
2753 #endif
2754 	return 0;
2755 }
2756 
flush_module_icache(const struct module * mod)2757 static void flush_module_icache(const struct module *mod)
2758 {
2759 	mm_segment_t old_fs;
2760 
2761 	/* flush the icache in correct context */
2762 	old_fs = get_fs();
2763 	set_fs(KERNEL_DS);
2764 
2765 	/*
2766 	 * Flush the instruction cache, since we've played with text.
2767 	 * Do it before processing of module parameters, so the module
2768 	 * can provide parameter accessor functions of its own.
2769 	 */
2770 	if (mod->module_init)
2771 		flush_icache_range((unsigned long)mod->module_init,
2772 				   (unsigned long)mod->module_init
2773 				   + mod->init_size);
2774 	flush_icache_range((unsigned long)mod->module_core,
2775 			   (unsigned long)mod->module_core + mod->core_size);
2776 
2777 	set_fs(old_fs);
2778 }
2779 
module_frob_arch_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)2780 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2781 				     Elf_Shdr *sechdrs,
2782 				     char *secstrings,
2783 				     struct module *mod)
2784 {
2785 	return 0;
2786 }
2787 
layout_and_allocate(struct load_info * info)2788 static struct module *layout_and_allocate(struct load_info *info)
2789 {
2790 	/* Module within temporary copy. */
2791 	struct module *mod;
2792 	Elf_Shdr *pcpusec;
2793 	int err;
2794 
2795 	mod = setup_load_info(info);
2796 	if (IS_ERR(mod))
2797 		return mod;
2798 
2799 	err = check_modinfo(mod, info);
2800 	if (err)
2801 		return ERR_PTR(err);
2802 
2803 	/* Allow arches to frob section contents and sizes.  */
2804 	err = module_frob_arch_sections(info->hdr, info->sechdrs,
2805 					info->secstrings, mod);
2806 	if (err < 0)
2807 		goto out;
2808 
2809 	pcpusec = &info->sechdrs[info->index.pcpu];
2810 	if (pcpusec->sh_size) {
2811 		/* We have a special allocation for this section. */
2812 		err = percpu_modalloc(mod,
2813 				      pcpusec->sh_size, pcpusec->sh_addralign);
2814 		if (err)
2815 			goto out;
2816 		pcpusec->sh_flags &= ~(unsigned long)SHF_ALLOC;
2817 	}
2818 
2819 	/* Determine total sizes, and put offsets in sh_entsize.  For now
2820 	   this is done generically; there doesn't appear to be any
2821 	   special cases for the architectures. */
2822 	layout_sections(mod, info);
2823 	layout_symtab(mod, info);
2824 
2825 	/* Allocate and move to the final place */
2826 	err = move_module(mod, info);
2827 	if (err)
2828 		goto free_percpu;
2829 
2830 	/* Module has been copied to its final place now: return it. */
2831 	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2832 	kmemleak_load_module(mod, info);
2833 	return mod;
2834 
2835 free_percpu:
2836 	percpu_modfree(mod);
2837 out:
2838 	return ERR_PTR(err);
2839 }
2840 
2841 /* mod is no longer valid after this! */
module_deallocate(struct module * mod,struct load_info * info)2842 static void module_deallocate(struct module *mod, struct load_info *info)
2843 {
2844 	percpu_modfree(mod);
2845 	module_free(mod, mod->module_init);
2846 	module_free(mod, mod->module_core);
2847 }
2848 
module_finalize(const Elf_Ehdr * hdr,const Elf_Shdr * sechdrs,struct module * me)2849 int __weak module_finalize(const Elf_Ehdr *hdr,
2850 			   const Elf_Shdr *sechdrs,
2851 			   struct module *me)
2852 {
2853 	return 0;
2854 }
2855 
post_relocation(struct module * mod,const struct load_info * info)2856 static int post_relocation(struct module *mod, const struct load_info *info)
2857 {
2858 	/* Sort exception table now relocations are done. */
2859 	sort_extable(mod->extable, mod->extable + mod->num_exentries);
2860 
2861 	/* Copy relocated percpu area over. */
2862 	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2863 		       info->sechdrs[info->index.pcpu].sh_size);
2864 
2865 	/* Setup kallsyms-specific fields. */
2866 	add_kallsyms(mod, info);
2867 
2868 	/* Arch-specific module finalizing. */
2869 	return module_finalize(info->hdr, info->sechdrs, mod);
2870 }
2871 
2872 /* Allocate and load the module: note that size of section 0 is always
2873    zero, and we rely on this for optional sections. */
load_module(void __user * umod,unsigned long len,const char __user * uargs)2874 static struct module *load_module(void __user *umod,
2875 				  unsigned long len,
2876 				  const char __user *uargs)
2877 {
2878 	struct load_info info = { NULL, };
2879 	struct module *mod;
2880 	long err;
2881 
2882 	pr_debug("load_module: umod=%p, len=%lu, uargs=%p\n",
2883 	       umod, len, uargs);
2884 
2885 	/* Copy in the blobs from userspace, check they are vaguely sane. */
2886 	err = copy_and_check(&info, umod, len, uargs);
2887 	if (err)
2888 		return ERR_PTR(err);
2889 
2890 	/* Figure out module layout, and allocate all the memory. */
2891 	mod = layout_and_allocate(&info);
2892 	if (IS_ERR(mod)) {
2893 		err = PTR_ERR(mod);
2894 		goto free_copy;
2895 	}
2896 
2897 	/* Now module is in final location, initialize linked lists, etc. */
2898 	err = module_unload_init(mod);
2899 	if (err)
2900 		goto free_module;
2901 
2902 	/* Now we've got everything in the final locations, we can
2903 	 * find optional sections. */
2904 	find_module_sections(mod, &info);
2905 
2906 	err = check_module_license_and_versions(mod);
2907 	if (err)
2908 		goto free_unload;
2909 
2910 	/* Set up MODINFO_ATTR fields */
2911 	setup_modinfo(mod, &info);
2912 
2913 	/* Fix up syms, so that st_value is a pointer to location. */
2914 	err = simplify_symbols(mod, &info);
2915 	if (err < 0)
2916 		goto free_modinfo;
2917 
2918 	err = apply_relocations(mod, &info);
2919 	if (err < 0)
2920 		goto free_modinfo;
2921 
2922 	err = post_relocation(mod, &info);
2923 	if (err < 0)
2924 		goto free_modinfo;
2925 
2926 	flush_module_icache(mod);
2927 
2928 	/* Now copy in args */
2929 	mod->args = strndup_user(uargs, ~0UL >> 1);
2930 	if (IS_ERR(mod->args)) {
2931 		err = PTR_ERR(mod->args);
2932 		goto free_arch_cleanup;
2933 	}
2934 
2935 	/* Mark state as coming so strong_try_module_get() ignores us. */
2936 	mod->state = MODULE_STATE_COMING;
2937 
2938 	/* Now sew it into the lists so we can get lockdep and oops
2939 	 * info during argument parsing.  No one should access us, since
2940 	 * strong_try_module_get() will fail.
2941 	 * lockdep/oops can run asynchronous, so use the RCU list insertion
2942 	 * function to insert in a way safe to concurrent readers.
2943 	 * The mutex protects against concurrent writers.
2944 	 */
2945 	mutex_lock(&module_mutex);
2946 	if (find_module(mod->name)) {
2947 		err = -EEXIST;
2948 		goto unlock;
2949 	}
2950 
2951 	/* This has to be done once we're sure module name is unique. */
2952 	dynamic_debug_setup(info.debug, info.num_debug);
2953 
2954 	/* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
2955 	ftrace_module_init(mod);
2956 
2957 	/* Find duplicate symbols */
2958 	err = verify_export_symbols(mod);
2959 	if (err < 0)
2960 		goto ddebug;
2961 
2962 	module_bug_finalize(info.hdr, info.sechdrs, mod);
2963 	list_add_rcu(&mod->list, &modules);
2964 	mutex_unlock(&module_mutex);
2965 
2966 	/* Module is ready to execute: parsing args may do that. */
2967 	err = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
2968 			 -32768, 32767, NULL);
2969 	if (err < 0)
2970 		goto unlink;
2971 
2972 	/* Link in to syfs. */
2973 	err = mod_sysfs_setup(mod, &info, mod->kp, mod->num_kp);
2974 	if (err < 0)
2975 		goto unlink;
2976 
2977 	/* Get rid of temporary copy. */
2978 	free_copy(&info);
2979 
2980 	/* Done! */
2981 	trace_module_load(mod);
2982 	return mod;
2983 
2984  unlink:
2985 	mutex_lock(&module_mutex);
2986 	/* Unlink carefully: kallsyms could be walking list. */
2987 	list_del_rcu(&mod->list);
2988 	module_bug_cleanup(mod);
2989 
2990  ddebug:
2991 	dynamic_debug_remove(info.debug);
2992  unlock:
2993 	mutex_unlock(&module_mutex);
2994 	synchronize_sched();
2995 	kfree(mod->args);
2996  free_arch_cleanup:
2997 	module_arch_cleanup(mod);
2998  free_modinfo:
2999 	free_modinfo(mod);
3000  free_unload:
3001 	module_unload_free(mod);
3002  free_module:
3003 	module_deallocate(mod, &info);
3004  free_copy:
3005 	free_copy(&info);
3006 	return ERR_PTR(err);
3007 }
3008 
3009 /* Call module constructors. */
do_mod_ctors(struct module * mod)3010 static void do_mod_ctors(struct module *mod)
3011 {
3012 #ifdef CONFIG_CONSTRUCTORS
3013 	unsigned long i;
3014 
3015 	for (i = 0; i < mod->num_ctors; i++)
3016 		mod->ctors[i]();
3017 #endif
3018 }
3019 
3020 /* This is where the real work happens */
SYSCALL_DEFINE3(init_module,void __user *,umod,unsigned long,len,const char __user *,uargs)3021 SYSCALL_DEFINE3(init_module, void __user *, umod,
3022 		unsigned long, len, const char __user *, uargs)
3023 {
3024 	struct module *mod;
3025 	int ret = 0;
3026 
3027 	/* Must have permission */
3028 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
3029 		return -EPERM;
3030 
3031 	/* Do all the hard work */
3032 	mod = load_module(umod, len, uargs);
3033 	if (IS_ERR(mod))
3034 		return PTR_ERR(mod);
3035 
3036 	blocking_notifier_call_chain(&module_notify_list,
3037 			MODULE_STATE_COMING, mod);
3038 
3039 	/* Set RO and NX regions for core */
3040 	set_section_ro_nx(mod->module_core,
3041 				mod->core_text_size,
3042 				mod->core_ro_size,
3043 				mod->core_size);
3044 
3045 	/* Set RO and NX regions for init */
3046 	set_section_ro_nx(mod->module_init,
3047 				mod->init_text_size,
3048 				mod->init_ro_size,
3049 				mod->init_size);
3050 
3051 	do_mod_ctors(mod);
3052 	/* Start the module */
3053 	if (mod->init != NULL)
3054 		ret = do_one_initcall(mod->init);
3055 	if (ret < 0) {
3056 		/* Init routine failed: abort.  Try to protect us from
3057                    buggy refcounters. */
3058 		mod->state = MODULE_STATE_GOING;
3059 		synchronize_sched();
3060 		module_put(mod);
3061 		blocking_notifier_call_chain(&module_notify_list,
3062 					     MODULE_STATE_GOING, mod);
3063 		free_module(mod);
3064 		wake_up(&module_wq);
3065 		return ret;
3066 	}
3067 	if (ret > 0) {
3068 		printk(KERN_WARNING
3069 "%s: '%s'->init suspiciously returned %d, it should follow 0/-E convention\n"
3070 "%s: loading module anyway...\n",
3071 		       __func__, mod->name, ret,
3072 		       __func__);
3073 		dump_stack();
3074 	}
3075 
3076 	/* Now it's a first class citizen!  Wake up anyone waiting for it. */
3077 	mod->state = MODULE_STATE_LIVE;
3078 	wake_up(&module_wq);
3079 	blocking_notifier_call_chain(&module_notify_list,
3080 				     MODULE_STATE_LIVE, mod);
3081 
3082 	/* We need to finish all async code before the module init sequence is done */
3083 	async_synchronize_full();
3084 
3085 	mutex_lock(&module_mutex);
3086 	/* Drop initial reference. */
3087 	module_put(mod);
3088 	trim_init_extable(mod);
3089 #ifdef CONFIG_KALLSYMS
3090 	mod->num_symtab = mod->core_num_syms;
3091 	mod->symtab = mod->core_symtab;
3092 	mod->strtab = mod->core_strtab;
3093 #endif
3094 	unset_module_init_ro_nx(mod);
3095 	module_free(mod, mod->module_init);
3096 	mod->module_init = NULL;
3097 	mod->init_size = 0;
3098 	mod->init_ro_size = 0;
3099 	mod->init_text_size = 0;
3100 	mutex_unlock(&module_mutex);
3101 
3102 	return 0;
3103 }
3104 
within(unsigned long addr,void * start,unsigned long size)3105 static inline int within(unsigned long addr, void *start, unsigned long size)
3106 {
3107 	return ((void *)addr >= start && (void *)addr < start + size);
3108 }
3109 
3110 #ifdef CONFIG_KALLSYMS
3111 /*
3112  * This ignores the intensely annoying "mapping symbols" found
3113  * in ARM ELF files: $a, $t and $d.
3114  */
is_arm_mapping_symbol(const char * str)3115 static inline int is_arm_mapping_symbol(const char *str)
3116 {
3117 	return str[0] == '$' && strchr("atd", str[1])
3118 	       && (str[2] == '\0' || str[2] == '.');
3119 }
3120 
get_ksymbol(struct module * mod,unsigned long addr,unsigned long * size,unsigned long * offset)3121 static const char *get_ksymbol(struct module *mod,
3122 			       unsigned long addr,
3123 			       unsigned long *size,
3124 			       unsigned long *offset)
3125 {
3126 	unsigned int i, best = 0;
3127 	unsigned long nextval;
3128 
3129 	/* At worse, next value is at end of module */
3130 	if (within_module_init(addr, mod))
3131 		nextval = (unsigned long)mod->module_init+mod->init_text_size;
3132 	else
3133 		nextval = (unsigned long)mod->module_core+mod->core_text_size;
3134 
3135 	/* Scan for closest preceding symbol, and next symbol. (ELF
3136 	   starts real symbols at 1). */
3137 	for (i = 1; i < mod->num_symtab; i++) {
3138 		if (mod->symtab[i].st_shndx == SHN_UNDEF)
3139 			continue;
3140 
3141 		/* We ignore unnamed symbols: they're uninformative
3142 		 * and inserted at a whim. */
3143 		if (mod->symtab[i].st_value <= addr
3144 		    && mod->symtab[i].st_value > mod->symtab[best].st_value
3145 		    && *(mod->strtab + mod->symtab[i].st_name) != '\0'
3146 		    && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
3147 			best = i;
3148 		if (mod->symtab[i].st_value > addr
3149 		    && mod->symtab[i].st_value < nextval
3150 		    && *(mod->strtab + mod->symtab[i].st_name) != '\0'
3151 		    && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
3152 			nextval = mod->symtab[i].st_value;
3153 	}
3154 
3155 	if (!best)
3156 		return NULL;
3157 
3158 	if (size)
3159 		*size = nextval - mod->symtab[best].st_value;
3160 	if (offset)
3161 		*offset = addr - mod->symtab[best].st_value;
3162 	return mod->strtab + mod->symtab[best].st_name;
3163 }
3164 
3165 /* For kallsyms to ask for address resolution.  NULL means not found.  Careful
3166  * not to lock to avoid deadlock on oopses, simply disable preemption. */
module_address_lookup(unsigned long addr,unsigned long * size,unsigned long * offset,char ** modname,char * namebuf)3167 const char *module_address_lookup(unsigned long addr,
3168 			    unsigned long *size,
3169 			    unsigned long *offset,
3170 			    char **modname,
3171 			    char *namebuf)
3172 {
3173 	struct module *mod;
3174 	const char *ret = NULL;
3175 
3176 	preempt_disable();
3177 	list_for_each_entry_rcu(mod, &modules, list) {
3178 		if (within_module_init(addr, mod) ||
3179 		    within_module_core(addr, mod)) {
3180 			if (modname)
3181 				*modname = mod->name;
3182 			ret = get_ksymbol(mod, addr, size, offset);
3183 			break;
3184 		}
3185 	}
3186 	/* Make a copy in here where it's safe */
3187 	if (ret) {
3188 		strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3189 		ret = namebuf;
3190 	}
3191 	preempt_enable();
3192 	return ret;
3193 }
3194 
lookup_module_symbol_name(unsigned long addr,char * symname)3195 int lookup_module_symbol_name(unsigned long addr, char *symname)
3196 {
3197 	struct module *mod;
3198 
3199 	preempt_disable();
3200 	list_for_each_entry_rcu(mod, &modules, list) {
3201 		if (within_module_init(addr, mod) ||
3202 		    within_module_core(addr, mod)) {
3203 			const char *sym;
3204 
3205 			sym = get_ksymbol(mod, addr, NULL, NULL);
3206 			if (!sym)
3207 				goto out;
3208 			strlcpy(symname, sym, KSYM_NAME_LEN);
3209 			preempt_enable();
3210 			return 0;
3211 		}
3212 	}
3213 out:
3214 	preempt_enable();
3215 	return -ERANGE;
3216 }
3217 
lookup_module_symbol_attrs(unsigned long addr,unsigned long * size,unsigned long * offset,char * modname,char * name)3218 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
3219 			unsigned long *offset, char *modname, char *name)
3220 {
3221 	struct module *mod;
3222 
3223 	preempt_disable();
3224 	list_for_each_entry_rcu(mod, &modules, list) {
3225 		if (within_module_init(addr, mod) ||
3226 		    within_module_core(addr, mod)) {
3227 			const char *sym;
3228 
3229 			sym = get_ksymbol(mod, addr, size, offset);
3230 			if (!sym)
3231 				goto out;
3232 			if (modname)
3233 				strlcpy(modname, mod->name, MODULE_NAME_LEN);
3234 			if (name)
3235 				strlcpy(name, sym, KSYM_NAME_LEN);
3236 			preempt_enable();
3237 			return 0;
3238 		}
3239 	}
3240 out:
3241 	preempt_enable();
3242 	return -ERANGE;
3243 }
3244 
module_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * name,char * module_name,int * exported)3245 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
3246 			char *name, char *module_name, int *exported)
3247 {
3248 	struct module *mod;
3249 
3250 	preempt_disable();
3251 	list_for_each_entry_rcu(mod, &modules, list) {
3252 		if (symnum < mod->num_symtab) {
3253 			*value = mod->symtab[symnum].st_value;
3254 			*type = mod->symtab[symnum].st_info;
3255 			strlcpy(name, mod->strtab + mod->symtab[symnum].st_name,
3256 				KSYM_NAME_LEN);
3257 			strlcpy(module_name, mod->name, MODULE_NAME_LEN);
3258 			*exported = is_exported(name, *value, mod);
3259 			preempt_enable();
3260 			return 0;
3261 		}
3262 		symnum -= mod->num_symtab;
3263 	}
3264 	preempt_enable();
3265 	return -ERANGE;
3266 }
3267 
mod_find_symname(struct module * mod,const char * name)3268 static unsigned long mod_find_symname(struct module *mod, const char *name)
3269 {
3270 	unsigned int i;
3271 
3272 	for (i = 0; i < mod->num_symtab; i++)
3273 		if (strcmp(name, mod->strtab+mod->symtab[i].st_name) == 0 &&
3274 		    mod->symtab[i].st_info != 'U')
3275 			return mod->symtab[i].st_value;
3276 	return 0;
3277 }
3278 
3279 /* Look for this name: can be of form module:name. */
module_kallsyms_lookup_name(const char * name)3280 unsigned long module_kallsyms_lookup_name(const char *name)
3281 {
3282 	struct module *mod;
3283 	char *colon;
3284 	unsigned long ret = 0;
3285 
3286 	/* Don't lock: we're in enough trouble already. */
3287 	preempt_disable();
3288 	if ((colon = strchr(name, ':')) != NULL) {
3289 		*colon = '\0';
3290 		if ((mod = find_module(name)) != NULL)
3291 			ret = mod_find_symname(mod, colon+1);
3292 		*colon = ':';
3293 	} else {
3294 		list_for_each_entry_rcu(mod, &modules, list)
3295 			if ((ret = mod_find_symname(mod, name)) != 0)
3296 				break;
3297 	}
3298 	preempt_enable();
3299 	return ret;
3300 }
3301 
module_kallsyms_on_each_symbol(int (* fn)(void *,const char *,struct module *,unsigned long),void * data)3302 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
3303 					     struct module *, unsigned long),
3304 				   void *data)
3305 {
3306 	struct module *mod;
3307 	unsigned int i;
3308 	int ret;
3309 
3310 	list_for_each_entry(mod, &modules, list) {
3311 		for (i = 0; i < mod->num_symtab; i++) {
3312 			ret = fn(data, mod->strtab + mod->symtab[i].st_name,
3313 				 mod, mod->symtab[i].st_value);
3314 			if (ret != 0)
3315 				return ret;
3316 		}
3317 	}
3318 	return 0;
3319 }
3320 #endif /* CONFIG_KALLSYMS */
3321 
module_flags(struct module * mod,char * buf)3322 static char *module_flags(struct module *mod, char *buf)
3323 {
3324 	int bx = 0;
3325 
3326 	if (mod->taints ||
3327 	    mod->state == MODULE_STATE_GOING ||
3328 	    mod->state == MODULE_STATE_COMING) {
3329 		buf[bx++] = '(';
3330 		bx += module_flags_taint(mod, buf + bx);
3331 		/* Show a - for module-is-being-unloaded */
3332 		if (mod->state == MODULE_STATE_GOING)
3333 			buf[bx++] = '-';
3334 		/* Show a + for module-is-being-loaded */
3335 		if (mod->state == MODULE_STATE_COMING)
3336 			buf[bx++] = '+';
3337 		buf[bx++] = ')';
3338 	}
3339 	buf[bx] = '\0';
3340 
3341 	return buf;
3342 }
3343 
3344 #ifdef CONFIG_PROC_FS
3345 /* Called by the /proc file system to return a list of modules. */
m_start(struct seq_file * m,loff_t * pos)3346 static void *m_start(struct seq_file *m, loff_t *pos)
3347 {
3348 	mutex_lock(&module_mutex);
3349 	return seq_list_start(&modules, *pos);
3350 }
3351 
m_next(struct seq_file * m,void * p,loff_t * pos)3352 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
3353 {
3354 	return seq_list_next(p, &modules, pos);
3355 }
3356 
m_stop(struct seq_file * m,void * p)3357 static void m_stop(struct seq_file *m, void *p)
3358 {
3359 	mutex_unlock(&module_mutex);
3360 }
3361 
m_show(struct seq_file * m,void * p)3362 static int m_show(struct seq_file *m, void *p)
3363 {
3364 	struct module *mod = list_entry(p, struct module, list);
3365 	char buf[8];
3366 
3367 	seq_printf(m, "%s %u",
3368 		   mod->name, mod->init_size + mod->core_size);
3369 	print_unload_info(m, mod);
3370 
3371 	/* Informative for users. */
3372 	seq_printf(m, " %s",
3373 		   mod->state == MODULE_STATE_GOING ? "Unloading":
3374 		   mod->state == MODULE_STATE_COMING ? "Loading":
3375 		   "Live");
3376 	/* Used by oprofile and other similar tools. */
3377 	seq_printf(m, " 0x%pK", mod->module_core);
3378 
3379 	/* Taints info */
3380 	if (mod->taints)
3381 		seq_printf(m, " %s", module_flags(mod, buf));
3382 
3383 	seq_printf(m, "\n");
3384 	return 0;
3385 }
3386 
3387 /* Format: modulename size refcount deps address
3388 
3389    Where refcount is a number or -, and deps is a comma-separated list
3390    of depends or -.
3391 */
3392 static const struct seq_operations modules_op = {
3393 	.start	= m_start,
3394 	.next	= m_next,
3395 	.stop	= m_stop,
3396 	.show	= m_show
3397 };
3398 
modules_open(struct inode * inode,struct file * file)3399 static int modules_open(struct inode *inode, struct file *file)
3400 {
3401 	return seq_open(file, &modules_op);
3402 }
3403 
3404 static const struct file_operations proc_modules_operations = {
3405 	.open		= modules_open,
3406 	.read		= seq_read,
3407 	.llseek		= seq_lseek,
3408 	.release	= seq_release,
3409 };
3410 
proc_modules_init(void)3411 static int __init proc_modules_init(void)
3412 {
3413 	proc_create("modules", 0, NULL, &proc_modules_operations);
3414 	return 0;
3415 }
3416 module_init(proc_modules_init);
3417 #endif
3418 
3419 /* Given an address, look for it in the module exception tables. */
search_module_extables(unsigned long addr)3420 const struct exception_table_entry *search_module_extables(unsigned long addr)
3421 {
3422 	const struct exception_table_entry *e = NULL;
3423 	struct module *mod;
3424 
3425 	preempt_disable();
3426 	list_for_each_entry_rcu(mod, &modules, list) {
3427 		if (mod->num_exentries == 0)
3428 			continue;
3429 
3430 		e = search_extable(mod->extable,
3431 				   mod->extable + mod->num_exentries - 1,
3432 				   addr);
3433 		if (e)
3434 			break;
3435 	}
3436 	preempt_enable();
3437 
3438 	/* Now, if we found one, we are running inside it now, hence
3439 	   we cannot unload the module, hence no refcnt needed. */
3440 	return e;
3441 }
3442 
3443 /*
3444  * is_module_address - is this address inside a module?
3445  * @addr: the address to check.
3446  *
3447  * See is_module_text_address() if you simply want to see if the address
3448  * is code (not data).
3449  */
is_module_address(unsigned long addr)3450 bool is_module_address(unsigned long addr)
3451 {
3452 	bool ret;
3453 
3454 	preempt_disable();
3455 	ret = __module_address(addr) != NULL;
3456 	preempt_enable();
3457 
3458 	return ret;
3459 }
3460 
3461 /*
3462  * __module_address - get the module which contains an address.
3463  * @addr: the address.
3464  *
3465  * Must be called with preempt disabled or module mutex held so that
3466  * module doesn't get freed during this.
3467  */
__module_address(unsigned long addr)3468 struct module *__module_address(unsigned long addr)
3469 {
3470 	struct module *mod;
3471 
3472 	if (addr < module_addr_min || addr > module_addr_max)
3473 		return NULL;
3474 
3475 	list_for_each_entry_rcu(mod, &modules, list)
3476 		if (within_module_core(addr, mod)
3477 		    || within_module_init(addr, mod))
3478 			return mod;
3479 	return NULL;
3480 }
3481 EXPORT_SYMBOL_GPL(__module_address);
3482 
3483 /*
3484  * is_module_text_address - is this address inside module code?
3485  * @addr: the address to check.
3486  *
3487  * See is_module_address() if you simply want to see if the address is
3488  * anywhere in a module.  See kernel_text_address() for testing if an
3489  * address corresponds to kernel or module code.
3490  */
is_module_text_address(unsigned long addr)3491 bool is_module_text_address(unsigned long addr)
3492 {
3493 	bool ret;
3494 
3495 	preempt_disable();
3496 	ret = __module_text_address(addr) != NULL;
3497 	preempt_enable();
3498 
3499 	return ret;
3500 }
3501 
3502 /*
3503  * __module_text_address - get the module whose code contains an address.
3504  * @addr: the address.
3505  *
3506  * Must be called with preempt disabled or module mutex held so that
3507  * module doesn't get freed during this.
3508  */
__module_text_address(unsigned long addr)3509 struct module *__module_text_address(unsigned long addr)
3510 {
3511 	struct module *mod = __module_address(addr);
3512 	if (mod) {
3513 		/* Make sure it's within the text section. */
3514 		if (!within(addr, mod->module_init, mod->init_text_size)
3515 		    && !within(addr, mod->module_core, mod->core_text_size))
3516 			mod = NULL;
3517 	}
3518 	return mod;
3519 }
3520 EXPORT_SYMBOL_GPL(__module_text_address);
3521 
3522 /* Don't grab lock, we're oopsing. */
print_modules(void)3523 void print_modules(void)
3524 {
3525 	struct module *mod;
3526 	char buf[8];
3527 
3528 	printk(KERN_DEFAULT "Modules linked in:");
3529 	/* Most callers should already have preempt disabled, but make sure */
3530 	preempt_disable();
3531 	list_for_each_entry_rcu(mod, &modules, list)
3532 		printk(" %s%s", mod->name, module_flags(mod, buf));
3533 	preempt_enable();
3534 	if (last_unloaded_module[0])
3535 		printk(" [last unloaded: %s]", last_unloaded_module);
3536 	printk("\n");
3537 }
3538 
3539 #ifdef CONFIG_MODVERSIONS
3540 /* Generate the signature for all relevant module structures here.
3541  * If these change, we don't want to try to parse the module. */
module_layout(struct module * mod,struct modversion_info * ver,struct kernel_param * kp,struct kernel_symbol * ks,struct tracepoint * const * tp)3542 void module_layout(struct module *mod,
3543 		   struct modversion_info *ver,
3544 		   struct kernel_param *kp,
3545 		   struct kernel_symbol *ks,
3546 		   struct tracepoint * const *tp)
3547 {
3548 }
3549 EXPORT_SYMBOL(module_layout);
3550 #endif
3551