1 /*
2  * linux/fs/jbd/revoke.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
5  *
6  * Copyright 2000 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Journal revoke routines for the generic filesystem journaling code;
13  * part of the ext2fs journaling system.
14  *
15  * Revoke is the mechanism used to prevent old log records for deleted
16  * metadata from being replayed on top of newer data using the same
17  * blocks.  The revoke mechanism is used in two separate places:
18  *
19  * + Commit: during commit we write the entire list of the current
20  *   transaction's revoked blocks to the journal
21  *
22  * + Recovery: during recovery we record the transaction ID of all
23  *   revoked blocks.  If there are multiple revoke records in the log
24  *   for a single block, only the last one counts, and if there is a log
25  *   entry for a block beyond the last revoke, then that log entry still
26  *   gets replayed.
27  *
28  * We can get interactions between revokes and new log data within a
29  * single transaction:
30  *
31  * Block is revoked and then journaled:
32  *   The desired end result is the journaling of the new block, so we
33  *   cancel the revoke before the transaction commits.
34  *
35  * Block is journaled and then revoked:
36  *   The revoke must take precedence over the write of the block, so we
37  *   need either to cancel the journal entry or to write the revoke
38  *   later in the log than the log block.  In this case, we choose the
39  *   latter: journaling a block cancels any revoke record for that block
40  *   in the current transaction, so any revoke for that block in the
41  *   transaction must have happened after the block was journaled and so
42  *   the revoke must take precedence.
43  *
44  * Block is revoked and then written as data:
45  *   The data write is allowed to succeed, but the revoke is _not_
46  *   cancelled.  We still need to prevent old log records from
47  *   overwriting the new data.  We don't even need to clear the revoke
48  *   bit here.
49  *
50  * We cache revoke status of a buffer in the current transaction in b_states
51  * bits.  As the name says, revokevalid flag indicates that the cached revoke
52  * status of a buffer is valid and we can rely on the cached status.
53  *
54  * Revoke information on buffers is a tri-state value:
55  *
56  * RevokeValid clear:	no cached revoke status, need to look it up
57  * RevokeValid set, Revoked clear:
58  *			buffer has not been revoked, and cancel_revoke
59  *			need do nothing.
60  * RevokeValid set, Revoked set:
61  *			buffer has been revoked.
62  *
63  * Locking rules:
64  * We keep two hash tables of revoke records. One hashtable belongs to the
65  * running transaction (is pointed to by journal->j_revoke), the other one
66  * belongs to the committing transaction. Accesses to the second hash table
67  * happen only from the kjournald and no other thread touches this table.  Also
68  * journal_switch_revoke_table() which switches which hashtable belongs to the
69  * running and which to the committing transaction is called only from
70  * kjournald. Therefore we need no locks when accessing the hashtable belonging
71  * to the committing transaction.
72  *
73  * All users operating on the hash table belonging to the running transaction
74  * have a handle to the transaction. Therefore they are safe from kjournald
75  * switching hash tables under them. For operations on the lists of entries in
76  * the hash table j_revoke_lock is used.
77  *
78  * Finally, also replay code uses the hash tables but at this moment no one else
79  * can touch them (filesystem isn't mounted yet) and hence no locking is
80  * needed.
81  */
82 
83 #ifndef __KERNEL__
84 #include "jfs_user.h"
85 #else
86 #include <linux/time.h>
87 #include <linux/fs.h>
88 #include <linux/jbd.h>
89 #include <linux/errno.h>
90 #include <linux/slab.h>
91 #include <linux/list.h>
92 #include <linux/init.h>
93 #include <linux/bio.h>
94 #endif
95 #include <linux/log2.h>
96 
97 static struct kmem_cache *revoke_record_cache;
98 static struct kmem_cache *revoke_table_cache;
99 
100 /* Each revoke record represents one single revoked block.  During
101    journal replay, this involves recording the transaction ID of the
102    last transaction to revoke this block. */
103 
104 struct jbd_revoke_record_s
105 {
106 	struct list_head  hash;
107 	tid_t		  sequence;	/* Used for recovery only */
108 	unsigned int	  blocknr;
109 };
110 
111 
112 /* The revoke table is just a simple hash table of revoke records. */
113 struct jbd_revoke_table_s
114 {
115 	/* It is conceivable that we might want a larger hash table
116 	 * for recovery.  Must be a power of two. */
117 	int		  hash_size;
118 	int		  hash_shift;
119 	struct list_head *hash_table;
120 };
121 
122 
123 #ifdef __KERNEL__
124 static void write_one_revoke_record(journal_t *, transaction_t *,
125 				    struct journal_head **, int *,
126 				    struct jbd_revoke_record_s *, int);
127 static void flush_descriptor(journal_t *, struct journal_head *, int, int);
128 #endif
129 
130 /* Utility functions to maintain the revoke table */
131 
132 /* Borrowed from buffer.c: this is a tried and tested block hash function */
hash(journal_t * journal,unsigned int block)133 static inline int hash(journal_t *journal, unsigned int block)
134 {
135 	struct jbd_revoke_table_s *table = journal->j_revoke;
136 	int hash_shift = table->hash_shift;
137 
138 	return ((block << (hash_shift - 6)) ^
139 		(block >> 13) ^
140 		(block << (hash_shift - 12))) & (table->hash_size - 1);
141 }
142 
insert_revoke_hash(journal_t * journal,unsigned int blocknr,tid_t seq)143 static int insert_revoke_hash(journal_t *journal, unsigned int blocknr,
144 			      tid_t seq)
145 {
146 	struct list_head *hash_list;
147 	struct jbd_revoke_record_s *record;
148 
149 repeat:
150 	record = kmem_cache_alloc(revoke_record_cache, GFP_NOFS);
151 	if (!record)
152 		goto oom;
153 
154 	record->sequence = seq;
155 	record->blocknr = blocknr;
156 	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
157 	spin_lock(&journal->j_revoke_lock);
158 	list_add(&record->hash, hash_list);
159 	spin_unlock(&journal->j_revoke_lock);
160 	return 0;
161 
162 oom:
163 	if (!journal_oom_retry)
164 		return -ENOMEM;
165 	jbd_debug(1, "ENOMEM in %s, retrying\n", __func__);
166 	yield();
167 	goto repeat;
168 }
169 
170 /* Find a revoke record in the journal's hash table. */
171 
find_revoke_record(journal_t * journal,unsigned int blocknr)172 static struct jbd_revoke_record_s *find_revoke_record(journal_t *journal,
173 						      unsigned int blocknr)
174 {
175 	struct list_head *hash_list;
176 	struct jbd_revoke_record_s *record;
177 
178 	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
179 
180 	spin_lock(&journal->j_revoke_lock);
181 	record = (struct jbd_revoke_record_s *) hash_list->next;
182 	while (&(record->hash) != hash_list) {
183 		if (record->blocknr == blocknr) {
184 			spin_unlock(&journal->j_revoke_lock);
185 			return record;
186 		}
187 		record = (struct jbd_revoke_record_s *) record->hash.next;
188 	}
189 	spin_unlock(&journal->j_revoke_lock);
190 	return NULL;
191 }
192 
journal_destroy_revoke_caches(void)193 void journal_destroy_revoke_caches(void)
194 {
195 	if (revoke_record_cache) {
196 		kmem_cache_destroy(revoke_record_cache);
197 		revoke_record_cache = NULL;
198 	}
199 	if (revoke_table_cache) {
200 		kmem_cache_destroy(revoke_table_cache);
201 		revoke_table_cache = NULL;
202 	}
203 }
204 
journal_init_revoke_caches(void)205 int __init journal_init_revoke_caches(void)
206 {
207 	J_ASSERT(!revoke_record_cache);
208 	J_ASSERT(!revoke_table_cache);
209 
210 	revoke_record_cache = kmem_cache_create("revoke_record",
211 					   sizeof(struct jbd_revoke_record_s),
212 					   0,
213 					   SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
214 					   NULL);
215 	if (!revoke_record_cache)
216 		goto record_cache_failure;
217 
218 	revoke_table_cache = kmem_cache_create("revoke_table",
219 					   sizeof(struct jbd_revoke_table_s),
220 					   0, SLAB_TEMPORARY, NULL);
221 	if (!revoke_table_cache)
222 		goto table_cache_failure;
223 
224 	return 0;
225 
226 table_cache_failure:
227 	journal_destroy_revoke_caches();
228 record_cache_failure:
229 	return -ENOMEM;
230 }
231 
journal_init_revoke_table(int hash_size)232 static struct jbd_revoke_table_s *journal_init_revoke_table(int hash_size)
233 {
234 	int shift = 0;
235 	int tmp = hash_size;
236 	struct jbd_revoke_table_s *table;
237 
238 	table = kmem_cache_alloc(revoke_table_cache, GFP_KERNEL);
239 	if (!table)
240 		goto out;
241 
242 	while((tmp >>= 1UL) != 0UL)
243 		shift++;
244 
245 	table->hash_size = hash_size;
246 	table->hash_shift = shift;
247 	table->hash_table =
248 		kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
249 	if (!table->hash_table) {
250 		kmem_cache_free(revoke_table_cache, table);
251 		table = NULL;
252 		goto out;
253 	}
254 
255 	for (tmp = 0; tmp < hash_size; tmp++)
256 		INIT_LIST_HEAD(&table->hash_table[tmp]);
257 
258 out:
259 	return table;
260 }
261 
journal_destroy_revoke_table(struct jbd_revoke_table_s * table)262 static void journal_destroy_revoke_table(struct jbd_revoke_table_s *table)
263 {
264 	int i;
265 	struct list_head *hash_list;
266 
267 	for (i = 0; i < table->hash_size; i++) {
268 		hash_list = &table->hash_table[i];
269 		J_ASSERT(list_empty(hash_list));
270 	}
271 
272 	kfree(table->hash_table);
273 	kmem_cache_free(revoke_table_cache, table);
274 }
275 
276 /* Initialise the revoke table for a given journal to a given size. */
journal_init_revoke(journal_t * journal,int hash_size)277 int journal_init_revoke(journal_t *journal, int hash_size)
278 {
279 	J_ASSERT(journal->j_revoke_table[0] == NULL);
280 	J_ASSERT(is_power_of_2(hash_size));
281 
282 	journal->j_revoke_table[0] = journal_init_revoke_table(hash_size);
283 	if (!journal->j_revoke_table[0])
284 		goto fail0;
285 
286 	journal->j_revoke_table[1] = journal_init_revoke_table(hash_size);
287 	if (!journal->j_revoke_table[1])
288 		goto fail1;
289 
290 	journal->j_revoke = journal->j_revoke_table[1];
291 
292 	spin_lock_init(&journal->j_revoke_lock);
293 
294 	return 0;
295 
296 fail1:
297 	journal_destroy_revoke_table(journal->j_revoke_table[0]);
298 fail0:
299 	return -ENOMEM;
300 }
301 
302 /* Destroy a journal's revoke table.  The table must already be empty! */
journal_destroy_revoke(journal_t * journal)303 void journal_destroy_revoke(journal_t *journal)
304 {
305 	journal->j_revoke = NULL;
306 	if (journal->j_revoke_table[0])
307 		journal_destroy_revoke_table(journal->j_revoke_table[0]);
308 	if (journal->j_revoke_table[1])
309 		journal_destroy_revoke_table(journal->j_revoke_table[1]);
310 }
311 
312 
313 #ifdef __KERNEL__
314 
315 /*
316  * journal_revoke: revoke a given buffer_head from the journal.  This
317  * prevents the block from being replayed during recovery if we take a
318  * crash after this current transaction commits.  Any subsequent
319  * metadata writes of the buffer in this transaction cancel the
320  * revoke.
321  *
322  * Note that this call may block --- it is up to the caller to make
323  * sure that there are no further calls to journal_write_metadata
324  * before the revoke is complete.  In ext3, this implies calling the
325  * revoke before clearing the block bitmap when we are deleting
326  * metadata.
327  *
328  * Revoke performs a journal_forget on any buffer_head passed in as a
329  * parameter, but does _not_ forget the buffer_head if the bh was only
330  * found implicitly.
331  *
332  * bh_in may not be a journalled buffer - it may have come off
333  * the hash tables without an attached journal_head.
334  *
335  * If bh_in is non-zero, journal_revoke() will decrement its b_count
336  * by one.
337  */
338 
journal_revoke(handle_t * handle,unsigned int blocknr,struct buffer_head * bh_in)339 int journal_revoke(handle_t *handle, unsigned int blocknr,
340 		   struct buffer_head *bh_in)
341 {
342 	struct buffer_head *bh = NULL;
343 	journal_t *journal;
344 	struct block_device *bdev;
345 	int err;
346 
347 	might_sleep();
348 	if (bh_in)
349 		BUFFER_TRACE(bh_in, "enter");
350 
351 	journal = handle->h_transaction->t_journal;
352 	if (!journal_set_features(journal, 0, 0, JFS_FEATURE_INCOMPAT_REVOKE)){
353 		J_ASSERT (!"Cannot set revoke feature!");
354 		return -EINVAL;
355 	}
356 
357 	bdev = journal->j_fs_dev;
358 	bh = bh_in;
359 
360 	if (!bh) {
361 		bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
362 		if (bh)
363 			BUFFER_TRACE(bh, "found on hash");
364 	}
365 #ifdef JBD_EXPENSIVE_CHECKING
366 	else {
367 		struct buffer_head *bh2;
368 
369 		/* If there is a different buffer_head lying around in
370 		 * memory anywhere... */
371 		bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
372 		if (bh2) {
373 			/* ... and it has RevokeValid status... */
374 			if (bh2 != bh && buffer_revokevalid(bh2))
375 				/* ...then it better be revoked too,
376 				 * since it's illegal to create a revoke
377 				 * record against a buffer_head which is
378 				 * not marked revoked --- that would
379 				 * risk missing a subsequent revoke
380 				 * cancel. */
381 				J_ASSERT_BH(bh2, buffer_revoked(bh2));
382 			put_bh(bh2);
383 		}
384 	}
385 #endif
386 
387 	/* We really ought not ever to revoke twice in a row without
388            first having the revoke cancelled: it's illegal to free a
389            block twice without allocating it in between! */
390 	if (bh) {
391 		if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
392 				 "inconsistent data on disk")) {
393 			if (!bh_in)
394 				brelse(bh);
395 			return -EIO;
396 		}
397 		set_buffer_revoked(bh);
398 		set_buffer_revokevalid(bh);
399 		if (bh_in) {
400 			BUFFER_TRACE(bh_in, "call journal_forget");
401 			journal_forget(handle, bh_in);
402 		} else {
403 			BUFFER_TRACE(bh, "call brelse");
404 			__brelse(bh);
405 		}
406 	}
407 
408 	jbd_debug(2, "insert revoke for block %u, bh_in=%p\n", blocknr, bh_in);
409 	err = insert_revoke_hash(journal, blocknr,
410 				handle->h_transaction->t_tid);
411 	BUFFER_TRACE(bh_in, "exit");
412 	return err;
413 }
414 
415 /*
416  * Cancel an outstanding revoke.  For use only internally by the
417  * journaling code (called from journal_get_write_access).
418  *
419  * We trust buffer_revoked() on the buffer if the buffer is already
420  * being journaled: if there is no revoke pending on the buffer, then we
421  * don't do anything here.
422  *
423  * This would break if it were possible for a buffer to be revoked and
424  * discarded, and then reallocated within the same transaction.  In such
425  * a case we would have lost the revoked bit, but when we arrived here
426  * the second time we would still have a pending revoke to cancel.  So,
427  * do not trust the Revoked bit on buffers unless RevokeValid is also
428  * set.
429  */
journal_cancel_revoke(handle_t * handle,struct journal_head * jh)430 int journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
431 {
432 	struct jbd_revoke_record_s *record;
433 	journal_t *journal = handle->h_transaction->t_journal;
434 	int need_cancel;
435 	int did_revoke = 0;	/* akpm: debug */
436 	struct buffer_head *bh = jh2bh(jh);
437 
438 	jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
439 
440 	/* Is the existing Revoke bit valid?  If so, we trust it, and
441 	 * only perform the full cancel if the revoke bit is set.  If
442 	 * not, we can't trust the revoke bit, and we need to do the
443 	 * full search for a revoke record. */
444 	if (test_set_buffer_revokevalid(bh)) {
445 		need_cancel = test_clear_buffer_revoked(bh);
446 	} else {
447 		need_cancel = 1;
448 		clear_buffer_revoked(bh);
449 	}
450 
451 	if (need_cancel) {
452 		record = find_revoke_record(journal, bh->b_blocknr);
453 		if (record) {
454 			jbd_debug(4, "cancelled existing revoke on "
455 				  "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
456 			spin_lock(&journal->j_revoke_lock);
457 			list_del(&record->hash);
458 			spin_unlock(&journal->j_revoke_lock);
459 			kmem_cache_free(revoke_record_cache, record);
460 			did_revoke = 1;
461 		}
462 	}
463 
464 #ifdef JBD_EXPENSIVE_CHECKING
465 	/* There better not be one left behind by now! */
466 	record = find_revoke_record(journal, bh->b_blocknr);
467 	J_ASSERT_JH(jh, record == NULL);
468 #endif
469 
470 	/* Finally, have we just cleared revoke on an unhashed
471 	 * buffer_head?  If so, we'd better make sure we clear the
472 	 * revoked status on any hashed alias too, otherwise the revoke
473 	 * state machine will get very upset later on. */
474 	if (need_cancel) {
475 		struct buffer_head *bh2;
476 		bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
477 		if (bh2) {
478 			if (bh2 != bh)
479 				clear_buffer_revoked(bh2);
480 			__brelse(bh2);
481 		}
482 	}
483 	return did_revoke;
484 }
485 
486 /*
487  * journal_clear_revoked_flags clears revoked flag of buffers in
488  * revoke table to reflect there is no revoked buffer in the next
489  * transaction which is going to be started.
490  */
journal_clear_buffer_revoked_flags(journal_t * journal)491 void journal_clear_buffer_revoked_flags(journal_t *journal)
492 {
493 	struct jbd_revoke_table_s *revoke = journal->j_revoke;
494 	int i = 0;
495 
496 	for (i = 0; i < revoke->hash_size; i++) {
497 		struct list_head *hash_list;
498 		struct list_head *list_entry;
499 		hash_list = &revoke->hash_table[i];
500 
501 		list_for_each(list_entry, hash_list) {
502 			struct jbd_revoke_record_s *record;
503 			struct buffer_head *bh;
504 			record = (struct jbd_revoke_record_s *)list_entry;
505 			bh = __find_get_block(journal->j_fs_dev,
506 					      record->blocknr,
507 					      journal->j_blocksize);
508 			if (bh) {
509 				clear_buffer_revoked(bh);
510 				__brelse(bh);
511 			}
512 		}
513 	}
514 }
515 
516 /* journal_switch_revoke table select j_revoke for next transaction
517  * we do not want to suspend any processing until all revokes are
518  * written -bzzz
519  */
journal_switch_revoke_table(journal_t * journal)520 void journal_switch_revoke_table(journal_t *journal)
521 {
522 	int i;
523 
524 	if (journal->j_revoke == journal->j_revoke_table[0])
525 		journal->j_revoke = journal->j_revoke_table[1];
526 	else
527 		journal->j_revoke = journal->j_revoke_table[0];
528 
529 	for (i = 0; i < journal->j_revoke->hash_size; i++)
530 		INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
531 }
532 
533 /*
534  * Write revoke records to the journal for all entries in the current
535  * revoke hash, deleting the entries as we go.
536  */
journal_write_revoke_records(journal_t * journal,transaction_t * transaction,int write_op)537 void journal_write_revoke_records(journal_t *journal,
538 				  transaction_t *transaction, int write_op)
539 {
540 	struct journal_head *descriptor;
541 	struct jbd_revoke_record_s *record;
542 	struct jbd_revoke_table_s *revoke;
543 	struct list_head *hash_list;
544 	int i, offset, count;
545 
546 	descriptor = NULL;
547 	offset = 0;
548 	count = 0;
549 
550 	/* select revoke table for committing transaction */
551 	revoke = journal->j_revoke == journal->j_revoke_table[0] ?
552 		journal->j_revoke_table[1] : journal->j_revoke_table[0];
553 
554 	for (i = 0; i < revoke->hash_size; i++) {
555 		hash_list = &revoke->hash_table[i];
556 
557 		while (!list_empty(hash_list)) {
558 			record = (struct jbd_revoke_record_s *)
559 				hash_list->next;
560 			write_one_revoke_record(journal, transaction,
561 						&descriptor, &offset,
562 						record, write_op);
563 			count++;
564 			list_del(&record->hash);
565 			kmem_cache_free(revoke_record_cache, record);
566 		}
567 	}
568 	if (descriptor)
569 		flush_descriptor(journal, descriptor, offset, write_op);
570 	jbd_debug(1, "Wrote %d revoke records\n", count);
571 }
572 
573 /*
574  * Write out one revoke record.  We need to create a new descriptor
575  * block if the old one is full or if we have not already created one.
576  */
577 
write_one_revoke_record(journal_t * journal,transaction_t * transaction,struct journal_head ** descriptorp,int * offsetp,struct jbd_revoke_record_s * record,int write_op)578 static void write_one_revoke_record(journal_t *journal,
579 				    transaction_t *transaction,
580 				    struct journal_head **descriptorp,
581 				    int *offsetp,
582 				    struct jbd_revoke_record_s *record,
583 				    int write_op)
584 {
585 	struct journal_head *descriptor;
586 	int offset;
587 	journal_header_t *header;
588 
589 	/* If we are already aborting, this all becomes a noop.  We
590            still need to go round the loop in
591            journal_write_revoke_records in order to free all of the
592            revoke records: only the IO to the journal is omitted. */
593 	if (is_journal_aborted(journal))
594 		return;
595 
596 	descriptor = *descriptorp;
597 	offset = *offsetp;
598 
599 	/* Make sure we have a descriptor with space left for the record */
600 	if (descriptor) {
601 		if (offset == journal->j_blocksize) {
602 			flush_descriptor(journal, descriptor, offset, write_op);
603 			descriptor = NULL;
604 		}
605 	}
606 
607 	if (!descriptor) {
608 		descriptor = journal_get_descriptor_buffer(journal);
609 		if (!descriptor)
610 			return;
611 		header = (journal_header_t *) &jh2bh(descriptor)->b_data[0];
612 		header->h_magic     = cpu_to_be32(JFS_MAGIC_NUMBER);
613 		header->h_blocktype = cpu_to_be32(JFS_REVOKE_BLOCK);
614 		header->h_sequence  = cpu_to_be32(transaction->t_tid);
615 
616 		/* Record it so that we can wait for IO completion later */
617 		JBUFFER_TRACE(descriptor, "file as BJ_LogCtl");
618 		journal_file_buffer(descriptor, transaction, BJ_LogCtl);
619 
620 		offset = sizeof(journal_revoke_header_t);
621 		*descriptorp = descriptor;
622 	}
623 
624 	* ((__be32 *)(&jh2bh(descriptor)->b_data[offset])) =
625 		cpu_to_be32(record->blocknr);
626 	offset += 4;
627 	*offsetp = offset;
628 }
629 
630 /*
631  * Flush a revoke descriptor out to the journal.  If we are aborting,
632  * this is a noop; otherwise we are generating a buffer which needs to
633  * be waited for during commit, so it has to go onto the appropriate
634  * journal buffer list.
635  */
636 
flush_descriptor(journal_t * journal,struct journal_head * descriptor,int offset,int write_op)637 static void flush_descriptor(journal_t *journal,
638 			     struct journal_head *descriptor,
639 			     int offset, int write_op)
640 {
641 	journal_revoke_header_t *header;
642 	struct buffer_head *bh = jh2bh(descriptor);
643 
644 	if (is_journal_aborted(journal)) {
645 		put_bh(bh);
646 		return;
647 	}
648 
649 	header = (journal_revoke_header_t *) jh2bh(descriptor)->b_data;
650 	header->r_count = cpu_to_be32(offset);
651 	set_buffer_jwrite(bh);
652 	BUFFER_TRACE(bh, "write");
653 	set_buffer_dirty(bh);
654 	write_dirty_buffer(bh, write_op);
655 }
656 #endif
657 
658 /*
659  * Revoke support for recovery.
660  *
661  * Recovery needs to be able to:
662  *
663  *  record all revoke records, including the tid of the latest instance
664  *  of each revoke in the journal
665  *
666  *  check whether a given block in a given transaction should be replayed
667  *  (ie. has not been revoked by a revoke record in that or a subsequent
668  *  transaction)
669  *
670  *  empty the revoke table after recovery.
671  */
672 
673 /*
674  * First, setting revoke records.  We create a new revoke record for
675  * every block ever revoked in the log as we scan it for recovery, and
676  * we update the existing records if we find multiple revokes for a
677  * single block.
678  */
679 
journal_set_revoke(journal_t * journal,unsigned int blocknr,tid_t sequence)680 int journal_set_revoke(journal_t *journal,
681 		       unsigned int blocknr,
682 		       tid_t sequence)
683 {
684 	struct jbd_revoke_record_s *record;
685 
686 	record = find_revoke_record(journal, blocknr);
687 	if (record) {
688 		/* If we have multiple occurrences, only record the
689 		 * latest sequence number in the hashed record */
690 		if (tid_gt(sequence, record->sequence))
691 			record->sequence = sequence;
692 		return 0;
693 	}
694 	return insert_revoke_hash(journal, blocknr, sequence);
695 }
696 
697 /*
698  * Test revoke records.  For a given block referenced in the log, has
699  * that block been revoked?  A revoke record with a given transaction
700  * sequence number revokes all blocks in that transaction and earlier
701  * ones, but later transactions still need replayed.
702  */
703 
journal_test_revoke(journal_t * journal,unsigned int blocknr,tid_t sequence)704 int journal_test_revoke(journal_t *journal,
705 			unsigned int blocknr,
706 			tid_t sequence)
707 {
708 	struct jbd_revoke_record_s *record;
709 
710 	record = find_revoke_record(journal, blocknr);
711 	if (!record)
712 		return 0;
713 	if (tid_gt(sequence, record->sequence))
714 		return 0;
715 	return 1;
716 }
717 
718 /*
719  * Finally, once recovery is over, we need to clear the revoke table so
720  * that it can be reused by the running filesystem.
721  */
722 
journal_clear_revoke(journal_t * journal)723 void journal_clear_revoke(journal_t *journal)
724 {
725 	int i;
726 	struct list_head *hash_list;
727 	struct jbd_revoke_record_s *record;
728 	struct jbd_revoke_table_s *revoke;
729 
730 	revoke = journal->j_revoke;
731 
732 	for (i = 0; i < revoke->hash_size; i++) {
733 		hash_list = &revoke->hash_table[i];
734 		while (!list_empty(hash_list)) {
735 			record = (struct jbd_revoke_record_s*) hash_list->next;
736 			list_del(&record->hash);
737 			kmem_cache_free(revoke_record_cache, record);
738 		}
739 	}
740 }
741