1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This file contains core generic KASAN code.
4 *
5 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7 *
8 * Some code borrowed from https://github.com/xairy/kasan-prototype by
9 * Andrey Konovalov <andreyknvl@gmail.com>
10 */
11
12 #include <linux/export.h>
13 #include <linux/interrupt.h>
14 #include <linux/init.h>
15 #include <linux/kasan.h>
16 #include <linux/kernel.h>
17 #include <linux/kfence.h>
18 #include <linux/kmemleak.h>
19 #include <linux/linkage.h>
20 #include <linux/memblock.h>
21 #include <linux/memory.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/printk.h>
25 #include <linux/sched.h>
26 #include <linux/sched/task_stack.h>
27 #include <linux/slab.h>
28 #include <linux/stacktrace.h>
29 #include <linux/string.h>
30 #include <linux/types.h>
31 #include <linux/vmalloc.h>
32 #include <linux/bug.h>
33
34 #include "kasan.h"
35 #include "../slab.h"
36
37 /*
38 * All functions below always inlined so compiler could
39 * perform better optimizations in each of __asan_loadX/__assn_storeX
40 * depending on memory access size X.
41 */
42
memory_is_poisoned_1(unsigned long addr)43 static __always_inline bool memory_is_poisoned_1(unsigned long addr)
44 {
45 s8 shadow_value = *(s8 *)kasan_mem_to_shadow((void *)addr);
46
47 if (unlikely(shadow_value)) {
48 s8 last_accessible_byte = addr & KASAN_GRANULE_MASK;
49 return unlikely(last_accessible_byte >= shadow_value);
50 }
51
52 return false;
53 }
54
memory_is_poisoned_2_4_8(unsigned long addr,unsigned long size)55 static __always_inline bool memory_is_poisoned_2_4_8(unsigned long addr,
56 unsigned long size)
57 {
58 u8 *shadow_addr = (u8 *)kasan_mem_to_shadow((void *)addr);
59
60 /*
61 * Access crosses 8(shadow size)-byte boundary. Such access maps
62 * into 2 shadow bytes, so we need to check them both.
63 */
64 if (unlikely(((addr + size - 1) & KASAN_GRANULE_MASK) < size - 1))
65 return *shadow_addr || memory_is_poisoned_1(addr + size - 1);
66
67 return memory_is_poisoned_1(addr + size - 1);
68 }
69
memory_is_poisoned_16(unsigned long addr)70 static __always_inline bool memory_is_poisoned_16(unsigned long addr)
71 {
72 u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr);
73
74 /* Unaligned 16-bytes access maps into 3 shadow bytes. */
75 if (unlikely(!IS_ALIGNED(addr, KASAN_GRANULE_SIZE)))
76 return *shadow_addr || memory_is_poisoned_1(addr + 15);
77
78 return *shadow_addr;
79 }
80
bytes_is_nonzero(const u8 * start,size_t size)81 static __always_inline unsigned long bytes_is_nonzero(const u8 *start,
82 size_t size)
83 {
84 while (size) {
85 if (unlikely(*start))
86 return (unsigned long)start;
87 start++;
88 size--;
89 }
90
91 return 0;
92 }
93
memory_is_nonzero(const void * start,const void * end)94 static __always_inline unsigned long memory_is_nonzero(const void *start,
95 const void *end)
96 {
97 unsigned int words;
98 unsigned long ret;
99 unsigned int prefix = (unsigned long)start % 8;
100
101 if (end - start <= 16)
102 return bytes_is_nonzero(start, end - start);
103
104 if (prefix) {
105 prefix = 8 - prefix;
106 ret = bytes_is_nonzero(start, prefix);
107 if (unlikely(ret))
108 return ret;
109 start += prefix;
110 }
111
112 words = (end - start) / 8;
113 while (words) {
114 if (unlikely(*(u64 *)start))
115 return bytes_is_nonzero(start, 8);
116 start += 8;
117 words--;
118 }
119
120 return bytes_is_nonzero(start, (end - start) % 8);
121 }
122
memory_is_poisoned_n(unsigned long addr,size_t size)123 static __always_inline bool memory_is_poisoned_n(unsigned long addr,
124 size_t size)
125 {
126 unsigned long ret;
127
128 ret = memory_is_nonzero(kasan_mem_to_shadow((void *)addr),
129 kasan_mem_to_shadow((void *)addr + size - 1) + 1);
130
131 if (unlikely(ret)) {
132 unsigned long last_byte = addr + size - 1;
133 s8 *last_shadow = (s8 *)kasan_mem_to_shadow((void *)last_byte);
134
135 if (unlikely(ret != (unsigned long)last_shadow ||
136 ((long)(last_byte & KASAN_GRANULE_MASK) >= *last_shadow)))
137 return true;
138 }
139 return false;
140 }
141
memory_is_poisoned(unsigned long addr,size_t size)142 static __always_inline bool memory_is_poisoned(unsigned long addr, size_t size)
143 {
144 if (__builtin_constant_p(size)) {
145 switch (size) {
146 case 1:
147 return memory_is_poisoned_1(addr);
148 case 2:
149 case 4:
150 case 8:
151 return memory_is_poisoned_2_4_8(addr, size);
152 case 16:
153 return memory_is_poisoned_16(addr);
154 default:
155 BUILD_BUG();
156 }
157 }
158
159 return memory_is_poisoned_n(addr, size);
160 }
161
check_region_inline(unsigned long addr,size_t size,bool write,unsigned long ret_ip)162 static __always_inline bool check_region_inline(unsigned long addr,
163 size_t size, bool write,
164 unsigned long ret_ip)
165 {
166 if (!kasan_arch_is_ready())
167 return true;
168
169 if (unlikely(size == 0))
170 return true;
171
172 if (unlikely(addr + size < addr))
173 return !kasan_report(addr, size, write, ret_ip);
174
175 if (unlikely((void *)addr <
176 kasan_shadow_to_mem((void *)KASAN_SHADOW_START))) {
177 return !kasan_report(addr, size, write, ret_ip);
178 }
179
180 if (likely(!memory_is_poisoned(addr, size)))
181 return true;
182
183 return !kasan_report(addr, size, write, ret_ip);
184 }
185
kasan_check_range(unsigned long addr,size_t size,bool write,unsigned long ret_ip)186 bool kasan_check_range(unsigned long addr, size_t size, bool write,
187 unsigned long ret_ip)
188 {
189 return check_region_inline(addr, size, write, ret_ip);
190 }
191
kasan_byte_accessible(const void * addr)192 bool kasan_byte_accessible(const void *addr)
193 {
194 s8 shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(addr));
195
196 return shadow_byte >= 0 && shadow_byte < KASAN_GRANULE_SIZE;
197 }
198
kasan_cache_shrink(struct kmem_cache * cache)199 void kasan_cache_shrink(struct kmem_cache *cache)
200 {
201 kasan_quarantine_remove_cache(cache);
202 }
203
kasan_cache_shutdown(struct kmem_cache * cache)204 void kasan_cache_shutdown(struct kmem_cache *cache)
205 {
206 if (!__kmem_cache_empty(cache))
207 kasan_quarantine_remove_cache(cache);
208 }
209
register_global(struct kasan_global * global)210 static void register_global(struct kasan_global *global)
211 {
212 size_t aligned_size = round_up(global->size, KASAN_GRANULE_SIZE);
213
214 kasan_unpoison(global->beg, global->size, false);
215
216 kasan_poison(global->beg + aligned_size,
217 global->size_with_redzone - aligned_size,
218 KASAN_GLOBAL_REDZONE, false);
219 }
220
__asan_register_globals(struct kasan_global * globals,size_t size)221 void __asan_register_globals(struct kasan_global *globals, size_t size)
222 {
223 int i;
224
225 for (i = 0; i < size; i++)
226 register_global(&globals[i]);
227 }
228 EXPORT_SYMBOL(__asan_register_globals);
229
__asan_unregister_globals(struct kasan_global * globals,size_t size)230 void __asan_unregister_globals(struct kasan_global *globals, size_t size)
231 {
232 }
233 EXPORT_SYMBOL(__asan_unregister_globals);
234
235 #define DEFINE_ASAN_LOAD_STORE(size) \
236 void __asan_load##size(unsigned long addr) \
237 { \
238 check_region_inline(addr, size, false, _RET_IP_); \
239 } \
240 EXPORT_SYMBOL(__asan_load##size); \
241 __alias(__asan_load##size) \
242 void __asan_load##size##_noabort(unsigned long); \
243 EXPORT_SYMBOL(__asan_load##size##_noabort); \
244 void __asan_store##size(unsigned long addr) \
245 { \
246 check_region_inline(addr, size, true, _RET_IP_); \
247 } \
248 EXPORT_SYMBOL(__asan_store##size); \
249 __alias(__asan_store##size) \
250 void __asan_store##size##_noabort(unsigned long); \
251 EXPORT_SYMBOL(__asan_store##size##_noabort)
252
253 DEFINE_ASAN_LOAD_STORE(1);
254 DEFINE_ASAN_LOAD_STORE(2);
255 DEFINE_ASAN_LOAD_STORE(4);
256 DEFINE_ASAN_LOAD_STORE(8);
257 DEFINE_ASAN_LOAD_STORE(16);
258
__asan_loadN(unsigned long addr,size_t size)259 void __asan_loadN(unsigned long addr, size_t size)
260 {
261 kasan_check_range(addr, size, false, _RET_IP_);
262 }
263 EXPORT_SYMBOL(__asan_loadN);
264
265 __alias(__asan_loadN)
266 void __asan_loadN_noabort(unsigned long, size_t);
267 EXPORT_SYMBOL(__asan_loadN_noabort);
268
__asan_storeN(unsigned long addr,size_t size)269 void __asan_storeN(unsigned long addr, size_t size)
270 {
271 kasan_check_range(addr, size, true, _RET_IP_);
272 }
273 EXPORT_SYMBOL(__asan_storeN);
274
275 __alias(__asan_storeN)
276 void __asan_storeN_noabort(unsigned long, size_t);
277 EXPORT_SYMBOL(__asan_storeN_noabort);
278
279 /* to shut up compiler complaints */
__asan_handle_no_return(void)280 void __asan_handle_no_return(void) {}
281 EXPORT_SYMBOL(__asan_handle_no_return);
282
283 /* Emitted by compiler to poison alloca()ed objects. */
__asan_alloca_poison(unsigned long addr,size_t size)284 void __asan_alloca_poison(unsigned long addr, size_t size)
285 {
286 size_t rounded_up_size = round_up(size, KASAN_GRANULE_SIZE);
287 size_t padding_size = round_up(size, KASAN_ALLOCA_REDZONE_SIZE) -
288 rounded_up_size;
289 size_t rounded_down_size = round_down(size, KASAN_GRANULE_SIZE);
290
291 const void *left_redzone = (const void *)(addr -
292 KASAN_ALLOCA_REDZONE_SIZE);
293 const void *right_redzone = (const void *)(addr + rounded_up_size);
294
295 WARN_ON(!IS_ALIGNED(addr, KASAN_ALLOCA_REDZONE_SIZE));
296
297 kasan_unpoison((const void *)(addr + rounded_down_size),
298 size - rounded_down_size, false);
299 kasan_poison(left_redzone, KASAN_ALLOCA_REDZONE_SIZE,
300 KASAN_ALLOCA_LEFT, false);
301 kasan_poison(right_redzone, padding_size + KASAN_ALLOCA_REDZONE_SIZE,
302 KASAN_ALLOCA_RIGHT, false);
303 }
304 EXPORT_SYMBOL(__asan_alloca_poison);
305
306 /* Emitted by compiler to unpoison alloca()ed areas when the stack unwinds. */
__asan_allocas_unpoison(const void * stack_top,const void * stack_bottom)307 void __asan_allocas_unpoison(const void *stack_top, const void *stack_bottom)
308 {
309 if (unlikely(!stack_top || stack_top > stack_bottom))
310 return;
311
312 kasan_unpoison(stack_top, stack_bottom - stack_top, false);
313 }
314 EXPORT_SYMBOL(__asan_allocas_unpoison);
315
316 /* Emitted by the compiler to [un]poison local variables. */
317 #define DEFINE_ASAN_SET_SHADOW(byte) \
318 void __asan_set_shadow_##byte(const void *addr, size_t size) \
319 { \
320 __memset((void *)addr, 0x##byte, size); \
321 } \
322 EXPORT_SYMBOL(__asan_set_shadow_##byte)
323
324 DEFINE_ASAN_SET_SHADOW(00);
325 DEFINE_ASAN_SET_SHADOW(f1);
326 DEFINE_ASAN_SET_SHADOW(f2);
327 DEFINE_ASAN_SET_SHADOW(f3);
328 DEFINE_ASAN_SET_SHADOW(f5);
329 DEFINE_ASAN_SET_SHADOW(f8);
330
331 /* Only allow cache merging when no per-object metadata is present. */
kasan_never_merge(void)332 slab_flags_t kasan_never_merge(void)
333 {
334 if (!kasan_requires_meta())
335 return 0;
336 return SLAB_KASAN;
337 }
338
339 /*
340 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
341 * For larger allocations larger redzones are used.
342 */
optimal_redzone(unsigned int object_size)343 static inline unsigned int optimal_redzone(unsigned int object_size)
344 {
345 return
346 object_size <= 64 - 16 ? 16 :
347 object_size <= 128 - 32 ? 32 :
348 object_size <= 512 - 64 ? 64 :
349 object_size <= 4096 - 128 ? 128 :
350 object_size <= (1 << 14) - 256 ? 256 :
351 object_size <= (1 << 15) - 512 ? 512 :
352 object_size <= (1 << 16) - 1024 ? 1024 : 2048;
353 }
354
kasan_cache_create(struct kmem_cache * cache,unsigned int * size,slab_flags_t * flags)355 void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
356 slab_flags_t *flags)
357 {
358 unsigned int ok_size;
359 unsigned int optimal_size;
360
361 if (!kasan_requires_meta())
362 return;
363
364 /*
365 * SLAB_KASAN is used to mark caches that are sanitized by KASAN
366 * and that thus have per-object metadata.
367 * Currently this flag is used in two places:
368 * 1. In slab_ksize() to account for per-object metadata when
369 * calculating the size of the accessible memory within the object.
370 * 2. In slab_common.c via kasan_never_merge() to prevent merging of
371 * caches with per-object metadata.
372 */
373 *flags |= SLAB_KASAN;
374
375 ok_size = *size;
376
377 /* Add alloc meta into redzone. */
378 cache->kasan_info.alloc_meta_offset = *size;
379 *size += sizeof(struct kasan_alloc_meta);
380
381 /*
382 * If alloc meta doesn't fit, don't add it.
383 * This can only happen with SLAB, as it has KMALLOC_MAX_SIZE equal
384 * to KMALLOC_MAX_CACHE_SIZE and doesn't fall back to page_alloc for
385 * larger sizes.
386 */
387 if (*size > KMALLOC_MAX_SIZE) {
388 cache->kasan_info.alloc_meta_offset = 0;
389 *size = ok_size;
390 /* Continue, since free meta might still fit. */
391 }
392
393 /*
394 * Add free meta into redzone when it's not possible to store
395 * it in the object. This is the case when:
396 * 1. Object is SLAB_TYPESAFE_BY_RCU, which means that it can
397 * be touched after it was freed, or
398 * 2. Object has a constructor, which means it's expected to
399 * retain its content until the next allocation, or
400 * 3. Object is too small.
401 * Otherwise cache->kasan_info.free_meta_offset = 0 is implied.
402 */
403 if ((cache->flags & SLAB_TYPESAFE_BY_RCU) || cache->ctor ||
404 cache->object_size < sizeof(struct kasan_free_meta)) {
405 ok_size = *size;
406
407 cache->kasan_info.free_meta_offset = *size;
408 *size += sizeof(struct kasan_free_meta);
409
410 /* If free meta doesn't fit, don't add it. */
411 if (*size > KMALLOC_MAX_SIZE) {
412 cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META;
413 *size = ok_size;
414 }
415 }
416
417 /* Calculate size with optimal redzone. */
418 optimal_size = cache->object_size + optimal_redzone(cache->object_size);
419 /* Limit it with KMALLOC_MAX_SIZE (relevant for SLAB only). */
420 if (optimal_size > KMALLOC_MAX_SIZE)
421 optimal_size = KMALLOC_MAX_SIZE;
422 /* Use optimal size if the size with added metas is not large enough. */
423 if (*size < optimal_size)
424 *size = optimal_size;
425 }
426
kasan_get_alloc_meta(struct kmem_cache * cache,const void * object)427 struct kasan_alloc_meta *kasan_get_alloc_meta(struct kmem_cache *cache,
428 const void *object)
429 {
430 if (!cache->kasan_info.alloc_meta_offset)
431 return NULL;
432 return (void *)object + cache->kasan_info.alloc_meta_offset;
433 }
434
kasan_get_free_meta(struct kmem_cache * cache,const void * object)435 struct kasan_free_meta *kasan_get_free_meta(struct kmem_cache *cache,
436 const void *object)
437 {
438 BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
439 if (cache->kasan_info.free_meta_offset == KASAN_NO_FREE_META)
440 return NULL;
441 return (void *)object + cache->kasan_info.free_meta_offset;
442 }
443
kasan_init_object_meta(struct kmem_cache * cache,const void * object)444 void kasan_init_object_meta(struct kmem_cache *cache, const void *object)
445 {
446 struct kasan_alloc_meta *alloc_meta;
447
448 alloc_meta = kasan_get_alloc_meta(cache, object);
449 if (alloc_meta)
450 __memset(alloc_meta, 0, sizeof(*alloc_meta));
451 }
452
kasan_metadata_size(struct kmem_cache * cache)453 size_t kasan_metadata_size(struct kmem_cache *cache)
454 {
455 if (!kasan_requires_meta())
456 return 0;
457 return (cache->kasan_info.alloc_meta_offset ?
458 sizeof(struct kasan_alloc_meta) : 0) +
459 ((cache->kasan_info.free_meta_offset &&
460 cache->kasan_info.free_meta_offset != KASAN_NO_FREE_META) ?
461 sizeof(struct kasan_free_meta) : 0);
462 }
463
__kasan_record_aux_stack(void * addr,bool can_alloc)464 static void __kasan_record_aux_stack(void *addr, bool can_alloc)
465 {
466 struct slab *slab = kasan_addr_to_slab(addr);
467 struct kmem_cache *cache;
468 struct kasan_alloc_meta *alloc_meta;
469 void *object;
470
471 if (is_kfence_address(addr) || !slab)
472 return;
473
474 cache = slab->slab_cache;
475 object = nearest_obj(cache, slab, addr);
476 alloc_meta = kasan_get_alloc_meta(cache, object);
477 if (!alloc_meta)
478 return;
479
480 alloc_meta->aux_stack[1] = alloc_meta->aux_stack[0];
481 alloc_meta->aux_stack[0] = kasan_save_stack(GFP_NOWAIT, can_alloc);
482 }
483
kasan_record_aux_stack(void * addr)484 void kasan_record_aux_stack(void *addr)
485 {
486 return __kasan_record_aux_stack(addr, true);
487 }
488
kasan_record_aux_stack_noalloc(void * addr)489 void kasan_record_aux_stack_noalloc(void *addr)
490 {
491 return __kasan_record_aux_stack(addr, false);
492 }
493
kasan_save_alloc_info(struct kmem_cache * cache,void * object,gfp_t flags)494 void kasan_save_alloc_info(struct kmem_cache *cache, void *object, gfp_t flags)
495 {
496 struct kasan_alloc_meta *alloc_meta;
497
498 alloc_meta = kasan_get_alloc_meta(cache, object);
499 if (alloc_meta)
500 kasan_set_track(&alloc_meta->alloc_track, flags);
501 }
502
kasan_save_free_info(struct kmem_cache * cache,void * object)503 void kasan_save_free_info(struct kmem_cache *cache, void *object)
504 {
505 struct kasan_free_meta *free_meta;
506
507 free_meta = kasan_get_free_meta(cache, object);
508 if (!free_meta)
509 return;
510
511 kasan_set_track(&free_meta->free_track, GFP_NOWAIT);
512 /* The object was freed and has free track set. */
513 *(u8 *)kasan_mem_to_shadow(object) = KASAN_SLAB_FREETRACK;
514 }
515