1 /*
2  * Kernel Debugger Architecture Independent Main Code
3  *
4  * This file is subject to the terms and conditions of the GNU General Public
5  * License.  See the file "COPYING" in the main directory of this archive
6  * for more details.
7  *
8  * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
9  * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10  * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11  * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
12  */
13 
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/kernel.h>
17 #include <linux/reboot.h>
18 #include <linux/sched.h>
19 #include <linux/sysrq.h>
20 #include <linux/smp.h>
21 #include <linux/utsname.h>
22 #include <linux/vmalloc.h>
23 #include <linux/module.h>
24 #include <linux/mm.h>
25 #include <linux/init.h>
26 #include <linux/kallsyms.h>
27 #include <linux/kgdb.h>
28 #include <linux/kdb.h>
29 #include <linux/notifier.h>
30 #include <linux/interrupt.h>
31 #include <linux/delay.h>
32 #include <linux/nmi.h>
33 #include <linux/time.h>
34 #include <linux/ptrace.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/kdebug.h>
38 #include <linux/proc_fs.h>
39 #include <linux/uaccess.h>
40 #include <linux/slab.h>
41 #include "kdb_private.h"
42 
43 #define GREP_LEN 256
44 char kdb_grep_string[GREP_LEN];
45 int kdb_grepping_flag;
46 EXPORT_SYMBOL(kdb_grepping_flag);
47 int kdb_grep_leading;
48 int kdb_grep_trailing;
49 
50 /*
51  * Kernel debugger state flags
52  */
53 int kdb_flags;
54 atomic_t kdb_event;
55 
56 /*
57  * kdb_lock protects updates to kdb_initial_cpu.  Used to
58  * single thread processors through the kernel debugger.
59  */
60 int kdb_initial_cpu = -1;	/* cpu number that owns kdb */
61 int kdb_nextline = 1;
62 int kdb_state;			/* General KDB state */
63 
64 struct task_struct *kdb_current_task;
65 EXPORT_SYMBOL(kdb_current_task);
66 struct pt_regs *kdb_current_regs;
67 
68 const char *kdb_diemsg;
69 static int kdb_go_count;
70 #ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
71 static unsigned int kdb_continue_catastrophic =
72 	CONFIG_KDB_CONTINUE_CATASTROPHIC;
73 #else
74 static unsigned int kdb_continue_catastrophic;
75 #endif
76 
77 /* kdb_commands describes the available commands. */
78 static kdbtab_t *kdb_commands;
79 #define KDB_BASE_CMD_MAX 50
80 static int kdb_max_commands = KDB_BASE_CMD_MAX;
81 static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
82 #define for_each_kdbcmd(cmd, num)					\
83 	for ((cmd) = kdb_base_commands, (num) = 0;			\
84 	     num < kdb_max_commands;					\
85 	     num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
86 
87 typedef struct _kdbmsg {
88 	int	km_diag;	/* kdb diagnostic */
89 	char	*km_msg;	/* Corresponding message text */
90 } kdbmsg_t;
91 
92 #define KDBMSG(msgnum, text) \
93 	{ KDB_##msgnum, text }
94 
95 static kdbmsg_t kdbmsgs[] = {
96 	KDBMSG(NOTFOUND, "Command Not Found"),
97 	KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
98 	KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
99 	       "8 is only allowed on 64 bit systems"),
100 	KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
101 	KDBMSG(NOTENV, "Cannot find environment variable"),
102 	KDBMSG(NOENVVALUE, "Environment variable should have value"),
103 	KDBMSG(NOTIMP, "Command not implemented"),
104 	KDBMSG(ENVFULL, "Environment full"),
105 	KDBMSG(ENVBUFFULL, "Environment buffer full"),
106 	KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
107 #ifdef CONFIG_CPU_XSCALE
108 	KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
109 #else
110 	KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
111 #endif
112 	KDBMSG(DUPBPT, "Duplicate breakpoint address"),
113 	KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
114 	KDBMSG(BADMODE, "Invalid IDMODE"),
115 	KDBMSG(BADINT, "Illegal numeric value"),
116 	KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
117 	KDBMSG(BADREG, "Invalid register name"),
118 	KDBMSG(BADCPUNUM, "Invalid cpu number"),
119 	KDBMSG(BADLENGTH, "Invalid length field"),
120 	KDBMSG(NOBP, "No Breakpoint exists"),
121 	KDBMSG(BADADDR, "Invalid address"),
122 };
123 #undef KDBMSG
124 
125 static const int __nkdb_err = sizeof(kdbmsgs) / sizeof(kdbmsg_t);
126 
127 
128 /*
129  * Initial environment.   This is all kept static and local to
130  * this file.   We don't want to rely on the memory allocation
131  * mechanisms in the kernel, so we use a very limited allocate-only
132  * heap for new and altered environment variables.  The entire
133  * environment is limited to a fixed number of entries (add more
134  * to __env[] if required) and a fixed amount of heap (add more to
135  * KDB_ENVBUFSIZE if required).
136  */
137 
138 static char *__env[] = {
139 #if defined(CONFIG_SMP)
140  "PROMPT=[%d]kdb> ",
141  "MOREPROMPT=[%d]more> ",
142 #else
143  "PROMPT=kdb> ",
144  "MOREPROMPT=more> ",
145 #endif
146  "RADIX=16",
147  "MDCOUNT=8",			/* lines of md output */
148  KDB_PLATFORM_ENV,
149  "DTABCOUNT=30",
150  "NOSECT=1",
151  (char *)0,
152  (char *)0,
153  (char *)0,
154  (char *)0,
155  (char *)0,
156  (char *)0,
157  (char *)0,
158  (char *)0,
159  (char *)0,
160  (char *)0,
161  (char *)0,
162  (char *)0,
163  (char *)0,
164  (char *)0,
165  (char *)0,
166  (char *)0,
167  (char *)0,
168  (char *)0,
169  (char *)0,
170  (char *)0,
171  (char *)0,
172  (char *)0,
173  (char *)0,
174  (char *)0,
175 };
176 
177 static const int __nenv = (sizeof(__env) / sizeof(char *));
178 
kdb_curr_task(int cpu)179 struct task_struct *kdb_curr_task(int cpu)
180 {
181 	struct task_struct *p = curr_task(cpu);
182 #ifdef	_TIF_MCA_INIT
183 	if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
184 		p = krp->p;
185 #endif
186 	return p;
187 }
188 
189 /*
190  * kdbgetenv - This function will return the character string value of
191  *	an environment variable.
192  * Parameters:
193  *	match	A character string representing an environment variable.
194  * Returns:
195  *	NULL	No environment variable matches 'match'
196  *	char*	Pointer to string value of environment variable.
197  */
kdbgetenv(const char * match)198 char *kdbgetenv(const char *match)
199 {
200 	char **ep = __env;
201 	int matchlen = strlen(match);
202 	int i;
203 
204 	for (i = 0; i < __nenv; i++) {
205 		char *e = *ep++;
206 
207 		if (!e)
208 			continue;
209 
210 		if ((strncmp(match, e, matchlen) == 0)
211 		 && ((e[matchlen] == '\0')
212 		   || (e[matchlen] == '='))) {
213 			char *cp = strchr(e, '=');
214 			return cp ? ++cp : "";
215 		}
216 	}
217 	return NULL;
218 }
219 
220 /*
221  * kdballocenv - This function is used to allocate bytes for
222  *	environment entries.
223  * Parameters:
224  *	match	A character string representing a numeric value
225  * Outputs:
226  *	*value  the unsigned long representation of the env variable 'match'
227  * Returns:
228  *	Zero on success, a kdb diagnostic on failure.
229  * Remarks:
230  *	We use a static environment buffer (envbuffer) to hold the values
231  *	of dynamically generated environment variables (see kdb_set).  Buffer
232  *	space once allocated is never free'd, so over time, the amount of space
233  *	(currently 512 bytes) will be exhausted if env variables are changed
234  *	frequently.
235  */
kdballocenv(size_t bytes)236 static char *kdballocenv(size_t bytes)
237 {
238 #define	KDB_ENVBUFSIZE	512
239 	static char envbuffer[KDB_ENVBUFSIZE];
240 	static int envbufsize;
241 	char *ep = NULL;
242 
243 	if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
244 		ep = &envbuffer[envbufsize];
245 		envbufsize += bytes;
246 	}
247 	return ep;
248 }
249 
250 /*
251  * kdbgetulenv - This function will return the value of an unsigned
252  *	long-valued environment variable.
253  * Parameters:
254  *	match	A character string representing a numeric value
255  * Outputs:
256  *	*value  the unsigned long represntation of the env variable 'match'
257  * Returns:
258  *	Zero on success, a kdb diagnostic on failure.
259  */
kdbgetulenv(const char * match,unsigned long * value)260 static int kdbgetulenv(const char *match, unsigned long *value)
261 {
262 	char *ep;
263 
264 	ep = kdbgetenv(match);
265 	if (!ep)
266 		return KDB_NOTENV;
267 	if (strlen(ep) == 0)
268 		return KDB_NOENVVALUE;
269 
270 	*value = simple_strtoul(ep, NULL, 0);
271 
272 	return 0;
273 }
274 
275 /*
276  * kdbgetintenv - This function will return the value of an
277  *	integer-valued environment variable.
278  * Parameters:
279  *	match	A character string representing an integer-valued env variable
280  * Outputs:
281  *	*value  the integer representation of the environment variable 'match'
282  * Returns:
283  *	Zero on success, a kdb diagnostic on failure.
284  */
kdbgetintenv(const char * match,int * value)285 int kdbgetintenv(const char *match, int *value)
286 {
287 	unsigned long val;
288 	int diag;
289 
290 	diag = kdbgetulenv(match, &val);
291 	if (!diag)
292 		*value = (int) val;
293 	return diag;
294 }
295 
296 /*
297  * kdbgetularg - This function will convert a numeric string into an
298  *	unsigned long value.
299  * Parameters:
300  *	arg	A character string representing a numeric value
301  * Outputs:
302  *	*value  the unsigned long represntation of arg.
303  * Returns:
304  *	Zero on success, a kdb diagnostic on failure.
305  */
kdbgetularg(const char * arg,unsigned long * value)306 int kdbgetularg(const char *arg, unsigned long *value)
307 {
308 	char *endp;
309 	unsigned long val;
310 
311 	val = simple_strtoul(arg, &endp, 0);
312 
313 	if (endp == arg) {
314 		/*
315 		 * Also try base 16, for us folks too lazy to type the
316 		 * leading 0x...
317 		 */
318 		val = simple_strtoul(arg, &endp, 16);
319 		if (endp == arg)
320 			return KDB_BADINT;
321 	}
322 
323 	*value = val;
324 
325 	return 0;
326 }
327 
kdbgetu64arg(const char * arg,u64 * value)328 int kdbgetu64arg(const char *arg, u64 *value)
329 {
330 	char *endp;
331 	u64 val;
332 
333 	val = simple_strtoull(arg, &endp, 0);
334 
335 	if (endp == arg) {
336 
337 		val = simple_strtoull(arg, &endp, 16);
338 		if (endp == arg)
339 			return KDB_BADINT;
340 	}
341 
342 	*value = val;
343 
344 	return 0;
345 }
346 
347 /*
348  * kdb_set - This function implements the 'set' command.  Alter an
349  *	existing environment variable or create a new one.
350  */
kdb_set(int argc,const char ** argv)351 int kdb_set(int argc, const char **argv)
352 {
353 	int i;
354 	char *ep;
355 	size_t varlen, vallen;
356 
357 	/*
358 	 * we can be invoked two ways:
359 	 *   set var=value    argv[1]="var", argv[2]="value"
360 	 *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
361 	 * - if the latter, shift 'em down.
362 	 */
363 	if (argc == 3) {
364 		argv[2] = argv[3];
365 		argc--;
366 	}
367 
368 	if (argc != 2)
369 		return KDB_ARGCOUNT;
370 
371 	/*
372 	 * Check for internal variables
373 	 */
374 	if (strcmp(argv[1], "KDBDEBUG") == 0) {
375 		unsigned int debugflags;
376 		char *cp;
377 
378 		debugflags = simple_strtoul(argv[2], &cp, 0);
379 		if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
380 			kdb_printf("kdb: illegal debug flags '%s'\n",
381 				    argv[2]);
382 			return 0;
383 		}
384 		kdb_flags = (kdb_flags &
385 			     ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
386 			| (debugflags << KDB_DEBUG_FLAG_SHIFT);
387 
388 		return 0;
389 	}
390 
391 	/*
392 	 * Tokenizer squashed the '=' sign.  argv[1] is variable
393 	 * name, argv[2] = value.
394 	 */
395 	varlen = strlen(argv[1]);
396 	vallen = strlen(argv[2]);
397 	ep = kdballocenv(varlen + vallen + 2);
398 	if (ep == (char *)0)
399 		return KDB_ENVBUFFULL;
400 
401 	sprintf(ep, "%s=%s", argv[1], argv[2]);
402 
403 	ep[varlen+vallen+1] = '\0';
404 
405 	for (i = 0; i < __nenv; i++) {
406 		if (__env[i]
407 		 && ((strncmp(__env[i], argv[1], varlen) == 0)
408 		   && ((__env[i][varlen] == '\0')
409 		    || (__env[i][varlen] == '=')))) {
410 			__env[i] = ep;
411 			return 0;
412 		}
413 	}
414 
415 	/*
416 	 * Wasn't existing variable.  Fit into slot.
417 	 */
418 	for (i = 0; i < __nenv-1; i++) {
419 		if (__env[i] == (char *)0) {
420 			__env[i] = ep;
421 			return 0;
422 		}
423 	}
424 
425 	return KDB_ENVFULL;
426 }
427 
kdb_check_regs(void)428 static int kdb_check_regs(void)
429 {
430 	if (!kdb_current_regs) {
431 		kdb_printf("No current kdb registers."
432 			   "  You may need to select another task\n");
433 		return KDB_BADREG;
434 	}
435 	return 0;
436 }
437 
438 /*
439  * kdbgetaddrarg - This function is responsible for parsing an
440  *	address-expression and returning the value of the expression,
441  *	symbol name, and offset to the caller.
442  *
443  *	The argument may consist of a numeric value (decimal or
444  *	hexidecimal), a symbol name, a register name (preceded by the
445  *	percent sign), an environment variable with a numeric value
446  *	(preceded by a dollar sign) or a simple arithmetic expression
447  *	consisting of a symbol name, +/-, and a numeric constant value
448  *	(offset).
449  * Parameters:
450  *	argc	- count of arguments in argv
451  *	argv	- argument vector
452  *	*nextarg - index to next unparsed argument in argv[]
453  *	regs	- Register state at time of KDB entry
454  * Outputs:
455  *	*value	- receives the value of the address-expression
456  *	*offset - receives the offset specified, if any
457  *	*name   - receives the symbol name, if any
458  *	*nextarg - index to next unparsed argument in argv[]
459  * Returns:
460  *	zero is returned on success, a kdb diagnostic code is
461  *      returned on error.
462  */
kdbgetaddrarg(int argc,const char ** argv,int * nextarg,unsigned long * value,long * offset,char ** name)463 int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
464 		  unsigned long *value,  long *offset,
465 		  char **name)
466 {
467 	unsigned long addr;
468 	unsigned long off = 0;
469 	int positive;
470 	int diag;
471 	int found = 0;
472 	char *symname;
473 	char symbol = '\0';
474 	char *cp;
475 	kdb_symtab_t symtab;
476 
477 	/*
478 	 * Process arguments which follow the following syntax:
479 	 *
480 	 *  symbol | numeric-address [+/- numeric-offset]
481 	 *  %register
482 	 *  $environment-variable
483 	 */
484 
485 	if (*nextarg > argc)
486 		return KDB_ARGCOUNT;
487 
488 	symname = (char *)argv[*nextarg];
489 
490 	/*
491 	 * If there is no whitespace between the symbol
492 	 * or address and the '+' or '-' symbols, we
493 	 * remember the character and replace it with a
494 	 * null so the symbol/value can be properly parsed
495 	 */
496 	cp = strpbrk(symname, "+-");
497 	if (cp != NULL) {
498 		symbol = *cp;
499 		*cp++ = '\0';
500 	}
501 
502 	if (symname[0] == '$') {
503 		diag = kdbgetulenv(&symname[1], &addr);
504 		if (diag)
505 			return diag;
506 	} else if (symname[0] == '%') {
507 		diag = kdb_check_regs();
508 		if (diag)
509 			return diag;
510 		/* Implement register values with % at a later time as it is
511 		 * arch optional.
512 		 */
513 		return KDB_NOTIMP;
514 	} else {
515 		found = kdbgetsymval(symname, &symtab);
516 		if (found) {
517 			addr = symtab.sym_start;
518 		} else {
519 			diag = kdbgetularg(argv[*nextarg], &addr);
520 			if (diag)
521 				return diag;
522 		}
523 	}
524 
525 	if (!found)
526 		found = kdbnearsym(addr, &symtab);
527 
528 	(*nextarg)++;
529 
530 	if (name)
531 		*name = symname;
532 	if (value)
533 		*value = addr;
534 	if (offset && name && *name)
535 		*offset = addr - symtab.sym_start;
536 
537 	if ((*nextarg > argc)
538 	 && (symbol == '\0'))
539 		return 0;
540 
541 	/*
542 	 * check for +/- and offset
543 	 */
544 
545 	if (symbol == '\0') {
546 		if ((argv[*nextarg][0] != '+')
547 		 && (argv[*nextarg][0] != '-')) {
548 			/*
549 			 * Not our argument.  Return.
550 			 */
551 			return 0;
552 		} else {
553 			positive = (argv[*nextarg][0] == '+');
554 			(*nextarg)++;
555 		}
556 	} else
557 		positive = (symbol == '+');
558 
559 	/*
560 	 * Now there must be an offset!
561 	 */
562 	if ((*nextarg > argc)
563 	 && (symbol == '\0')) {
564 		return KDB_INVADDRFMT;
565 	}
566 
567 	if (!symbol) {
568 		cp = (char *)argv[*nextarg];
569 		(*nextarg)++;
570 	}
571 
572 	diag = kdbgetularg(cp, &off);
573 	if (diag)
574 		return diag;
575 
576 	if (!positive)
577 		off = -off;
578 
579 	if (offset)
580 		*offset += off;
581 
582 	if (value)
583 		*value += off;
584 
585 	return 0;
586 }
587 
kdb_cmderror(int diag)588 static void kdb_cmderror(int diag)
589 {
590 	int i;
591 
592 	if (diag >= 0) {
593 		kdb_printf("no error detected (diagnostic is %d)\n", diag);
594 		return;
595 	}
596 
597 	for (i = 0; i < __nkdb_err; i++) {
598 		if (kdbmsgs[i].km_diag == diag) {
599 			kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
600 			return;
601 		}
602 	}
603 
604 	kdb_printf("Unknown diag %d\n", -diag);
605 }
606 
607 /*
608  * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
609  *	command which defines one command as a set of other commands,
610  *	terminated by endefcmd.  kdb_defcmd processes the initial
611  *	'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
612  *	the following commands until 'endefcmd'.
613  * Inputs:
614  *	argc	argument count
615  *	argv	argument vector
616  * Returns:
617  *	zero for success, a kdb diagnostic if error
618  */
619 struct defcmd_set {
620 	int count;
621 	int usable;
622 	char *name;
623 	char *usage;
624 	char *help;
625 	char **command;
626 };
627 static struct defcmd_set *defcmd_set;
628 static int defcmd_set_count;
629 static int defcmd_in_progress;
630 
631 /* Forward references */
632 static int kdb_exec_defcmd(int argc, const char **argv);
633 
kdb_defcmd2(const char * cmdstr,const char * argv0)634 static int kdb_defcmd2(const char *cmdstr, const char *argv0)
635 {
636 	struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
637 	char **save_command = s->command;
638 	if (strcmp(argv0, "endefcmd") == 0) {
639 		defcmd_in_progress = 0;
640 		if (!s->count)
641 			s->usable = 0;
642 		if (s->usable)
643 			kdb_register(s->name, kdb_exec_defcmd,
644 				     s->usage, s->help, 0);
645 		return 0;
646 	}
647 	if (!s->usable)
648 		return KDB_NOTIMP;
649 	s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
650 	if (!s->command) {
651 		kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
652 			   cmdstr);
653 		s->usable = 0;
654 		return KDB_NOTIMP;
655 	}
656 	memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
657 	s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
658 	kfree(save_command);
659 	return 0;
660 }
661 
kdb_defcmd(int argc,const char ** argv)662 static int kdb_defcmd(int argc, const char **argv)
663 {
664 	struct defcmd_set *save_defcmd_set = defcmd_set, *s;
665 	if (defcmd_in_progress) {
666 		kdb_printf("kdb: nested defcmd detected, assuming missing "
667 			   "endefcmd\n");
668 		kdb_defcmd2("endefcmd", "endefcmd");
669 	}
670 	if (argc == 0) {
671 		int i;
672 		for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
673 			kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
674 				   s->usage, s->help);
675 			for (i = 0; i < s->count; ++i)
676 				kdb_printf("%s", s->command[i]);
677 			kdb_printf("endefcmd\n");
678 		}
679 		return 0;
680 	}
681 	if (argc != 3)
682 		return KDB_ARGCOUNT;
683 	defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
684 			     GFP_KDB);
685 	if (!defcmd_set) {
686 		kdb_printf("Could not allocate new defcmd_set entry for %s\n",
687 			   argv[1]);
688 		defcmd_set = save_defcmd_set;
689 		return KDB_NOTIMP;
690 	}
691 	memcpy(defcmd_set, save_defcmd_set,
692 	       defcmd_set_count * sizeof(*defcmd_set));
693 	kfree(save_defcmd_set);
694 	s = defcmd_set + defcmd_set_count;
695 	memset(s, 0, sizeof(*s));
696 	s->usable = 1;
697 	s->name = kdb_strdup(argv[1], GFP_KDB);
698 	s->usage = kdb_strdup(argv[2], GFP_KDB);
699 	s->help = kdb_strdup(argv[3], GFP_KDB);
700 	if (s->usage[0] == '"') {
701 		strcpy(s->usage, s->usage+1);
702 		s->usage[strlen(s->usage)-1] = '\0';
703 	}
704 	if (s->help[0] == '"') {
705 		strcpy(s->help, s->help+1);
706 		s->help[strlen(s->help)-1] = '\0';
707 	}
708 	++defcmd_set_count;
709 	defcmd_in_progress = 1;
710 	return 0;
711 }
712 
713 /*
714  * kdb_exec_defcmd - Execute the set of commands associated with this
715  *	defcmd name.
716  * Inputs:
717  *	argc	argument count
718  *	argv	argument vector
719  * Returns:
720  *	zero for success, a kdb diagnostic if error
721  */
kdb_exec_defcmd(int argc,const char ** argv)722 static int kdb_exec_defcmd(int argc, const char **argv)
723 {
724 	int i, ret;
725 	struct defcmd_set *s;
726 	if (argc != 0)
727 		return KDB_ARGCOUNT;
728 	for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
729 		if (strcmp(s->name, argv[0]) == 0)
730 			break;
731 	}
732 	if (i == defcmd_set_count) {
733 		kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
734 			   argv[0]);
735 		return KDB_NOTIMP;
736 	}
737 	for (i = 0; i < s->count; ++i) {
738 		/* Recursive use of kdb_parse, do not use argv after
739 		 * this point */
740 		argv = NULL;
741 		kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
742 		ret = kdb_parse(s->command[i]);
743 		if (ret)
744 			return ret;
745 	}
746 	return 0;
747 }
748 
749 /* Command history */
750 #define KDB_CMD_HISTORY_COUNT	32
751 #define CMD_BUFLEN		200	/* kdb_printf: max printline
752 					 * size == 256 */
753 static unsigned int cmd_head, cmd_tail;
754 static unsigned int cmdptr;
755 static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
756 static char cmd_cur[CMD_BUFLEN];
757 
758 /*
759  * The "str" argument may point to something like  | grep xyz
760  */
parse_grep(const char * str)761 static void parse_grep(const char *str)
762 {
763 	int	len;
764 	char	*cp = (char *)str, *cp2;
765 
766 	/* sanity check: we should have been called with the \ first */
767 	if (*cp != '|')
768 		return;
769 	cp++;
770 	while (isspace(*cp))
771 		cp++;
772 	if (strncmp(cp, "grep ", 5)) {
773 		kdb_printf("invalid 'pipe', see grephelp\n");
774 		return;
775 	}
776 	cp += 5;
777 	while (isspace(*cp))
778 		cp++;
779 	cp2 = strchr(cp, '\n');
780 	if (cp2)
781 		*cp2 = '\0'; /* remove the trailing newline */
782 	len = strlen(cp);
783 	if (len == 0) {
784 		kdb_printf("invalid 'pipe', see grephelp\n");
785 		return;
786 	}
787 	/* now cp points to a nonzero length search string */
788 	if (*cp == '"') {
789 		/* allow it be "x y z" by removing the "'s - there must
790 		   be two of them */
791 		cp++;
792 		cp2 = strchr(cp, '"');
793 		if (!cp2) {
794 			kdb_printf("invalid quoted string, see grephelp\n");
795 			return;
796 		}
797 		*cp2 = '\0'; /* end the string where the 2nd " was */
798 	}
799 	kdb_grep_leading = 0;
800 	if (*cp == '^') {
801 		kdb_grep_leading = 1;
802 		cp++;
803 	}
804 	len = strlen(cp);
805 	kdb_grep_trailing = 0;
806 	if (*(cp+len-1) == '$') {
807 		kdb_grep_trailing = 1;
808 		*(cp+len-1) = '\0';
809 	}
810 	len = strlen(cp);
811 	if (!len)
812 		return;
813 	if (len >= GREP_LEN) {
814 		kdb_printf("search string too long\n");
815 		return;
816 	}
817 	strcpy(kdb_grep_string, cp);
818 	kdb_grepping_flag++;
819 	return;
820 }
821 
822 /*
823  * kdb_parse - Parse the command line, search the command table for a
824  *	matching command and invoke the command function.  This
825  *	function may be called recursively, if it is, the second call
826  *	will overwrite argv and cbuf.  It is the caller's
827  *	responsibility to save their argv if they recursively call
828  *	kdb_parse().
829  * Parameters:
830  *      cmdstr	The input command line to be parsed.
831  *	regs	The registers at the time kdb was entered.
832  * Returns:
833  *	Zero for success, a kdb diagnostic if failure.
834  * Remarks:
835  *	Limited to 20 tokens.
836  *
837  *	Real rudimentary tokenization. Basically only whitespace
838  *	is considered a token delimeter (but special consideration
839  *	is taken of the '=' sign as used by the 'set' command).
840  *
841  *	The algorithm used to tokenize the input string relies on
842  *	there being at least one whitespace (or otherwise useless)
843  *	character between tokens as the character immediately following
844  *	the token is altered in-place to a null-byte to terminate the
845  *	token string.
846  */
847 
848 #define MAXARGC	20
849 
kdb_parse(const char * cmdstr)850 int kdb_parse(const char *cmdstr)
851 {
852 	static char *argv[MAXARGC];
853 	static int argc;
854 	static char cbuf[CMD_BUFLEN+2];
855 	char *cp;
856 	char *cpp, quoted;
857 	kdbtab_t *tp;
858 	int i, escaped, ignore_errors = 0, check_grep;
859 
860 	/*
861 	 * First tokenize the command string.
862 	 */
863 	cp = (char *)cmdstr;
864 	kdb_grepping_flag = check_grep = 0;
865 
866 	if (KDB_FLAG(CMD_INTERRUPT)) {
867 		/* Previous command was interrupted, newline must not
868 		 * repeat the command */
869 		KDB_FLAG_CLEAR(CMD_INTERRUPT);
870 		KDB_STATE_SET(PAGER);
871 		argc = 0;	/* no repeat */
872 	}
873 
874 	if (*cp != '\n' && *cp != '\0') {
875 		argc = 0;
876 		cpp = cbuf;
877 		while (*cp) {
878 			/* skip whitespace */
879 			while (isspace(*cp))
880 				cp++;
881 			if ((*cp == '\0') || (*cp == '\n') ||
882 			    (*cp == '#' && !defcmd_in_progress))
883 				break;
884 			/* special case: check for | grep pattern */
885 			if (*cp == '|') {
886 				check_grep++;
887 				break;
888 			}
889 			if (cpp >= cbuf + CMD_BUFLEN) {
890 				kdb_printf("kdb_parse: command buffer "
891 					   "overflow, command ignored\n%s\n",
892 					   cmdstr);
893 				return KDB_NOTFOUND;
894 			}
895 			if (argc >= MAXARGC - 1) {
896 				kdb_printf("kdb_parse: too many arguments, "
897 					   "command ignored\n%s\n", cmdstr);
898 				return KDB_NOTFOUND;
899 			}
900 			argv[argc++] = cpp;
901 			escaped = 0;
902 			quoted = '\0';
903 			/* Copy to next unquoted and unescaped
904 			 * whitespace or '=' */
905 			while (*cp && *cp != '\n' &&
906 			       (escaped || quoted || !isspace(*cp))) {
907 				if (cpp >= cbuf + CMD_BUFLEN)
908 					break;
909 				if (escaped) {
910 					escaped = 0;
911 					*cpp++ = *cp++;
912 					continue;
913 				}
914 				if (*cp == '\\') {
915 					escaped = 1;
916 					++cp;
917 					continue;
918 				}
919 				if (*cp == quoted)
920 					quoted = '\0';
921 				else if (*cp == '\'' || *cp == '"')
922 					quoted = *cp;
923 				*cpp = *cp++;
924 				if (*cpp == '=' && !quoted)
925 					break;
926 				++cpp;
927 			}
928 			*cpp++ = '\0';	/* Squash a ws or '=' character */
929 		}
930 	}
931 	if (!argc)
932 		return 0;
933 	if (check_grep)
934 		parse_grep(cp);
935 	if (defcmd_in_progress) {
936 		int result = kdb_defcmd2(cmdstr, argv[0]);
937 		if (!defcmd_in_progress) {
938 			argc = 0;	/* avoid repeat on endefcmd */
939 			*(argv[0]) = '\0';
940 		}
941 		return result;
942 	}
943 	if (argv[0][0] == '-' && argv[0][1] &&
944 	    (argv[0][1] < '0' || argv[0][1] > '9')) {
945 		ignore_errors = 1;
946 		++argv[0];
947 	}
948 
949 	for_each_kdbcmd(tp, i) {
950 		if (tp->cmd_name) {
951 			/*
952 			 * If this command is allowed to be abbreviated,
953 			 * check to see if this is it.
954 			 */
955 
956 			if (tp->cmd_minlen
957 			 && (strlen(argv[0]) <= tp->cmd_minlen)) {
958 				if (strncmp(argv[0],
959 					    tp->cmd_name,
960 					    tp->cmd_minlen) == 0) {
961 					break;
962 				}
963 			}
964 
965 			if (strcmp(argv[0], tp->cmd_name) == 0)
966 				break;
967 		}
968 	}
969 
970 	/*
971 	 * If we don't find a command by this name, see if the first
972 	 * few characters of this match any of the known commands.
973 	 * e.g., md1c20 should match md.
974 	 */
975 	if (i == kdb_max_commands) {
976 		for_each_kdbcmd(tp, i) {
977 			if (tp->cmd_name) {
978 				if (strncmp(argv[0],
979 					    tp->cmd_name,
980 					    strlen(tp->cmd_name)) == 0) {
981 					break;
982 				}
983 			}
984 		}
985 	}
986 
987 	if (i < kdb_max_commands) {
988 		int result;
989 		KDB_STATE_SET(CMD);
990 		result = (*tp->cmd_func)(argc-1, (const char **)argv);
991 		if (result && ignore_errors && result > KDB_CMD_GO)
992 			result = 0;
993 		KDB_STATE_CLEAR(CMD);
994 		switch (tp->cmd_repeat) {
995 		case KDB_REPEAT_NONE:
996 			argc = 0;
997 			if (argv[0])
998 				*(argv[0]) = '\0';
999 			break;
1000 		case KDB_REPEAT_NO_ARGS:
1001 			argc = 1;
1002 			if (argv[1])
1003 				*(argv[1]) = '\0';
1004 			break;
1005 		case KDB_REPEAT_WITH_ARGS:
1006 			break;
1007 		}
1008 		return result;
1009 	}
1010 
1011 	/*
1012 	 * If the input with which we were presented does not
1013 	 * map to an existing command, attempt to parse it as an
1014 	 * address argument and display the result.   Useful for
1015 	 * obtaining the address of a variable, or the nearest symbol
1016 	 * to an address contained in a register.
1017 	 */
1018 	{
1019 		unsigned long value;
1020 		char *name = NULL;
1021 		long offset;
1022 		int nextarg = 0;
1023 
1024 		if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1025 				  &value, &offset, &name)) {
1026 			return KDB_NOTFOUND;
1027 		}
1028 
1029 		kdb_printf("%s = ", argv[0]);
1030 		kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1031 		kdb_printf("\n");
1032 		return 0;
1033 	}
1034 }
1035 
1036 
handle_ctrl_cmd(char * cmd)1037 static int handle_ctrl_cmd(char *cmd)
1038 {
1039 #define CTRL_P	16
1040 #define CTRL_N	14
1041 
1042 	/* initial situation */
1043 	if (cmd_head == cmd_tail)
1044 		return 0;
1045 	switch (*cmd) {
1046 	case CTRL_P:
1047 		if (cmdptr != cmd_tail)
1048 			cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1049 		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1050 		return 1;
1051 	case CTRL_N:
1052 		if (cmdptr != cmd_head)
1053 			cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1054 		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1055 		return 1;
1056 	}
1057 	return 0;
1058 }
1059 
1060 /*
1061  * kdb_reboot - This function implements the 'reboot' command.  Reboot
1062  *	the system immediately, or loop for ever on failure.
1063  */
kdb_reboot(int argc,const char ** argv)1064 static int kdb_reboot(int argc, const char **argv)
1065 {
1066 	emergency_restart();
1067 	kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1068 	while (1)
1069 		cpu_relax();
1070 	/* NOTREACHED */
1071 	return 0;
1072 }
1073 
kdb_dumpregs(struct pt_regs * regs)1074 static void kdb_dumpregs(struct pt_regs *regs)
1075 {
1076 	int old_lvl = console_loglevel;
1077 	console_loglevel = 15;
1078 	kdb_trap_printk++;
1079 	show_regs(regs);
1080 	kdb_trap_printk--;
1081 	kdb_printf("\n");
1082 	console_loglevel = old_lvl;
1083 }
1084 
kdb_set_current_task(struct task_struct * p)1085 void kdb_set_current_task(struct task_struct *p)
1086 {
1087 	kdb_current_task = p;
1088 
1089 	if (kdb_task_has_cpu(p)) {
1090 		kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1091 		return;
1092 	}
1093 	kdb_current_regs = NULL;
1094 }
1095 
1096 /*
1097  * kdb_local - The main code for kdb.  This routine is invoked on a
1098  *	specific processor, it is not global.  The main kdb() routine
1099  *	ensures that only one processor at a time is in this routine.
1100  *	This code is called with the real reason code on the first
1101  *	entry to a kdb session, thereafter it is called with reason
1102  *	SWITCH, even if the user goes back to the original cpu.
1103  * Inputs:
1104  *	reason		The reason KDB was invoked
1105  *	error		The hardware-defined error code
1106  *	regs		The exception frame at time of fault/breakpoint.
1107  *	db_result	Result code from the break or debug point.
1108  * Returns:
1109  *	0	KDB was invoked for an event which it wasn't responsible
1110  *	1	KDB handled the event for which it was invoked.
1111  *	KDB_CMD_GO	User typed 'go'.
1112  *	KDB_CMD_CPU	User switched to another cpu.
1113  *	KDB_CMD_SS	Single step.
1114  *	KDB_CMD_SSB	Single step until branch.
1115  */
kdb_local(kdb_reason_t reason,int error,struct pt_regs * regs,kdb_dbtrap_t db_result)1116 static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1117 		     kdb_dbtrap_t db_result)
1118 {
1119 	char *cmdbuf;
1120 	int diag;
1121 	struct task_struct *kdb_current =
1122 		kdb_curr_task(raw_smp_processor_id());
1123 
1124 	KDB_DEBUG_STATE("kdb_local 1", reason);
1125 	kdb_go_count = 0;
1126 	if (reason == KDB_REASON_DEBUG) {
1127 		/* special case below */
1128 	} else {
1129 		kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1130 			   kdb_current, kdb_current ? kdb_current->pid : 0);
1131 #if defined(CONFIG_SMP)
1132 		kdb_printf("on processor %d ", raw_smp_processor_id());
1133 #endif
1134 	}
1135 
1136 	switch (reason) {
1137 	case KDB_REASON_DEBUG:
1138 	{
1139 		/*
1140 		 * If re-entering kdb after a single step
1141 		 * command, don't print the message.
1142 		 */
1143 		switch (db_result) {
1144 		case KDB_DB_BPT:
1145 			kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1146 				   kdb_current, kdb_current->pid);
1147 #if defined(CONFIG_SMP)
1148 			kdb_printf("on processor %d ", raw_smp_processor_id());
1149 #endif
1150 			kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1151 				   instruction_pointer(regs));
1152 			break;
1153 		case KDB_DB_SSB:
1154 			/*
1155 			 * In the midst of ssb command. Just return.
1156 			 */
1157 			KDB_DEBUG_STATE("kdb_local 3", reason);
1158 			return KDB_CMD_SSB;	/* Continue with SSB command */
1159 
1160 			break;
1161 		case KDB_DB_SS:
1162 			break;
1163 		case KDB_DB_SSBPT:
1164 			KDB_DEBUG_STATE("kdb_local 4", reason);
1165 			return 1;	/* kdba_db_trap did the work */
1166 		default:
1167 			kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1168 				   db_result);
1169 			break;
1170 		}
1171 
1172 	}
1173 		break;
1174 	case KDB_REASON_ENTER:
1175 		if (KDB_STATE(KEYBOARD))
1176 			kdb_printf("due to Keyboard Entry\n");
1177 		else
1178 			kdb_printf("due to KDB_ENTER()\n");
1179 		break;
1180 	case KDB_REASON_KEYBOARD:
1181 		KDB_STATE_SET(KEYBOARD);
1182 		kdb_printf("due to Keyboard Entry\n");
1183 		break;
1184 	case KDB_REASON_ENTER_SLAVE:
1185 		/* drop through, slaves only get released via cpu switch */
1186 	case KDB_REASON_SWITCH:
1187 		kdb_printf("due to cpu switch\n");
1188 		break;
1189 	case KDB_REASON_OOPS:
1190 		kdb_printf("Oops: %s\n", kdb_diemsg);
1191 		kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1192 			   instruction_pointer(regs));
1193 		kdb_dumpregs(regs);
1194 		break;
1195 	case KDB_REASON_NMI:
1196 		kdb_printf("due to NonMaskable Interrupt @ "
1197 			   kdb_machreg_fmt "\n",
1198 			   instruction_pointer(regs));
1199 		kdb_dumpregs(regs);
1200 		break;
1201 	case KDB_REASON_SSTEP:
1202 	case KDB_REASON_BREAK:
1203 		kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1204 			   reason == KDB_REASON_BREAK ?
1205 			   "Breakpoint" : "SS trap", instruction_pointer(regs));
1206 		/*
1207 		 * Determine if this breakpoint is one that we
1208 		 * are interested in.
1209 		 */
1210 		if (db_result != KDB_DB_BPT) {
1211 			kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1212 				   db_result);
1213 			KDB_DEBUG_STATE("kdb_local 6", reason);
1214 			return 0;	/* Not for us, dismiss it */
1215 		}
1216 		break;
1217 	case KDB_REASON_RECURSE:
1218 		kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1219 			   instruction_pointer(regs));
1220 		break;
1221 	default:
1222 		kdb_printf("kdb: unexpected reason code: %d\n", reason);
1223 		KDB_DEBUG_STATE("kdb_local 8", reason);
1224 		return 0;	/* Not for us, dismiss it */
1225 	}
1226 
1227 	while (1) {
1228 		/*
1229 		 * Initialize pager context.
1230 		 */
1231 		kdb_nextline = 1;
1232 		KDB_STATE_CLEAR(SUPPRESS);
1233 
1234 		cmdbuf = cmd_cur;
1235 		*cmdbuf = '\0';
1236 		*(cmd_hist[cmd_head]) = '\0';
1237 
1238 		if (KDB_FLAG(ONLY_DO_DUMP)) {
1239 			/* kdb is off but a catastrophic error requires a dump.
1240 			 * Take the dump and reboot.
1241 			 * Turn on logging so the kdb output appears in the log
1242 			 * buffer in the dump.
1243 			 */
1244 			const char *setargs[] = { "set", "LOGGING", "1" };
1245 			kdb_set(2, setargs);
1246 			kdb_reboot(0, NULL);
1247 			/*NOTREACHED*/
1248 		}
1249 
1250 do_full_getstr:
1251 #if defined(CONFIG_SMP)
1252 		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1253 			 raw_smp_processor_id());
1254 #else
1255 		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1256 #endif
1257 		if (defcmd_in_progress)
1258 			strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1259 
1260 		/*
1261 		 * Fetch command from keyboard
1262 		 */
1263 		cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1264 		if (*cmdbuf != '\n') {
1265 			if (*cmdbuf < 32) {
1266 				if (cmdptr == cmd_head) {
1267 					strncpy(cmd_hist[cmd_head], cmd_cur,
1268 						CMD_BUFLEN);
1269 					*(cmd_hist[cmd_head] +
1270 					  strlen(cmd_hist[cmd_head])-1) = '\0';
1271 				}
1272 				if (!handle_ctrl_cmd(cmdbuf))
1273 					*(cmd_cur+strlen(cmd_cur)-1) = '\0';
1274 				cmdbuf = cmd_cur;
1275 				goto do_full_getstr;
1276 			} else {
1277 				strncpy(cmd_hist[cmd_head], cmd_cur,
1278 					CMD_BUFLEN);
1279 			}
1280 
1281 			cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1282 			if (cmd_head == cmd_tail)
1283 				cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1284 		}
1285 
1286 		cmdptr = cmd_head;
1287 		diag = kdb_parse(cmdbuf);
1288 		if (diag == KDB_NOTFOUND) {
1289 			kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1290 			diag = 0;
1291 		}
1292 		if (diag == KDB_CMD_GO
1293 		 || diag == KDB_CMD_CPU
1294 		 || diag == KDB_CMD_SS
1295 		 || diag == KDB_CMD_SSB
1296 		 || diag == KDB_CMD_KGDB)
1297 			break;
1298 
1299 		if (diag)
1300 			kdb_cmderror(diag);
1301 	}
1302 	KDB_DEBUG_STATE("kdb_local 9", diag);
1303 	return diag;
1304 }
1305 
1306 
1307 /*
1308  * kdb_print_state - Print the state data for the current processor
1309  *	for debugging.
1310  * Inputs:
1311  *	text		Identifies the debug point
1312  *	value		Any integer value to be printed, e.g. reason code.
1313  */
kdb_print_state(const char * text,int value)1314 void kdb_print_state(const char *text, int value)
1315 {
1316 	kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1317 		   text, raw_smp_processor_id(), value, kdb_initial_cpu,
1318 		   kdb_state);
1319 }
1320 
1321 /*
1322  * kdb_main_loop - After initial setup and assignment of the
1323  *	controlling cpu, all cpus are in this loop.  One cpu is in
1324  *	control and will issue the kdb prompt, the others will spin
1325  *	until 'go' or cpu switch.
1326  *
1327  *	To get a consistent view of the kernel stacks for all
1328  *	processes, this routine is invoked from the main kdb code via
1329  *	an architecture specific routine.  kdba_main_loop is
1330  *	responsible for making the kernel stacks consistent for all
1331  *	processes, there should be no difference between a blocked
1332  *	process and a running process as far as kdb is concerned.
1333  * Inputs:
1334  *	reason		The reason KDB was invoked
1335  *	error		The hardware-defined error code
1336  *	reason2		kdb's current reason code.
1337  *			Initially error but can change
1338  *			according to kdb state.
1339  *	db_result	Result code from break or debug point.
1340  *	regs		The exception frame at time of fault/breakpoint.
1341  *			should always be valid.
1342  * Returns:
1343  *	0	KDB was invoked for an event which it wasn't responsible
1344  *	1	KDB handled the event for which it was invoked.
1345  */
kdb_main_loop(kdb_reason_t reason,kdb_reason_t reason2,int error,kdb_dbtrap_t db_result,struct pt_regs * regs)1346 int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1347 	      kdb_dbtrap_t db_result, struct pt_regs *regs)
1348 {
1349 	int result = 1;
1350 	/* Stay in kdb() until 'go', 'ss[b]' or an error */
1351 	while (1) {
1352 		/*
1353 		 * All processors except the one that is in control
1354 		 * will spin here.
1355 		 */
1356 		KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1357 		while (KDB_STATE(HOLD_CPU)) {
1358 			/* state KDB is turned off by kdb_cpu to see if the
1359 			 * other cpus are still live, each cpu in this loop
1360 			 * turns it back on.
1361 			 */
1362 			if (!KDB_STATE(KDB))
1363 				KDB_STATE_SET(KDB);
1364 		}
1365 
1366 		KDB_STATE_CLEAR(SUPPRESS);
1367 		KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1368 		if (KDB_STATE(LEAVING))
1369 			break;	/* Another cpu said 'go' */
1370 		/* Still using kdb, this processor is in control */
1371 		result = kdb_local(reason2, error, regs, db_result);
1372 		KDB_DEBUG_STATE("kdb_main_loop 3", result);
1373 
1374 		if (result == KDB_CMD_CPU)
1375 			break;
1376 
1377 		if (result == KDB_CMD_SS) {
1378 			KDB_STATE_SET(DOING_SS);
1379 			break;
1380 		}
1381 
1382 		if (result == KDB_CMD_SSB) {
1383 			KDB_STATE_SET(DOING_SS);
1384 			KDB_STATE_SET(DOING_SSB);
1385 			break;
1386 		}
1387 
1388 		if (result == KDB_CMD_KGDB) {
1389 			if (!KDB_STATE(DOING_KGDB))
1390 				kdb_printf("Entering please attach debugger "
1391 					   "or use $D#44+ or $3#33\n");
1392 			break;
1393 		}
1394 		if (result && result != 1 && result != KDB_CMD_GO)
1395 			kdb_printf("\nUnexpected kdb_local return code %d\n",
1396 				   result);
1397 		KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1398 		break;
1399 	}
1400 	if (KDB_STATE(DOING_SS))
1401 		KDB_STATE_CLEAR(SSBPT);
1402 
1403 	/* Clean up any keyboard devices before leaving */
1404 	kdb_kbd_cleanup_state();
1405 
1406 	return result;
1407 }
1408 
1409 /*
1410  * kdb_mdr - This function implements the guts of the 'mdr', memory
1411  * read command.
1412  *	mdr  <addr arg>,<byte count>
1413  * Inputs:
1414  *	addr	Start address
1415  *	count	Number of bytes
1416  * Returns:
1417  *	Always 0.  Any errors are detected and printed by kdb_getarea.
1418  */
kdb_mdr(unsigned long addr,unsigned int count)1419 static int kdb_mdr(unsigned long addr, unsigned int count)
1420 {
1421 	unsigned char c;
1422 	while (count--) {
1423 		if (kdb_getarea(c, addr))
1424 			return 0;
1425 		kdb_printf("%02x", c);
1426 		addr++;
1427 	}
1428 	kdb_printf("\n");
1429 	return 0;
1430 }
1431 
1432 /*
1433  * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1434  *	'md8' 'mdr' and 'mds' commands.
1435  *
1436  *	md|mds  [<addr arg> [<line count> [<radix>]]]
1437  *	mdWcN	[<addr arg> [<line count> [<radix>]]]
1438  *		where W = is the width (1, 2, 4 or 8) and N is the count.
1439  *		for eg., md1c20 reads 20 bytes, 1 at a time.
1440  *	mdr  <addr arg>,<byte count>
1441  */
kdb_md_line(const char * fmtstr,unsigned long addr,int symbolic,int nosect,int bytesperword,int num,int repeat,int phys)1442 static void kdb_md_line(const char *fmtstr, unsigned long addr,
1443 			int symbolic, int nosect, int bytesperword,
1444 			int num, int repeat, int phys)
1445 {
1446 	/* print just one line of data */
1447 	kdb_symtab_t symtab;
1448 	char cbuf[32];
1449 	char *c = cbuf;
1450 	int i;
1451 	unsigned long word;
1452 
1453 	memset(cbuf, '\0', sizeof(cbuf));
1454 	if (phys)
1455 		kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1456 	else
1457 		kdb_printf(kdb_machreg_fmt0 " ", addr);
1458 
1459 	for (i = 0; i < num && repeat--; i++) {
1460 		if (phys) {
1461 			if (kdb_getphysword(&word, addr, bytesperword))
1462 				break;
1463 		} else if (kdb_getword(&word, addr, bytesperword))
1464 			break;
1465 		kdb_printf(fmtstr, word);
1466 		if (symbolic)
1467 			kdbnearsym(word, &symtab);
1468 		else
1469 			memset(&symtab, 0, sizeof(symtab));
1470 		if (symtab.sym_name) {
1471 			kdb_symbol_print(word, &symtab, 0);
1472 			if (!nosect) {
1473 				kdb_printf("\n");
1474 				kdb_printf("                       %s %s "
1475 					   kdb_machreg_fmt " "
1476 					   kdb_machreg_fmt " "
1477 					   kdb_machreg_fmt, symtab.mod_name,
1478 					   symtab.sec_name, symtab.sec_start,
1479 					   symtab.sym_start, symtab.sym_end);
1480 			}
1481 			addr += bytesperword;
1482 		} else {
1483 			union {
1484 				u64 word;
1485 				unsigned char c[8];
1486 			} wc;
1487 			unsigned char *cp;
1488 #ifdef	__BIG_ENDIAN
1489 			cp = wc.c + 8 - bytesperword;
1490 #else
1491 			cp = wc.c;
1492 #endif
1493 			wc.word = word;
1494 #define printable_char(c) \
1495 	({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1496 			switch (bytesperword) {
1497 			case 8:
1498 				*c++ = printable_char(*cp++);
1499 				*c++ = printable_char(*cp++);
1500 				*c++ = printable_char(*cp++);
1501 				*c++ = printable_char(*cp++);
1502 				addr += 4;
1503 			case 4:
1504 				*c++ = printable_char(*cp++);
1505 				*c++ = printable_char(*cp++);
1506 				addr += 2;
1507 			case 2:
1508 				*c++ = printable_char(*cp++);
1509 				addr++;
1510 			case 1:
1511 				*c++ = printable_char(*cp++);
1512 				addr++;
1513 				break;
1514 			}
1515 #undef printable_char
1516 		}
1517 	}
1518 	kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1519 		   " ", cbuf);
1520 }
1521 
kdb_md(int argc,const char ** argv)1522 static int kdb_md(int argc, const char **argv)
1523 {
1524 	static unsigned long last_addr;
1525 	static int last_radix, last_bytesperword, last_repeat;
1526 	int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1527 	int nosect = 0;
1528 	char fmtchar, fmtstr[64];
1529 	unsigned long addr;
1530 	unsigned long word;
1531 	long offset = 0;
1532 	int symbolic = 0;
1533 	int valid = 0;
1534 	int phys = 0;
1535 
1536 	kdbgetintenv("MDCOUNT", &mdcount);
1537 	kdbgetintenv("RADIX", &radix);
1538 	kdbgetintenv("BYTESPERWORD", &bytesperword);
1539 
1540 	/* Assume 'md <addr>' and start with environment values */
1541 	repeat = mdcount * 16 / bytesperword;
1542 
1543 	if (strcmp(argv[0], "mdr") == 0) {
1544 		if (argc != 2)
1545 			return KDB_ARGCOUNT;
1546 		valid = 1;
1547 	} else if (isdigit(argv[0][2])) {
1548 		bytesperword = (int)(argv[0][2] - '0');
1549 		if (bytesperword == 0) {
1550 			bytesperword = last_bytesperword;
1551 			if (bytesperword == 0)
1552 				bytesperword = 4;
1553 		}
1554 		last_bytesperword = bytesperword;
1555 		repeat = mdcount * 16 / bytesperword;
1556 		if (!argv[0][3])
1557 			valid = 1;
1558 		else if (argv[0][3] == 'c' && argv[0][4]) {
1559 			char *p;
1560 			repeat = simple_strtoul(argv[0] + 4, &p, 10);
1561 			mdcount = ((repeat * bytesperword) + 15) / 16;
1562 			valid = !*p;
1563 		}
1564 		last_repeat = repeat;
1565 	} else if (strcmp(argv[0], "md") == 0)
1566 		valid = 1;
1567 	else if (strcmp(argv[0], "mds") == 0)
1568 		valid = 1;
1569 	else if (strcmp(argv[0], "mdp") == 0) {
1570 		phys = valid = 1;
1571 	}
1572 	if (!valid)
1573 		return KDB_NOTFOUND;
1574 
1575 	if (argc == 0) {
1576 		if (last_addr == 0)
1577 			return KDB_ARGCOUNT;
1578 		addr = last_addr;
1579 		radix = last_radix;
1580 		bytesperword = last_bytesperword;
1581 		repeat = last_repeat;
1582 		mdcount = ((repeat * bytesperword) + 15) / 16;
1583 	}
1584 
1585 	if (argc) {
1586 		unsigned long val;
1587 		int diag, nextarg = 1;
1588 		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1589 				     &offset, NULL);
1590 		if (diag)
1591 			return diag;
1592 		if (argc > nextarg+2)
1593 			return KDB_ARGCOUNT;
1594 
1595 		if (argc >= nextarg) {
1596 			diag = kdbgetularg(argv[nextarg], &val);
1597 			if (!diag) {
1598 				mdcount = (int) val;
1599 				repeat = mdcount * 16 / bytesperword;
1600 			}
1601 		}
1602 		if (argc >= nextarg+1) {
1603 			diag = kdbgetularg(argv[nextarg+1], &val);
1604 			if (!diag)
1605 				radix = (int) val;
1606 		}
1607 	}
1608 
1609 	if (strcmp(argv[0], "mdr") == 0)
1610 		return kdb_mdr(addr, mdcount);
1611 
1612 	switch (radix) {
1613 	case 10:
1614 		fmtchar = 'd';
1615 		break;
1616 	case 16:
1617 		fmtchar = 'x';
1618 		break;
1619 	case 8:
1620 		fmtchar = 'o';
1621 		break;
1622 	default:
1623 		return KDB_BADRADIX;
1624 	}
1625 
1626 	last_radix = radix;
1627 
1628 	if (bytesperword > KDB_WORD_SIZE)
1629 		return KDB_BADWIDTH;
1630 
1631 	switch (bytesperword) {
1632 	case 8:
1633 		sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1634 		break;
1635 	case 4:
1636 		sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1637 		break;
1638 	case 2:
1639 		sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1640 		break;
1641 	case 1:
1642 		sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1643 		break;
1644 	default:
1645 		return KDB_BADWIDTH;
1646 	}
1647 
1648 	last_repeat = repeat;
1649 	last_bytesperword = bytesperword;
1650 
1651 	if (strcmp(argv[0], "mds") == 0) {
1652 		symbolic = 1;
1653 		/* Do not save these changes as last_*, they are temporary mds
1654 		 * overrides.
1655 		 */
1656 		bytesperword = KDB_WORD_SIZE;
1657 		repeat = mdcount;
1658 		kdbgetintenv("NOSECT", &nosect);
1659 	}
1660 
1661 	/* Round address down modulo BYTESPERWORD */
1662 
1663 	addr &= ~(bytesperword-1);
1664 
1665 	while (repeat > 0) {
1666 		unsigned long a;
1667 		int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1668 
1669 		if (KDB_FLAG(CMD_INTERRUPT))
1670 			return 0;
1671 		for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1672 			if (phys) {
1673 				if (kdb_getphysword(&word, a, bytesperword)
1674 						|| word)
1675 					break;
1676 			} else if (kdb_getword(&word, a, bytesperword) || word)
1677 				break;
1678 		}
1679 		n = min(num, repeat);
1680 		kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1681 			    num, repeat, phys);
1682 		addr += bytesperword * n;
1683 		repeat -= n;
1684 		z = (z + num - 1) / num;
1685 		if (z > 2) {
1686 			int s = num * (z-2);
1687 			kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1688 				   " zero suppressed\n",
1689 				addr, addr + bytesperword * s - 1);
1690 			addr += bytesperword * s;
1691 			repeat -= s;
1692 		}
1693 	}
1694 	last_addr = addr;
1695 
1696 	return 0;
1697 }
1698 
1699 /*
1700  * kdb_mm - This function implements the 'mm' command.
1701  *	mm address-expression new-value
1702  * Remarks:
1703  *	mm works on machine words, mmW works on bytes.
1704  */
kdb_mm(int argc,const char ** argv)1705 static int kdb_mm(int argc, const char **argv)
1706 {
1707 	int diag;
1708 	unsigned long addr;
1709 	long offset = 0;
1710 	unsigned long contents;
1711 	int nextarg;
1712 	int width;
1713 
1714 	if (argv[0][2] && !isdigit(argv[0][2]))
1715 		return KDB_NOTFOUND;
1716 
1717 	if (argc < 2)
1718 		return KDB_ARGCOUNT;
1719 
1720 	nextarg = 1;
1721 	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1722 	if (diag)
1723 		return diag;
1724 
1725 	if (nextarg > argc)
1726 		return KDB_ARGCOUNT;
1727 	diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1728 	if (diag)
1729 		return diag;
1730 
1731 	if (nextarg != argc + 1)
1732 		return KDB_ARGCOUNT;
1733 
1734 	width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1735 	diag = kdb_putword(addr, contents, width);
1736 	if (diag)
1737 		return diag;
1738 
1739 	kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1740 
1741 	return 0;
1742 }
1743 
1744 /*
1745  * kdb_go - This function implements the 'go' command.
1746  *	go [address-expression]
1747  */
kdb_go(int argc,const char ** argv)1748 static int kdb_go(int argc, const char **argv)
1749 {
1750 	unsigned long addr;
1751 	int diag;
1752 	int nextarg;
1753 	long offset;
1754 
1755 	if (raw_smp_processor_id() != kdb_initial_cpu) {
1756 		kdb_printf("go must execute on the entry cpu, "
1757 			   "please use \"cpu %d\" and then execute go\n",
1758 			   kdb_initial_cpu);
1759 		return KDB_BADCPUNUM;
1760 	}
1761 	if (argc == 1) {
1762 		nextarg = 1;
1763 		diag = kdbgetaddrarg(argc, argv, &nextarg,
1764 				     &addr, &offset, NULL);
1765 		if (diag)
1766 			return diag;
1767 	} else if (argc) {
1768 		return KDB_ARGCOUNT;
1769 	}
1770 
1771 	diag = KDB_CMD_GO;
1772 	if (KDB_FLAG(CATASTROPHIC)) {
1773 		kdb_printf("Catastrophic error detected\n");
1774 		kdb_printf("kdb_continue_catastrophic=%d, ",
1775 			kdb_continue_catastrophic);
1776 		if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1777 			kdb_printf("type go a second time if you really want "
1778 				   "to continue\n");
1779 			return 0;
1780 		}
1781 		if (kdb_continue_catastrophic == 2) {
1782 			kdb_printf("forcing reboot\n");
1783 			kdb_reboot(0, NULL);
1784 		}
1785 		kdb_printf("attempting to continue\n");
1786 	}
1787 	return diag;
1788 }
1789 
1790 /*
1791  * kdb_rd - This function implements the 'rd' command.
1792  */
kdb_rd(int argc,const char ** argv)1793 static int kdb_rd(int argc, const char **argv)
1794 {
1795 	int len = kdb_check_regs();
1796 #if DBG_MAX_REG_NUM > 0
1797 	int i;
1798 	char *rname;
1799 	int rsize;
1800 	u64 reg64;
1801 	u32 reg32;
1802 	u16 reg16;
1803 	u8 reg8;
1804 
1805 	if (len)
1806 		return len;
1807 
1808 	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1809 		rsize = dbg_reg_def[i].size * 2;
1810 		if (rsize > 16)
1811 			rsize = 2;
1812 		if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1813 			len = 0;
1814 			kdb_printf("\n");
1815 		}
1816 		if (len)
1817 			len += kdb_printf("  ");
1818 		switch(dbg_reg_def[i].size * 8) {
1819 		case 8:
1820 			rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1821 			if (!rname)
1822 				break;
1823 			len += kdb_printf("%s: %02x", rname, reg8);
1824 			break;
1825 		case 16:
1826 			rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1827 			if (!rname)
1828 				break;
1829 			len += kdb_printf("%s: %04x", rname, reg16);
1830 			break;
1831 		case 32:
1832 			rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1833 			if (!rname)
1834 				break;
1835 			len += kdb_printf("%s: %08x", rname, reg32);
1836 			break;
1837 		case 64:
1838 			rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1839 			if (!rname)
1840 				break;
1841 			len += kdb_printf("%s: %016llx", rname, reg64);
1842 			break;
1843 		default:
1844 			len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1845 		}
1846 	}
1847 	kdb_printf("\n");
1848 #else
1849 	if (len)
1850 		return len;
1851 
1852 	kdb_dumpregs(kdb_current_regs);
1853 #endif
1854 	return 0;
1855 }
1856 
1857 /*
1858  * kdb_rm - This function implements the 'rm' (register modify)  command.
1859  *	rm register-name new-contents
1860  * Remarks:
1861  *	Allows register modification with the same restrictions as gdb
1862  */
kdb_rm(int argc,const char ** argv)1863 static int kdb_rm(int argc, const char **argv)
1864 {
1865 #if DBG_MAX_REG_NUM > 0
1866 	int diag;
1867 	const char *rname;
1868 	int i;
1869 	u64 reg64;
1870 	u32 reg32;
1871 	u16 reg16;
1872 	u8 reg8;
1873 
1874 	if (argc != 2)
1875 		return KDB_ARGCOUNT;
1876 	/*
1877 	 * Allow presence or absence of leading '%' symbol.
1878 	 */
1879 	rname = argv[1];
1880 	if (*rname == '%')
1881 		rname++;
1882 
1883 	diag = kdbgetu64arg(argv[2], &reg64);
1884 	if (diag)
1885 		return diag;
1886 
1887 	diag = kdb_check_regs();
1888 	if (diag)
1889 		return diag;
1890 
1891 	diag = KDB_BADREG;
1892 	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1893 		if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1894 			diag = 0;
1895 			break;
1896 		}
1897 	}
1898 	if (!diag) {
1899 		switch(dbg_reg_def[i].size * 8) {
1900 		case 8:
1901 			reg8 = reg64;
1902 			dbg_set_reg(i, &reg8, kdb_current_regs);
1903 			break;
1904 		case 16:
1905 			reg16 = reg64;
1906 			dbg_set_reg(i, &reg16, kdb_current_regs);
1907 			break;
1908 		case 32:
1909 			reg32 = reg64;
1910 			dbg_set_reg(i, &reg32, kdb_current_regs);
1911 			break;
1912 		case 64:
1913 			dbg_set_reg(i, &reg64, kdb_current_regs);
1914 			break;
1915 		}
1916 	}
1917 	return diag;
1918 #else
1919 	kdb_printf("ERROR: Register set currently not implemented\n");
1920     return 0;
1921 #endif
1922 }
1923 
1924 #if defined(CONFIG_MAGIC_SYSRQ)
1925 /*
1926  * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1927  *	which interfaces to the soi-disant MAGIC SYSRQ functionality.
1928  *		sr <magic-sysrq-code>
1929  */
kdb_sr(int argc,const char ** argv)1930 static int kdb_sr(int argc, const char **argv)
1931 {
1932 	if (argc != 1)
1933 		return KDB_ARGCOUNT;
1934 	kdb_trap_printk++;
1935 	__handle_sysrq(*argv[1], false);
1936 	kdb_trap_printk--;
1937 
1938 	return 0;
1939 }
1940 #endif	/* CONFIG_MAGIC_SYSRQ */
1941 
1942 /*
1943  * kdb_ef - This function implements the 'regs' (display exception
1944  *	frame) command.  This command takes an address and expects to
1945  *	find an exception frame at that address, formats and prints
1946  *	it.
1947  *		regs address-expression
1948  * Remarks:
1949  *	Not done yet.
1950  */
kdb_ef(int argc,const char ** argv)1951 static int kdb_ef(int argc, const char **argv)
1952 {
1953 	int diag;
1954 	unsigned long addr;
1955 	long offset;
1956 	int nextarg;
1957 
1958 	if (argc != 1)
1959 		return KDB_ARGCOUNT;
1960 
1961 	nextarg = 1;
1962 	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1963 	if (diag)
1964 		return diag;
1965 	show_regs((struct pt_regs *)addr);
1966 	return 0;
1967 }
1968 
1969 #if defined(CONFIG_MODULES)
1970 /*
1971  * kdb_lsmod - This function implements the 'lsmod' command.  Lists
1972  *	currently loaded kernel modules.
1973  *	Mostly taken from userland lsmod.
1974  */
kdb_lsmod(int argc,const char ** argv)1975 static int kdb_lsmod(int argc, const char **argv)
1976 {
1977 	struct module *mod;
1978 
1979 	if (argc != 0)
1980 		return KDB_ARGCOUNT;
1981 
1982 	kdb_printf("Module                  Size  modstruct     Used by\n");
1983 	list_for_each_entry(mod, kdb_modules, list) {
1984 
1985 		kdb_printf("%-20s%8u  0x%p ", mod->name,
1986 			   mod->core_size, (void *)mod);
1987 #ifdef CONFIG_MODULE_UNLOAD
1988 		kdb_printf("%4ld ", module_refcount(mod));
1989 #endif
1990 		if (mod->state == MODULE_STATE_GOING)
1991 			kdb_printf(" (Unloading)");
1992 		else if (mod->state == MODULE_STATE_COMING)
1993 			kdb_printf(" (Loading)");
1994 		else
1995 			kdb_printf(" (Live)");
1996 		kdb_printf(" 0x%p", mod->module_core);
1997 
1998 #ifdef CONFIG_MODULE_UNLOAD
1999 		{
2000 			struct module_use *use;
2001 			kdb_printf(" [ ");
2002 			list_for_each_entry(use, &mod->source_list,
2003 					    source_list)
2004 				kdb_printf("%s ", use->target->name);
2005 			kdb_printf("]\n");
2006 		}
2007 #endif
2008 	}
2009 
2010 	return 0;
2011 }
2012 
2013 #endif	/* CONFIG_MODULES */
2014 
2015 /*
2016  * kdb_env - This function implements the 'env' command.  Display the
2017  *	current environment variables.
2018  */
2019 
kdb_env(int argc,const char ** argv)2020 static int kdb_env(int argc, const char **argv)
2021 {
2022 	int i;
2023 
2024 	for (i = 0; i < __nenv; i++) {
2025 		if (__env[i])
2026 			kdb_printf("%s\n", __env[i]);
2027 	}
2028 
2029 	if (KDB_DEBUG(MASK))
2030 		kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2031 
2032 	return 0;
2033 }
2034 
2035 #ifdef CONFIG_PRINTK
2036 /*
2037  * kdb_dmesg - This function implements the 'dmesg' command to display
2038  *	the contents of the syslog buffer.
2039  *		dmesg [lines] [adjust]
2040  */
kdb_dmesg(int argc,const char ** argv)2041 static int kdb_dmesg(int argc, const char **argv)
2042 {
2043 	char *syslog_data[4], *start, *end, c = '\0', *p;
2044 	int diag, logging, logsize, lines = 0, adjust = 0, n;
2045 
2046 	if (argc > 2)
2047 		return KDB_ARGCOUNT;
2048 	if (argc) {
2049 		char *cp;
2050 		lines = simple_strtol(argv[1], &cp, 0);
2051 		if (*cp)
2052 			lines = 0;
2053 		if (argc > 1) {
2054 			adjust = simple_strtoul(argv[2], &cp, 0);
2055 			if (*cp || adjust < 0)
2056 				adjust = 0;
2057 		}
2058 	}
2059 
2060 	/* disable LOGGING if set */
2061 	diag = kdbgetintenv("LOGGING", &logging);
2062 	if (!diag && logging) {
2063 		const char *setargs[] = { "set", "LOGGING", "0" };
2064 		kdb_set(2, setargs);
2065 	}
2066 
2067 	/* syslog_data[0,1] physical start, end+1.  syslog_data[2,3]
2068 	 * logical start, end+1. */
2069 	kdb_syslog_data(syslog_data);
2070 	if (syslog_data[2] == syslog_data[3])
2071 		return 0;
2072 	logsize = syslog_data[1] - syslog_data[0];
2073 	start = syslog_data[2];
2074 	end = syslog_data[3];
2075 #define KDB_WRAP(p) (((p - syslog_data[0]) % logsize) + syslog_data[0])
2076 	for (n = 0, p = start; p < end; ++p) {
2077 		c = *KDB_WRAP(p);
2078 		if (c == '\n')
2079 			++n;
2080 	}
2081 	if (c != '\n')
2082 		++n;
2083 	if (lines < 0) {
2084 		if (adjust >= n)
2085 			kdb_printf("buffer only contains %d lines, nothing "
2086 				   "printed\n", n);
2087 		else if (adjust - lines >= n)
2088 			kdb_printf("buffer only contains %d lines, last %d "
2089 				   "lines printed\n", n, n - adjust);
2090 		if (adjust) {
2091 			for (; start < end && adjust; ++start) {
2092 				if (*KDB_WRAP(start) == '\n')
2093 					--adjust;
2094 			}
2095 			if (start < end)
2096 				++start;
2097 		}
2098 		for (p = start; p < end && lines; ++p) {
2099 			if (*KDB_WRAP(p) == '\n')
2100 				++lines;
2101 		}
2102 		end = p;
2103 	} else if (lines > 0) {
2104 		int skip = n - (adjust + lines);
2105 		if (adjust >= n) {
2106 			kdb_printf("buffer only contains %d lines, "
2107 				   "nothing printed\n", n);
2108 			skip = n;
2109 		} else if (skip < 0) {
2110 			lines += skip;
2111 			skip = 0;
2112 			kdb_printf("buffer only contains %d lines, first "
2113 				   "%d lines printed\n", n, lines);
2114 		}
2115 		for (; start < end && skip; ++start) {
2116 			if (*KDB_WRAP(start) == '\n')
2117 				--skip;
2118 		}
2119 		for (p = start; p < end && lines; ++p) {
2120 			if (*KDB_WRAP(p) == '\n')
2121 				--lines;
2122 		}
2123 		end = p;
2124 	}
2125 	/* Do a line at a time (max 200 chars) to reduce protocol overhead */
2126 	c = '\n';
2127 	while (start != end) {
2128 		char buf[201];
2129 		p = buf;
2130 		if (KDB_FLAG(CMD_INTERRUPT))
2131 			return 0;
2132 		while (start < end && (c = *KDB_WRAP(start)) &&
2133 		       (p - buf) < sizeof(buf)-1) {
2134 			++start;
2135 			*p++ = c;
2136 			if (c == '\n')
2137 				break;
2138 		}
2139 		*p = '\0';
2140 		kdb_printf("%s", buf);
2141 	}
2142 	if (c != '\n')
2143 		kdb_printf("\n");
2144 
2145 	return 0;
2146 }
2147 #endif /* CONFIG_PRINTK */
2148 /*
2149  * kdb_cpu - This function implements the 'cpu' command.
2150  *	cpu	[<cpunum>]
2151  * Returns:
2152  *	KDB_CMD_CPU for success, a kdb diagnostic if error
2153  */
kdb_cpu_status(void)2154 static void kdb_cpu_status(void)
2155 {
2156 	int i, start_cpu, first_print = 1;
2157 	char state, prev_state = '?';
2158 
2159 	kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2160 	kdb_printf("Available cpus: ");
2161 	for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2162 		if (!cpu_online(i)) {
2163 			state = 'F';	/* cpu is offline */
2164 		} else {
2165 			state = ' ';	/* cpu is responding to kdb */
2166 			if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2167 				state = 'I';	/* idle task */
2168 		}
2169 		if (state != prev_state) {
2170 			if (prev_state != '?') {
2171 				if (!first_print)
2172 					kdb_printf(", ");
2173 				first_print = 0;
2174 				kdb_printf("%d", start_cpu);
2175 				if (start_cpu < i-1)
2176 					kdb_printf("-%d", i-1);
2177 				if (prev_state != ' ')
2178 					kdb_printf("(%c)", prev_state);
2179 			}
2180 			prev_state = state;
2181 			start_cpu = i;
2182 		}
2183 	}
2184 	/* print the trailing cpus, ignoring them if they are all offline */
2185 	if (prev_state != 'F') {
2186 		if (!first_print)
2187 			kdb_printf(", ");
2188 		kdb_printf("%d", start_cpu);
2189 		if (start_cpu < i-1)
2190 			kdb_printf("-%d", i-1);
2191 		if (prev_state != ' ')
2192 			kdb_printf("(%c)", prev_state);
2193 	}
2194 	kdb_printf("\n");
2195 }
2196 
kdb_cpu(int argc,const char ** argv)2197 static int kdb_cpu(int argc, const char **argv)
2198 {
2199 	unsigned long cpunum;
2200 	int diag;
2201 
2202 	if (argc == 0) {
2203 		kdb_cpu_status();
2204 		return 0;
2205 	}
2206 
2207 	if (argc != 1)
2208 		return KDB_ARGCOUNT;
2209 
2210 	diag = kdbgetularg(argv[1], &cpunum);
2211 	if (diag)
2212 		return diag;
2213 
2214 	/*
2215 	 * Validate cpunum
2216 	 */
2217 	if ((cpunum > NR_CPUS) || !cpu_online(cpunum))
2218 		return KDB_BADCPUNUM;
2219 
2220 	dbg_switch_cpu = cpunum;
2221 
2222 	/*
2223 	 * Switch to other cpu
2224 	 */
2225 	return KDB_CMD_CPU;
2226 }
2227 
2228 /* The user may not realize that ps/bta with no parameters does not print idle
2229  * or sleeping system daemon processes, so tell them how many were suppressed.
2230  */
kdb_ps_suppressed(void)2231 void kdb_ps_suppressed(void)
2232 {
2233 	int idle = 0, daemon = 0;
2234 	unsigned long mask_I = kdb_task_state_string("I"),
2235 		      mask_M = kdb_task_state_string("M");
2236 	unsigned long cpu;
2237 	const struct task_struct *p, *g;
2238 	for_each_online_cpu(cpu) {
2239 		p = kdb_curr_task(cpu);
2240 		if (kdb_task_state(p, mask_I))
2241 			++idle;
2242 	}
2243 	kdb_do_each_thread(g, p) {
2244 		if (kdb_task_state(p, mask_M))
2245 			++daemon;
2246 	} kdb_while_each_thread(g, p);
2247 	if (idle || daemon) {
2248 		if (idle)
2249 			kdb_printf("%d idle process%s (state I)%s\n",
2250 				   idle, idle == 1 ? "" : "es",
2251 				   daemon ? " and " : "");
2252 		if (daemon)
2253 			kdb_printf("%d sleeping system daemon (state M) "
2254 				   "process%s", daemon,
2255 				   daemon == 1 ? "" : "es");
2256 		kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2257 	}
2258 }
2259 
2260 /*
2261  * kdb_ps - This function implements the 'ps' command which shows a
2262  *	list of the active processes.
2263  *		ps [DRSTCZEUIMA]   All processes, optionally filtered by state
2264  */
kdb_ps1(const struct task_struct * p)2265 void kdb_ps1(const struct task_struct *p)
2266 {
2267 	int cpu;
2268 	unsigned long tmp;
2269 
2270 	if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2271 		return;
2272 
2273 	cpu = kdb_process_cpu(p);
2274 	kdb_printf("0x%p %8d %8d  %d %4d   %c  0x%p %c%s\n",
2275 		   (void *)p, p->pid, p->parent->pid,
2276 		   kdb_task_has_cpu(p), kdb_process_cpu(p),
2277 		   kdb_task_state_char(p),
2278 		   (void *)(&p->thread),
2279 		   p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2280 		   p->comm);
2281 	if (kdb_task_has_cpu(p)) {
2282 		if (!KDB_TSK(cpu)) {
2283 			kdb_printf("  Error: no saved data for this cpu\n");
2284 		} else {
2285 			if (KDB_TSK(cpu) != p)
2286 				kdb_printf("  Error: does not match running "
2287 				   "process table (0x%p)\n", KDB_TSK(cpu));
2288 		}
2289 	}
2290 }
2291 
kdb_ps(int argc,const char ** argv)2292 static int kdb_ps(int argc, const char **argv)
2293 {
2294 	struct task_struct *g, *p;
2295 	unsigned long mask, cpu;
2296 
2297 	if (argc == 0)
2298 		kdb_ps_suppressed();
2299 	kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
2300 		(int)(2*sizeof(void *))+2, "Task Addr",
2301 		(int)(2*sizeof(void *))+2, "Thread");
2302 	mask = kdb_task_state_string(argc ? argv[1] : NULL);
2303 	/* Run the active tasks first */
2304 	for_each_online_cpu(cpu) {
2305 		if (KDB_FLAG(CMD_INTERRUPT))
2306 			return 0;
2307 		p = kdb_curr_task(cpu);
2308 		if (kdb_task_state(p, mask))
2309 			kdb_ps1(p);
2310 	}
2311 	kdb_printf("\n");
2312 	/* Now the real tasks */
2313 	kdb_do_each_thread(g, p) {
2314 		if (KDB_FLAG(CMD_INTERRUPT))
2315 			return 0;
2316 		if (kdb_task_state(p, mask))
2317 			kdb_ps1(p);
2318 	} kdb_while_each_thread(g, p);
2319 
2320 	return 0;
2321 }
2322 
2323 /*
2324  * kdb_pid - This function implements the 'pid' command which switches
2325  *	the currently active process.
2326  *		pid [<pid> | R]
2327  */
kdb_pid(int argc,const char ** argv)2328 static int kdb_pid(int argc, const char **argv)
2329 {
2330 	struct task_struct *p;
2331 	unsigned long val;
2332 	int diag;
2333 
2334 	if (argc > 1)
2335 		return KDB_ARGCOUNT;
2336 
2337 	if (argc) {
2338 		if (strcmp(argv[1], "R") == 0) {
2339 			p = KDB_TSK(kdb_initial_cpu);
2340 		} else {
2341 			diag = kdbgetularg(argv[1], &val);
2342 			if (diag)
2343 				return KDB_BADINT;
2344 
2345 			p = find_task_by_pid_ns((pid_t)val,	&init_pid_ns);
2346 			if (!p) {
2347 				kdb_printf("No task with pid=%d\n", (pid_t)val);
2348 				return 0;
2349 			}
2350 		}
2351 		kdb_set_current_task(p);
2352 	}
2353 	kdb_printf("KDB current process is %s(pid=%d)\n",
2354 		   kdb_current_task->comm,
2355 		   kdb_current_task->pid);
2356 
2357 	return 0;
2358 }
2359 
2360 /*
2361  * kdb_ll - This function implements the 'll' command which follows a
2362  *	linked list and executes an arbitrary command for each
2363  *	element.
2364  */
kdb_ll(int argc,const char ** argv)2365 static int kdb_ll(int argc, const char **argv)
2366 {
2367 	int diag = 0;
2368 	unsigned long addr;
2369 	long offset = 0;
2370 	unsigned long va;
2371 	unsigned long linkoffset;
2372 	int nextarg;
2373 	const char *command;
2374 
2375 	if (argc != 3)
2376 		return KDB_ARGCOUNT;
2377 
2378 	nextarg = 1;
2379 	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2380 	if (diag)
2381 		return diag;
2382 
2383 	diag = kdbgetularg(argv[2], &linkoffset);
2384 	if (diag)
2385 		return diag;
2386 
2387 	/*
2388 	 * Using the starting address as
2389 	 * the first element in the list, and assuming that
2390 	 * the list ends with a null pointer.
2391 	 */
2392 
2393 	va = addr;
2394 	command = kdb_strdup(argv[3], GFP_KDB);
2395 	if (!command) {
2396 		kdb_printf("%s: cannot duplicate command\n", __func__);
2397 		return 0;
2398 	}
2399 	/* Recursive use of kdb_parse, do not use argv after this point */
2400 	argv = NULL;
2401 
2402 	while (va) {
2403 		char buf[80];
2404 
2405 		if (KDB_FLAG(CMD_INTERRUPT))
2406 			goto out;
2407 
2408 		sprintf(buf, "%s " kdb_machreg_fmt "\n", command, va);
2409 		diag = kdb_parse(buf);
2410 		if (diag)
2411 			goto out;
2412 
2413 		addr = va + linkoffset;
2414 		if (kdb_getword(&va, addr, sizeof(va)))
2415 			goto out;
2416 	}
2417 
2418 out:
2419 	kfree(command);
2420 	return diag;
2421 }
2422 
kdb_kgdb(int argc,const char ** argv)2423 static int kdb_kgdb(int argc, const char **argv)
2424 {
2425 	return KDB_CMD_KGDB;
2426 }
2427 
2428 /*
2429  * kdb_help - This function implements the 'help' and '?' commands.
2430  */
kdb_help(int argc,const char ** argv)2431 static int kdb_help(int argc, const char **argv)
2432 {
2433 	kdbtab_t *kt;
2434 	int i;
2435 
2436 	kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2437 	kdb_printf("-----------------------------"
2438 		   "-----------------------------\n");
2439 	for_each_kdbcmd(kt, i) {
2440 		if (kt->cmd_name)
2441 			kdb_printf("%-15.15s %-20.20s %s\n", kt->cmd_name,
2442 				   kt->cmd_usage, kt->cmd_help);
2443 		if (KDB_FLAG(CMD_INTERRUPT))
2444 			return 0;
2445 	}
2446 	return 0;
2447 }
2448 
2449 /*
2450  * kdb_kill - This function implements the 'kill' commands.
2451  */
kdb_kill(int argc,const char ** argv)2452 static int kdb_kill(int argc, const char **argv)
2453 {
2454 	long sig, pid;
2455 	char *endp;
2456 	struct task_struct *p;
2457 	struct siginfo info;
2458 
2459 	if (argc != 2)
2460 		return KDB_ARGCOUNT;
2461 
2462 	sig = simple_strtol(argv[1], &endp, 0);
2463 	if (*endp)
2464 		return KDB_BADINT;
2465 	if (sig >= 0) {
2466 		kdb_printf("Invalid signal parameter.<-signal>\n");
2467 		return 0;
2468 	}
2469 	sig = -sig;
2470 
2471 	pid = simple_strtol(argv[2], &endp, 0);
2472 	if (*endp)
2473 		return KDB_BADINT;
2474 	if (pid <= 0) {
2475 		kdb_printf("Process ID must be large than 0.\n");
2476 		return 0;
2477 	}
2478 
2479 	/* Find the process. */
2480 	p = find_task_by_pid_ns(pid, &init_pid_ns);
2481 	if (!p) {
2482 		kdb_printf("The specified process isn't found.\n");
2483 		return 0;
2484 	}
2485 	p = p->group_leader;
2486 	info.si_signo = sig;
2487 	info.si_errno = 0;
2488 	info.si_code = SI_USER;
2489 	info.si_pid = pid;  /* same capabilities as process being signalled */
2490 	info.si_uid = 0;    /* kdb has root authority */
2491 	kdb_send_sig_info(p, &info);
2492 	return 0;
2493 }
2494 
2495 struct kdb_tm {
2496 	int tm_sec;	/* seconds */
2497 	int tm_min;	/* minutes */
2498 	int tm_hour;	/* hours */
2499 	int tm_mday;	/* day of the month */
2500 	int tm_mon;	/* month */
2501 	int tm_year;	/* year */
2502 };
2503 
kdb_gmtime(struct timespec * tv,struct kdb_tm * tm)2504 static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2505 {
2506 	/* This will work from 1970-2099, 2100 is not a leap year */
2507 	static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2508 				 31, 30, 31, 30, 31 };
2509 	memset(tm, 0, sizeof(*tm));
2510 	tm->tm_sec  = tv->tv_sec % (24 * 60 * 60);
2511 	tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2512 		(2 * 365 + 1); /* shift base from 1970 to 1968 */
2513 	tm->tm_min =  tm->tm_sec / 60 % 60;
2514 	tm->tm_hour = tm->tm_sec / 60 / 60;
2515 	tm->tm_sec =  tm->tm_sec % 60;
2516 	tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2517 	tm->tm_mday %= (4*365+1);
2518 	mon_day[1] = 29;
2519 	while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2520 		tm->tm_mday -= mon_day[tm->tm_mon];
2521 		if (++tm->tm_mon == 12) {
2522 			tm->tm_mon = 0;
2523 			++tm->tm_year;
2524 			mon_day[1] = 28;
2525 		}
2526 	}
2527 	++tm->tm_mday;
2528 }
2529 
2530 /*
2531  * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2532  * I cannot call that code directly from kdb, it has an unconditional
2533  * cli()/sti() and calls routines that take locks which can stop the debugger.
2534  */
kdb_sysinfo(struct sysinfo * val)2535 static void kdb_sysinfo(struct sysinfo *val)
2536 {
2537 	struct timespec uptime;
2538 	do_posix_clock_monotonic_gettime(&uptime);
2539 	memset(val, 0, sizeof(*val));
2540 	val->uptime = uptime.tv_sec;
2541 	val->loads[0] = avenrun[0];
2542 	val->loads[1] = avenrun[1];
2543 	val->loads[2] = avenrun[2];
2544 	val->procs = nr_threads-1;
2545 	si_meminfo(val);
2546 
2547 	return;
2548 }
2549 
2550 /*
2551  * kdb_summary - This function implements the 'summary' command.
2552  */
kdb_summary(int argc,const char ** argv)2553 static int kdb_summary(int argc, const char **argv)
2554 {
2555 	struct timespec now;
2556 	struct kdb_tm tm;
2557 	struct sysinfo val;
2558 
2559 	if (argc)
2560 		return KDB_ARGCOUNT;
2561 
2562 	kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
2563 	kdb_printf("release    %s\n", init_uts_ns.name.release);
2564 	kdb_printf("version    %s\n", init_uts_ns.name.version);
2565 	kdb_printf("machine    %s\n", init_uts_ns.name.machine);
2566 	kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
2567 	kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2568 	kdb_printf("ccversion  %s\n", __stringify(CCVERSION));
2569 
2570 	now = __current_kernel_time();
2571 	kdb_gmtime(&now, &tm);
2572 	kdb_printf("date       %04d-%02d-%02d %02d:%02d:%02d "
2573 		   "tz_minuteswest %d\n",
2574 		1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2575 		tm.tm_hour, tm.tm_min, tm.tm_sec,
2576 		sys_tz.tz_minuteswest);
2577 
2578 	kdb_sysinfo(&val);
2579 	kdb_printf("uptime     ");
2580 	if (val.uptime > (24*60*60)) {
2581 		int days = val.uptime / (24*60*60);
2582 		val.uptime %= (24*60*60);
2583 		kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2584 	}
2585 	kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2586 
2587 	/* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2588 
2589 #define LOAD_INT(x) ((x) >> FSHIFT)
2590 #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2591 	kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
2592 		LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2593 		LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2594 		LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2595 #undef LOAD_INT
2596 #undef LOAD_FRAC
2597 	/* Display in kilobytes */
2598 #define K(x) ((x) << (PAGE_SHIFT - 10))
2599 	kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
2600 		   "Buffers:        %8lu kB\n",
2601 		   val.totalram, val.freeram, val.bufferram);
2602 	return 0;
2603 }
2604 
2605 /*
2606  * kdb_per_cpu - This function implements the 'per_cpu' command.
2607  */
kdb_per_cpu(int argc,const char ** argv)2608 static int kdb_per_cpu(int argc, const char **argv)
2609 {
2610 	char fmtstr[64];
2611 	int cpu, diag, nextarg = 1;
2612 	unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2613 
2614 	if (argc < 1 || argc > 3)
2615 		return KDB_ARGCOUNT;
2616 
2617 	diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2618 	if (diag)
2619 		return diag;
2620 
2621 	if (argc >= 2) {
2622 		diag = kdbgetularg(argv[2], &bytesperword);
2623 		if (diag)
2624 			return diag;
2625 	}
2626 	if (!bytesperword)
2627 		bytesperword = KDB_WORD_SIZE;
2628 	else if (bytesperword > KDB_WORD_SIZE)
2629 		return KDB_BADWIDTH;
2630 	sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2631 	if (argc >= 3) {
2632 		diag = kdbgetularg(argv[3], &whichcpu);
2633 		if (diag)
2634 			return diag;
2635 		if (!cpu_online(whichcpu)) {
2636 			kdb_printf("cpu %ld is not online\n", whichcpu);
2637 			return KDB_BADCPUNUM;
2638 		}
2639 	}
2640 
2641 	/* Most architectures use __per_cpu_offset[cpu], some use
2642 	 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2643 	 */
2644 #ifdef	__per_cpu_offset
2645 #define KDB_PCU(cpu) __per_cpu_offset(cpu)
2646 #else
2647 #ifdef	CONFIG_SMP
2648 #define KDB_PCU(cpu) __per_cpu_offset[cpu]
2649 #else
2650 #define KDB_PCU(cpu) 0
2651 #endif
2652 #endif
2653 	for_each_online_cpu(cpu) {
2654 		if (KDB_FLAG(CMD_INTERRUPT))
2655 			return 0;
2656 
2657 		if (whichcpu != ~0UL && whichcpu != cpu)
2658 			continue;
2659 		addr = symaddr + KDB_PCU(cpu);
2660 		diag = kdb_getword(&val, addr, bytesperword);
2661 		if (diag) {
2662 			kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2663 				   "read, diag=%d\n", cpu, addr, diag);
2664 			continue;
2665 		}
2666 		kdb_printf("%5d ", cpu);
2667 		kdb_md_line(fmtstr, addr,
2668 			bytesperword == KDB_WORD_SIZE,
2669 			1, bytesperword, 1, 1, 0);
2670 	}
2671 #undef KDB_PCU
2672 	return 0;
2673 }
2674 
2675 /*
2676  * display help for the use of cmd | grep pattern
2677  */
kdb_grep_help(int argc,const char ** argv)2678 static int kdb_grep_help(int argc, const char **argv)
2679 {
2680 	kdb_printf("Usage of  cmd args | grep pattern:\n");
2681 	kdb_printf("  Any command's output may be filtered through an ");
2682 	kdb_printf("emulated 'pipe'.\n");
2683 	kdb_printf("  'grep' is just a key word.\n");
2684 	kdb_printf("  The pattern may include a very limited set of "
2685 		   "metacharacters:\n");
2686 	kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
2687 	kdb_printf("  And if there are spaces in the pattern, you may "
2688 		   "quote it:\n");
2689 	kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2690 		   " or \"^pat tern$\"\n");
2691 	return 0;
2692 }
2693 
2694 /*
2695  * kdb_register_repeat - This function is used to register a kernel
2696  * 	debugger command.
2697  * Inputs:
2698  *	cmd	Command name
2699  *	func	Function to execute the command
2700  *	usage	A simple usage string showing arguments
2701  *	help	A simple help string describing command
2702  *	repeat	Does the command auto repeat on enter?
2703  * Returns:
2704  *	zero for success, one if a duplicate command.
2705  */
2706 #define kdb_command_extend 50	/* arbitrary */
kdb_register_repeat(char * cmd,kdb_func_t func,char * usage,char * help,short minlen,kdb_repeat_t repeat)2707 int kdb_register_repeat(char *cmd,
2708 			kdb_func_t func,
2709 			char *usage,
2710 			char *help,
2711 			short minlen,
2712 			kdb_repeat_t repeat)
2713 {
2714 	int i;
2715 	kdbtab_t *kp;
2716 
2717 	/*
2718 	 *  Brute force method to determine duplicates
2719 	 */
2720 	for_each_kdbcmd(kp, i) {
2721 		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2722 			kdb_printf("Duplicate kdb command registered: "
2723 				"%s, func %p help %s\n", cmd, func, help);
2724 			return 1;
2725 		}
2726 	}
2727 
2728 	/*
2729 	 * Insert command into first available location in table
2730 	 */
2731 	for_each_kdbcmd(kp, i) {
2732 		if (kp->cmd_name == NULL)
2733 			break;
2734 	}
2735 
2736 	if (i >= kdb_max_commands) {
2737 		kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2738 			 kdb_command_extend) * sizeof(*new), GFP_KDB);
2739 		if (!new) {
2740 			kdb_printf("Could not allocate new kdb_command "
2741 				   "table\n");
2742 			return 1;
2743 		}
2744 		if (kdb_commands) {
2745 			memcpy(new, kdb_commands,
2746 			  (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2747 			kfree(kdb_commands);
2748 		}
2749 		memset(new + kdb_max_commands, 0,
2750 		       kdb_command_extend * sizeof(*new));
2751 		kdb_commands = new;
2752 		kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2753 		kdb_max_commands += kdb_command_extend;
2754 	}
2755 
2756 	kp->cmd_name   = cmd;
2757 	kp->cmd_func   = func;
2758 	kp->cmd_usage  = usage;
2759 	kp->cmd_help   = help;
2760 	kp->cmd_flags  = 0;
2761 	kp->cmd_minlen = minlen;
2762 	kp->cmd_repeat = repeat;
2763 
2764 	return 0;
2765 }
2766 EXPORT_SYMBOL_GPL(kdb_register_repeat);
2767 
2768 
2769 /*
2770  * kdb_register - Compatibility register function for commands that do
2771  *	not need to specify a repeat state.  Equivalent to
2772  *	kdb_register_repeat with KDB_REPEAT_NONE.
2773  * Inputs:
2774  *	cmd	Command name
2775  *	func	Function to execute the command
2776  *	usage	A simple usage string showing arguments
2777  *	help	A simple help string describing command
2778  * Returns:
2779  *	zero for success, one if a duplicate command.
2780  */
kdb_register(char * cmd,kdb_func_t func,char * usage,char * help,short minlen)2781 int kdb_register(char *cmd,
2782 	     kdb_func_t func,
2783 	     char *usage,
2784 	     char *help,
2785 	     short minlen)
2786 {
2787 	return kdb_register_repeat(cmd, func, usage, help, minlen,
2788 				   KDB_REPEAT_NONE);
2789 }
2790 EXPORT_SYMBOL_GPL(kdb_register);
2791 
2792 /*
2793  * kdb_unregister - This function is used to unregister a kernel
2794  *	debugger command.  It is generally called when a module which
2795  *	implements kdb commands is unloaded.
2796  * Inputs:
2797  *	cmd	Command name
2798  * Returns:
2799  *	zero for success, one command not registered.
2800  */
kdb_unregister(char * cmd)2801 int kdb_unregister(char *cmd)
2802 {
2803 	int i;
2804 	kdbtab_t *kp;
2805 
2806 	/*
2807 	 *  find the command.
2808 	 */
2809 	for_each_kdbcmd(kp, i) {
2810 		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2811 			kp->cmd_name = NULL;
2812 			return 0;
2813 		}
2814 	}
2815 
2816 	/* Couldn't find it.  */
2817 	return 1;
2818 }
2819 EXPORT_SYMBOL_GPL(kdb_unregister);
2820 
2821 /* Initialize the kdb command table. */
kdb_inittab(void)2822 static void __init kdb_inittab(void)
2823 {
2824 	int i;
2825 	kdbtab_t *kp;
2826 
2827 	for_each_kdbcmd(kp, i)
2828 		kp->cmd_name = NULL;
2829 
2830 	kdb_register_repeat("md", kdb_md, "<vaddr>",
2831 	  "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2832 			    KDB_REPEAT_NO_ARGS);
2833 	kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>",
2834 	  "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS);
2835 	kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>",
2836 	  "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS);
2837 	kdb_register_repeat("mds", kdb_md, "<vaddr>",
2838 	  "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS);
2839 	kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>",
2840 	  "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS);
2841 	kdb_register_repeat("go", kdb_go, "[<vaddr>]",
2842 	  "Continue Execution", 1, KDB_REPEAT_NONE);
2843 	kdb_register_repeat("rd", kdb_rd, "",
2844 	  "Display Registers", 0, KDB_REPEAT_NONE);
2845 	kdb_register_repeat("rm", kdb_rm, "<reg> <contents>",
2846 	  "Modify Registers", 0, KDB_REPEAT_NONE);
2847 	kdb_register_repeat("ef", kdb_ef, "<vaddr>",
2848 	  "Display exception frame", 0, KDB_REPEAT_NONE);
2849 	kdb_register_repeat("bt", kdb_bt, "[<vaddr>]",
2850 	  "Stack traceback", 1, KDB_REPEAT_NONE);
2851 	kdb_register_repeat("btp", kdb_bt, "<pid>",
2852 	  "Display stack for process <pid>", 0, KDB_REPEAT_NONE);
2853 	kdb_register_repeat("bta", kdb_bt, "[DRSTCZEUIMA]",
2854 	  "Display stack all processes", 0, KDB_REPEAT_NONE);
2855 	kdb_register_repeat("btc", kdb_bt, "",
2856 	  "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE);
2857 	kdb_register_repeat("btt", kdb_bt, "<vaddr>",
2858 	  "Backtrace process given its struct task address", 0,
2859 			    KDB_REPEAT_NONE);
2860 	kdb_register_repeat("ll", kdb_ll, "<first-element> <linkoffset> <cmd>",
2861 	  "Execute cmd for each element in linked list", 0, KDB_REPEAT_NONE);
2862 	kdb_register_repeat("env", kdb_env, "",
2863 	  "Show environment variables", 0, KDB_REPEAT_NONE);
2864 	kdb_register_repeat("set", kdb_set, "",
2865 	  "Set environment variables", 0, KDB_REPEAT_NONE);
2866 	kdb_register_repeat("help", kdb_help, "",
2867 	  "Display Help Message", 1, KDB_REPEAT_NONE);
2868 	kdb_register_repeat("?", kdb_help, "",
2869 	  "Display Help Message", 0, KDB_REPEAT_NONE);
2870 	kdb_register_repeat("cpu", kdb_cpu, "<cpunum>",
2871 	  "Switch to new cpu", 0, KDB_REPEAT_NONE);
2872 	kdb_register_repeat("kgdb", kdb_kgdb, "",
2873 	  "Enter kgdb mode", 0, KDB_REPEAT_NONE);
2874 	kdb_register_repeat("ps", kdb_ps, "[<flags>|A]",
2875 	  "Display active task list", 0, KDB_REPEAT_NONE);
2876 	kdb_register_repeat("pid", kdb_pid, "<pidnum>",
2877 	  "Switch to another task", 0, KDB_REPEAT_NONE);
2878 	kdb_register_repeat("reboot", kdb_reboot, "",
2879 	  "Reboot the machine immediately", 0, KDB_REPEAT_NONE);
2880 #if defined(CONFIG_MODULES)
2881 	kdb_register_repeat("lsmod", kdb_lsmod, "",
2882 	  "List loaded kernel modules", 0, KDB_REPEAT_NONE);
2883 #endif
2884 #if defined(CONFIG_MAGIC_SYSRQ)
2885 	kdb_register_repeat("sr", kdb_sr, "<key>",
2886 	  "Magic SysRq key", 0, KDB_REPEAT_NONE);
2887 #endif
2888 #if defined(CONFIG_PRINTK)
2889 	kdb_register_repeat("dmesg", kdb_dmesg, "[lines]",
2890 	  "Display syslog buffer", 0, KDB_REPEAT_NONE);
2891 #endif
2892 	kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2893 	  "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE);
2894 	kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>",
2895 	  "Send a signal to a process", 0, KDB_REPEAT_NONE);
2896 	kdb_register_repeat("summary", kdb_summary, "",
2897 	  "Summarize the system", 4, KDB_REPEAT_NONE);
2898 	kdb_register_repeat("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2899 	  "Display per_cpu variables", 3, KDB_REPEAT_NONE);
2900 	kdb_register_repeat("grephelp", kdb_grep_help, "",
2901 	  "Display help on | grep", 0, KDB_REPEAT_NONE);
2902 }
2903 
2904 /* Execute any commands defined in kdb_cmds.  */
kdb_cmd_init(void)2905 static void __init kdb_cmd_init(void)
2906 {
2907 	int i, diag;
2908 	for (i = 0; kdb_cmds[i]; ++i) {
2909 		diag = kdb_parse(kdb_cmds[i]);
2910 		if (diag)
2911 			kdb_printf("kdb command %s failed, kdb diag %d\n",
2912 				kdb_cmds[i], diag);
2913 	}
2914 	if (defcmd_in_progress) {
2915 		kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2916 		kdb_parse("endefcmd");
2917 	}
2918 }
2919 
2920 /* Initialize kdb_printf, breakpoint tables and kdb state */
kdb_init(int lvl)2921 void __init kdb_init(int lvl)
2922 {
2923 	static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2924 	int i;
2925 
2926 	if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2927 		return;
2928 	for (i = kdb_init_lvl; i < lvl; i++) {
2929 		switch (i) {
2930 		case KDB_NOT_INITIALIZED:
2931 			kdb_inittab();		/* Initialize Command Table */
2932 			kdb_initbptab();	/* Initialize Breakpoints */
2933 			break;
2934 		case KDB_INIT_EARLY:
2935 			kdb_cmd_init();		/* Build kdb_cmds tables */
2936 			break;
2937 		}
2938 	}
2939 	kdb_init_lvl = lvl;
2940 }
2941