1 /* @(#)k_rem_pio2.c 5.1 93/09/24 */
2 /*
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 *
6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
9 * is preserved.
10 * ====================================================
11 */
12
13 #if defined(LIBM_SCCS) && !defined(lint)
14 static char rcsid[] = "$NetBSD: k_rem_pio2.c,v 1.7 1995/05/10 20:46:25 jtc Exp $";
15 #endif
16
17 /*
18 * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
19 * double x[],y[]; int e0,nx,prec; int ipio2[];
20 *
21 * __kernel_rem_pio2 return the last three digits of N with
22 * y = x - N*pi/2
23 * so that |y| < pi/2.
24 *
25 * The method is to compute the integer (mod 8) and fraction parts of
26 * (2/pi)*x without doing the full multiplication. In general we
27 * skip the part of the product that are known to be a huge integer (
28 * more accurately, = 0 mod 8 ). Thus the number of operations are
29 * independent of the exponent of the input.
30 *
31 * (2/pi) is represented by an array of 24-bit integers in ipio2[].
32 *
33 * Input parameters:
34 * x[] The input value (must be positive) is broken into nx
35 * pieces of 24-bit integers in double precision format.
36 * x[i] will be the i-th 24 bit of x. The scaled exponent
37 * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
38 * match x's up to 24 bits.
39 *
40 * Example of breaking a double positive z into x[0]+x[1]+x[2]:
41 * e0 = ilogb(z)-23
42 * z = scalbn(z,-e0)
43 * for i = 0,1,2
44 * x[i] = floor(z)
45 * z = (z-x[i])*2**24
46 *
47 *
48 * y[] output result in an array of double precision numbers.
49 * The dimension of y[] is:
50 * 24-bit precision 1
51 * 53-bit precision 2
52 * 64-bit precision 2
53 * 113-bit precision 3
54 * The actual value is the sum of them. Thus for 113-bit
55 * precision, one may have to do something like:
56 *
57 * long double t,w,r_head, r_tail;
58 * t = (long double)y[2] + (long double)y[1];
59 * w = (long double)y[0];
60 * r_head = t+w;
61 * r_tail = w - (r_head - t);
62 *
63 * e0 The exponent of x[0]
64 *
65 * nx dimension of x[]
66 *
67 * prec an integer indicating the precision:
68 * 0 24 bits (single)
69 * 1 53 bits (double)
70 * 2 64 bits (extended)
71 * 3 113 bits (quad)
72 *
73 * ipio2[]
74 * integer array, contains the (24*i)-th to (24*i+23)-th
75 * bit of 2/pi after binary point. The corresponding
76 * floating value is
77 *
78 * ipio2[i] * 2^(-24(i+1)).
79 *
80 * External function:
81 * double scalbn(), floor();
82 *
83 *
84 * Here is the description of some local variables:
85 *
86 * jk jk+1 is the initial number of terms of ipio2[] needed
87 * in the computation. The recommended value is 2,3,4,
88 * 6 for single, double, extended,and quad.
89 *
90 * jz local integer variable indicating the number of
91 * terms of ipio2[] used.
92 *
93 * jx nx - 1
94 *
95 * jv index for pointing to the suitable ipio2[] for the
96 * computation. In general, we want
97 * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
98 * is an integer. Thus
99 * e0-3-24*jv >= 0 or (e0-3)/24 >= jv
100 * Hence jv = max(0,(e0-3)/24).
101 *
102 * jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
103 *
104 * q[] double array with integral value, representing the
105 * 24-bits chunk of the product of x and 2/pi.
106 *
107 * q0 the corresponding exponent of q[0]. Note that the
108 * exponent for q[i] would be q0-24*i.
109 *
110 * PIo2[] double precision array, obtained by cutting pi/2
111 * into 24 bits chunks.
112 *
113 * f[] ipio2[] in floating point
114 *
115 * iq[] integer array by breaking up q[] in 24-bits chunk.
116 *
117 * fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
118 *
119 * ih integer. If >0 it indicates q[] is >= 0.5, hence
120 * it also indicates the *sign* of the result.
121 *
122 */
123
124
125 /*
126 * Constants:
127 * The hexadecimal values are the intended ones for the following
128 * constants. The decimal values may be used, provided that the
129 * compiler will convert from decimal to binary accurately enough
130 * to produce the hexadecimal values shown.
131 */
132
133 #include <math.h>
134 #include <math-narrow-eval.h>
135 #include <math_private.h>
136 #include <libc-diag.h>
137
138 static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
139
140 static const double PIo2[] = {
141 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
142 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
143 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
144 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
145 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
146 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
147 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
148 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
149 };
150
151 static const double
152 zero = 0.0,
153 one = 1.0,
154 two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
155 twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
156
157 int
__kernel_rem_pio2(double * x,double * y,int e0,int nx,int prec,const int32_t * ipio2)158 __kernel_rem_pio2 (double *x, double *y, int e0, int nx, int prec,
159 const int32_t *ipio2)
160 {
161 int32_t jz, jx, jv, jp, jk, carry, n, iq[20], i, j, k, m, q0, ih;
162 double z, fw, f[20], fq[20], q[20];
163
164 /* initialize jk*/
165 jk = init_jk[prec];
166 jp = jk;
167
168 /* determine jx,jv,q0, note that 3>q0 */
169 jx = nx - 1;
170 jv = (e0 - 3) / 24; if (jv < 0)
171 jv = 0;
172 q0 = e0 - 24 * (jv + 1);
173
174 /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
175 j = jv - jx; m = jx + jk;
176 for (i = 0; i <= m; i++, j++)
177 f[i] = (j < 0) ? zero : (double) ipio2[j];
178
179 /* compute q[0],q[1],...q[jk] */
180 for (i = 0; i <= jk; i++)
181 {
182 for (j = 0, fw = 0.0; j <= jx; j++)
183 fw += x[j] * f[jx + i - j];
184 q[i] = fw;
185 }
186
187 jz = jk;
188 recompute:
189 /* distill q[] into iq[] reversingly */
190 for (i = 0, j = jz, z = q[jz]; j > 0; i++, j--)
191 {
192 fw = (double) ((int32_t) (twon24 * z));
193 iq[i] = (int32_t) (z - two24 * fw);
194 z = q[j - 1] + fw;
195 }
196
197 /* compute n */
198 z = __scalbn (z, q0); /* actual value of z */
199 z -= 8.0 * floor (z * 0.125); /* trim off integer >= 8 */
200 n = (int32_t) z;
201 z -= (double) n;
202 ih = 0;
203 if (q0 > 0) /* need iq[jz-1] to determine n */
204 {
205 i = (iq[jz - 1] >> (24 - q0)); n += i;
206 iq[jz - 1] -= i << (24 - q0);
207 ih = iq[jz - 1] >> (23 - q0);
208 }
209 else if (q0 == 0)
210 ih = iq[jz - 1] >> 23;
211 else if (z >= 0.5)
212 ih = 2;
213
214 if (ih > 0) /* q > 0.5 */
215 {
216 n += 1; carry = 0;
217 for (i = 0; i < jz; i++) /* compute 1-q */
218 {
219 j = iq[i];
220 if (carry == 0)
221 {
222 if (j != 0)
223 {
224 carry = 1; iq[i] = 0x1000000 - j;
225 }
226 }
227 else
228 iq[i] = 0xffffff - j;
229 }
230 if (q0 > 0) /* rare case: chance is 1 in 12 */
231 {
232 switch (q0)
233 {
234 case 1:
235 iq[jz - 1] &= 0x7fffff; break;
236 case 2:
237 iq[jz - 1] &= 0x3fffff; break;
238 }
239 }
240 if (ih == 2)
241 {
242 z = one - z;
243 if (carry != 0)
244 z -= __scalbn (one, q0);
245 }
246 }
247
248 /* check if recomputation is needed */
249 if (z == zero)
250 {
251 j = 0;
252 for (i = jz - 1; i >= jk; i--)
253 j |= iq[i];
254 if (j == 0) /* need recomputation */
255 {
256 /* On s390x gcc 6.1 -O3 produces the warning "array subscript is below
257 array bounds [-Werror=array-bounds]". Only __ieee754_rem_pio2l
258 calls __kernel_rem_pio2 for normal numbers and |x| > pi/4 in case
259 of ldbl-96 and |x| > 3pi/4 in case of ldbl-128[ibm].
260 Thus x can't be zero and ipio2 is not zero, too. Thus not all iq[]
261 values can't be zero. */
262 DIAG_PUSH_NEEDS_COMMENT;
263 DIAG_IGNORE_NEEDS_COMMENT (6.1, "-Warray-bounds");
264 for (k = 1; iq[jk - k] == 0; k++)
265 ; /* k = no. of terms needed */
266 DIAG_POP_NEEDS_COMMENT;
267
268 for (i = jz + 1; i <= jz + k; i++) /* add q[jz+1] to q[jz+k] */
269 {
270 f[jx + i] = (double) ipio2[jv + i];
271 for (j = 0, fw = 0.0; j <= jx; j++)
272 fw += x[j] * f[jx + i - j];
273 q[i] = fw;
274 }
275 jz += k;
276 goto recompute;
277 }
278 }
279
280 /* chop off zero terms */
281 if (z == 0.0)
282 {
283 jz -= 1; q0 -= 24;
284 while (iq[jz] == 0)
285 {
286 jz--; q0 -= 24;
287 }
288 }
289 else /* break z into 24-bit if necessary */
290 {
291 z = __scalbn (z, -q0);
292 if (z >= two24)
293 {
294 fw = (double) ((int32_t) (twon24 * z));
295 iq[jz] = (int32_t) (z - two24 * fw);
296 jz += 1; q0 += 24;
297 iq[jz] = (int32_t) fw;
298 }
299 else
300 iq[jz] = (int32_t) z;
301 }
302
303 /* convert integer "bit" chunk to floating-point value */
304 fw = __scalbn (one, q0);
305 for (i = jz; i >= 0; i--)
306 {
307 q[i] = fw * (double) iq[i]; fw *= twon24;
308 }
309
310 /* compute PIo2[0,...,jp]*q[jz,...,0] */
311 for (i = jz; i >= 0; i--)
312 {
313 for (fw = 0.0, k = 0; k <= jp && k <= jz - i; k++)
314 fw += PIo2[k] * q[i + k];
315 fq[jz - i] = fw;
316 }
317
318 /* compress fq[] into y[] */
319 switch (prec)
320 {
321 case 0:
322 fw = 0.0;
323 for (i = jz; i >= 0; i--)
324 fw += fq[i];
325 y[0] = (ih == 0) ? fw : -fw;
326 break;
327 case 1:
328 case 2:;
329 double fv = 0.0;
330 for (i = jz; i >= 0; i--)
331 fv = math_narrow_eval (fv + fq[i]);
332 y[0] = (ih == 0) ? fv : -fv;
333 /* GCC mainline (to be GCC 9), as of 2018-05-22 on i686, warns
334 that fq[0] may be used uninitialized. This is not possible
335 because jz is always nonnegative when the above loop
336 initializing fq is executed, because the result is never zero
337 to full precision (this function is not called for zero
338 arguments). */
339 DIAG_PUSH_NEEDS_COMMENT;
340 DIAG_IGNORE_NEEDS_COMMENT (9, "-Wmaybe-uninitialized");
341 fv = math_narrow_eval (fq[0] - fv);
342 DIAG_POP_NEEDS_COMMENT;
343 for (i = 1; i <= jz; i++)
344 fv = math_narrow_eval (fv + fq[i]);
345 y[1] = (ih == 0) ? fv : -fv;
346 break;
347 case 3: /* painful */
348 for (i = jz; i > 0; i--)
349 {
350 double fv = math_narrow_eval (fq[i - 1] + fq[i]);
351 fq[i] += fq[i - 1] - fv;
352 fq[i - 1] = fv;
353 }
354 for (i = jz; i > 1; i--)
355 {
356 double fv = math_narrow_eval (fq[i - 1] + fq[i]);
357 fq[i] += fq[i - 1] - fv;
358 fq[i - 1] = fv;
359 }
360 for (fw = 0.0, i = jz; i >= 2; i--)
361 fw += fq[i];
362 if (ih == 0)
363 {
364 y[0] = fq[0]; y[1] = fq[1]; y[2] = fw;
365 }
366 else
367 {
368 y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
369 }
370 }
371 return n & 7;
372 }
373