1 /*
2  * linux/fs/revoke.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
5  *
6  * Copyright 2000 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Journal revoke routines for the generic filesystem journaling code;
13  * part of the ext2fs journaling system.
14  *
15  * Revoke is the mechanism used to prevent old log records for deleted
16  * metadata from being replayed on top of newer data using the same
17  * blocks.  The revoke mechanism is used in two separate places:
18  *
19  * + Commit: during commit we write the entire list of the current
20  *   transaction's revoked blocks to the journal
21  *
22  * + Recovery: during recovery we record the transaction ID of all
23  *   revoked blocks.  If there are multiple revoke records in the log
24  *   for a single block, only the last one counts, and if there is a log
25  *   entry for a block beyond the last revoke, then that log entry still
26  *   gets replayed.
27  *
28  * We can get interactions between revokes and new log data within a
29  * single transaction:
30  *
31  * Block is revoked and then journaled:
32  *   The desired end result is the journaling of the new block, so we
33  *   cancel the revoke before the transaction commits.
34  *
35  * Block is journaled and then revoked:
36  *   The revoke must take precedence over the write of the block, so we
37  *   need either to cancel the journal entry or to write the revoke
38  *   later in the log than the log block.  In this case, we choose the
39  *   latter: journaling a block cancels any revoke record for that block
40  *   in the current transaction, so any revoke for that block in the
41  *   transaction must have happened after the block was journaled and so
42  *   the revoke must take precedence.
43  *
44  * Block is revoked and then written as data:
45  *   The data write is allowed to succeed, but the revoke is _not_
46  *   cancelled.  We still need to prevent old log records from
47  *   overwriting the new data.  We don't even need to clear the revoke
48  *   bit here.
49  *
50  * Revoke information on buffers is a tri-state value:
51  *
52  * RevokeValid clear:	no cached revoke status, need to look it up
53  * RevokeValid set, Revoked clear:
54  *			buffer has not been revoked, and cancel_revoke
55  *			need do nothing.
56  * RevokeValid set, Revoked set:
57  *			buffer has been revoked.
58  */
59 
60 #ifndef __KERNEL__
61 #include "jfs_user.h"
62 #else
63 #include <linux/sched.h>
64 #include <linux/fs.h>
65 #include <linux/jbd.h>
66 #include <linux/errno.h>
67 #include <linux/slab.h>
68 #include <linux/locks.h>
69 #include <linux/list.h>
70 #include <linux/smp_lock.h>
71 #include <linux/init.h>
72 #endif
73 
74 static kmem_cache_t *revoke_record_cache;
75 static kmem_cache_t *revoke_table_cache;
76 
77 /* Each revoke record represents one single revoked block.  During
78    journal replay, this involves recording the transaction ID of the
79    last transaction to revoke this block. */
80 
81 struct jbd_revoke_record_s
82 {
83 	struct list_head  hash;
84 	tid_t		  sequence;	/* Used for recovery only */
85 	unsigned long	  blocknr;
86 };
87 
88 
89 /* The revoke table is just a simple hash table of revoke records. */
90 struct jbd_revoke_table_s
91 {
92 	/* It is conceivable that we might want a larger hash table
93 	 * for recovery.  Must be a power of two. */
94 	int		  hash_size;
95 	int		  hash_shift;
96 	struct list_head *hash_table;
97 };
98 
99 
100 #ifdef __KERNEL__
101 static void write_one_revoke_record(journal_t *, transaction_t *,
102 				    struct journal_head **, int *,
103 				    struct jbd_revoke_record_s *);
104 static void flush_descriptor(journal_t *, struct journal_head *, int);
105 #endif
106 
107 /* Utility functions to maintain the revoke table */
108 
109 /* Borrowed from buffer.c: this is a tried and tested block hash function */
hash(journal_t * journal,unsigned long block)110 static inline int hash(journal_t *journal, unsigned long block)
111 {
112 	struct jbd_revoke_table_s *table = journal->j_revoke;
113 	int hash_shift = table->hash_shift;
114 
115 	return ((block << (hash_shift - 6)) ^
116 		(block >> 13) ^
117 		(block << (hash_shift - 12))) & (table->hash_size - 1);
118 }
119 
insert_revoke_hash(journal_t * journal,unsigned long blocknr,tid_t seq)120 int insert_revoke_hash(journal_t *journal, unsigned long blocknr, tid_t seq)
121 {
122 	struct list_head *hash_list;
123 	struct jbd_revoke_record_s *record;
124 
125 repeat:
126 	record = kmem_cache_alloc(revoke_record_cache, GFP_NOFS);
127 	if (!record)
128 		goto oom;
129 
130 	record->sequence = seq;
131 	record->blocknr = blocknr;
132 	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
133 	list_add(&record->hash, hash_list);
134 	return 0;
135 
136 oom:
137 	if (!journal_oom_retry)
138 		return -ENOMEM;
139 	jbd_debug(1, "ENOMEM in %s, retrying.\n", __FUNCTION__);
140 	yield();
141 	goto repeat;
142 }
143 
144 /* Find a revoke record in the journal's hash table. */
145 
find_revoke_record(journal_t * journal,unsigned long blocknr)146 static struct jbd_revoke_record_s *find_revoke_record(journal_t *journal,
147 						      unsigned long blocknr)
148 {
149 	struct list_head *hash_list;
150 	struct jbd_revoke_record_s *record;
151 
152 	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
153 
154 	record = (struct jbd_revoke_record_s *) hash_list->next;
155 	while (&(record->hash) != hash_list) {
156 		if (record->blocknr == blocknr)
157 			return record;
158 		record = (struct jbd_revoke_record_s *) record->hash.next;
159 	}
160 	return NULL;
161 }
162 
journal_init_revoke_caches(void)163 int __init journal_init_revoke_caches(void)
164 {
165 	revoke_record_cache = kmem_cache_create("revoke_record",
166 					   sizeof(struct jbd_revoke_record_s),
167 					   0, SLAB_HWCACHE_ALIGN, NULL, NULL);
168 	if (revoke_record_cache == 0)
169 		return -ENOMEM;
170 
171 	revoke_table_cache = kmem_cache_create("revoke_table",
172 					   sizeof(struct jbd_revoke_table_s),
173 					   0, 0, NULL, NULL);
174 	if (revoke_table_cache == 0) {
175 		kmem_cache_destroy(revoke_record_cache);
176 		revoke_record_cache = NULL;
177 		return -ENOMEM;
178 	}
179 	return 0;
180 }
181 
journal_destroy_revoke_caches(void)182 void journal_destroy_revoke_caches(void)
183 {
184 	kmem_cache_destroy(revoke_record_cache);
185 	revoke_record_cache = 0;
186 	kmem_cache_destroy(revoke_table_cache);
187 	revoke_table_cache = 0;
188 }
189 
190 /* Initialise the revoke table for a given journal to a given size. */
191 
journal_init_revoke(journal_t * journal,int hash_size)192 int journal_init_revoke(journal_t *journal, int hash_size)
193 {
194 	int shift, tmp;
195 
196 	J_ASSERT (journal->j_revoke == NULL);
197 
198 	journal->j_revoke = kmem_cache_alloc(revoke_table_cache, GFP_KERNEL);
199 	if (!journal->j_revoke)
200 		return -ENOMEM;
201 
202 	/* Check that the hash_size is a power of two */
203 	J_ASSERT ((hash_size & (hash_size-1)) == 0);
204 
205 	journal->j_revoke->hash_size = hash_size;
206 
207 	shift = 0;
208 	tmp = hash_size;
209 	while((tmp >>= 1UL) != 0UL)
210 		shift++;
211 	journal->j_revoke->hash_shift = shift;
212 
213 	journal->j_revoke->hash_table =
214 		kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
215 	if (!journal->j_revoke->hash_table) {
216 		kmem_cache_free(revoke_table_cache, journal->j_revoke);
217 		journal->j_revoke = NULL;
218 		return -ENOMEM;
219 	}
220 
221 	for (tmp = 0; tmp < hash_size; tmp++)
222 		INIT_LIST_HEAD(&journal->j_revoke->hash_table[tmp]);
223 
224 	return 0;
225 }
226 
227 /* Destoy a journal's revoke table.  The table must already be empty! */
228 
journal_destroy_revoke(journal_t * journal)229 void journal_destroy_revoke(journal_t *journal)
230 {
231 	struct jbd_revoke_table_s *table;
232 	struct list_head *hash_list;
233 	int i;
234 
235 	table = journal->j_revoke;
236 	if (!table)
237 		return;
238 
239 	for (i=0; i<table->hash_size; i++) {
240 		hash_list = &table->hash_table[i];
241 		J_ASSERT (list_empty(hash_list));
242 	}
243 
244 	kfree(table->hash_table);
245 	kmem_cache_free(revoke_table_cache, table);
246 	journal->j_revoke = NULL;
247 }
248 
249 
250 #ifdef __KERNEL__
251 
252 /*
253  * journal_revoke: revoke a given buffer_head from the journal.  This
254  * prevents the block from being replayed during recovery if we take a
255  * crash after this current transaction commits.  Any subsequent
256  * metadata writes of the buffer in this transaction cancel the
257  * revoke.
258  *
259  * Note that this call may block --- it is up to the caller to make
260  * sure that there are no further calls to journal_write_metadata
261  * before the revoke is complete.  In ext3, this implies calling the
262  * revoke before clearing the block bitmap when we are deleting
263  * metadata.
264  *
265  * Revoke performs a journal_forget on any buffer_head passed in as a
266  * parameter, but does _not_ forget the buffer_head if the bh was only
267  * found implicitly.
268  *
269  * bh_in may not be a journalled buffer - it may have come off
270  * the hash tables without an attached journal_head.
271  *
272  * If bh_in is non-zero, journal_revoke() will decrement its b_count
273  * by one.
274  */
275 
journal_revoke(handle_t * handle,unsigned long blocknr,struct buffer_head * bh_in)276 int journal_revoke(handle_t *handle, unsigned long blocknr,
277 		   struct buffer_head *bh_in)
278 {
279 	struct buffer_head *bh = NULL;
280 	journal_t *journal;
281 	kdev_t dev;
282 	int err;
283 
284 	if (bh_in)
285 		BUFFER_TRACE(bh_in, "enter");
286 
287 	journal = handle->h_transaction->t_journal;
288 	if (!journal_set_features(journal, 0, 0, JFS_FEATURE_INCOMPAT_REVOKE)){
289 		J_ASSERT (!"Cannot set revoke feature!");
290 		return -EINVAL;
291 	}
292 
293 	dev = journal->j_fs_dev;
294 	bh = bh_in;
295 
296 	if (!bh) {
297 		bh = get_hash_table(dev, blocknr, journal->j_blocksize);
298 		if (bh)
299 			BUFFER_TRACE(bh, "found on hash");
300 	}
301 #ifdef JBD_EXPENSIVE_CHECKING
302 	else {
303 		struct buffer_head *bh2;
304 
305 		/* If there is a different buffer_head lying around in
306 		 * memory anywhere... */
307 		bh2 = get_hash_table(dev, blocknr, journal->j_blocksize);
308 		if (bh2) {
309 			/* ... and it has RevokeValid status... */
310 			if ((bh2 != bh) &&
311 			    test_bit(BH_RevokeValid, &bh2->b_state))
312 				/* ...then it better be revoked too,
313 				 * since it's illegal to create a revoke
314 				 * record against a buffer_head which is
315 				 * not marked revoked --- that would
316 				 * risk missing a subsequent revoke
317 				 * cancel. */
318 				J_ASSERT_BH(bh2, test_bit(BH_Revoked, &
319 							  bh2->b_state));
320 			__brelse(bh2);
321 		}
322 	}
323 #endif
324 
325 	/* We really ought not ever to revoke twice in a row without
326            first having the revoke cancelled: it's illegal to free a
327            block twice without allocating it in between! */
328 	if (bh) {
329 		J_ASSERT_BH(bh, !test_bit(BH_Revoked, &bh->b_state));
330 		set_bit(BH_Revoked, &bh->b_state);
331 		set_bit(BH_RevokeValid, &bh->b_state);
332 		if (bh_in) {
333 			BUFFER_TRACE(bh_in, "call journal_forget");
334 			journal_forget(handle, bh_in);
335 		} else {
336 			BUFFER_TRACE(bh, "call brelse");
337 			__brelse(bh);
338 		}
339 	}
340 
341 	lock_journal(journal);
342 	jbd_debug(2, "insert revoke for block %lu, bh_in=%p\n", blocknr, bh_in);
343 	err = insert_revoke_hash(journal, blocknr,
344 				handle->h_transaction->t_tid);
345 	unlock_journal(journal);
346 	BUFFER_TRACE(bh_in, "exit");
347 	return err;
348 }
349 
350 /*
351  * Cancel an outstanding revoke.  For use only internally by the
352  * journaling code (called from journal_get_write_access).
353  *
354  * We trust the BH_Revoked bit on the buffer if the buffer is already
355  * being journaled: if there is no revoke pending on the buffer, then we
356  * don't do anything here.
357  *
358  * This would break if it were possible for a buffer to be revoked and
359  * discarded, and then reallocated within the same transaction.  In such
360  * a case we would have lost the revoked bit, but when we arrived here
361  * the second time we would still have a pending revoke to cancel.  So,
362  * do not trust the Revoked bit on buffers unless RevokeValid is also
363  * set.
364  *
365  * The caller must have the journal locked.
366  */
journal_cancel_revoke(handle_t * handle,struct journal_head * jh)367 int journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
368 {
369 	struct jbd_revoke_record_s *record;
370 	journal_t *journal = handle->h_transaction->t_journal;
371 	int need_cancel;
372 	int did_revoke = 0;	/* akpm: debug */
373 	struct buffer_head *bh = jh2bh(jh);
374 
375 	jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
376 
377 	/* Is the existing Revoke bit valid?  If so, we trust it, and
378 	 * only perform the full cancel if the revoke bit is set.  If
379 	 * not, we can't trust the revoke bit, and we need to do the
380 	 * full search for a revoke record. */
381 	if (test_and_set_bit(BH_RevokeValid, &bh->b_state))
382 		need_cancel = (test_and_clear_bit(BH_Revoked, &bh->b_state));
383 	else {
384 		need_cancel = 1;
385 		clear_bit(BH_Revoked, &bh->b_state);
386 	}
387 
388 	if (need_cancel) {
389 		record = find_revoke_record(journal, bh->b_blocknr);
390 		if (record) {
391 			jbd_debug(4, "cancelled existing revoke on "
392 				  "blocknr %lu\n", bh->b_blocknr);
393 			list_del(&record->hash);
394 			kmem_cache_free(revoke_record_cache, record);
395 			did_revoke = 1;
396 		}
397 	}
398 
399 #ifdef JBD_EXPENSIVE_CHECKING
400 	/* There better not be one left behind by now! */
401 	record = find_revoke_record(journal, bh->b_blocknr);
402 	J_ASSERT_JH(jh, record == NULL);
403 #endif
404 
405 	/* Finally, have we just cleared revoke on an unhashed
406 	 * buffer_head?  If so, we'd better make sure we clear the
407 	 * revoked status on any hashed alias too, otherwise the revoke
408 	 * state machine will get very upset later on. */
409 	if (need_cancel && !bh->b_pprev) {
410 		struct buffer_head *bh2;
411 		bh2 = get_hash_table(bh->b_dev, bh->b_blocknr, bh->b_size);
412 		if (bh2) {
413 			clear_bit(BH_Revoked, &bh2->b_state);
414 			__brelse(bh2);
415 		}
416 	}
417 
418 	return did_revoke;
419 }
420 
421 
422 /*
423  * Write revoke records to the journal for all entries in the current
424  * revoke hash, deleting the entries as we go.
425  *
426  * Called with the journal lock held.
427  */
428 
journal_write_revoke_records(journal_t * journal,transaction_t * transaction)429 void journal_write_revoke_records(journal_t *journal,
430 				  transaction_t *transaction)
431 {
432 	struct journal_head *descriptor;
433 	struct jbd_revoke_record_s *record;
434 	struct jbd_revoke_table_s *revoke;
435 	struct list_head *hash_list;
436 	int i, offset, count;
437 
438 	descriptor = NULL;
439 	offset = 0;
440 	count = 0;
441 	revoke = journal->j_revoke;
442 
443 	for (i = 0; i < revoke->hash_size; i++) {
444 		hash_list = &revoke->hash_table[i];
445 
446 		while (!list_empty(hash_list)) {
447 			record = (struct jbd_revoke_record_s *)
448 				hash_list->next;
449 			write_one_revoke_record(journal, transaction,
450 						&descriptor, &offset,
451 						record);
452 			count++;
453 			list_del(&record->hash);
454 			kmem_cache_free(revoke_record_cache, record);
455 		}
456 	}
457 	if (descriptor)
458 		flush_descriptor(journal, descriptor, offset);
459 	jbd_debug(1, "Wrote %d revoke records\n", count);
460 }
461 
462 /*
463  * Write out one revoke record.  We need to create a new descriptor
464  * block if the old one is full or if we have not already created one.
465  */
466 
write_one_revoke_record(journal_t * journal,transaction_t * transaction,struct journal_head ** descriptorp,int * offsetp,struct jbd_revoke_record_s * record)467 static void write_one_revoke_record(journal_t *journal,
468 				    transaction_t *transaction,
469 				    struct journal_head **descriptorp,
470 				    int *offsetp,
471 				    struct jbd_revoke_record_s *record)
472 {
473 	struct journal_head *descriptor;
474 	int offset;
475 	journal_header_t *header;
476 
477 	/* If we are already aborting, this all becomes a noop.  We
478            still need to go round the loop in
479            journal_write_revoke_records in order to free all of the
480            revoke records: only the IO to the journal is omitted. */
481 	if (is_journal_aborted(journal))
482 		return;
483 
484 	descriptor = *descriptorp;
485 	offset = *offsetp;
486 
487 	/* Make sure we have a descriptor with space left for the record */
488 	if (descriptor) {
489 		if (offset == journal->j_blocksize) {
490 			flush_descriptor(journal, descriptor, offset);
491 			descriptor = NULL;
492 		}
493 	}
494 
495 	if (!descriptor) {
496 		descriptor = journal_get_descriptor_buffer(journal);
497 		if (!descriptor)
498 			return;
499 		header = (journal_header_t *) &jh2bh(descriptor)->b_data[0];
500 		header->h_magic     = htonl(JFS_MAGIC_NUMBER);
501 		header->h_blocktype = htonl(JFS_REVOKE_BLOCK);
502 		header->h_sequence  = htonl(transaction->t_tid);
503 
504 		/* Record it so that we can wait for IO completion later */
505 		JBUFFER_TRACE(descriptor, "file as BJ_LogCtl");
506 		journal_file_buffer(descriptor, transaction, BJ_LogCtl);
507 
508 		offset = sizeof(journal_revoke_header_t);
509 		*descriptorp = descriptor;
510 	}
511 
512 	* ((unsigned int *)(&jh2bh(descriptor)->b_data[offset])) =
513 		htonl(record->blocknr);
514 	offset += 4;
515 	*offsetp = offset;
516 }
517 
518 /*
519  * Flush a revoke descriptor out to the journal.  If we are aborting,
520  * this is a noop; otherwise we are generating a buffer which needs to
521  * be waited for during commit, so it has to go onto the appropriate
522  * journal buffer list.
523  */
524 
flush_descriptor(journal_t * journal,struct journal_head * descriptor,int offset)525 static void flush_descriptor(journal_t *journal,
526 			     struct journal_head *descriptor,
527 			     int offset)
528 {
529 	journal_revoke_header_t *header;
530 
531 	if (is_journal_aborted(journal)) {
532 		JBUFFER_TRACE(descriptor, "brelse");
533 		unlock_buffer(jh2bh(descriptor));
534 		__brelse(jh2bh(descriptor));
535 		return;
536 	}
537 
538 	header = (journal_revoke_header_t *) jh2bh(descriptor)->b_data;
539 	header->r_count = htonl(offset);
540 	set_bit(BH_JWrite, &jh2bh(descriptor)->b_state);
541 	{
542 		struct buffer_head *bh = jh2bh(descriptor);
543 		BUFFER_TRACE(bh, "write");
544 		clear_bit(BH_Dirty, &bh->b_state);
545 		bh->b_end_io = journal_end_buffer_io_sync;
546 		submit_bh(WRITE, bh);
547 	}
548 }
549 
550 #endif
551 
552 /*
553  * Revoke support for recovery.
554  *
555  * Recovery needs to be able to:
556  *
557  *  record all revoke records, including the tid of the latest instance
558  *  of each revoke in the journal
559  *
560  *  check whether a given block in a given transaction should be replayed
561  *  (ie. has not been revoked by a revoke record in that or a subsequent
562  *  transaction)
563  *
564  *  empty the revoke table after recovery.
565  */
566 
567 /*
568  * First, setting revoke records.  We create a new revoke record for
569  * every block ever revoked in the log as we scan it for recovery, and
570  * we update the existing records if we find multiple revokes for a
571  * single block.
572  */
573 
journal_set_revoke(journal_t * journal,unsigned long blocknr,tid_t sequence)574 int journal_set_revoke(journal_t *journal,
575 		       unsigned long blocknr,
576 		       tid_t sequence)
577 {
578 	struct jbd_revoke_record_s *record;
579 
580 	record = find_revoke_record(journal, blocknr);
581 	if (record) {
582 		/* If we have multiple occurences, only record the
583 		 * latest sequence number in the hashed record */
584 		if (tid_gt(sequence, record->sequence))
585 			record->sequence = sequence;
586 		return 0;
587 	}
588 	return insert_revoke_hash(journal, blocknr, sequence);
589 }
590 
591 /*
592  * Test revoke records.  For a given block referenced in the log, has
593  * that block been revoked?  A revoke record with a given transaction
594  * sequence number revokes all blocks in that transaction and earlier
595  * ones, but later transactions still need replayed.
596  */
597 
journal_test_revoke(journal_t * journal,unsigned long blocknr,tid_t sequence)598 int journal_test_revoke(journal_t *journal,
599 			unsigned long blocknr,
600 			tid_t sequence)
601 {
602 	struct jbd_revoke_record_s *record;
603 
604 	record = find_revoke_record(journal, blocknr);
605 	if (!record)
606 		return 0;
607 	if (tid_gt(sequence, record->sequence))
608 		return 0;
609 	return 1;
610 }
611 
612 /*
613  * Finally, once recovery is over, we need to clear the revoke table so
614  * that it can be reused by the running filesystem.
615  */
616 
journal_clear_revoke(journal_t * journal)617 void journal_clear_revoke(journal_t *journal)
618 {
619 	int i;
620 	struct list_head *hash_list;
621 	struct jbd_revoke_record_s *record;
622 	struct jbd_revoke_table_s *revoke;
623 
624 	revoke = journal->j_revoke;
625 
626 	for (i = 0; i < revoke->hash_size; i++) {
627 		hash_list = &revoke->hash_table[i];
628 		while (!list_empty(hash_list)) {
629 			record = (struct jbd_revoke_record_s*) hash_list->next;
630 			list_del(&record->hash);
631 			kmem_cache_free(revoke_record_cache, record);
632 		}
633 	}
634 }
635 
636