1 /*
2  * linux/fs/jbd/revoke.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
5  *
6  * Copyright 2000 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Journal revoke routines for the generic filesystem journaling code;
13  * part of the ext2fs journaling system.
14  *
15  * Revoke is the mechanism used to prevent old log records for deleted
16  * metadata from being replayed on top of newer data using the same
17  * blocks.  The revoke mechanism is used in two separate places:
18  *
19  * + Commit: during commit we write the entire list of the current
20  *   transaction's revoked blocks to the journal
21  *
22  * + Recovery: during recovery we record the transaction ID of all
23  *   revoked blocks.  If there are multiple revoke records in the log
24  *   for a single block, only the last one counts, and if there is a log
25  *   entry for a block beyond the last revoke, then that log entry still
26  *   gets replayed.
27  *
28  * We can get interactions between revokes and new log data within a
29  * single transaction:
30  *
31  * Block is revoked and then journaled:
32  *   The desired end result is the journaling of the new block, so we
33  *   cancel the revoke before the transaction commits.
34  *
35  * Block is journaled and then revoked:
36  *   The revoke must take precedence over the write of the block, so we
37  *   need either to cancel the journal entry or to write the revoke
38  *   later in the log than the log block.  In this case, we choose the
39  *   latter: journaling a block cancels any revoke record for that block
40  *   in the current transaction, so any revoke for that block in the
41  *   transaction must have happened after the block was journaled and so
42  *   the revoke must take precedence.
43  *
44  * Block is revoked and then written as data:
45  *   The data write is allowed to succeed, but the revoke is _not_
46  *   cancelled.  We still need to prevent old log records from
47  *   overwriting the new data.  We don't even need to clear the revoke
48  *   bit here.
49  *
50  * Revoke information on buffers is a tri-state value:
51  *
52  * RevokeValid clear:	no cached revoke status, need to look it up
53  * RevokeValid set, Revoked clear:
54  *			buffer has not been revoked, and cancel_revoke
55  *			need do nothing.
56  * RevokeValid set, Revoked set:
57  *			buffer has been revoked.
58  *
59  * Locking rules:
60  * We keep two hash tables of revoke records. One hashtable belongs to the
61  * running transaction (is pointed to by journal->j_revoke), the other one
62  * belongs to the committing transaction. Accesses to the second hash table
63  * happen only from the kjournald and no other thread touches this table.  Also
64  * journal_switch_revoke_table() which switches which hashtable belongs to the
65  * running and which to the committing transaction is called only from
66  * kjournald. Therefore we need no locks when accessing the hashtable belonging
67  * to the committing transaction.
68  *
69  * All users operating on the hash table belonging to the running transaction
70  * have a handle to the transaction. Therefore they are safe from kjournald
71  * switching hash tables under them. For operations on the lists of entries in
72  * the hash table j_revoke_lock is used.
73  *
74  * Finally, also replay code uses the hash tables but at this moment no one else
75  * can touch them (filesystem isn't mounted yet) and hence no locking is
76  * needed.
77  */
78 
79 #ifndef __KERNEL__
80 #include "jfs_user.h"
81 #else
82 #include <linux/time.h>
83 #include <linux/fs.h>
84 #include <linux/jbd.h>
85 #include <linux/errno.h>
86 #include <linux/slab.h>
87 #include <linux/list.h>
88 #include <linux/init.h>
89 #include <linux/bio.h>
90 #endif
91 #include <linux/log2.h>
92 
93 static struct kmem_cache *revoke_record_cache;
94 static struct kmem_cache *revoke_table_cache;
95 
96 /* Each revoke record represents one single revoked block.  During
97    journal replay, this involves recording the transaction ID of the
98    last transaction to revoke this block. */
99 
100 struct jbd_revoke_record_s
101 {
102 	struct list_head  hash;
103 	tid_t		  sequence;	/* Used for recovery only */
104 	unsigned int	  blocknr;
105 };
106 
107 
108 /* The revoke table is just a simple hash table of revoke records. */
109 struct jbd_revoke_table_s
110 {
111 	/* It is conceivable that we might want a larger hash table
112 	 * for recovery.  Must be a power of two. */
113 	int		  hash_size;
114 	int		  hash_shift;
115 	struct list_head *hash_table;
116 };
117 
118 
119 #ifdef __KERNEL__
120 static void write_one_revoke_record(journal_t *, transaction_t *,
121 				    struct journal_head **, int *,
122 				    struct jbd_revoke_record_s *, int);
123 static void flush_descriptor(journal_t *, struct journal_head *, int, int);
124 #endif
125 
126 /* Utility functions to maintain the revoke table */
127 
128 /* Borrowed from buffer.c: this is a tried and tested block hash function */
hash(journal_t * journal,unsigned int block)129 static inline int hash(journal_t *journal, unsigned int block)
130 {
131 	struct jbd_revoke_table_s *table = journal->j_revoke;
132 	int hash_shift = table->hash_shift;
133 
134 	return ((block << (hash_shift - 6)) ^
135 		(block >> 13) ^
136 		(block << (hash_shift - 12))) & (table->hash_size - 1);
137 }
138 
insert_revoke_hash(journal_t * journal,unsigned int blocknr,tid_t seq)139 static int insert_revoke_hash(journal_t *journal, unsigned int blocknr,
140 			      tid_t seq)
141 {
142 	struct list_head *hash_list;
143 	struct jbd_revoke_record_s *record;
144 
145 repeat:
146 	record = kmem_cache_alloc(revoke_record_cache, GFP_NOFS);
147 	if (!record)
148 		goto oom;
149 
150 	record->sequence = seq;
151 	record->blocknr = blocknr;
152 	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
153 	spin_lock(&journal->j_revoke_lock);
154 	list_add(&record->hash, hash_list);
155 	spin_unlock(&journal->j_revoke_lock);
156 	return 0;
157 
158 oom:
159 	if (!journal_oom_retry)
160 		return -ENOMEM;
161 	jbd_debug(1, "ENOMEM in %s, retrying\n", __func__);
162 	yield();
163 	goto repeat;
164 }
165 
166 /* Find a revoke record in the journal's hash table. */
167 
find_revoke_record(journal_t * journal,unsigned int blocknr)168 static struct jbd_revoke_record_s *find_revoke_record(journal_t *journal,
169 						      unsigned int blocknr)
170 {
171 	struct list_head *hash_list;
172 	struct jbd_revoke_record_s *record;
173 
174 	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
175 
176 	spin_lock(&journal->j_revoke_lock);
177 	record = (struct jbd_revoke_record_s *) hash_list->next;
178 	while (&(record->hash) != hash_list) {
179 		if (record->blocknr == blocknr) {
180 			spin_unlock(&journal->j_revoke_lock);
181 			return record;
182 		}
183 		record = (struct jbd_revoke_record_s *) record->hash.next;
184 	}
185 	spin_unlock(&journal->j_revoke_lock);
186 	return NULL;
187 }
188 
journal_destroy_revoke_caches(void)189 void journal_destroy_revoke_caches(void)
190 {
191 	if (revoke_record_cache) {
192 		kmem_cache_destroy(revoke_record_cache);
193 		revoke_record_cache = NULL;
194 	}
195 	if (revoke_table_cache) {
196 		kmem_cache_destroy(revoke_table_cache);
197 		revoke_table_cache = NULL;
198 	}
199 }
200 
journal_init_revoke_caches(void)201 int __init journal_init_revoke_caches(void)
202 {
203 	J_ASSERT(!revoke_record_cache);
204 	J_ASSERT(!revoke_table_cache);
205 
206 	revoke_record_cache = kmem_cache_create("revoke_record",
207 					   sizeof(struct jbd_revoke_record_s),
208 					   0,
209 					   SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
210 					   NULL);
211 	if (!revoke_record_cache)
212 		goto record_cache_failure;
213 
214 	revoke_table_cache = kmem_cache_create("revoke_table",
215 					   sizeof(struct jbd_revoke_table_s),
216 					   0, SLAB_TEMPORARY, NULL);
217 	if (!revoke_table_cache)
218 		goto table_cache_failure;
219 
220 	return 0;
221 
222 table_cache_failure:
223 	journal_destroy_revoke_caches();
224 record_cache_failure:
225 	return -ENOMEM;
226 }
227 
journal_init_revoke_table(int hash_size)228 static struct jbd_revoke_table_s *journal_init_revoke_table(int hash_size)
229 {
230 	int shift = 0;
231 	int tmp = hash_size;
232 	struct jbd_revoke_table_s *table;
233 
234 	table = kmem_cache_alloc(revoke_table_cache, GFP_KERNEL);
235 	if (!table)
236 		goto out;
237 
238 	while((tmp >>= 1UL) != 0UL)
239 		shift++;
240 
241 	table->hash_size = hash_size;
242 	table->hash_shift = shift;
243 	table->hash_table =
244 		kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
245 	if (!table->hash_table) {
246 		kmem_cache_free(revoke_table_cache, table);
247 		table = NULL;
248 		goto out;
249 	}
250 
251 	for (tmp = 0; tmp < hash_size; tmp++)
252 		INIT_LIST_HEAD(&table->hash_table[tmp]);
253 
254 out:
255 	return table;
256 }
257 
journal_destroy_revoke_table(struct jbd_revoke_table_s * table)258 static void journal_destroy_revoke_table(struct jbd_revoke_table_s *table)
259 {
260 	int i;
261 	struct list_head *hash_list;
262 
263 	for (i = 0; i < table->hash_size; i++) {
264 		hash_list = &table->hash_table[i];
265 		J_ASSERT(list_empty(hash_list));
266 	}
267 
268 	kfree(table->hash_table);
269 	kmem_cache_free(revoke_table_cache, table);
270 }
271 
272 /* Initialise the revoke table for a given journal to a given size. */
journal_init_revoke(journal_t * journal,int hash_size)273 int journal_init_revoke(journal_t *journal, int hash_size)
274 {
275 	J_ASSERT(journal->j_revoke_table[0] == NULL);
276 	J_ASSERT(is_power_of_2(hash_size));
277 
278 	journal->j_revoke_table[0] = journal_init_revoke_table(hash_size);
279 	if (!journal->j_revoke_table[0])
280 		goto fail0;
281 
282 	journal->j_revoke_table[1] = journal_init_revoke_table(hash_size);
283 	if (!journal->j_revoke_table[1])
284 		goto fail1;
285 
286 	journal->j_revoke = journal->j_revoke_table[1];
287 
288 	spin_lock_init(&journal->j_revoke_lock);
289 
290 	return 0;
291 
292 fail1:
293 	journal_destroy_revoke_table(journal->j_revoke_table[0]);
294 fail0:
295 	return -ENOMEM;
296 }
297 
298 /* Destroy a journal's revoke table.  The table must already be empty! */
journal_destroy_revoke(journal_t * journal)299 void journal_destroy_revoke(journal_t *journal)
300 {
301 	journal->j_revoke = NULL;
302 	if (journal->j_revoke_table[0])
303 		journal_destroy_revoke_table(journal->j_revoke_table[0]);
304 	if (journal->j_revoke_table[1])
305 		journal_destroy_revoke_table(journal->j_revoke_table[1]);
306 }
307 
308 
309 #ifdef __KERNEL__
310 
311 /*
312  * journal_revoke: revoke a given buffer_head from the journal.  This
313  * prevents the block from being replayed during recovery if we take a
314  * crash after this current transaction commits.  Any subsequent
315  * metadata writes of the buffer in this transaction cancel the
316  * revoke.
317  *
318  * Note that this call may block --- it is up to the caller to make
319  * sure that there are no further calls to journal_write_metadata
320  * before the revoke is complete.  In ext3, this implies calling the
321  * revoke before clearing the block bitmap when we are deleting
322  * metadata.
323  *
324  * Revoke performs a journal_forget on any buffer_head passed in as a
325  * parameter, but does _not_ forget the buffer_head if the bh was only
326  * found implicitly.
327  *
328  * bh_in may not be a journalled buffer - it may have come off
329  * the hash tables without an attached journal_head.
330  *
331  * If bh_in is non-zero, journal_revoke() will decrement its b_count
332  * by one.
333  */
334 
journal_revoke(handle_t * handle,unsigned int blocknr,struct buffer_head * bh_in)335 int journal_revoke(handle_t *handle, unsigned int blocknr,
336 		   struct buffer_head *bh_in)
337 {
338 	struct buffer_head *bh = NULL;
339 	journal_t *journal;
340 	struct block_device *bdev;
341 	int err;
342 
343 	might_sleep();
344 	if (bh_in)
345 		BUFFER_TRACE(bh_in, "enter");
346 
347 	journal = handle->h_transaction->t_journal;
348 	if (!journal_set_features(journal, 0, 0, JFS_FEATURE_INCOMPAT_REVOKE)){
349 		J_ASSERT (!"Cannot set revoke feature!");
350 		return -EINVAL;
351 	}
352 
353 	bdev = journal->j_fs_dev;
354 	bh = bh_in;
355 
356 	if (!bh) {
357 		bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
358 		if (bh)
359 			BUFFER_TRACE(bh, "found on hash");
360 	}
361 #ifdef JBD_EXPENSIVE_CHECKING
362 	else {
363 		struct buffer_head *bh2;
364 
365 		/* If there is a different buffer_head lying around in
366 		 * memory anywhere... */
367 		bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
368 		if (bh2) {
369 			/* ... and it has RevokeValid status... */
370 			if (bh2 != bh && buffer_revokevalid(bh2))
371 				/* ...then it better be revoked too,
372 				 * since it's illegal to create a revoke
373 				 * record against a buffer_head which is
374 				 * not marked revoked --- that would
375 				 * risk missing a subsequent revoke
376 				 * cancel. */
377 				J_ASSERT_BH(bh2, buffer_revoked(bh2));
378 			put_bh(bh2);
379 		}
380 	}
381 #endif
382 
383 	/* We really ought not ever to revoke twice in a row without
384            first having the revoke cancelled: it's illegal to free a
385            block twice without allocating it in between! */
386 	if (bh) {
387 		if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
388 				 "inconsistent data on disk")) {
389 			if (!bh_in)
390 				brelse(bh);
391 			return -EIO;
392 		}
393 		set_buffer_revoked(bh);
394 		set_buffer_revokevalid(bh);
395 		if (bh_in) {
396 			BUFFER_TRACE(bh_in, "call journal_forget");
397 			journal_forget(handle, bh_in);
398 		} else {
399 			BUFFER_TRACE(bh, "call brelse");
400 			__brelse(bh);
401 		}
402 	}
403 
404 	jbd_debug(2, "insert revoke for block %u, bh_in=%p\n", blocknr, bh_in);
405 	err = insert_revoke_hash(journal, blocknr,
406 				handle->h_transaction->t_tid);
407 	BUFFER_TRACE(bh_in, "exit");
408 	return err;
409 }
410 
411 /*
412  * Cancel an outstanding revoke.  For use only internally by the
413  * journaling code (called from journal_get_write_access).
414  *
415  * We trust buffer_revoked() on the buffer if the buffer is already
416  * being journaled: if there is no revoke pending on the buffer, then we
417  * don't do anything here.
418  *
419  * This would break if it were possible for a buffer to be revoked and
420  * discarded, and then reallocated within the same transaction.  In such
421  * a case we would have lost the revoked bit, but when we arrived here
422  * the second time we would still have a pending revoke to cancel.  So,
423  * do not trust the Revoked bit on buffers unless RevokeValid is also
424  * set.
425  */
journal_cancel_revoke(handle_t * handle,struct journal_head * jh)426 int journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
427 {
428 	struct jbd_revoke_record_s *record;
429 	journal_t *journal = handle->h_transaction->t_journal;
430 	int need_cancel;
431 	int did_revoke = 0;	/* akpm: debug */
432 	struct buffer_head *bh = jh2bh(jh);
433 
434 	jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
435 
436 	/* Is the existing Revoke bit valid?  If so, we trust it, and
437 	 * only perform the full cancel if the revoke bit is set.  If
438 	 * not, we can't trust the revoke bit, and we need to do the
439 	 * full search for a revoke record. */
440 	if (test_set_buffer_revokevalid(bh)) {
441 		need_cancel = test_clear_buffer_revoked(bh);
442 	} else {
443 		need_cancel = 1;
444 		clear_buffer_revoked(bh);
445 	}
446 
447 	if (need_cancel) {
448 		record = find_revoke_record(journal, bh->b_blocknr);
449 		if (record) {
450 			jbd_debug(4, "cancelled existing revoke on "
451 				  "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
452 			spin_lock(&journal->j_revoke_lock);
453 			list_del(&record->hash);
454 			spin_unlock(&journal->j_revoke_lock);
455 			kmem_cache_free(revoke_record_cache, record);
456 			did_revoke = 1;
457 		}
458 	}
459 
460 #ifdef JBD_EXPENSIVE_CHECKING
461 	/* There better not be one left behind by now! */
462 	record = find_revoke_record(journal, bh->b_blocknr);
463 	J_ASSERT_JH(jh, record == NULL);
464 #endif
465 
466 	/* Finally, have we just cleared revoke on an unhashed
467 	 * buffer_head?  If so, we'd better make sure we clear the
468 	 * revoked status on any hashed alias too, otherwise the revoke
469 	 * state machine will get very upset later on. */
470 	if (need_cancel) {
471 		struct buffer_head *bh2;
472 		bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
473 		if (bh2) {
474 			if (bh2 != bh)
475 				clear_buffer_revoked(bh2);
476 			__brelse(bh2);
477 		}
478 	}
479 	return did_revoke;
480 }
481 
482 /* journal_switch_revoke table select j_revoke for next transaction
483  * we do not want to suspend any processing until all revokes are
484  * written -bzzz
485  */
journal_switch_revoke_table(journal_t * journal)486 void journal_switch_revoke_table(journal_t *journal)
487 {
488 	int i;
489 
490 	if (journal->j_revoke == journal->j_revoke_table[0])
491 		journal->j_revoke = journal->j_revoke_table[1];
492 	else
493 		journal->j_revoke = journal->j_revoke_table[0];
494 
495 	for (i = 0; i < journal->j_revoke->hash_size; i++)
496 		INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
497 }
498 
499 /*
500  * Write revoke records to the journal for all entries in the current
501  * revoke hash, deleting the entries as we go.
502  */
journal_write_revoke_records(journal_t * journal,transaction_t * transaction,int write_op)503 void journal_write_revoke_records(journal_t *journal,
504 				  transaction_t *transaction, int write_op)
505 {
506 	struct journal_head *descriptor;
507 	struct jbd_revoke_record_s *record;
508 	struct jbd_revoke_table_s *revoke;
509 	struct list_head *hash_list;
510 	int i, offset, count;
511 
512 	descriptor = NULL;
513 	offset = 0;
514 	count = 0;
515 
516 	/* select revoke table for committing transaction */
517 	revoke = journal->j_revoke == journal->j_revoke_table[0] ?
518 		journal->j_revoke_table[1] : journal->j_revoke_table[0];
519 
520 	for (i = 0; i < revoke->hash_size; i++) {
521 		hash_list = &revoke->hash_table[i];
522 
523 		while (!list_empty(hash_list)) {
524 			record = (struct jbd_revoke_record_s *)
525 				hash_list->next;
526 			write_one_revoke_record(journal, transaction,
527 						&descriptor, &offset,
528 						record, write_op);
529 			count++;
530 			list_del(&record->hash);
531 			kmem_cache_free(revoke_record_cache, record);
532 		}
533 	}
534 	if (descriptor)
535 		flush_descriptor(journal, descriptor, offset, write_op);
536 	jbd_debug(1, "Wrote %d revoke records\n", count);
537 }
538 
539 /*
540  * Write out one revoke record.  We need to create a new descriptor
541  * block if the old one is full or if we have not already created one.
542  */
543 
write_one_revoke_record(journal_t * journal,transaction_t * transaction,struct journal_head ** descriptorp,int * offsetp,struct jbd_revoke_record_s * record,int write_op)544 static void write_one_revoke_record(journal_t *journal,
545 				    transaction_t *transaction,
546 				    struct journal_head **descriptorp,
547 				    int *offsetp,
548 				    struct jbd_revoke_record_s *record,
549 				    int write_op)
550 {
551 	struct journal_head *descriptor;
552 	int offset;
553 	journal_header_t *header;
554 
555 	/* If we are already aborting, this all becomes a noop.  We
556            still need to go round the loop in
557            journal_write_revoke_records in order to free all of the
558            revoke records: only the IO to the journal is omitted. */
559 	if (is_journal_aborted(journal))
560 		return;
561 
562 	descriptor = *descriptorp;
563 	offset = *offsetp;
564 
565 	/* Make sure we have a descriptor with space left for the record */
566 	if (descriptor) {
567 		if (offset == journal->j_blocksize) {
568 			flush_descriptor(journal, descriptor, offset, write_op);
569 			descriptor = NULL;
570 		}
571 	}
572 
573 	if (!descriptor) {
574 		descriptor = journal_get_descriptor_buffer(journal);
575 		if (!descriptor)
576 			return;
577 		header = (journal_header_t *) &jh2bh(descriptor)->b_data[0];
578 		header->h_magic     = cpu_to_be32(JFS_MAGIC_NUMBER);
579 		header->h_blocktype = cpu_to_be32(JFS_REVOKE_BLOCK);
580 		header->h_sequence  = cpu_to_be32(transaction->t_tid);
581 
582 		/* Record it so that we can wait for IO completion later */
583 		JBUFFER_TRACE(descriptor, "file as BJ_LogCtl");
584 		journal_file_buffer(descriptor, transaction, BJ_LogCtl);
585 
586 		offset = sizeof(journal_revoke_header_t);
587 		*descriptorp = descriptor;
588 	}
589 
590 	* ((__be32 *)(&jh2bh(descriptor)->b_data[offset])) =
591 		cpu_to_be32(record->blocknr);
592 	offset += 4;
593 	*offsetp = offset;
594 }
595 
596 /*
597  * Flush a revoke descriptor out to the journal.  If we are aborting,
598  * this is a noop; otherwise we are generating a buffer which needs to
599  * be waited for during commit, so it has to go onto the appropriate
600  * journal buffer list.
601  */
602 
flush_descriptor(journal_t * journal,struct journal_head * descriptor,int offset,int write_op)603 static void flush_descriptor(journal_t *journal,
604 			     struct journal_head *descriptor,
605 			     int offset, int write_op)
606 {
607 	journal_revoke_header_t *header;
608 	struct buffer_head *bh = jh2bh(descriptor);
609 
610 	if (is_journal_aborted(journal)) {
611 		put_bh(bh);
612 		return;
613 	}
614 
615 	header = (journal_revoke_header_t *) jh2bh(descriptor)->b_data;
616 	header->r_count = cpu_to_be32(offset);
617 	set_buffer_jwrite(bh);
618 	BUFFER_TRACE(bh, "write");
619 	set_buffer_dirty(bh);
620 	write_dirty_buffer(bh, write_op);
621 }
622 #endif
623 
624 /*
625  * Revoke support for recovery.
626  *
627  * Recovery needs to be able to:
628  *
629  *  record all revoke records, including the tid of the latest instance
630  *  of each revoke in the journal
631  *
632  *  check whether a given block in a given transaction should be replayed
633  *  (ie. has not been revoked by a revoke record in that or a subsequent
634  *  transaction)
635  *
636  *  empty the revoke table after recovery.
637  */
638 
639 /*
640  * First, setting revoke records.  We create a new revoke record for
641  * every block ever revoked in the log as we scan it for recovery, and
642  * we update the existing records if we find multiple revokes for a
643  * single block.
644  */
645 
journal_set_revoke(journal_t * journal,unsigned int blocknr,tid_t sequence)646 int journal_set_revoke(journal_t *journal,
647 		       unsigned int blocknr,
648 		       tid_t sequence)
649 {
650 	struct jbd_revoke_record_s *record;
651 
652 	record = find_revoke_record(journal, blocknr);
653 	if (record) {
654 		/* If we have multiple occurrences, only record the
655 		 * latest sequence number in the hashed record */
656 		if (tid_gt(sequence, record->sequence))
657 			record->sequence = sequence;
658 		return 0;
659 	}
660 	return insert_revoke_hash(journal, blocknr, sequence);
661 }
662 
663 /*
664  * Test revoke records.  For a given block referenced in the log, has
665  * that block been revoked?  A revoke record with a given transaction
666  * sequence number revokes all blocks in that transaction and earlier
667  * ones, but later transactions still need replayed.
668  */
669 
journal_test_revoke(journal_t * journal,unsigned int blocknr,tid_t sequence)670 int journal_test_revoke(journal_t *journal,
671 			unsigned int blocknr,
672 			tid_t sequence)
673 {
674 	struct jbd_revoke_record_s *record;
675 
676 	record = find_revoke_record(journal, blocknr);
677 	if (!record)
678 		return 0;
679 	if (tid_gt(sequence, record->sequence))
680 		return 0;
681 	return 1;
682 }
683 
684 /*
685  * Finally, once recovery is over, we need to clear the revoke table so
686  * that it can be reused by the running filesystem.
687  */
688 
journal_clear_revoke(journal_t * journal)689 void journal_clear_revoke(journal_t *journal)
690 {
691 	int i;
692 	struct list_head *hash_list;
693 	struct jbd_revoke_record_s *record;
694 	struct jbd_revoke_table_s *revoke;
695 
696 	revoke = journal->j_revoke;
697 
698 	for (i = 0; i < revoke->hash_size; i++) {
699 		hash_list = &revoke->hash_table[i];
700 		while (!list_empty(hash_list)) {
701 			record = (struct jbd_revoke_record_s*) hash_list->next;
702 			list_del(&record->hash);
703 			kmem_cache_free(revoke_record_cache, record);
704 		}
705 	}
706 }
707