1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1991, 1992 Linus Torvalds
4  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
5  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
6  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8  *	-  July2000
9  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10  */
11 
12 /*
13  * This handles all read/write requests to block devices
14  */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-pm.h>
20 #include <linux/blk-integrity.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/string.h>
26 #include <linux/init.h>
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/fault-inject.h>
33 #include <linux/list_sort.h>
34 #include <linux/delay.h>
35 #include <linux/ratelimit.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/t10-pi.h>
38 #include <linux/debugfs.h>
39 #include <linux/bpf.h>
40 #include <linux/psi.h>
41 #include <linux/part_stat.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/blk-crypto.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/block.h>
47 
48 #include "blk.h"
49 #include "blk-mq-sched.h"
50 #include "blk-pm.h"
51 #include "blk-cgroup.h"
52 #include "blk-throttle.h"
53 
54 struct dentry *blk_debugfs_root;
55 
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
62 
63 DEFINE_IDA(blk_queue_ida);
64 
65 /*
66  * For queue allocation
67  */
68 struct kmem_cache *blk_requestq_cachep;
69 struct kmem_cache *blk_requestq_srcu_cachep;
70 
71 /*
72  * Controlling structure to kblockd
73  */
74 static struct workqueue_struct *kblockd_workqueue;
75 
76 /**
77  * blk_queue_flag_set - atomically set a queue flag
78  * @flag: flag to be set
79  * @q: request queue
80  */
blk_queue_flag_set(unsigned int flag,struct request_queue * q)81 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
82 {
83 	set_bit(flag, &q->queue_flags);
84 }
85 EXPORT_SYMBOL(blk_queue_flag_set);
86 
87 /**
88  * blk_queue_flag_clear - atomically clear a queue flag
89  * @flag: flag to be cleared
90  * @q: request queue
91  */
blk_queue_flag_clear(unsigned int flag,struct request_queue * q)92 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
93 {
94 	clear_bit(flag, &q->queue_flags);
95 }
96 EXPORT_SYMBOL(blk_queue_flag_clear);
97 
98 /**
99  * blk_queue_flag_test_and_set - atomically test and set a queue flag
100  * @flag: flag to be set
101  * @q: request queue
102  *
103  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
104  * the flag was already set.
105  */
blk_queue_flag_test_and_set(unsigned int flag,struct request_queue * q)106 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
107 {
108 	return test_and_set_bit(flag, &q->queue_flags);
109 }
110 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
111 
112 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
113 static const char *const blk_op_name[] = {
114 	REQ_OP_NAME(READ),
115 	REQ_OP_NAME(WRITE),
116 	REQ_OP_NAME(FLUSH),
117 	REQ_OP_NAME(DISCARD),
118 	REQ_OP_NAME(SECURE_ERASE),
119 	REQ_OP_NAME(ZONE_RESET),
120 	REQ_OP_NAME(ZONE_RESET_ALL),
121 	REQ_OP_NAME(ZONE_OPEN),
122 	REQ_OP_NAME(ZONE_CLOSE),
123 	REQ_OP_NAME(ZONE_FINISH),
124 	REQ_OP_NAME(ZONE_APPEND),
125 	REQ_OP_NAME(WRITE_ZEROES),
126 	REQ_OP_NAME(DRV_IN),
127 	REQ_OP_NAME(DRV_OUT),
128 };
129 #undef REQ_OP_NAME
130 
131 /**
132  * blk_op_str - Return string XXX in the REQ_OP_XXX.
133  * @op: REQ_OP_XXX.
134  *
135  * Description: Centralize block layer function to convert REQ_OP_XXX into
136  * string format. Useful in the debugging and tracing bio or request. For
137  * invalid REQ_OP_XXX it returns string "UNKNOWN".
138  */
blk_op_str(unsigned int op)139 inline const char *blk_op_str(unsigned int op)
140 {
141 	const char *op_str = "UNKNOWN";
142 
143 	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
144 		op_str = blk_op_name[op];
145 
146 	return op_str;
147 }
148 EXPORT_SYMBOL_GPL(blk_op_str);
149 
150 static const struct {
151 	int		errno;
152 	const char	*name;
153 } blk_errors[] = {
154 	[BLK_STS_OK]		= { 0,		"" },
155 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
156 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
157 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
158 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
159 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
160 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
161 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
162 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
163 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
164 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
165 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
166 	[BLK_STS_OFFLINE]	= { -ENODEV,	"device offline" },
167 
168 	/* device mapper special case, should not leak out: */
169 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
170 
171 	/* zone device specific errors */
172 	[BLK_STS_ZONE_OPEN_RESOURCE]	= { -ETOOMANYREFS, "open zones exceeded" },
173 	[BLK_STS_ZONE_ACTIVE_RESOURCE]	= { -EOVERFLOW, "active zones exceeded" },
174 
175 	/* everything else not covered above: */
176 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
177 };
178 
errno_to_blk_status(int errno)179 blk_status_t errno_to_blk_status(int errno)
180 {
181 	int i;
182 
183 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
184 		if (blk_errors[i].errno == errno)
185 			return (__force blk_status_t)i;
186 	}
187 
188 	return BLK_STS_IOERR;
189 }
190 EXPORT_SYMBOL_GPL(errno_to_blk_status);
191 
blk_status_to_errno(blk_status_t status)192 int blk_status_to_errno(blk_status_t status)
193 {
194 	int idx = (__force int)status;
195 
196 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
197 		return -EIO;
198 	return blk_errors[idx].errno;
199 }
200 EXPORT_SYMBOL_GPL(blk_status_to_errno);
201 
blk_status_to_str(blk_status_t status)202 const char *blk_status_to_str(blk_status_t status)
203 {
204 	int idx = (__force int)status;
205 
206 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
207 		return "<null>";
208 	return blk_errors[idx].name;
209 }
210 
211 /**
212  * blk_sync_queue - cancel any pending callbacks on a queue
213  * @q: the queue
214  *
215  * Description:
216  *     The block layer may perform asynchronous callback activity
217  *     on a queue, such as calling the unplug function after a timeout.
218  *     A block device may call blk_sync_queue to ensure that any
219  *     such activity is cancelled, thus allowing it to release resources
220  *     that the callbacks might use. The caller must already have made sure
221  *     that its ->submit_bio will not re-add plugging prior to calling
222  *     this function.
223  *
224  *     This function does not cancel any asynchronous activity arising
225  *     out of elevator or throttling code. That would require elevator_exit()
226  *     and blkcg_exit_queue() to be called with queue lock initialized.
227  *
228  */
blk_sync_queue(struct request_queue * q)229 void blk_sync_queue(struct request_queue *q)
230 {
231 	del_timer_sync(&q->timeout);
232 	cancel_work_sync(&q->timeout_work);
233 }
234 EXPORT_SYMBOL(blk_sync_queue);
235 
236 /**
237  * blk_set_pm_only - increment pm_only counter
238  * @q: request queue pointer
239  */
blk_set_pm_only(struct request_queue * q)240 void blk_set_pm_only(struct request_queue *q)
241 {
242 	atomic_inc(&q->pm_only);
243 }
244 EXPORT_SYMBOL_GPL(blk_set_pm_only);
245 
blk_clear_pm_only(struct request_queue * q)246 void blk_clear_pm_only(struct request_queue *q)
247 {
248 	int pm_only;
249 
250 	pm_only = atomic_dec_return(&q->pm_only);
251 	WARN_ON_ONCE(pm_only < 0);
252 	if (pm_only == 0)
253 		wake_up_all(&q->mq_freeze_wq);
254 }
255 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
256 
257 /**
258  * blk_put_queue - decrement the request_queue refcount
259  * @q: the request_queue structure to decrement the refcount for
260  *
261  * Decrements the refcount of the request_queue kobject. When this reaches 0
262  * we'll have blk_release_queue() called.
263  *
264  * Context: Any context, but the last reference must not be dropped from
265  *          atomic context.
266  */
blk_put_queue(struct request_queue * q)267 void blk_put_queue(struct request_queue *q)
268 {
269 	kobject_put(&q->kobj);
270 }
271 EXPORT_SYMBOL(blk_put_queue);
272 
blk_queue_start_drain(struct request_queue * q)273 void blk_queue_start_drain(struct request_queue *q)
274 {
275 	/*
276 	 * When queue DYING flag is set, we need to block new req
277 	 * entering queue, so we call blk_freeze_queue_start() to
278 	 * prevent I/O from crossing blk_queue_enter().
279 	 */
280 	blk_freeze_queue_start(q);
281 	if (queue_is_mq(q))
282 		blk_mq_wake_waiters(q);
283 	/* Make blk_queue_enter() reexamine the DYING flag. */
284 	wake_up_all(&q->mq_freeze_wq);
285 }
286 
287 /**
288  * blk_cleanup_queue - shutdown a request queue
289  * @q: request queue to shutdown
290  *
291  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
292  * put it.  All future requests will be failed immediately with -ENODEV.
293  *
294  * Context: can sleep
295  */
blk_cleanup_queue(struct request_queue * q)296 void blk_cleanup_queue(struct request_queue *q)
297 {
298 	/* cannot be called from atomic context */
299 	might_sleep();
300 
301 	WARN_ON_ONCE(blk_queue_registered(q));
302 
303 	/* mark @q DYING, no new request or merges will be allowed afterwards */
304 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
305 	blk_queue_start_drain(q);
306 
307 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
308 	blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
309 
310 	/*
311 	 * Drain all requests queued before DYING marking. Set DEAD flag to
312 	 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
313 	 * after draining finished.
314 	 */
315 	blk_freeze_queue(q);
316 
317 	blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
318 
319 	blk_sync_queue(q);
320 	if (queue_is_mq(q)) {
321 		blk_mq_cancel_work_sync(q);
322 		blk_mq_exit_queue(q);
323 	}
324 
325 	/* @q is and will stay empty, shutdown and put */
326 	blk_put_queue(q);
327 }
328 EXPORT_SYMBOL(blk_cleanup_queue);
329 
330 /**
331  * blk_queue_enter() - try to increase q->q_usage_counter
332  * @q: request queue pointer
333  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
334  */
blk_queue_enter(struct request_queue * q,blk_mq_req_flags_t flags)335 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
336 {
337 	const bool pm = flags & BLK_MQ_REQ_PM;
338 
339 	while (!blk_try_enter_queue(q, pm)) {
340 		if (flags & BLK_MQ_REQ_NOWAIT)
341 			return -EBUSY;
342 
343 		/*
344 		 * read pair of barrier in blk_freeze_queue_start(), we need to
345 		 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
346 		 * reading .mq_freeze_depth or queue dying flag, otherwise the
347 		 * following wait may never return if the two reads are
348 		 * reordered.
349 		 */
350 		smp_rmb();
351 		wait_event(q->mq_freeze_wq,
352 			   (!q->mq_freeze_depth &&
353 			    blk_pm_resume_queue(pm, q)) ||
354 			   blk_queue_dying(q));
355 		if (blk_queue_dying(q))
356 			return -ENODEV;
357 	}
358 
359 	return 0;
360 }
361 
__bio_queue_enter(struct request_queue * q,struct bio * bio)362 int __bio_queue_enter(struct request_queue *q, struct bio *bio)
363 {
364 	while (!blk_try_enter_queue(q, false)) {
365 		struct gendisk *disk = bio->bi_bdev->bd_disk;
366 
367 		if (bio->bi_opf & REQ_NOWAIT) {
368 			if (test_bit(GD_DEAD, &disk->state))
369 				goto dead;
370 			bio_wouldblock_error(bio);
371 			return -EBUSY;
372 		}
373 
374 		/*
375 		 * read pair of barrier in blk_freeze_queue_start(), we need to
376 		 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
377 		 * reading .mq_freeze_depth or queue dying flag, otherwise the
378 		 * following wait may never return if the two reads are
379 		 * reordered.
380 		 */
381 		smp_rmb();
382 		wait_event(q->mq_freeze_wq,
383 			   (!q->mq_freeze_depth &&
384 			    blk_pm_resume_queue(false, q)) ||
385 			   test_bit(GD_DEAD, &disk->state));
386 		if (test_bit(GD_DEAD, &disk->state))
387 			goto dead;
388 	}
389 
390 	return 0;
391 dead:
392 	bio_io_error(bio);
393 	return -ENODEV;
394 }
395 
blk_queue_exit(struct request_queue * q)396 void blk_queue_exit(struct request_queue *q)
397 {
398 	percpu_ref_put(&q->q_usage_counter);
399 }
400 
blk_queue_usage_counter_release(struct percpu_ref * ref)401 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
402 {
403 	struct request_queue *q =
404 		container_of(ref, struct request_queue, q_usage_counter);
405 
406 	wake_up_all(&q->mq_freeze_wq);
407 }
408 
blk_rq_timed_out_timer(struct timer_list * t)409 static void blk_rq_timed_out_timer(struct timer_list *t)
410 {
411 	struct request_queue *q = from_timer(q, t, timeout);
412 
413 	kblockd_schedule_work(&q->timeout_work);
414 }
415 
blk_timeout_work(struct work_struct * work)416 static void blk_timeout_work(struct work_struct *work)
417 {
418 }
419 
blk_alloc_queue(int node_id,bool alloc_srcu)420 struct request_queue *blk_alloc_queue(int node_id, bool alloc_srcu)
421 {
422 	struct request_queue *q;
423 	int ret;
424 
425 	q = kmem_cache_alloc_node(blk_get_queue_kmem_cache(alloc_srcu),
426 			GFP_KERNEL | __GFP_ZERO, node_id);
427 	if (!q)
428 		return NULL;
429 
430 	if (alloc_srcu) {
431 		blk_queue_flag_set(QUEUE_FLAG_HAS_SRCU, q);
432 		if (init_srcu_struct(q->srcu) != 0)
433 			goto fail_q;
434 	}
435 
436 	q->last_merge = NULL;
437 
438 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
439 	if (q->id < 0)
440 		goto fail_srcu;
441 
442 	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, 0);
443 	if (ret)
444 		goto fail_id;
445 
446 	q->stats = blk_alloc_queue_stats();
447 	if (!q->stats)
448 		goto fail_split;
449 
450 	q->node = node_id;
451 
452 	atomic_set(&q->nr_active_requests_shared_tags, 0);
453 
454 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
455 	INIT_WORK(&q->timeout_work, blk_timeout_work);
456 	INIT_LIST_HEAD(&q->icq_list);
457 
458 	kobject_init(&q->kobj, &blk_queue_ktype);
459 
460 	mutex_init(&q->debugfs_mutex);
461 	mutex_init(&q->sysfs_lock);
462 	mutex_init(&q->sysfs_dir_lock);
463 	spin_lock_init(&q->queue_lock);
464 
465 	init_waitqueue_head(&q->mq_freeze_wq);
466 	mutex_init(&q->mq_freeze_lock);
467 
468 	/*
469 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
470 	 * See blk_register_queue() for details.
471 	 */
472 	if (percpu_ref_init(&q->q_usage_counter,
473 				blk_queue_usage_counter_release,
474 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
475 		goto fail_stats;
476 
477 	blk_queue_dma_alignment(q, 511);
478 	blk_set_default_limits(&q->limits);
479 	q->nr_requests = BLKDEV_DEFAULT_RQ;
480 
481 	return q;
482 
483 fail_stats:
484 	blk_free_queue_stats(q->stats);
485 fail_split:
486 	bioset_exit(&q->bio_split);
487 fail_id:
488 	ida_simple_remove(&blk_queue_ida, q->id);
489 fail_srcu:
490 	if (alloc_srcu)
491 		cleanup_srcu_struct(q->srcu);
492 fail_q:
493 	kmem_cache_free(blk_get_queue_kmem_cache(alloc_srcu), q);
494 	return NULL;
495 }
496 
497 /**
498  * blk_get_queue - increment the request_queue refcount
499  * @q: the request_queue structure to increment the refcount for
500  *
501  * Increment the refcount of the request_queue kobject.
502  *
503  * Context: Any context.
504  */
blk_get_queue(struct request_queue * q)505 bool blk_get_queue(struct request_queue *q)
506 {
507 	if (likely(!blk_queue_dying(q))) {
508 		__blk_get_queue(q);
509 		return true;
510 	}
511 
512 	return false;
513 }
514 EXPORT_SYMBOL(blk_get_queue);
515 
516 #ifdef CONFIG_FAIL_MAKE_REQUEST
517 
518 static DECLARE_FAULT_ATTR(fail_make_request);
519 
setup_fail_make_request(char * str)520 static int __init setup_fail_make_request(char *str)
521 {
522 	return setup_fault_attr(&fail_make_request, str);
523 }
524 __setup("fail_make_request=", setup_fail_make_request);
525 
should_fail_request(struct block_device * part,unsigned int bytes)526 bool should_fail_request(struct block_device *part, unsigned int bytes)
527 {
528 	return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
529 }
530 
fail_make_request_debugfs(void)531 static int __init fail_make_request_debugfs(void)
532 {
533 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
534 						NULL, &fail_make_request);
535 
536 	return PTR_ERR_OR_ZERO(dir);
537 }
538 
539 late_initcall(fail_make_request_debugfs);
540 #endif /* CONFIG_FAIL_MAKE_REQUEST */
541 
bio_check_ro(struct bio * bio)542 static inline bool bio_check_ro(struct bio *bio)
543 {
544 	if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
545 		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
546 			return false;
547 		pr_warn("Trying to write to read-only block-device %pg\n",
548 			bio->bi_bdev);
549 		/* Older lvm-tools actually trigger this */
550 		return false;
551 	}
552 
553 	return false;
554 }
555 
should_fail_bio(struct bio * bio)556 static noinline int should_fail_bio(struct bio *bio)
557 {
558 	if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
559 		return -EIO;
560 	return 0;
561 }
562 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
563 
564 /*
565  * Check whether this bio extends beyond the end of the device or partition.
566  * This may well happen - the kernel calls bread() without checking the size of
567  * the device, e.g., when mounting a file system.
568  */
bio_check_eod(struct bio * bio)569 static inline int bio_check_eod(struct bio *bio)
570 {
571 	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
572 	unsigned int nr_sectors = bio_sectors(bio);
573 
574 	if (nr_sectors && maxsector &&
575 	    (nr_sectors > maxsector ||
576 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
577 		pr_info_ratelimited("%s: attempt to access beyond end of device\n"
578 				    "%pg: rw=%d, sector=%llu, nr_sectors = %u limit=%llu\n",
579 				    current->comm, bio->bi_bdev, bio->bi_opf,
580 				    bio->bi_iter.bi_sector, nr_sectors, maxsector);
581 		return -EIO;
582 	}
583 	return 0;
584 }
585 
586 /*
587  * Remap block n of partition p to block n+start(p) of the disk.
588  */
blk_partition_remap(struct bio * bio)589 static int blk_partition_remap(struct bio *bio)
590 {
591 	struct block_device *p = bio->bi_bdev;
592 
593 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
594 		return -EIO;
595 	if (bio_sectors(bio)) {
596 		bio->bi_iter.bi_sector += p->bd_start_sect;
597 		trace_block_bio_remap(bio, p->bd_dev,
598 				      bio->bi_iter.bi_sector -
599 				      p->bd_start_sect);
600 	}
601 	bio_set_flag(bio, BIO_REMAPPED);
602 	return 0;
603 }
604 
605 /*
606  * Check write append to a zoned block device.
607  */
blk_check_zone_append(struct request_queue * q,struct bio * bio)608 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
609 						 struct bio *bio)
610 {
611 	sector_t pos = bio->bi_iter.bi_sector;
612 	int nr_sectors = bio_sectors(bio);
613 
614 	/* Only applicable to zoned block devices */
615 	if (!blk_queue_is_zoned(q))
616 		return BLK_STS_NOTSUPP;
617 
618 	/* The bio sector must point to the start of a sequential zone */
619 	if (pos & (blk_queue_zone_sectors(q) - 1) ||
620 	    !blk_queue_zone_is_seq(q, pos))
621 		return BLK_STS_IOERR;
622 
623 	/*
624 	 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
625 	 * split and could result in non-contiguous sectors being written in
626 	 * different zones.
627 	 */
628 	if (nr_sectors > q->limits.chunk_sectors)
629 		return BLK_STS_IOERR;
630 
631 	/* Make sure the BIO is small enough and will not get split */
632 	if (nr_sectors > q->limits.max_zone_append_sectors)
633 		return BLK_STS_IOERR;
634 
635 	bio->bi_opf |= REQ_NOMERGE;
636 
637 	return BLK_STS_OK;
638 }
639 
__submit_bio(struct bio * bio)640 static void __submit_bio(struct bio *bio)
641 {
642 	struct gendisk *disk = bio->bi_bdev->bd_disk;
643 
644 	if (unlikely(!blk_crypto_bio_prep(&bio)))
645 		return;
646 
647 	if (!disk->fops->submit_bio) {
648 		blk_mq_submit_bio(bio);
649 	} else if (likely(bio_queue_enter(bio) == 0)) {
650 		disk->fops->submit_bio(bio);
651 		blk_queue_exit(disk->queue);
652 	}
653 }
654 
655 /*
656  * The loop in this function may be a bit non-obvious, and so deserves some
657  * explanation:
658  *
659  *  - Before entering the loop, bio->bi_next is NULL (as all callers ensure
660  *    that), so we have a list with a single bio.
661  *  - We pretend that we have just taken it off a longer list, so we assign
662  *    bio_list to a pointer to the bio_list_on_stack, thus initialising the
663  *    bio_list of new bios to be added.  ->submit_bio() may indeed add some more
664  *    bios through a recursive call to submit_bio_noacct.  If it did, we find a
665  *    non-NULL value in bio_list and re-enter the loop from the top.
666  *  - In this case we really did just take the bio of the top of the list (no
667  *    pretending) and so remove it from bio_list, and call into ->submit_bio()
668  *    again.
669  *
670  * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
671  * bio_list_on_stack[1] contains bios that were submitted before the current
672  *	->submit_bio, but that haven't been processed yet.
673  */
__submit_bio_noacct(struct bio * bio)674 static void __submit_bio_noacct(struct bio *bio)
675 {
676 	struct bio_list bio_list_on_stack[2];
677 
678 	BUG_ON(bio->bi_next);
679 
680 	bio_list_init(&bio_list_on_stack[0]);
681 	current->bio_list = bio_list_on_stack;
682 
683 	do {
684 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
685 		struct bio_list lower, same;
686 
687 		/*
688 		 * Create a fresh bio_list for all subordinate requests.
689 		 */
690 		bio_list_on_stack[1] = bio_list_on_stack[0];
691 		bio_list_init(&bio_list_on_stack[0]);
692 
693 		__submit_bio(bio);
694 
695 		/*
696 		 * Sort new bios into those for a lower level and those for the
697 		 * same level.
698 		 */
699 		bio_list_init(&lower);
700 		bio_list_init(&same);
701 		while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
702 			if (q == bdev_get_queue(bio->bi_bdev))
703 				bio_list_add(&same, bio);
704 			else
705 				bio_list_add(&lower, bio);
706 
707 		/*
708 		 * Now assemble so we handle the lowest level first.
709 		 */
710 		bio_list_merge(&bio_list_on_stack[0], &lower);
711 		bio_list_merge(&bio_list_on_stack[0], &same);
712 		bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
713 	} while ((bio = bio_list_pop(&bio_list_on_stack[0])));
714 
715 	current->bio_list = NULL;
716 }
717 
__submit_bio_noacct_mq(struct bio * bio)718 static void __submit_bio_noacct_mq(struct bio *bio)
719 {
720 	struct bio_list bio_list[2] = { };
721 
722 	current->bio_list = bio_list;
723 
724 	do {
725 		__submit_bio(bio);
726 	} while ((bio = bio_list_pop(&bio_list[0])));
727 
728 	current->bio_list = NULL;
729 }
730 
submit_bio_noacct_nocheck(struct bio * bio)731 void submit_bio_noacct_nocheck(struct bio *bio)
732 {
733 	/*
734 	 * We only want one ->submit_bio to be active at a time, else stack
735 	 * usage with stacked devices could be a problem.  Use current->bio_list
736 	 * to collect a list of requests submited by a ->submit_bio method while
737 	 * it is active, and then process them after it returned.
738 	 */
739 	if (current->bio_list)
740 		bio_list_add(&current->bio_list[0], bio);
741 	else if (!bio->bi_bdev->bd_disk->fops->submit_bio)
742 		__submit_bio_noacct_mq(bio);
743 	else
744 		__submit_bio_noacct(bio);
745 }
746 
747 /**
748  * submit_bio_noacct - re-submit a bio to the block device layer for I/O
749  * @bio:  The bio describing the location in memory and on the device.
750  *
751  * This is a version of submit_bio() that shall only be used for I/O that is
752  * resubmitted to lower level drivers by stacking block drivers.  All file
753  * systems and other upper level users of the block layer should use
754  * submit_bio() instead.
755  */
submit_bio_noacct(struct bio * bio)756 void submit_bio_noacct(struct bio *bio)
757 {
758 	struct block_device *bdev = bio->bi_bdev;
759 	struct request_queue *q = bdev_get_queue(bdev);
760 	blk_status_t status = BLK_STS_IOERR;
761 	struct blk_plug *plug;
762 
763 	might_sleep();
764 
765 	plug = blk_mq_plug(q, bio);
766 	if (plug && plug->nowait)
767 		bio->bi_opf |= REQ_NOWAIT;
768 
769 	/*
770 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
771 	 * if queue does not support NOWAIT.
772 	 */
773 	if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
774 		goto not_supported;
775 
776 	if (should_fail_bio(bio))
777 		goto end_io;
778 	if (unlikely(bio_check_ro(bio)))
779 		goto end_io;
780 	if (!bio_flagged(bio, BIO_REMAPPED)) {
781 		if (unlikely(bio_check_eod(bio)))
782 			goto end_io;
783 		if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
784 			goto end_io;
785 	}
786 
787 	/*
788 	 * Filter flush bio's early so that bio based drivers without flush
789 	 * support don't have to worry about them.
790 	 */
791 	if (op_is_flush(bio->bi_opf) &&
792 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
793 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
794 		if (!bio_sectors(bio)) {
795 			status = BLK_STS_OK;
796 			goto end_io;
797 		}
798 	}
799 
800 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
801 		bio_clear_polled(bio);
802 
803 	switch (bio_op(bio)) {
804 	case REQ_OP_DISCARD:
805 		if (!bdev_max_discard_sectors(bdev))
806 			goto not_supported;
807 		break;
808 	case REQ_OP_SECURE_ERASE:
809 		if (!bdev_max_secure_erase_sectors(bdev))
810 			goto not_supported;
811 		break;
812 	case REQ_OP_ZONE_APPEND:
813 		status = blk_check_zone_append(q, bio);
814 		if (status != BLK_STS_OK)
815 			goto end_io;
816 		break;
817 	case REQ_OP_ZONE_RESET:
818 	case REQ_OP_ZONE_OPEN:
819 	case REQ_OP_ZONE_CLOSE:
820 	case REQ_OP_ZONE_FINISH:
821 		if (!blk_queue_is_zoned(q))
822 			goto not_supported;
823 		break;
824 	case REQ_OP_ZONE_RESET_ALL:
825 		if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
826 			goto not_supported;
827 		break;
828 	case REQ_OP_WRITE_ZEROES:
829 		if (!q->limits.max_write_zeroes_sectors)
830 			goto not_supported;
831 		break;
832 	default:
833 		break;
834 	}
835 
836 	if (blk_throtl_bio(bio))
837 		return;
838 
839 	blk_cgroup_bio_start(bio);
840 	blkcg_bio_issue_init(bio);
841 
842 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
843 		trace_block_bio_queue(bio);
844 		/* Now that enqueuing has been traced, we need to trace
845 		 * completion as well.
846 		 */
847 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
848 	}
849 	submit_bio_noacct_nocheck(bio);
850 	return;
851 
852 not_supported:
853 	status = BLK_STS_NOTSUPP;
854 end_io:
855 	bio->bi_status = status;
856 	bio_endio(bio);
857 }
858 EXPORT_SYMBOL(submit_bio_noacct);
859 
860 /**
861  * submit_bio - submit a bio to the block device layer for I/O
862  * @bio: The &struct bio which describes the I/O
863  *
864  * submit_bio() is used to submit I/O requests to block devices.  It is passed a
865  * fully set up &struct bio that describes the I/O that needs to be done.  The
866  * bio will be send to the device described by the bi_bdev field.
867  *
868  * The success/failure status of the request, along with notification of
869  * completion, is delivered asynchronously through the ->bi_end_io() callback
870  * in @bio.  The bio must NOT be touched by thecaller until ->bi_end_io() has
871  * been called.
872  */
submit_bio(struct bio * bio)873 void submit_bio(struct bio *bio)
874 {
875 	if (blkcg_punt_bio_submit(bio))
876 		return;
877 
878 	if (bio_op(bio) == REQ_OP_READ) {
879 		task_io_account_read(bio->bi_iter.bi_size);
880 		count_vm_events(PGPGIN, bio_sectors(bio));
881 	} else if (bio_op(bio) == REQ_OP_WRITE) {
882 		count_vm_events(PGPGOUT, bio_sectors(bio));
883 	}
884 
885 	/*
886 	 * If we're reading data that is part of the userspace workingset, count
887 	 * submission time as memory stall.  When the device is congested, or
888 	 * the submitting cgroup IO-throttled, submission can be a significant
889 	 * part of overall IO time.
890 	 */
891 	if (unlikely(bio_op(bio) == REQ_OP_READ &&
892 	    bio_flagged(bio, BIO_WORKINGSET))) {
893 		unsigned long pflags;
894 
895 		psi_memstall_enter(&pflags);
896 		submit_bio_noacct(bio);
897 		psi_memstall_leave(&pflags);
898 		return;
899 	}
900 
901 	submit_bio_noacct(bio);
902 }
903 EXPORT_SYMBOL(submit_bio);
904 
905 /**
906  * bio_poll - poll for BIO completions
907  * @bio: bio to poll for
908  * @iob: batches of IO
909  * @flags: BLK_POLL_* flags that control the behavior
910  *
911  * Poll for completions on queue associated with the bio. Returns number of
912  * completed entries found.
913  *
914  * Note: the caller must either be the context that submitted @bio, or
915  * be in a RCU critical section to prevent freeing of @bio.
916  */
bio_poll(struct bio * bio,struct io_comp_batch * iob,unsigned int flags)917 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
918 {
919 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
920 	blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
921 	int ret = 0;
922 
923 	if (cookie == BLK_QC_T_NONE ||
924 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
925 		return 0;
926 
927 	blk_flush_plug(current->plug, false);
928 
929 	if (bio_queue_enter(bio))
930 		return 0;
931 	if (queue_is_mq(q)) {
932 		ret = blk_mq_poll(q, cookie, iob, flags);
933 	} else {
934 		struct gendisk *disk = q->disk;
935 
936 		if (disk && disk->fops->poll_bio)
937 			ret = disk->fops->poll_bio(bio, iob, flags);
938 	}
939 	blk_queue_exit(q);
940 	return ret;
941 }
942 EXPORT_SYMBOL_GPL(bio_poll);
943 
944 /*
945  * Helper to implement file_operations.iopoll.  Requires the bio to be stored
946  * in iocb->private, and cleared before freeing the bio.
947  */
iocb_bio_iopoll(struct kiocb * kiocb,struct io_comp_batch * iob,unsigned int flags)948 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
949 		    unsigned int flags)
950 {
951 	struct bio *bio;
952 	int ret = 0;
953 
954 	/*
955 	 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
956 	 * point to a freshly allocated bio at this point.  If that happens
957 	 * we have a few cases to consider:
958 	 *
959 	 *  1) the bio is beeing initialized and bi_bdev is NULL.  We can just
960 	 *     simply nothing in this case
961 	 *  2) the bio points to a not poll enabled device.  bio_poll will catch
962 	 *     this and return 0
963 	 *  3) the bio points to a poll capable device, including but not
964 	 *     limited to the one that the original bio pointed to.  In this
965 	 *     case we will call into the actual poll method and poll for I/O,
966 	 *     even if we don't need to, but it won't cause harm either.
967 	 *
968 	 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
969 	 * is still allocated. Because partitions hold a reference to the whole
970 	 * device bdev and thus disk, the disk is also still valid.  Grabbing
971 	 * a reference to the queue in bio_poll() ensures the hctxs and requests
972 	 * are still valid as well.
973 	 */
974 	rcu_read_lock();
975 	bio = READ_ONCE(kiocb->private);
976 	if (bio && bio->bi_bdev)
977 		ret = bio_poll(bio, iob, flags);
978 	rcu_read_unlock();
979 
980 	return ret;
981 }
982 EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
983 
update_io_ticks(struct block_device * part,unsigned long now,bool end)984 void update_io_ticks(struct block_device *part, unsigned long now, bool end)
985 {
986 	unsigned long stamp;
987 again:
988 	stamp = READ_ONCE(part->bd_stamp);
989 	if (unlikely(time_after(now, stamp))) {
990 		if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp))
991 			__part_stat_add(part, io_ticks, end ? now - stamp : 1);
992 	}
993 	if (part->bd_partno) {
994 		part = bdev_whole(part);
995 		goto again;
996 	}
997 }
998 
bdev_start_io_acct(struct block_device * bdev,unsigned int sectors,unsigned int op,unsigned long start_time)999 unsigned long bdev_start_io_acct(struct block_device *bdev,
1000 				 unsigned int sectors, unsigned int op,
1001 				 unsigned long start_time)
1002 {
1003 	const int sgrp = op_stat_group(op);
1004 
1005 	part_stat_lock();
1006 	update_io_ticks(bdev, start_time, false);
1007 	part_stat_inc(bdev, ios[sgrp]);
1008 	part_stat_add(bdev, sectors[sgrp], sectors);
1009 	part_stat_local_inc(bdev, in_flight[op_is_write(op)]);
1010 	part_stat_unlock();
1011 
1012 	return start_time;
1013 }
1014 EXPORT_SYMBOL(bdev_start_io_acct);
1015 
1016 /**
1017  * bio_start_io_acct_time - start I/O accounting for bio based drivers
1018  * @bio:	bio to start account for
1019  * @start_time:	start time that should be passed back to bio_end_io_acct().
1020  */
bio_start_io_acct_time(struct bio * bio,unsigned long start_time)1021 void bio_start_io_acct_time(struct bio *bio, unsigned long start_time)
1022 {
1023 	bdev_start_io_acct(bio->bi_bdev, bio_sectors(bio),
1024 			   bio_op(bio), start_time);
1025 }
1026 EXPORT_SYMBOL_GPL(bio_start_io_acct_time);
1027 
1028 /**
1029  * bio_start_io_acct - start I/O accounting for bio based drivers
1030  * @bio:	bio to start account for
1031  *
1032  * Returns the start time that should be passed back to bio_end_io_acct().
1033  */
bio_start_io_acct(struct bio * bio)1034 unsigned long bio_start_io_acct(struct bio *bio)
1035 {
1036 	return bdev_start_io_acct(bio->bi_bdev, bio_sectors(bio),
1037 				  bio_op(bio), jiffies);
1038 }
1039 EXPORT_SYMBOL_GPL(bio_start_io_acct);
1040 
bdev_end_io_acct(struct block_device * bdev,unsigned int op,unsigned long start_time)1041 void bdev_end_io_acct(struct block_device *bdev, unsigned int op,
1042 		      unsigned long start_time)
1043 {
1044 	const int sgrp = op_stat_group(op);
1045 	unsigned long now = READ_ONCE(jiffies);
1046 	unsigned long duration = now - start_time;
1047 
1048 	part_stat_lock();
1049 	update_io_ticks(bdev, now, true);
1050 	part_stat_add(bdev, nsecs[sgrp], jiffies_to_nsecs(duration));
1051 	part_stat_local_dec(bdev, in_flight[op_is_write(op)]);
1052 	part_stat_unlock();
1053 }
1054 EXPORT_SYMBOL(bdev_end_io_acct);
1055 
bio_end_io_acct_remapped(struct bio * bio,unsigned long start_time,struct block_device * orig_bdev)1056 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1057 			      struct block_device *orig_bdev)
1058 {
1059 	bdev_end_io_acct(orig_bdev, bio_op(bio), start_time);
1060 }
1061 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
1062 
1063 /**
1064  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1065  * @q : the queue of the device being checked
1066  *
1067  * Description:
1068  *    Check if underlying low-level drivers of a device are busy.
1069  *    If the drivers want to export their busy state, they must set own
1070  *    exporting function using blk_queue_lld_busy() first.
1071  *
1072  *    Basically, this function is used only by request stacking drivers
1073  *    to stop dispatching requests to underlying devices when underlying
1074  *    devices are busy.  This behavior helps more I/O merging on the queue
1075  *    of the request stacking driver and prevents I/O throughput regression
1076  *    on burst I/O load.
1077  *
1078  * Return:
1079  *    0 - Not busy (The request stacking driver should dispatch request)
1080  *    1 - Busy (The request stacking driver should stop dispatching request)
1081  */
blk_lld_busy(struct request_queue * q)1082 int blk_lld_busy(struct request_queue *q)
1083 {
1084 	if (queue_is_mq(q) && q->mq_ops->busy)
1085 		return q->mq_ops->busy(q);
1086 
1087 	return 0;
1088 }
1089 EXPORT_SYMBOL_GPL(blk_lld_busy);
1090 
kblockd_schedule_work(struct work_struct * work)1091 int kblockd_schedule_work(struct work_struct *work)
1092 {
1093 	return queue_work(kblockd_workqueue, work);
1094 }
1095 EXPORT_SYMBOL(kblockd_schedule_work);
1096 
kblockd_mod_delayed_work_on(int cpu,struct delayed_work * dwork,unsigned long delay)1097 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1098 				unsigned long delay)
1099 {
1100 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1101 }
1102 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1103 
blk_start_plug_nr_ios(struct blk_plug * plug,unsigned short nr_ios)1104 void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
1105 {
1106 	struct task_struct *tsk = current;
1107 
1108 	/*
1109 	 * If this is a nested plug, don't actually assign it.
1110 	 */
1111 	if (tsk->plug)
1112 		return;
1113 
1114 	plug->mq_list = NULL;
1115 	plug->cached_rq = NULL;
1116 	plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1117 	plug->rq_count = 0;
1118 	plug->multiple_queues = false;
1119 	plug->has_elevator = false;
1120 	plug->nowait = false;
1121 	INIT_LIST_HEAD(&plug->cb_list);
1122 
1123 	/*
1124 	 * Store ordering should not be needed here, since a potential
1125 	 * preempt will imply a full memory barrier
1126 	 */
1127 	tsk->plug = plug;
1128 }
1129 
1130 /**
1131  * blk_start_plug - initialize blk_plug and track it inside the task_struct
1132  * @plug:	The &struct blk_plug that needs to be initialized
1133  *
1134  * Description:
1135  *   blk_start_plug() indicates to the block layer an intent by the caller
1136  *   to submit multiple I/O requests in a batch.  The block layer may use
1137  *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1138  *   is called.  However, the block layer may choose to submit requests
1139  *   before a call to blk_finish_plug() if the number of queued I/Os
1140  *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1141  *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1142  *   the task schedules (see below).
1143  *
1144  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1145  *   pending I/O should the task end up blocking between blk_start_plug() and
1146  *   blk_finish_plug(). This is important from a performance perspective, but
1147  *   also ensures that we don't deadlock. For instance, if the task is blocking
1148  *   for a memory allocation, memory reclaim could end up wanting to free a
1149  *   page belonging to that request that is currently residing in our private
1150  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1151  *   this kind of deadlock.
1152  */
blk_start_plug(struct blk_plug * plug)1153 void blk_start_plug(struct blk_plug *plug)
1154 {
1155 	blk_start_plug_nr_ios(plug, 1);
1156 }
1157 EXPORT_SYMBOL(blk_start_plug);
1158 
flush_plug_callbacks(struct blk_plug * plug,bool from_schedule)1159 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1160 {
1161 	LIST_HEAD(callbacks);
1162 
1163 	while (!list_empty(&plug->cb_list)) {
1164 		list_splice_init(&plug->cb_list, &callbacks);
1165 
1166 		while (!list_empty(&callbacks)) {
1167 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1168 							  struct blk_plug_cb,
1169 							  list);
1170 			list_del(&cb->list);
1171 			cb->callback(cb, from_schedule);
1172 		}
1173 	}
1174 }
1175 
blk_check_plugged(blk_plug_cb_fn unplug,void * data,int size)1176 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1177 				      int size)
1178 {
1179 	struct blk_plug *plug = current->plug;
1180 	struct blk_plug_cb *cb;
1181 
1182 	if (!plug)
1183 		return NULL;
1184 
1185 	list_for_each_entry(cb, &plug->cb_list, list)
1186 		if (cb->callback == unplug && cb->data == data)
1187 			return cb;
1188 
1189 	/* Not currently on the callback list */
1190 	BUG_ON(size < sizeof(*cb));
1191 	cb = kzalloc(size, GFP_ATOMIC);
1192 	if (cb) {
1193 		cb->data = data;
1194 		cb->callback = unplug;
1195 		list_add(&cb->list, &plug->cb_list);
1196 	}
1197 	return cb;
1198 }
1199 EXPORT_SYMBOL(blk_check_plugged);
1200 
__blk_flush_plug(struct blk_plug * plug,bool from_schedule)1201 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule)
1202 {
1203 	if (!list_empty(&plug->cb_list))
1204 		flush_plug_callbacks(plug, from_schedule);
1205 	if (!rq_list_empty(plug->mq_list))
1206 		blk_mq_flush_plug_list(plug, from_schedule);
1207 	/*
1208 	 * Unconditionally flush out cached requests, even if the unplug
1209 	 * event came from schedule. Since we know hold references to the
1210 	 * queue for cached requests, we don't want a blocked task holding
1211 	 * up a queue freeze/quiesce event.
1212 	 */
1213 	if (unlikely(!rq_list_empty(plug->cached_rq)))
1214 		blk_mq_free_plug_rqs(plug);
1215 }
1216 
1217 /**
1218  * blk_finish_plug - mark the end of a batch of submitted I/O
1219  * @plug:	The &struct blk_plug passed to blk_start_plug()
1220  *
1221  * Description:
1222  * Indicate that a batch of I/O submissions is complete.  This function
1223  * must be paired with an initial call to blk_start_plug().  The intent
1224  * is to allow the block layer to optimize I/O submission.  See the
1225  * documentation for blk_start_plug() for more information.
1226  */
blk_finish_plug(struct blk_plug * plug)1227 void blk_finish_plug(struct blk_plug *plug)
1228 {
1229 	if (plug == current->plug) {
1230 		__blk_flush_plug(plug, false);
1231 		current->plug = NULL;
1232 	}
1233 }
1234 EXPORT_SYMBOL(blk_finish_plug);
1235 
blk_io_schedule(void)1236 void blk_io_schedule(void)
1237 {
1238 	/* Prevent hang_check timer from firing at us during very long I/O */
1239 	unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1240 
1241 	if (timeout)
1242 		io_schedule_timeout(timeout);
1243 	else
1244 		io_schedule();
1245 }
1246 EXPORT_SYMBOL_GPL(blk_io_schedule);
1247 
blk_dev_init(void)1248 int __init blk_dev_init(void)
1249 {
1250 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1251 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1252 			sizeof_field(struct request, cmd_flags));
1253 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1254 			sizeof_field(struct bio, bi_opf));
1255 	BUILD_BUG_ON(ALIGN(offsetof(struct request_queue, srcu),
1256 			   __alignof__(struct request_queue)) !=
1257 		     sizeof(struct request_queue));
1258 
1259 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1260 	kblockd_workqueue = alloc_workqueue("kblockd",
1261 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1262 	if (!kblockd_workqueue)
1263 		panic("Failed to create kblockd\n");
1264 
1265 	blk_requestq_cachep = kmem_cache_create("request_queue",
1266 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1267 
1268 	blk_requestq_srcu_cachep = kmem_cache_create("request_queue_srcu",
1269 			sizeof(struct request_queue) +
1270 			sizeof(struct srcu_struct), 0, SLAB_PANIC, NULL);
1271 
1272 	blk_debugfs_root = debugfs_create_dir("block", NULL);
1273 
1274 	return 0;
1275 }
1276