1 /*
2  * linux/fs/jbd/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19 
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 
31 static void __journal_temp_unlink_buffer(struct journal_head *jh);
32 
33 /*
34  * get_transaction: obtain a new transaction_t object.
35  *
36  * Simply allocate and initialise a new transaction.  Create it in
37  * RUNNING state and add it to the current journal (which should not
38  * have an existing running transaction: we only make a new transaction
39  * once we have started to commit the old one).
40  *
41  * Preconditions:
42  *	The journal MUST be locked.  We don't perform atomic mallocs on the
43  *	new transaction	and we can't block without protecting against other
44  *	processes trying to touch the journal while it is in transition.
45  *
46  * Called under j_state_lock
47  */
48 
49 static transaction_t *
get_transaction(journal_t * journal,transaction_t * transaction)50 get_transaction(journal_t *journal, transaction_t *transaction)
51 {
52 	transaction->t_journal = journal;
53 	transaction->t_state = T_RUNNING;
54 	transaction->t_start_time = ktime_get();
55 	transaction->t_tid = journal->j_transaction_sequence++;
56 	transaction->t_expires = jiffies + journal->j_commit_interval;
57 	spin_lock_init(&transaction->t_handle_lock);
58 
59 	/* Set up the commit timer for the new transaction. */
60 	journal->j_commit_timer.expires =
61 				round_jiffies_up(transaction->t_expires);
62 	add_timer(&journal->j_commit_timer);
63 
64 	J_ASSERT(journal->j_running_transaction == NULL);
65 	journal->j_running_transaction = transaction;
66 
67 	return transaction;
68 }
69 
70 /*
71  * Handle management.
72  *
73  * A handle_t is an object which represents a single atomic update to a
74  * filesystem, and which tracks all of the modifications which form part
75  * of that one update.
76  */
77 
78 /*
79  * start_this_handle: Given a handle, deal with any locking or stalling
80  * needed to make sure that there is enough journal space for the handle
81  * to begin.  Attach the handle to a transaction and set up the
82  * transaction's buffer credits.
83  */
84 
start_this_handle(journal_t * journal,handle_t * handle)85 static int start_this_handle(journal_t *journal, handle_t *handle)
86 {
87 	transaction_t *transaction;
88 	int needed;
89 	int nblocks = handle->h_buffer_credits;
90 	transaction_t *new_transaction = NULL;
91 	int ret = 0;
92 
93 	if (nblocks > journal->j_max_transaction_buffers) {
94 		printk(KERN_ERR "JBD: %s wants too many credits (%d > %d)\n",
95 		       current->comm, nblocks,
96 		       journal->j_max_transaction_buffers);
97 		ret = -ENOSPC;
98 		goto out;
99 	}
100 
101 alloc_transaction:
102 	if (!journal->j_running_transaction) {
103 		new_transaction = kzalloc(sizeof(*new_transaction), GFP_NOFS);
104 		if (!new_transaction) {
105 			congestion_wait(BLK_RW_ASYNC, HZ/50);
106 			goto alloc_transaction;
107 		}
108 	}
109 
110 	jbd_debug(3, "New handle %p going live.\n", handle);
111 
112 repeat:
113 
114 	/*
115 	 * We need to hold j_state_lock until t_updates has been incremented,
116 	 * for proper journal barrier handling
117 	 */
118 	spin_lock(&journal->j_state_lock);
119 repeat_locked:
120 	if (is_journal_aborted(journal) ||
121 	    (journal->j_errno != 0 && !(journal->j_flags & JFS_ACK_ERR))) {
122 		spin_unlock(&journal->j_state_lock);
123 		ret = -EROFS;
124 		goto out;
125 	}
126 
127 	/* Wait on the journal's transaction barrier if necessary */
128 	if (journal->j_barrier_count) {
129 		spin_unlock(&journal->j_state_lock);
130 		wait_event(journal->j_wait_transaction_locked,
131 				journal->j_barrier_count == 0);
132 		goto repeat;
133 	}
134 
135 	if (!journal->j_running_transaction) {
136 		if (!new_transaction) {
137 			spin_unlock(&journal->j_state_lock);
138 			goto alloc_transaction;
139 		}
140 		get_transaction(journal, new_transaction);
141 		new_transaction = NULL;
142 	}
143 
144 	transaction = journal->j_running_transaction;
145 
146 	/*
147 	 * If the current transaction is locked down for commit, wait for the
148 	 * lock to be released.
149 	 */
150 	if (transaction->t_state == T_LOCKED) {
151 		DEFINE_WAIT(wait);
152 
153 		prepare_to_wait(&journal->j_wait_transaction_locked,
154 					&wait, TASK_UNINTERRUPTIBLE);
155 		spin_unlock(&journal->j_state_lock);
156 		schedule();
157 		finish_wait(&journal->j_wait_transaction_locked, &wait);
158 		goto repeat;
159 	}
160 
161 	/*
162 	 * If there is not enough space left in the log to write all potential
163 	 * buffers requested by this operation, we need to stall pending a log
164 	 * checkpoint to free some more log space.
165 	 */
166 	spin_lock(&transaction->t_handle_lock);
167 	needed = transaction->t_outstanding_credits + nblocks;
168 
169 	if (needed > journal->j_max_transaction_buffers) {
170 		/*
171 		 * If the current transaction is already too large, then start
172 		 * to commit it: we can then go back and attach this handle to
173 		 * a new transaction.
174 		 */
175 		DEFINE_WAIT(wait);
176 
177 		jbd_debug(2, "Handle %p starting new commit...\n", handle);
178 		spin_unlock(&transaction->t_handle_lock);
179 		prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
180 				TASK_UNINTERRUPTIBLE);
181 		__log_start_commit(journal, transaction->t_tid);
182 		spin_unlock(&journal->j_state_lock);
183 		schedule();
184 		finish_wait(&journal->j_wait_transaction_locked, &wait);
185 		goto repeat;
186 	}
187 
188 	/*
189 	 * The commit code assumes that it can get enough log space
190 	 * without forcing a checkpoint.  This is *critical* for
191 	 * correctness: a checkpoint of a buffer which is also
192 	 * associated with a committing transaction creates a deadlock,
193 	 * so commit simply cannot force through checkpoints.
194 	 *
195 	 * We must therefore ensure the necessary space in the journal
196 	 * *before* starting to dirty potentially checkpointed buffers
197 	 * in the new transaction.
198 	 *
199 	 * The worst part is, any transaction currently committing can
200 	 * reduce the free space arbitrarily.  Be careful to account for
201 	 * those buffers when checkpointing.
202 	 */
203 
204 	/*
205 	 * @@@ AKPM: This seems rather over-defensive.  We're giving commit
206 	 * a _lot_ of headroom: 1/4 of the journal plus the size of
207 	 * the committing transaction.  Really, we only need to give it
208 	 * committing_transaction->t_outstanding_credits plus "enough" for
209 	 * the log control blocks.
210 	 * Also, this test is inconsistent with the matching one in
211 	 * journal_extend().
212 	 */
213 	if (__log_space_left(journal) < jbd_space_needed(journal)) {
214 		jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
215 		spin_unlock(&transaction->t_handle_lock);
216 		__log_wait_for_space(journal);
217 		goto repeat_locked;
218 	}
219 
220 	/* OK, account for the buffers that this operation expects to
221 	 * use and add the handle to the running transaction. */
222 
223 	handle->h_transaction = transaction;
224 	transaction->t_outstanding_credits += nblocks;
225 	transaction->t_updates++;
226 	transaction->t_handle_count++;
227 	jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
228 		  handle, nblocks, transaction->t_outstanding_credits,
229 		  __log_space_left(journal));
230 	spin_unlock(&transaction->t_handle_lock);
231 	spin_unlock(&journal->j_state_lock);
232 
233 	lock_map_acquire(&handle->h_lockdep_map);
234 out:
235 	if (unlikely(new_transaction))		/* It's usually NULL */
236 		kfree(new_transaction);
237 	return ret;
238 }
239 
240 static struct lock_class_key jbd_handle_key;
241 
242 /* Allocate a new handle.  This should probably be in a slab... */
new_handle(int nblocks)243 static handle_t *new_handle(int nblocks)
244 {
245 	handle_t *handle = jbd_alloc_handle(GFP_NOFS);
246 	if (!handle)
247 		return NULL;
248 	memset(handle, 0, sizeof(*handle));
249 	handle->h_buffer_credits = nblocks;
250 	handle->h_ref = 1;
251 
252 	lockdep_init_map(&handle->h_lockdep_map, "jbd_handle", &jbd_handle_key, 0);
253 
254 	return handle;
255 }
256 
257 /**
258  * handle_t *journal_start() - Obtain a new handle.
259  * @journal: Journal to start transaction on.
260  * @nblocks: number of block buffer we might modify
261  *
262  * We make sure that the transaction can guarantee at least nblocks of
263  * modified buffers in the log.  We block until the log can guarantee
264  * that much space.
265  *
266  * This function is visible to journal users (like ext3fs), so is not
267  * called with the journal already locked.
268  *
269  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
270  * on failure.
271  */
journal_start(journal_t * journal,int nblocks)272 handle_t *journal_start(journal_t *journal, int nblocks)
273 {
274 	handle_t *handle = journal_current_handle();
275 	int err;
276 
277 	if (!journal)
278 		return ERR_PTR(-EROFS);
279 
280 	if (handle) {
281 		J_ASSERT(handle->h_transaction->t_journal == journal);
282 		handle->h_ref++;
283 		return handle;
284 	}
285 
286 	handle = new_handle(nblocks);
287 	if (!handle)
288 		return ERR_PTR(-ENOMEM);
289 
290 	current->journal_info = handle;
291 
292 	err = start_this_handle(journal, handle);
293 	if (err < 0) {
294 		jbd_free_handle(handle);
295 		current->journal_info = NULL;
296 		handle = ERR_PTR(err);
297 	}
298 	return handle;
299 }
300 
301 /**
302  * int journal_extend() - extend buffer credits.
303  * @handle:  handle to 'extend'
304  * @nblocks: nr blocks to try to extend by.
305  *
306  * Some transactions, such as large extends and truncates, can be done
307  * atomically all at once or in several stages.  The operation requests
308  * a credit for a number of buffer modications in advance, but can
309  * extend its credit if it needs more.
310  *
311  * journal_extend tries to give the running handle more buffer credits.
312  * It does not guarantee that allocation - this is a best-effort only.
313  * The calling process MUST be able to deal cleanly with a failure to
314  * extend here.
315  *
316  * Return 0 on success, non-zero on failure.
317  *
318  * return code < 0 implies an error
319  * return code > 0 implies normal transaction-full status.
320  */
journal_extend(handle_t * handle,int nblocks)321 int journal_extend(handle_t *handle, int nblocks)
322 {
323 	transaction_t *transaction = handle->h_transaction;
324 	journal_t *journal = transaction->t_journal;
325 	int result;
326 	int wanted;
327 
328 	result = -EIO;
329 	if (is_handle_aborted(handle))
330 		goto out;
331 
332 	result = 1;
333 
334 	spin_lock(&journal->j_state_lock);
335 
336 	/* Don't extend a locked-down transaction! */
337 	if (handle->h_transaction->t_state != T_RUNNING) {
338 		jbd_debug(3, "denied handle %p %d blocks: "
339 			  "transaction not running\n", handle, nblocks);
340 		goto error_out;
341 	}
342 
343 	spin_lock(&transaction->t_handle_lock);
344 	wanted = transaction->t_outstanding_credits + nblocks;
345 
346 	if (wanted > journal->j_max_transaction_buffers) {
347 		jbd_debug(3, "denied handle %p %d blocks: "
348 			  "transaction too large\n", handle, nblocks);
349 		goto unlock;
350 	}
351 
352 	if (wanted > __log_space_left(journal)) {
353 		jbd_debug(3, "denied handle %p %d blocks: "
354 			  "insufficient log space\n", handle, nblocks);
355 		goto unlock;
356 	}
357 
358 	handle->h_buffer_credits += nblocks;
359 	transaction->t_outstanding_credits += nblocks;
360 	result = 0;
361 
362 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
363 unlock:
364 	spin_unlock(&transaction->t_handle_lock);
365 error_out:
366 	spin_unlock(&journal->j_state_lock);
367 out:
368 	return result;
369 }
370 
371 
372 /**
373  * int journal_restart() - restart a handle.
374  * @handle:  handle to restart
375  * @nblocks: nr credits requested
376  *
377  * Restart a handle for a multi-transaction filesystem
378  * operation.
379  *
380  * If the journal_extend() call above fails to grant new buffer credits
381  * to a running handle, a call to journal_restart will commit the
382  * handle's transaction so far and reattach the handle to a new
383  * transaction capabable of guaranteeing the requested number of
384  * credits.
385  */
386 
journal_restart(handle_t * handle,int nblocks)387 int journal_restart(handle_t *handle, int nblocks)
388 {
389 	transaction_t *transaction = handle->h_transaction;
390 	journal_t *journal = transaction->t_journal;
391 	int ret;
392 
393 	/* If we've had an abort of any type, don't even think about
394 	 * actually doing the restart! */
395 	if (is_handle_aborted(handle))
396 		return 0;
397 
398 	/*
399 	 * First unlink the handle from its current transaction, and start the
400 	 * commit on that.
401 	 */
402 	J_ASSERT(transaction->t_updates > 0);
403 	J_ASSERT(journal_current_handle() == handle);
404 
405 	spin_lock(&journal->j_state_lock);
406 	spin_lock(&transaction->t_handle_lock);
407 	transaction->t_outstanding_credits -= handle->h_buffer_credits;
408 	transaction->t_updates--;
409 
410 	if (!transaction->t_updates)
411 		wake_up(&journal->j_wait_updates);
412 	spin_unlock(&transaction->t_handle_lock);
413 
414 	jbd_debug(2, "restarting handle %p\n", handle);
415 	__log_start_commit(journal, transaction->t_tid);
416 	spin_unlock(&journal->j_state_lock);
417 
418 	lock_map_release(&handle->h_lockdep_map);
419 	handle->h_buffer_credits = nblocks;
420 	ret = start_this_handle(journal, handle);
421 	return ret;
422 }
423 
424 
425 /**
426  * void journal_lock_updates () - establish a transaction barrier.
427  * @journal:  Journal to establish a barrier on.
428  *
429  * This locks out any further updates from being started, and blocks until all
430  * existing updates have completed, returning only once the journal is in a
431  * quiescent state with no updates running.
432  *
433  * We do not use simple mutex for synchronization as there are syscalls which
434  * want to return with filesystem locked and that trips up lockdep. Also
435  * hibernate needs to lock filesystem but locked mutex then blocks hibernation.
436  * Since locking filesystem is rare operation, we use simple counter and
437  * waitqueue for locking.
438  */
journal_lock_updates(journal_t * journal)439 void journal_lock_updates(journal_t *journal)
440 {
441 	DEFINE_WAIT(wait);
442 
443 wait:
444 	/* Wait for previous locked operation to finish */
445 	wait_event(journal->j_wait_transaction_locked,
446 		   journal->j_barrier_count == 0);
447 
448 	spin_lock(&journal->j_state_lock);
449 	/*
450 	 * Check reliably under the lock whether we are the ones winning the race
451 	 * and locking the journal
452 	 */
453 	if (journal->j_barrier_count > 0) {
454 		spin_unlock(&journal->j_state_lock);
455 		goto wait;
456 	}
457 	++journal->j_barrier_count;
458 
459 	/* Wait until there are no running updates */
460 	while (1) {
461 		transaction_t *transaction = journal->j_running_transaction;
462 
463 		if (!transaction)
464 			break;
465 
466 		spin_lock(&transaction->t_handle_lock);
467 		if (!transaction->t_updates) {
468 			spin_unlock(&transaction->t_handle_lock);
469 			break;
470 		}
471 		prepare_to_wait(&journal->j_wait_updates, &wait,
472 				TASK_UNINTERRUPTIBLE);
473 		spin_unlock(&transaction->t_handle_lock);
474 		spin_unlock(&journal->j_state_lock);
475 		schedule();
476 		finish_wait(&journal->j_wait_updates, &wait);
477 		spin_lock(&journal->j_state_lock);
478 	}
479 	spin_unlock(&journal->j_state_lock);
480 }
481 
482 /**
483  * void journal_unlock_updates (journal_t* journal) - release barrier
484  * @journal:  Journal to release the barrier on.
485  *
486  * Release a transaction barrier obtained with journal_lock_updates().
487  */
journal_unlock_updates(journal_t * journal)488 void journal_unlock_updates (journal_t *journal)
489 {
490 	J_ASSERT(journal->j_barrier_count != 0);
491 
492 	spin_lock(&journal->j_state_lock);
493 	--journal->j_barrier_count;
494 	spin_unlock(&journal->j_state_lock);
495 	wake_up(&journal->j_wait_transaction_locked);
496 }
497 
warn_dirty_buffer(struct buffer_head * bh)498 static void warn_dirty_buffer(struct buffer_head *bh)
499 {
500 	char b[BDEVNAME_SIZE];
501 
502 	printk(KERN_WARNING
503 	       "JBD: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
504 	       "There's a risk of filesystem corruption in case of system "
505 	       "crash.\n",
506 	       bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
507 }
508 
509 /*
510  * If the buffer is already part of the current transaction, then there
511  * is nothing we need to do.  If it is already part of a prior
512  * transaction which we are still committing to disk, then we need to
513  * make sure that we do not overwrite the old copy: we do copy-out to
514  * preserve the copy going to disk.  We also account the buffer against
515  * the handle's metadata buffer credits (unless the buffer is already
516  * part of the transaction, that is).
517  *
518  */
519 static int
do_get_write_access(handle_t * handle,struct journal_head * jh,int force_copy)520 do_get_write_access(handle_t *handle, struct journal_head *jh,
521 			int force_copy)
522 {
523 	struct buffer_head *bh;
524 	transaction_t *transaction;
525 	journal_t *journal;
526 	int error;
527 	char *frozen_buffer = NULL;
528 	int need_copy = 0;
529 
530 	if (is_handle_aborted(handle))
531 		return -EROFS;
532 
533 	transaction = handle->h_transaction;
534 	journal = transaction->t_journal;
535 
536 	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
537 
538 	JBUFFER_TRACE(jh, "entry");
539 repeat:
540 	bh = jh2bh(jh);
541 
542 	/* @@@ Need to check for errors here at some point. */
543 
544 	lock_buffer(bh);
545 	jbd_lock_bh_state(bh);
546 
547 	/* We now hold the buffer lock so it is safe to query the buffer
548 	 * state.  Is the buffer dirty?
549 	 *
550 	 * If so, there are two possibilities.  The buffer may be
551 	 * non-journaled, and undergoing a quite legitimate writeback.
552 	 * Otherwise, it is journaled, and we don't expect dirty buffers
553 	 * in that state (the buffers should be marked JBD_Dirty
554 	 * instead.)  So either the IO is being done under our own
555 	 * control and this is a bug, or it's a third party IO such as
556 	 * dump(8) (which may leave the buffer scheduled for read ---
557 	 * ie. locked but not dirty) or tune2fs (which may actually have
558 	 * the buffer dirtied, ugh.)  */
559 
560 	if (buffer_dirty(bh)) {
561 		/*
562 		 * First question: is this buffer already part of the current
563 		 * transaction or the existing committing transaction?
564 		 */
565 		if (jh->b_transaction) {
566 			J_ASSERT_JH(jh,
567 				jh->b_transaction == transaction ||
568 				jh->b_transaction ==
569 					journal->j_committing_transaction);
570 			if (jh->b_next_transaction)
571 				J_ASSERT_JH(jh, jh->b_next_transaction ==
572 							transaction);
573 			warn_dirty_buffer(bh);
574 		}
575 		/*
576 		 * In any case we need to clean the dirty flag and we must
577 		 * do it under the buffer lock to be sure we don't race
578 		 * with running write-out.
579 		 */
580 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
581 		clear_buffer_dirty(bh);
582 		set_buffer_jbddirty(bh);
583 	}
584 
585 	unlock_buffer(bh);
586 
587 	error = -EROFS;
588 	if (is_handle_aborted(handle)) {
589 		jbd_unlock_bh_state(bh);
590 		goto out;
591 	}
592 	error = 0;
593 
594 	/*
595 	 * The buffer is already part of this transaction if b_transaction or
596 	 * b_next_transaction points to it
597 	 */
598 	if (jh->b_transaction == transaction ||
599 	    jh->b_next_transaction == transaction)
600 		goto done;
601 
602 	/*
603 	 * this is the first time this transaction is touching this buffer,
604 	 * reset the modified flag
605 	 */
606 	jh->b_modified = 0;
607 
608 	/*
609 	 * If there is already a copy-out version of this buffer, then we don't
610 	 * need to make another one
611 	 */
612 	if (jh->b_frozen_data) {
613 		JBUFFER_TRACE(jh, "has frozen data");
614 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
615 		jh->b_next_transaction = transaction;
616 		goto done;
617 	}
618 
619 	/* Is there data here we need to preserve? */
620 
621 	if (jh->b_transaction && jh->b_transaction != transaction) {
622 		JBUFFER_TRACE(jh, "owned by older transaction");
623 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
624 		J_ASSERT_JH(jh, jh->b_transaction ==
625 					journal->j_committing_transaction);
626 
627 		/* There is one case we have to be very careful about.
628 		 * If the committing transaction is currently writing
629 		 * this buffer out to disk and has NOT made a copy-out,
630 		 * then we cannot modify the buffer contents at all
631 		 * right now.  The essence of copy-out is that it is the
632 		 * extra copy, not the primary copy, which gets
633 		 * journaled.  If the primary copy is already going to
634 		 * disk then we cannot do copy-out here. */
635 
636 		if (jh->b_jlist == BJ_Shadow) {
637 			DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
638 			wait_queue_head_t *wqh;
639 
640 			wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
641 
642 			JBUFFER_TRACE(jh, "on shadow: sleep");
643 			jbd_unlock_bh_state(bh);
644 			/* commit wakes up all shadow buffers after IO */
645 			for ( ; ; ) {
646 				prepare_to_wait(wqh, &wait.wait,
647 						TASK_UNINTERRUPTIBLE);
648 				if (jh->b_jlist != BJ_Shadow)
649 					break;
650 				schedule();
651 			}
652 			finish_wait(wqh, &wait.wait);
653 			goto repeat;
654 		}
655 
656 		/* Only do the copy if the currently-owning transaction
657 		 * still needs it.  If it is on the Forget list, the
658 		 * committing transaction is past that stage.  The
659 		 * buffer had better remain locked during the kmalloc,
660 		 * but that should be true --- we hold the journal lock
661 		 * still and the buffer is already on the BUF_JOURNAL
662 		 * list so won't be flushed.
663 		 *
664 		 * Subtle point, though: if this is a get_undo_access,
665 		 * then we will be relying on the frozen_data to contain
666 		 * the new value of the committed_data record after the
667 		 * transaction, so we HAVE to force the frozen_data copy
668 		 * in that case. */
669 
670 		if (jh->b_jlist != BJ_Forget || force_copy) {
671 			JBUFFER_TRACE(jh, "generate frozen data");
672 			if (!frozen_buffer) {
673 				JBUFFER_TRACE(jh, "allocate memory for buffer");
674 				jbd_unlock_bh_state(bh);
675 				frozen_buffer =
676 					jbd_alloc(jh2bh(jh)->b_size,
677 							 GFP_NOFS);
678 				if (!frozen_buffer) {
679 					printk(KERN_EMERG
680 					       "%s: OOM for frozen_buffer\n",
681 					       __func__);
682 					JBUFFER_TRACE(jh, "oom!");
683 					error = -ENOMEM;
684 					jbd_lock_bh_state(bh);
685 					goto done;
686 				}
687 				goto repeat;
688 			}
689 			jh->b_frozen_data = frozen_buffer;
690 			frozen_buffer = NULL;
691 			need_copy = 1;
692 		}
693 		jh->b_next_transaction = transaction;
694 	}
695 
696 
697 	/*
698 	 * Finally, if the buffer is not journaled right now, we need to make
699 	 * sure it doesn't get written to disk before the caller actually
700 	 * commits the new data
701 	 */
702 	if (!jh->b_transaction) {
703 		JBUFFER_TRACE(jh, "no transaction");
704 		J_ASSERT_JH(jh, !jh->b_next_transaction);
705 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
706 		spin_lock(&journal->j_list_lock);
707 		__journal_file_buffer(jh, transaction, BJ_Reserved);
708 		spin_unlock(&journal->j_list_lock);
709 	}
710 
711 done:
712 	if (need_copy) {
713 		struct page *page;
714 		int offset;
715 		char *source;
716 
717 		J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
718 			    "Possible IO failure.\n");
719 		page = jh2bh(jh)->b_page;
720 		offset = offset_in_page(jh2bh(jh)->b_data);
721 		source = kmap_atomic(page);
722 		memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
723 		kunmap_atomic(source);
724 	}
725 	jbd_unlock_bh_state(bh);
726 
727 	/*
728 	 * If we are about to journal a buffer, then any revoke pending on it is
729 	 * no longer valid
730 	 */
731 	journal_cancel_revoke(handle, jh);
732 
733 out:
734 	if (unlikely(frozen_buffer))	/* It's usually NULL */
735 		jbd_free(frozen_buffer, bh->b_size);
736 
737 	JBUFFER_TRACE(jh, "exit");
738 	return error;
739 }
740 
741 /**
742  * int journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
743  * @handle: transaction to add buffer modifications to
744  * @bh:     bh to be used for metadata writes
745  *
746  * Returns an error code or 0 on success.
747  *
748  * In full data journalling mode the buffer may be of type BJ_AsyncData,
749  * because we're write()ing a buffer which is also part of a shared mapping.
750  */
751 
journal_get_write_access(handle_t * handle,struct buffer_head * bh)752 int journal_get_write_access(handle_t *handle, struct buffer_head *bh)
753 {
754 	struct journal_head *jh = journal_add_journal_head(bh);
755 	int rc;
756 
757 	/* We do not want to get caught playing with fields which the
758 	 * log thread also manipulates.  Make sure that the buffer
759 	 * completes any outstanding IO before proceeding. */
760 	rc = do_get_write_access(handle, jh, 0);
761 	journal_put_journal_head(jh);
762 	return rc;
763 }
764 
765 
766 /*
767  * When the user wants to journal a newly created buffer_head
768  * (ie. getblk() returned a new buffer and we are going to populate it
769  * manually rather than reading off disk), then we need to keep the
770  * buffer_head locked until it has been completely filled with new
771  * data.  In this case, we should be able to make the assertion that
772  * the bh is not already part of an existing transaction.
773  *
774  * The buffer should already be locked by the caller by this point.
775  * There is no lock ranking violation: it was a newly created,
776  * unlocked buffer beforehand. */
777 
778 /**
779  * int journal_get_create_access () - notify intent to use newly created bh
780  * @handle: transaction to new buffer to
781  * @bh: new buffer.
782  *
783  * Call this if you create a new bh.
784  */
journal_get_create_access(handle_t * handle,struct buffer_head * bh)785 int journal_get_create_access(handle_t *handle, struct buffer_head *bh)
786 {
787 	transaction_t *transaction = handle->h_transaction;
788 	journal_t *journal = transaction->t_journal;
789 	struct journal_head *jh = journal_add_journal_head(bh);
790 	int err;
791 
792 	jbd_debug(5, "journal_head %p\n", jh);
793 	err = -EROFS;
794 	if (is_handle_aborted(handle))
795 		goto out;
796 	err = 0;
797 
798 	JBUFFER_TRACE(jh, "entry");
799 	/*
800 	 * The buffer may already belong to this transaction due to pre-zeroing
801 	 * in the filesystem's new_block code.  It may also be on the previous,
802 	 * committing transaction's lists, but it HAS to be in Forget state in
803 	 * that case: the transaction must have deleted the buffer for it to be
804 	 * reused here.
805 	 */
806 	jbd_lock_bh_state(bh);
807 	spin_lock(&journal->j_list_lock);
808 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
809 		jh->b_transaction == NULL ||
810 		(jh->b_transaction == journal->j_committing_transaction &&
811 			  jh->b_jlist == BJ_Forget)));
812 
813 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
814 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
815 
816 	if (jh->b_transaction == NULL) {
817 		/*
818 		 * Previous journal_forget() could have left the buffer
819 		 * with jbddirty bit set because it was being committed. When
820 		 * the commit finished, we've filed the buffer for
821 		 * checkpointing and marked it dirty. Now we are reallocating
822 		 * the buffer so the transaction freeing it must have
823 		 * committed and so it's safe to clear the dirty bit.
824 		 */
825 		clear_buffer_dirty(jh2bh(jh));
826 
827 		/* first access by this transaction */
828 		jh->b_modified = 0;
829 
830 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
831 		__journal_file_buffer(jh, transaction, BJ_Reserved);
832 	} else if (jh->b_transaction == journal->j_committing_transaction) {
833 		/* first access by this transaction */
834 		jh->b_modified = 0;
835 
836 		JBUFFER_TRACE(jh, "set next transaction");
837 		jh->b_next_transaction = transaction;
838 	}
839 	spin_unlock(&journal->j_list_lock);
840 	jbd_unlock_bh_state(bh);
841 
842 	/*
843 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
844 	 * blocks which contain freed but then revoked metadata.  We need
845 	 * to cancel the revoke in case we end up freeing it yet again
846 	 * and the reallocating as data - this would cause a second revoke,
847 	 * which hits an assertion error.
848 	 */
849 	JBUFFER_TRACE(jh, "cancelling revoke");
850 	journal_cancel_revoke(handle, jh);
851 out:
852 	journal_put_journal_head(jh);
853 	return err;
854 }
855 
856 /**
857  * int journal_get_undo_access() - Notify intent to modify metadata with non-rewindable consequences
858  * @handle: transaction
859  * @bh: buffer to undo
860  *
861  * Sometimes there is a need to distinguish between metadata which has
862  * been committed to disk and that which has not.  The ext3fs code uses
863  * this for freeing and allocating space, we have to make sure that we
864  * do not reuse freed space until the deallocation has been committed,
865  * since if we overwrote that space we would make the delete
866  * un-rewindable in case of a crash.
867  *
868  * To deal with that, journal_get_undo_access requests write access to a
869  * buffer for parts of non-rewindable operations such as delete
870  * operations on the bitmaps.  The journaling code must keep a copy of
871  * the buffer's contents prior to the undo_access call until such time
872  * as we know that the buffer has definitely been committed to disk.
873  *
874  * We never need to know which transaction the committed data is part
875  * of, buffers touched here are guaranteed to be dirtied later and so
876  * will be committed to a new transaction in due course, at which point
877  * we can discard the old committed data pointer.
878  *
879  * Returns error number or 0 on success.
880  */
journal_get_undo_access(handle_t * handle,struct buffer_head * bh)881 int journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
882 {
883 	int err;
884 	struct journal_head *jh = journal_add_journal_head(bh);
885 	char *committed_data = NULL;
886 
887 	JBUFFER_TRACE(jh, "entry");
888 
889 	/*
890 	 * Do this first --- it can drop the journal lock, so we want to
891 	 * make sure that obtaining the committed_data is done
892 	 * atomically wrt. completion of any outstanding commits.
893 	 */
894 	err = do_get_write_access(handle, jh, 1);
895 	if (err)
896 		goto out;
897 
898 repeat:
899 	if (!jh->b_committed_data) {
900 		committed_data = jbd_alloc(jh2bh(jh)->b_size, GFP_NOFS);
901 		if (!committed_data) {
902 			printk(KERN_EMERG "%s: No memory for committed data\n",
903 				__func__);
904 			err = -ENOMEM;
905 			goto out;
906 		}
907 	}
908 
909 	jbd_lock_bh_state(bh);
910 	if (!jh->b_committed_data) {
911 		/* Copy out the current buffer contents into the
912 		 * preserved, committed copy. */
913 		JBUFFER_TRACE(jh, "generate b_committed data");
914 		if (!committed_data) {
915 			jbd_unlock_bh_state(bh);
916 			goto repeat;
917 		}
918 
919 		jh->b_committed_data = committed_data;
920 		committed_data = NULL;
921 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
922 	}
923 	jbd_unlock_bh_state(bh);
924 out:
925 	journal_put_journal_head(jh);
926 	if (unlikely(committed_data))
927 		jbd_free(committed_data, bh->b_size);
928 	return err;
929 }
930 
931 /**
932  * int journal_dirty_data() - mark a buffer as containing dirty data to be flushed
933  * @handle: transaction
934  * @bh: bufferhead to mark
935  *
936  * Description:
937  * Mark a buffer as containing dirty data which needs to be flushed before
938  * we can commit the current transaction.
939  *
940  * The buffer is placed on the transaction's data list and is marked as
941  * belonging to the transaction.
942  *
943  * Returns error number or 0 on success.
944  *
945  * journal_dirty_data() can be called via page_launder->ext3_writepage
946  * by kswapd.
947  */
journal_dirty_data(handle_t * handle,struct buffer_head * bh)948 int journal_dirty_data(handle_t *handle, struct buffer_head *bh)
949 {
950 	journal_t *journal = handle->h_transaction->t_journal;
951 	int need_brelse = 0;
952 	struct journal_head *jh;
953 	int ret = 0;
954 
955 	if (is_handle_aborted(handle))
956 		return ret;
957 
958 	jh = journal_add_journal_head(bh);
959 	JBUFFER_TRACE(jh, "entry");
960 
961 	/*
962 	 * The buffer could *already* be dirty.  Writeout can start
963 	 * at any time.
964 	 */
965 	jbd_debug(4, "jh: %p, tid:%d\n", jh, handle->h_transaction->t_tid);
966 
967 	/*
968 	 * What if the buffer is already part of a running transaction?
969 	 *
970 	 * There are two cases:
971 	 * 1) It is part of the current running transaction.  Refile it,
972 	 *    just in case we have allocated it as metadata, deallocated
973 	 *    it, then reallocated it as data.
974 	 * 2) It is part of the previous, still-committing transaction.
975 	 *    If all we want to do is to guarantee that the buffer will be
976 	 *    written to disk before this new transaction commits, then
977 	 *    being sure that the *previous* transaction has this same
978 	 *    property is sufficient for us!  Just leave it on its old
979 	 *    transaction.
980 	 *
981 	 * In case (2), the buffer must not already exist as metadata
982 	 * --- that would violate write ordering (a transaction is free
983 	 * to write its data at any point, even before the previous
984 	 * committing transaction has committed).  The caller must
985 	 * never, ever allow this to happen: there's nothing we can do
986 	 * about it in this layer.
987 	 */
988 	jbd_lock_bh_state(bh);
989 	spin_lock(&journal->j_list_lock);
990 
991 	/* Now that we have bh_state locked, are we really still mapped? */
992 	if (!buffer_mapped(bh)) {
993 		JBUFFER_TRACE(jh, "unmapped buffer, bailing out");
994 		goto no_journal;
995 	}
996 
997 	if (jh->b_transaction) {
998 		JBUFFER_TRACE(jh, "has transaction");
999 		if (jh->b_transaction != handle->h_transaction) {
1000 			JBUFFER_TRACE(jh, "belongs to older transaction");
1001 			J_ASSERT_JH(jh, jh->b_transaction ==
1002 					journal->j_committing_transaction);
1003 
1004 			/* @@@ IS THIS TRUE  ? */
1005 			/*
1006 			 * Not any more.  Scenario: someone does a write()
1007 			 * in data=journal mode.  The buffer's transaction has
1008 			 * moved into commit.  Then someone does another
1009 			 * write() to the file.  We do the frozen data copyout
1010 			 * and set b_next_transaction to point to j_running_t.
1011 			 * And while we're in that state, someone does a
1012 			 * writepage() in an attempt to pageout the same area
1013 			 * of the file via a shared mapping.  At present that
1014 			 * calls journal_dirty_data(), and we get right here.
1015 			 * It may be too late to journal the data.  Simply
1016 			 * falling through to the next test will suffice: the
1017 			 * data will be dirty and wil be checkpointed.  The
1018 			 * ordering comments in the next comment block still
1019 			 * apply.
1020 			 */
1021 			//J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1022 
1023 			/*
1024 			 * If we're journalling data, and this buffer was
1025 			 * subject to a write(), it could be metadata, forget
1026 			 * or shadow against the committing transaction.  Now,
1027 			 * someone has dirtied the same darn page via a mapping
1028 			 * and it is being writepage()'d.
1029 			 * We *could* just steal the page from commit, with some
1030 			 * fancy locking there.  Instead, we just skip it -
1031 			 * don't tie the page's buffers to the new transaction
1032 			 * at all.
1033 			 * Implication: if we crash before the writepage() data
1034 			 * is written into the filesystem, recovery will replay
1035 			 * the write() data.
1036 			 */
1037 			if (jh->b_jlist != BJ_None &&
1038 					jh->b_jlist != BJ_SyncData &&
1039 					jh->b_jlist != BJ_Locked) {
1040 				JBUFFER_TRACE(jh, "Not stealing");
1041 				goto no_journal;
1042 			}
1043 
1044 			/*
1045 			 * This buffer may be undergoing writeout in commit.  We
1046 			 * can't return from here and let the caller dirty it
1047 			 * again because that can cause the write-out loop in
1048 			 * commit to never terminate.
1049 			 */
1050 			if (buffer_dirty(bh)) {
1051 				get_bh(bh);
1052 				spin_unlock(&journal->j_list_lock);
1053 				jbd_unlock_bh_state(bh);
1054 				need_brelse = 1;
1055 				sync_dirty_buffer(bh);
1056 				jbd_lock_bh_state(bh);
1057 				spin_lock(&journal->j_list_lock);
1058 				/* Since we dropped the lock... */
1059 				if (!buffer_mapped(bh)) {
1060 					JBUFFER_TRACE(jh, "buffer got unmapped");
1061 					goto no_journal;
1062 				}
1063 				/* The buffer may become locked again at any
1064 				   time if it is redirtied */
1065 			}
1066 
1067 			/*
1068 			 * We cannot remove the buffer with io error from the
1069 			 * committing transaction, because otherwise it would
1070 			 * miss the error and the commit would not abort.
1071 			 */
1072 			if (unlikely(!buffer_uptodate(bh))) {
1073 				ret = -EIO;
1074 				goto no_journal;
1075 			}
1076 			/* We might have slept so buffer could be refiled now */
1077 			if (jh->b_transaction != NULL &&
1078 			    jh->b_transaction != handle->h_transaction) {
1079 				JBUFFER_TRACE(jh, "unfile from commit");
1080 				__journal_temp_unlink_buffer(jh);
1081 				/* It still points to the committing
1082 				 * transaction; move it to this one so
1083 				 * that the refile assert checks are
1084 				 * happy. */
1085 				jh->b_transaction = handle->h_transaction;
1086 			}
1087 			/* The buffer will be refiled below */
1088 
1089 		}
1090 		/*
1091 		 * Special case --- the buffer might actually have been
1092 		 * allocated and then immediately deallocated in the previous,
1093 		 * committing transaction, so might still be left on that
1094 		 * transaction's metadata lists.
1095 		 */
1096 		if (jh->b_jlist != BJ_SyncData && jh->b_jlist != BJ_Locked) {
1097 			JBUFFER_TRACE(jh, "not on correct data list: unfile");
1098 			J_ASSERT_JH(jh, jh->b_jlist != BJ_Shadow);
1099 			JBUFFER_TRACE(jh, "file as data");
1100 			__journal_file_buffer(jh, handle->h_transaction,
1101 						BJ_SyncData);
1102 		}
1103 	} else {
1104 		JBUFFER_TRACE(jh, "not on a transaction");
1105 		__journal_file_buffer(jh, handle->h_transaction, BJ_SyncData);
1106 	}
1107 no_journal:
1108 	spin_unlock(&journal->j_list_lock);
1109 	jbd_unlock_bh_state(bh);
1110 	if (need_brelse) {
1111 		BUFFER_TRACE(bh, "brelse");
1112 		__brelse(bh);
1113 	}
1114 	JBUFFER_TRACE(jh, "exit");
1115 	journal_put_journal_head(jh);
1116 	return ret;
1117 }
1118 
1119 /**
1120  * int journal_dirty_metadata() - mark a buffer as containing dirty metadata
1121  * @handle: transaction to add buffer to.
1122  * @bh: buffer to mark
1123  *
1124  * Mark dirty metadata which needs to be journaled as part of the current
1125  * transaction.
1126  *
1127  * The buffer is placed on the transaction's metadata list and is marked
1128  * as belonging to the transaction.
1129  *
1130  * Returns error number or 0 on success.
1131  *
1132  * Special care needs to be taken if the buffer already belongs to the
1133  * current committing transaction (in which case we should have frozen
1134  * data present for that commit).  In that case, we don't relink the
1135  * buffer: that only gets done when the old transaction finally
1136  * completes its commit.
1137  */
journal_dirty_metadata(handle_t * handle,struct buffer_head * bh)1138 int journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1139 {
1140 	transaction_t *transaction = handle->h_transaction;
1141 	journal_t *journal = transaction->t_journal;
1142 	struct journal_head *jh = bh2jh(bh);
1143 
1144 	jbd_debug(5, "journal_head %p\n", jh);
1145 	JBUFFER_TRACE(jh, "entry");
1146 	if (is_handle_aborted(handle))
1147 		goto out;
1148 
1149 	jbd_lock_bh_state(bh);
1150 
1151 	if (jh->b_modified == 0) {
1152 		/*
1153 		 * This buffer's got modified and becoming part
1154 		 * of the transaction. This needs to be done
1155 		 * once a transaction -bzzz
1156 		 */
1157 		jh->b_modified = 1;
1158 		J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1159 		handle->h_buffer_credits--;
1160 	}
1161 
1162 	/*
1163 	 * fastpath, to avoid expensive locking.  If this buffer is already
1164 	 * on the running transaction's metadata list there is nothing to do.
1165 	 * Nobody can take it off again because there is a handle open.
1166 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1167 	 * result in this test being false, so we go in and take the locks.
1168 	 */
1169 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1170 		JBUFFER_TRACE(jh, "fastpath");
1171 		J_ASSERT_JH(jh, jh->b_transaction ==
1172 					journal->j_running_transaction);
1173 		goto out_unlock_bh;
1174 	}
1175 
1176 	set_buffer_jbddirty(bh);
1177 
1178 	/*
1179 	 * Metadata already on the current transaction list doesn't
1180 	 * need to be filed.  Metadata on another transaction's list must
1181 	 * be committing, and will be refiled once the commit completes:
1182 	 * leave it alone for now.
1183 	 */
1184 	if (jh->b_transaction != transaction) {
1185 		JBUFFER_TRACE(jh, "already on other transaction");
1186 		J_ASSERT_JH(jh, jh->b_transaction ==
1187 					journal->j_committing_transaction);
1188 		J_ASSERT_JH(jh, jh->b_next_transaction == transaction);
1189 		/* And this case is illegal: we can't reuse another
1190 		 * transaction's data buffer, ever. */
1191 		goto out_unlock_bh;
1192 	}
1193 
1194 	/* That test should have eliminated the following case: */
1195 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1196 
1197 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1198 	spin_lock(&journal->j_list_lock);
1199 	__journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1200 	spin_unlock(&journal->j_list_lock);
1201 out_unlock_bh:
1202 	jbd_unlock_bh_state(bh);
1203 out:
1204 	JBUFFER_TRACE(jh, "exit");
1205 	return 0;
1206 }
1207 
1208 /*
1209  * journal_release_buffer: undo a get_write_access without any buffer
1210  * updates, if the update decided in the end that it didn't need access.
1211  *
1212  */
1213 void
journal_release_buffer(handle_t * handle,struct buffer_head * bh)1214 journal_release_buffer(handle_t *handle, struct buffer_head *bh)
1215 {
1216 	BUFFER_TRACE(bh, "entry");
1217 }
1218 
1219 /**
1220  * void journal_forget() - bforget() for potentially-journaled buffers.
1221  * @handle: transaction handle
1222  * @bh:     bh to 'forget'
1223  *
1224  * We can only do the bforget if there are no commits pending against the
1225  * buffer.  If the buffer is dirty in the current running transaction we
1226  * can safely unlink it.
1227  *
1228  * bh may not be a journalled buffer at all - it may be a non-JBD
1229  * buffer which came off the hashtable.  Check for this.
1230  *
1231  * Decrements bh->b_count by one.
1232  *
1233  * Allow this call even if the handle has aborted --- it may be part of
1234  * the caller's cleanup after an abort.
1235  */
journal_forget(handle_t * handle,struct buffer_head * bh)1236 int journal_forget (handle_t *handle, struct buffer_head *bh)
1237 {
1238 	transaction_t *transaction = handle->h_transaction;
1239 	journal_t *journal = transaction->t_journal;
1240 	struct journal_head *jh;
1241 	int drop_reserve = 0;
1242 	int err = 0;
1243 	int was_modified = 0;
1244 
1245 	BUFFER_TRACE(bh, "entry");
1246 
1247 	jbd_lock_bh_state(bh);
1248 	spin_lock(&journal->j_list_lock);
1249 
1250 	if (!buffer_jbd(bh))
1251 		goto not_jbd;
1252 	jh = bh2jh(bh);
1253 
1254 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1255 	 * Don't do any jbd operations, and return an error. */
1256 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1257 			 "inconsistent data on disk")) {
1258 		err = -EIO;
1259 		goto not_jbd;
1260 	}
1261 
1262 	/* keep track of wether or not this transaction modified us */
1263 	was_modified = jh->b_modified;
1264 
1265 	/*
1266 	 * The buffer's going from the transaction, we must drop
1267 	 * all references -bzzz
1268 	 */
1269 	jh->b_modified = 0;
1270 
1271 	if (jh->b_transaction == handle->h_transaction) {
1272 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1273 
1274 		/* If we are forgetting a buffer which is already part
1275 		 * of this transaction, then we can just drop it from
1276 		 * the transaction immediately. */
1277 		clear_buffer_dirty(bh);
1278 		clear_buffer_jbddirty(bh);
1279 
1280 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1281 
1282 		/*
1283 		 * we only want to drop a reference if this transaction
1284 		 * modified the buffer
1285 		 */
1286 		if (was_modified)
1287 			drop_reserve = 1;
1288 
1289 		/*
1290 		 * We are no longer going to journal this buffer.
1291 		 * However, the commit of this transaction is still
1292 		 * important to the buffer: the delete that we are now
1293 		 * processing might obsolete an old log entry, so by
1294 		 * committing, we can satisfy the buffer's checkpoint.
1295 		 *
1296 		 * So, if we have a checkpoint on the buffer, we should
1297 		 * now refile the buffer on our BJ_Forget list so that
1298 		 * we know to remove the checkpoint after we commit.
1299 		 */
1300 
1301 		if (jh->b_cp_transaction) {
1302 			__journal_temp_unlink_buffer(jh);
1303 			__journal_file_buffer(jh, transaction, BJ_Forget);
1304 		} else {
1305 			__journal_unfile_buffer(jh);
1306 			if (!buffer_jbd(bh)) {
1307 				spin_unlock(&journal->j_list_lock);
1308 				jbd_unlock_bh_state(bh);
1309 				__bforget(bh);
1310 				goto drop;
1311 			}
1312 		}
1313 	} else if (jh->b_transaction) {
1314 		J_ASSERT_JH(jh, (jh->b_transaction ==
1315 				 journal->j_committing_transaction));
1316 		/* However, if the buffer is still owned by a prior
1317 		 * (committing) transaction, we can't drop it yet... */
1318 		JBUFFER_TRACE(jh, "belongs to older transaction");
1319 		/* ... but we CAN drop it from the new transaction if we
1320 		 * have also modified it since the original commit. */
1321 
1322 		if (jh->b_next_transaction) {
1323 			J_ASSERT(jh->b_next_transaction == transaction);
1324 			jh->b_next_transaction = NULL;
1325 
1326 			/*
1327 			 * only drop a reference if this transaction modified
1328 			 * the buffer
1329 			 */
1330 			if (was_modified)
1331 				drop_reserve = 1;
1332 		}
1333 	}
1334 
1335 not_jbd:
1336 	spin_unlock(&journal->j_list_lock);
1337 	jbd_unlock_bh_state(bh);
1338 	__brelse(bh);
1339 drop:
1340 	if (drop_reserve) {
1341 		/* no need to reserve log space for this block -bzzz */
1342 		handle->h_buffer_credits++;
1343 	}
1344 	return err;
1345 }
1346 
1347 /**
1348  * int journal_stop() - complete a transaction
1349  * @handle: tranaction to complete.
1350  *
1351  * All done for a particular handle.
1352  *
1353  * There is not much action needed here.  We just return any remaining
1354  * buffer credits to the transaction and remove the handle.  The only
1355  * complication is that we need to start a commit operation if the
1356  * filesystem is marked for synchronous update.
1357  *
1358  * journal_stop itself will not usually return an error, but it may
1359  * do so in unusual circumstances.  In particular, expect it to
1360  * return -EIO if a journal_abort has been executed since the
1361  * transaction began.
1362  */
journal_stop(handle_t * handle)1363 int journal_stop(handle_t *handle)
1364 {
1365 	transaction_t *transaction = handle->h_transaction;
1366 	journal_t *journal = transaction->t_journal;
1367 	int err;
1368 	pid_t pid;
1369 
1370 	J_ASSERT(journal_current_handle() == handle);
1371 
1372 	if (is_handle_aborted(handle))
1373 		err = -EIO;
1374 	else {
1375 		J_ASSERT(transaction->t_updates > 0);
1376 		err = 0;
1377 	}
1378 
1379 	if (--handle->h_ref > 0) {
1380 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1381 			  handle->h_ref);
1382 		return err;
1383 	}
1384 
1385 	jbd_debug(4, "Handle %p going down\n", handle);
1386 
1387 	/*
1388 	 * Implement synchronous transaction batching.  If the handle
1389 	 * was synchronous, don't force a commit immediately.  Let's
1390 	 * yield and let another thread piggyback onto this transaction.
1391 	 * Keep doing that while new threads continue to arrive.
1392 	 * It doesn't cost much - we're about to run a commit and sleep
1393 	 * on IO anyway.  Speeds up many-threaded, many-dir operations
1394 	 * by 30x or more...
1395 	 *
1396 	 * We try and optimize the sleep time against what the underlying disk
1397 	 * can do, instead of having a static sleep time.  This is useful for
1398 	 * the case where our storage is so fast that it is more optimal to go
1399 	 * ahead and force a flush and wait for the transaction to be committed
1400 	 * than it is to wait for an arbitrary amount of time for new writers to
1401 	 * join the transaction.  We achieve this by measuring how long it takes
1402 	 * to commit a transaction, and compare it with how long this
1403 	 * transaction has been running, and if run time < commit time then we
1404 	 * sleep for the delta and commit.  This greatly helps super fast disks
1405 	 * that would see slowdowns as more threads started doing fsyncs.
1406 	 *
1407 	 * But don't do this if this process was the most recent one to
1408 	 * perform a synchronous write.  We do this to detect the case where a
1409 	 * single process is doing a stream of sync writes.  No point in waiting
1410 	 * for joiners in that case.
1411 	 */
1412 	pid = current->pid;
1413 	if (handle->h_sync && journal->j_last_sync_writer != pid) {
1414 		u64 commit_time, trans_time;
1415 
1416 		journal->j_last_sync_writer = pid;
1417 
1418 		spin_lock(&journal->j_state_lock);
1419 		commit_time = journal->j_average_commit_time;
1420 		spin_unlock(&journal->j_state_lock);
1421 
1422 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1423 						   transaction->t_start_time));
1424 
1425 		commit_time = min_t(u64, commit_time,
1426 				    1000*jiffies_to_usecs(1));
1427 
1428 		if (trans_time < commit_time) {
1429 			ktime_t expires = ktime_add_ns(ktime_get(),
1430 						       commit_time);
1431 			set_current_state(TASK_UNINTERRUPTIBLE);
1432 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1433 		}
1434 	}
1435 
1436 	if (handle->h_sync)
1437 		transaction->t_synchronous_commit = 1;
1438 	current->journal_info = NULL;
1439 	spin_lock(&journal->j_state_lock);
1440 	spin_lock(&transaction->t_handle_lock);
1441 	transaction->t_outstanding_credits -= handle->h_buffer_credits;
1442 	transaction->t_updates--;
1443 	if (!transaction->t_updates) {
1444 		wake_up(&journal->j_wait_updates);
1445 		if (journal->j_barrier_count)
1446 			wake_up(&journal->j_wait_transaction_locked);
1447 	}
1448 
1449 	/*
1450 	 * If the handle is marked SYNC, we need to set another commit
1451 	 * going!  We also want to force a commit if the current
1452 	 * transaction is occupying too much of the log, or if the
1453 	 * transaction is too old now.
1454 	 */
1455 	if (handle->h_sync ||
1456 			transaction->t_outstanding_credits >
1457 				journal->j_max_transaction_buffers ||
1458 			time_after_eq(jiffies, transaction->t_expires)) {
1459 		/* Do this even for aborted journals: an abort still
1460 		 * completes the commit thread, it just doesn't write
1461 		 * anything to disk. */
1462 		tid_t tid = transaction->t_tid;
1463 
1464 		spin_unlock(&transaction->t_handle_lock);
1465 		jbd_debug(2, "transaction too old, requesting commit for "
1466 					"handle %p\n", handle);
1467 		/* This is non-blocking */
1468 		__log_start_commit(journal, transaction->t_tid);
1469 		spin_unlock(&journal->j_state_lock);
1470 
1471 		/*
1472 		 * Special case: JFS_SYNC synchronous updates require us
1473 		 * to wait for the commit to complete.
1474 		 */
1475 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1476 			err = log_wait_commit(journal, tid);
1477 	} else {
1478 		spin_unlock(&transaction->t_handle_lock);
1479 		spin_unlock(&journal->j_state_lock);
1480 	}
1481 
1482 	lock_map_release(&handle->h_lockdep_map);
1483 
1484 	jbd_free_handle(handle);
1485 	return err;
1486 }
1487 
1488 /**
1489  * int journal_force_commit() - force any uncommitted transactions
1490  * @journal: journal to force
1491  *
1492  * For synchronous operations: force any uncommitted transactions
1493  * to disk.  May seem kludgy, but it reuses all the handle batching
1494  * code in a very simple manner.
1495  */
journal_force_commit(journal_t * journal)1496 int journal_force_commit(journal_t *journal)
1497 {
1498 	handle_t *handle;
1499 	int ret;
1500 
1501 	handle = journal_start(journal, 1);
1502 	if (IS_ERR(handle)) {
1503 		ret = PTR_ERR(handle);
1504 	} else {
1505 		handle->h_sync = 1;
1506 		ret = journal_stop(handle);
1507 	}
1508 	return ret;
1509 }
1510 
1511 /*
1512  *
1513  * List management code snippets: various functions for manipulating the
1514  * transaction buffer lists.
1515  *
1516  */
1517 
1518 /*
1519  * Append a buffer to a transaction list, given the transaction's list head
1520  * pointer.
1521  *
1522  * j_list_lock is held.
1523  *
1524  * jbd_lock_bh_state(jh2bh(jh)) is held.
1525  */
1526 
1527 static inline void
__blist_add_buffer(struct journal_head ** list,struct journal_head * jh)1528 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1529 {
1530 	if (!*list) {
1531 		jh->b_tnext = jh->b_tprev = jh;
1532 		*list = jh;
1533 	} else {
1534 		/* Insert at the tail of the list to preserve order */
1535 		struct journal_head *first = *list, *last = first->b_tprev;
1536 		jh->b_tprev = last;
1537 		jh->b_tnext = first;
1538 		last->b_tnext = first->b_tprev = jh;
1539 	}
1540 }
1541 
1542 /*
1543  * Remove a buffer from a transaction list, given the transaction's list
1544  * head pointer.
1545  *
1546  * Called with j_list_lock held, and the journal may not be locked.
1547  *
1548  * jbd_lock_bh_state(jh2bh(jh)) is held.
1549  */
1550 
1551 static inline void
__blist_del_buffer(struct journal_head ** list,struct journal_head * jh)1552 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1553 {
1554 	if (*list == jh) {
1555 		*list = jh->b_tnext;
1556 		if (*list == jh)
1557 			*list = NULL;
1558 	}
1559 	jh->b_tprev->b_tnext = jh->b_tnext;
1560 	jh->b_tnext->b_tprev = jh->b_tprev;
1561 }
1562 
1563 /*
1564  * Remove a buffer from the appropriate transaction list.
1565  *
1566  * Note that this function can *change* the value of
1567  * bh->b_transaction->t_sync_datalist, t_buffers, t_forget,
1568  * t_iobuf_list, t_shadow_list, t_log_list or t_reserved_list.  If the caller
1569  * is holding onto a copy of one of thee pointers, it could go bad.
1570  * Generally the caller needs to re-read the pointer from the transaction_t.
1571  *
1572  * Called under j_list_lock.  The journal may not be locked.
1573  */
__journal_temp_unlink_buffer(struct journal_head * jh)1574 static void __journal_temp_unlink_buffer(struct journal_head *jh)
1575 {
1576 	struct journal_head **list = NULL;
1577 	transaction_t *transaction;
1578 	struct buffer_head *bh = jh2bh(jh);
1579 
1580 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1581 	transaction = jh->b_transaction;
1582 	if (transaction)
1583 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1584 
1585 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1586 	if (jh->b_jlist != BJ_None)
1587 		J_ASSERT_JH(jh, transaction != NULL);
1588 
1589 	switch (jh->b_jlist) {
1590 	case BJ_None:
1591 		return;
1592 	case BJ_SyncData:
1593 		list = &transaction->t_sync_datalist;
1594 		break;
1595 	case BJ_Metadata:
1596 		transaction->t_nr_buffers--;
1597 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1598 		list = &transaction->t_buffers;
1599 		break;
1600 	case BJ_Forget:
1601 		list = &transaction->t_forget;
1602 		break;
1603 	case BJ_IO:
1604 		list = &transaction->t_iobuf_list;
1605 		break;
1606 	case BJ_Shadow:
1607 		list = &transaction->t_shadow_list;
1608 		break;
1609 	case BJ_LogCtl:
1610 		list = &transaction->t_log_list;
1611 		break;
1612 	case BJ_Reserved:
1613 		list = &transaction->t_reserved_list;
1614 		break;
1615 	case BJ_Locked:
1616 		list = &transaction->t_locked_list;
1617 		break;
1618 	}
1619 
1620 	__blist_del_buffer(list, jh);
1621 	jh->b_jlist = BJ_None;
1622 	if (test_clear_buffer_jbddirty(bh))
1623 		mark_buffer_dirty(bh);	/* Expose it to the VM */
1624 }
1625 
1626 /*
1627  * Remove buffer from all transactions.
1628  *
1629  * Called with bh_state lock and j_list_lock
1630  *
1631  * jh and bh may be already freed when this function returns.
1632  */
__journal_unfile_buffer(struct journal_head * jh)1633 void __journal_unfile_buffer(struct journal_head *jh)
1634 {
1635 	__journal_temp_unlink_buffer(jh);
1636 	jh->b_transaction = NULL;
1637 	journal_put_journal_head(jh);
1638 }
1639 
journal_unfile_buffer(journal_t * journal,struct journal_head * jh)1640 void journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1641 {
1642 	struct buffer_head *bh = jh2bh(jh);
1643 
1644 	/* Get reference so that buffer cannot be freed before we unlock it */
1645 	get_bh(bh);
1646 	jbd_lock_bh_state(bh);
1647 	spin_lock(&journal->j_list_lock);
1648 	__journal_unfile_buffer(jh);
1649 	spin_unlock(&journal->j_list_lock);
1650 	jbd_unlock_bh_state(bh);
1651 	__brelse(bh);
1652 }
1653 
1654 /*
1655  * Called from journal_try_to_free_buffers().
1656  *
1657  * Called under jbd_lock_bh_state(bh)
1658  */
1659 static void
__journal_try_to_free_buffer(journal_t * journal,struct buffer_head * bh)1660 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1661 {
1662 	struct journal_head *jh;
1663 
1664 	jh = bh2jh(bh);
1665 
1666 	if (buffer_locked(bh) || buffer_dirty(bh))
1667 		goto out;
1668 
1669 	if (jh->b_next_transaction != NULL)
1670 		goto out;
1671 
1672 	spin_lock(&journal->j_list_lock);
1673 	if (jh->b_transaction != NULL && jh->b_cp_transaction == NULL) {
1674 		if (jh->b_jlist == BJ_SyncData || jh->b_jlist == BJ_Locked) {
1675 			/* A written-back ordered data buffer */
1676 			JBUFFER_TRACE(jh, "release data");
1677 			__journal_unfile_buffer(jh);
1678 		}
1679 	} else if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1680 		/* written-back checkpointed metadata buffer */
1681 		if (jh->b_jlist == BJ_None) {
1682 			JBUFFER_TRACE(jh, "remove from checkpoint list");
1683 			__journal_remove_checkpoint(jh);
1684 		}
1685 	}
1686 	spin_unlock(&journal->j_list_lock);
1687 out:
1688 	return;
1689 }
1690 
1691 /**
1692  * int journal_try_to_free_buffers() - try to free page buffers.
1693  * @journal: journal for operation
1694  * @page: to try and free
1695  * @gfp_mask: we use the mask to detect how hard should we try to release
1696  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1697  * release the buffers.
1698  *
1699  *
1700  * For all the buffers on this page,
1701  * if they are fully written out ordered data, move them onto BUF_CLEAN
1702  * so try_to_free_buffers() can reap them.
1703  *
1704  * This function returns non-zero if we wish try_to_free_buffers()
1705  * to be called. We do this if the page is releasable by try_to_free_buffers().
1706  * We also do it if the page has locked or dirty buffers and the caller wants
1707  * us to perform sync or async writeout.
1708  *
1709  * This complicates JBD locking somewhat.  We aren't protected by the
1710  * BKL here.  We wish to remove the buffer from its committing or
1711  * running transaction's ->t_datalist via __journal_unfile_buffer.
1712  *
1713  * This may *change* the value of transaction_t->t_datalist, so anyone
1714  * who looks at t_datalist needs to lock against this function.
1715  *
1716  * Even worse, someone may be doing a journal_dirty_data on this
1717  * buffer.  So we need to lock against that.  journal_dirty_data()
1718  * will come out of the lock with the buffer dirty, which makes it
1719  * ineligible for release here.
1720  *
1721  * Who else is affected by this?  hmm...  Really the only contender
1722  * is do_get_write_access() - it could be looking at the buffer while
1723  * journal_try_to_free_buffer() is changing its state.  But that
1724  * cannot happen because we never reallocate freed data as metadata
1725  * while the data is part of a transaction.  Yes?
1726  *
1727  * Return 0 on failure, 1 on success
1728  */
journal_try_to_free_buffers(journal_t * journal,struct page * page,gfp_t gfp_mask)1729 int journal_try_to_free_buffers(journal_t *journal,
1730 				struct page *page, gfp_t gfp_mask)
1731 {
1732 	struct buffer_head *head;
1733 	struct buffer_head *bh;
1734 	int ret = 0;
1735 
1736 	J_ASSERT(PageLocked(page));
1737 
1738 	head = page_buffers(page);
1739 	bh = head;
1740 	do {
1741 		struct journal_head *jh;
1742 
1743 		/*
1744 		 * We take our own ref against the journal_head here to avoid
1745 		 * having to add tons of locking around each instance of
1746 		 * journal_put_journal_head().
1747 		 */
1748 		jh = journal_grab_journal_head(bh);
1749 		if (!jh)
1750 			continue;
1751 
1752 		jbd_lock_bh_state(bh);
1753 		__journal_try_to_free_buffer(journal, bh);
1754 		journal_put_journal_head(jh);
1755 		jbd_unlock_bh_state(bh);
1756 		if (buffer_jbd(bh))
1757 			goto busy;
1758 	} while ((bh = bh->b_this_page) != head);
1759 
1760 	ret = try_to_free_buffers(page);
1761 
1762 busy:
1763 	return ret;
1764 }
1765 
1766 /*
1767  * This buffer is no longer needed.  If it is on an older transaction's
1768  * checkpoint list we need to record it on this transaction's forget list
1769  * to pin this buffer (and hence its checkpointing transaction) down until
1770  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1771  * release it.
1772  * Returns non-zero if JBD no longer has an interest in the buffer.
1773  *
1774  * Called under j_list_lock.
1775  *
1776  * Called under jbd_lock_bh_state(bh).
1777  */
__dispose_buffer(struct journal_head * jh,transaction_t * transaction)1778 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1779 {
1780 	int may_free = 1;
1781 	struct buffer_head *bh = jh2bh(jh);
1782 
1783 	if (jh->b_cp_transaction) {
1784 		JBUFFER_TRACE(jh, "on running+cp transaction");
1785 		__journal_temp_unlink_buffer(jh);
1786 		/*
1787 		 * We don't want to write the buffer anymore, clear the
1788 		 * bit so that we don't confuse checks in
1789 		 * __journal_file_buffer
1790 		 */
1791 		clear_buffer_dirty(bh);
1792 		__journal_file_buffer(jh, transaction, BJ_Forget);
1793 		may_free = 0;
1794 	} else {
1795 		JBUFFER_TRACE(jh, "on running transaction");
1796 		__journal_unfile_buffer(jh);
1797 	}
1798 	return may_free;
1799 }
1800 
1801 /*
1802  * journal_invalidatepage
1803  *
1804  * This code is tricky.  It has a number of cases to deal with.
1805  *
1806  * There are two invariants which this code relies on:
1807  *
1808  * i_size must be updated on disk before we start calling invalidatepage on the
1809  * data.
1810  *
1811  *  This is done in ext3 by defining an ext3_setattr method which
1812  *  updates i_size before truncate gets going.  By maintaining this
1813  *  invariant, we can be sure that it is safe to throw away any buffers
1814  *  attached to the current transaction: once the transaction commits,
1815  *  we know that the data will not be needed.
1816  *
1817  *  Note however that we can *not* throw away data belonging to the
1818  *  previous, committing transaction!
1819  *
1820  * Any disk blocks which *are* part of the previous, committing
1821  * transaction (and which therefore cannot be discarded immediately) are
1822  * not going to be reused in the new running transaction
1823  *
1824  *  The bitmap committed_data images guarantee this: any block which is
1825  *  allocated in one transaction and removed in the next will be marked
1826  *  as in-use in the committed_data bitmap, so cannot be reused until
1827  *  the next transaction to delete the block commits.  This means that
1828  *  leaving committing buffers dirty is quite safe: the disk blocks
1829  *  cannot be reallocated to a different file and so buffer aliasing is
1830  *  not possible.
1831  *
1832  *
1833  * The above applies mainly to ordered data mode.  In writeback mode we
1834  * don't make guarantees about the order in which data hits disk --- in
1835  * particular we don't guarantee that new dirty data is flushed before
1836  * transaction commit --- so it is always safe just to discard data
1837  * immediately in that mode.  --sct
1838  */
1839 
1840 /*
1841  * The journal_unmap_buffer helper function returns zero if the buffer
1842  * concerned remains pinned as an anonymous buffer belonging to an older
1843  * transaction.
1844  *
1845  * We're outside-transaction here.  Either or both of j_running_transaction
1846  * and j_committing_transaction may be NULL.
1847  */
journal_unmap_buffer(journal_t * journal,struct buffer_head * bh,int partial_page)1848 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
1849 				int partial_page)
1850 {
1851 	transaction_t *transaction;
1852 	struct journal_head *jh;
1853 	int may_free = 1;
1854 
1855 	BUFFER_TRACE(bh, "entry");
1856 
1857 retry:
1858 	/*
1859 	 * It is safe to proceed here without the j_list_lock because the
1860 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
1861 	 * holding the page lock. --sct
1862 	 */
1863 
1864 	if (!buffer_jbd(bh))
1865 		goto zap_buffer_unlocked;
1866 
1867 	spin_lock(&journal->j_state_lock);
1868 	jbd_lock_bh_state(bh);
1869 	spin_lock(&journal->j_list_lock);
1870 
1871 	jh = journal_grab_journal_head(bh);
1872 	if (!jh)
1873 		goto zap_buffer_no_jh;
1874 
1875 	/*
1876 	 * We cannot remove the buffer from checkpoint lists until the
1877 	 * transaction adding inode to orphan list (let's call it T)
1878 	 * is committed.  Otherwise if the transaction changing the
1879 	 * buffer would be cleaned from the journal before T is
1880 	 * committed, a crash will cause that the correct contents of
1881 	 * the buffer will be lost.  On the other hand we have to
1882 	 * clear the buffer dirty bit at latest at the moment when the
1883 	 * transaction marking the buffer as freed in the filesystem
1884 	 * structures is committed because from that moment on the
1885 	 * block can be reallocated and used by a different page.
1886 	 * Since the block hasn't been freed yet but the inode has
1887 	 * already been added to orphan list, it is safe for us to add
1888 	 * the buffer to BJ_Forget list of the newest transaction.
1889 	 *
1890 	 * Also we have to clear buffer_mapped flag of a truncated buffer
1891 	 * because the buffer_head may be attached to the page straddling
1892 	 * i_size (can happen only when blocksize < pagesize) and thus the
1893 	 * buffer_head can be reused when the file is extended again. So we end
1894 	 * up keeping around invalidated buffers attached to transactions'
1895 	 * BJ_Forget list just to stop checkpointing code from cleaning up
1896 	 * the transaction this buffer was modified in.
1897 	 */
1898 	transaction = jh->b_transaction;
1899 	if (transaction == NULL) {
1900 		/* First case: not on any transaction.  If it
1901 		 * has no checkpoint link, then we can zap it:
1902 		 * it's a writeback-mode buffer so we don't care
1903 		 * if it hits disk safely. */
1904 		if (!jh->b_cp_transaction) {
1905 			JBUFFER_TRACE(jh, "not on any transaction: zap");
1906 			goto zap_buffer;
1907 		}
1908 
1909 		if (!buffer_dirty(bh)) {
1910 			/* bdflush has written it.  We can drop it now */
1911 			goto zap_buffer;
1912 		}
1913 
1914 		/* OK, it must be in the journal but still not
1915 		 * written fully to disk: it's metadata or
1916 		 * journaled data... */
1917 
1918 		if (journal->j_running_transaction) {
1919 			/* ... and once the current transaction has
1920 			 * committed, the buffer won't be needed any
1921 			 * longer. */
1922 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1923 			may_free = __dispose_buffer(jh,
1924 					journal->j_running_transaction);
1925 			goto zap_buffer;
1926 		} else {
1927 			/* There is no currently-running transaction. So the
1928 			 * orphan record which we wrote for this file must have
1929 			 * passed into commit.  We must attach this buffer to
1930 			 * the committing transaction, if it exists. */
1931 			if (journal->j_committing_transaction) {
1932 				JBUFFER_TRACE(jh, "give to committing trans");
1933 				may_free = __dispose_buffer(jh,
1934 					journal->j_committing_transaction);
1935 				goto zap_buffer;
1936 			} else {
1937 				/* The orphan record's transaction has
1938 				 * committed.  We can cleanse this buffer */
1939 				clear_buffer_jbddirty(bh);
1940 				goto zap_buffer;
1941 			}
1942 		}
1943 	} else if (transaction == journal->j_committing_transaction) {
1944 		JBUFFER_TRACE(jh, "on committing transaction");
1945 		if (jh->b_jlist == BJ_Locked) {
1946 			/*
1947 			 * The buffer is on the committing transaction's locked
1948 			 * list.  We have the buffer locked, so I/O has
1949 			 * completed.  So we can nail the buffer now.
1950 			 */
1951 			may_free = __dispose_buffer(jh, transaction);
1952 			goto zap_buffer;
1953 		}
1954 		/*
1955 		 * The buffer is committing, we simply cannot touch
1956 		 * it. If the page is straddling i_size we have to wait
1957 		 * for commit and try again.
1958 		 */
1959 		if (partial_page) {
1960 			tid_t tid = journal->j_committing_transaction->t_tid;
1961 
1962 			journal_put_journal_head(jh);
1963 			spin_unlock(&journal->j_list_lock);
1964 			jbd_unlock_bh_state(bh);
1965 			spin_unlock(&journal->j_state_lock);
1966 			unlock_buffer(bh);
1967 			log_wait_commit(journal, tid);
1968 			lock_buffer(bh);
1969 			goto retry;
1970 		}
1971 		/*
1972 		 * OK, buffer won't be reachable after truncate. We just set
1973 		 * j_next_transaction to the running transaction (if there is
1974 		 * one) and mark buffer as freed so that commit code knows it
1975 		 * should clear dirty bits when it is done with the buffer.
1976 		 */
1977 		set_buffer_freed(bh);
1978 		if (journal->j_running_transaction && buffer_jbddirty(bh))
1979 			jh->b_next_transaction = journal->j_running_transaction;
1980 		journal_put_journal_head(jh);
1981 		spin_unlock(&journal->j_list_lock);
1982 		jbd_unlock_bh_state(bh);
1983 		spin_unlock(&journal->j_state_lock);
1984 		return 0;
1985 	} else {
1986 		/* Good, the buffer belongs to the running transaction.
1987 		 * We are writing our own transaction's data, not any
1988 		 * previous one's, so it is safe to throw it away
1989 		 * (remember that we expect the filesystem to have set
1990 		 * i_size already for this truncate so recovery will not
1991 		 * expose the disk blocks we are discarding here.) */
1992 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1993 		JBUFFER_TRACE(jh, "on running transaction");
1994 		may_free = __dispose_buffer(jh, transaction);
1995 	}
1996 
1997 zap_buffer:
1998 	/*
1999 	 * This is tricky. Although the buffer is truncated, it may be reused
2000 	 * if blocksize < pagesize and it is attached to the page straddling
2001 	 * EOF. Since the buffer might have been added to BJ_Forget list of the
2002 	 * running transaction, journal_get_write_access() won't clear
2003 	 * b_modified and credit accounting gets confused. So clear b_modified
2004 	 * here. */
2005 	jh->b_modified = 0;
2006 	journal_put_journal_head(jh);
2007 zap_buffer_no_jh:
2008 	spin_unlock(&journal->j_list_lock);
2009 	jbd_unlock_bh_state(bh);
2010 	spin_unlock(&journal->j_state_lock);
2011 zap_buffer_unlocked:
2012 	clear_buffer_dirty(bh);
2013 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2014 	clear_buffer_mapped(bh);
2015 	clear_buffer_req(bh);
2016 	clear_buffer_new(bh);
2017 	bh->b_bdev = NULL;
2018 	return may_free;
2019 }
2020 
2021 /**
2022  * void journal_invalidatepage() - invalidate a journal page
2023  * @journal: journal to use for flush
2024  * @page:    page to flush
2025  * @offset:  length of page to invalidate.
2026  *
2027  * Reap page buffers containing data after offset in page.
2028  */
journal_invalidatepage(journal_t * journal,struct page * page,unsigned long offset)2029 void journal_invalidatepage(journal_t *journal,
2030 		      struct page *page,
2031 		      unsigned long offset)
2032 {
2033 	struct buffer_head *head, *bh, *next;
2034 	unsigned int curr_off = 0;
2035 	int may_free = 1;
2036 
2037 	if (!PageLocked(page))
2038 		BUG();
2039 	if (!page_has_buffers(page))
2040 		return;
2041 
2042 	/* We will potentially be playing with lists other than just the
2043 	 * data lists (especially for journaled data mode), so be
2044 	 * cautious in our locking. */
2045 
2046 	head = bh = page_buffers(page);
2047 	do {
2048 		unsigned int next_off = curr_off + bh->b_size;
2049 		next = bh->b_this_page;
2050 
2051 		if (offset <= curr_off) {
2052 			/* This block is wholly outside the truncation point */
2053 			lock_buffer(bh);
2054 			may_free &= journal_unmap_buffer(journal, bh,
2055 							 offset > 0);
2056 			unlock_buffer(bh);
2057 		}
2058 		curr_off = next_off;
2059 		bh = next;
2060 
2061 	} while (bh != head);
2062 
2063 	if (!offset) {
2064 		if (may_free && try_to_free_buffers(page))
2065 			J_ASSERT(!page_has_buffers(page));
2066 	}
2067 }
2068 
2069 /*
2070  * File a buffer on the given transaction list.
2071  */
__journal_file_buffer(struct journal_head * jh,transaction_t * transaction,int jlist)2072 void __journal_file_buffer(struct journal_head *jh,
2073 			transaction_t *transaction, int jlist)
2074 {
2075 	struct journal_head **list = NULL;
2076 	int was_dirty = 0;
2077 	struct buffer_head *bh = jh2bh(jh);
2078 
2079 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2080 	assert_spin_locked(&transaction->t_journal->j_list_lock);
2081 
2082 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2083 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2084 				jh->b_transaction == NULL);
2085 
2086 	if (jh->b_transaction && jh->b_jlist == jlist)
2087 		return;
2088 
2089 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2090 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2091 		/*
2092 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2093 		 * instead of buffer_dirty. We should not see a dirty bit set
2094 		 * here because we clear it in do_get_write_access but e.g.
2095 		 * tune2fs can modify the sb and set the dirty bit at any time
2096 		 * so we try to gracefully handle that.
2097 		 */
2098 		if (buffer_dirty(bh))
2099 			warn_dirty_buffer(bh);
2100 		if (test_clear_buffer_dirty(bh) ||
2101 		    test_clear_buffer_jbddirty(bh))
2102 			was_dirty = 1;
2103 	}
2104 
2105 	if (jh->b_transaction)
2106 		__journal_temp_unlink_buffer(jh);
2107 	else
2108 		journal_grab_journal_head(bh);
2109 	jh->b_transaction = transaction;
2110 
2111 	switch (jlist) {
2112 	case BJ_None:
2113 		J_ASSERT_JH(jh, !jh->b_committed_data);
2114 		J_ASSERT_JH(jh, !jh->b_frozen_data);
2115 		return;
2116 	case BJ_SyncData:
2117 		list = &transaction->t_sync_datalist;
2118 		break;
2119 	case BJ_Metadata:
2120 		transaction->t_nr_buffers++;
2121 		list = &transaction->t_buffers;
2122 		break;
2123 	case BJ_Forget:
2124 		list = &transaction->t_forget;
2125 		break;
2126 	case BJ_IO:
2127 		list = &transaction->t_iobuf_list;
2128 		break;
2129 	case BJ_Shadow:
2130 		list = &transaction->t_shadow_list;
2131 		break;
2132 	case BJ_LogCtl:
2133 		list = &transaction->t_log_list;
2134 		break;
2135 	case BJ_Reserved:
2136 		list = &transaction->t_reserved_list;
2137 		break;
2138 	case BJ_Locked:
2139 		list =  &transaction->t_locked_list;
2140 		break;
2141 	}
2142 
2143 	__blist_add_buffer(list, jh);
2144 	jh->b_jlist = jlist;
2145 
2146 	if (was_dirty)
2147 		set_buffer_jbddirty(bh);
2148 }
2149 
journal_file_buffer(struct journal_head * jh,transaction_t * transaction,int jlist)2150 void journal_file_buffer(struct journal_head *jh,
2151 				transaction_t *transaction, int jlist)
2152 {
2153 	jbd_lock_bh_state(jh2bh(jh));
2154 	spin_lock(&transaction->t_journal->j_list_lock);
2155 	__journal_file_buffer(jh, transaction, jlist);
2156 	spin_unlock(&transaction->t_journal->j_list_lock);
2157 	jbd_unlock_bh_state(jh2bh(jh));
2158 }
2159 
2160 /*
2161  * Remove a buffer from its current buffer list in preparation for
2162  * dropping it from its current transaction entirely.  If the buffer has
2163  * already started to be used by a subsequent transaction, refile the
2164  * buffer on that transaction's metadata list.
2165  *
2166  * Called under j_list_lock
2167  * Called under jbd_lock_bh_state(jh2bh(jh))
2168  *
2169  * jh and bh may be already free when this function returns
2170  */
__journal_refile_buffer(struct journal_head * jh)2171 void __journal_refile_buffer(struct journal_head *jh)
2172 {
2173 	int was_dirty, jlist;
2174 	struct buffer_head *bh = jh2bh(jh);
2175 
2176 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2177 	if (jh->b_transaction)
2178 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2179 
2180 	/* If the buffer is now unused, just drop it. */
2181 	if (jh->b_next_transaction == NULL) {
2182 		__journal_unfile_buffer(jh);
2183 		return;
2184 	}
2185 
2186 	/*
2187 	 * It has been modified by a later transaction: add it to the new
2188 	 * transaction's metadata list.
2189 	 */
2190 
2191 	was_dirty = test_clear_buffer_jbddirty(bh);
2192 	__journal_temp_unlink_buffer(jh);
2193 	/*
2194 	 * We set b_transaction here because b_next_transaction will inherit
2195 	 * our jh reference and thus __journal_file_buffer() must not take a
2196 	 * new one.
2197 	 */
2198 	jh->b_transaction = jh->b_next_transaction;
2199 	jh->b_next_transaction = NULL;
2200 	if (buffer_freed(bh))
2201 		jlist = BJ_Forget;
2202 	else if (jh->b_modified)
2203 		jlist = BJ_Metadata;
2204 	else
2205 		jlist = BJ_Reserved;
2206 	__journal_file_buffer(jh, jh->b_transaction, jlist);
2207 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2208 
2209 	if (was_dirty)
2210 		set_buffer_jbddirty(bh);
2211 }
2212 
2213 /*
2214  * __journal_refile_buffer() with necessary locking added. We take our bh
2215  * reference so that we can safely unlock bh.
2216  *
2217  * The jh and bh may be freed by this call.
2218  */
journal_refile_buffer(journal_t * journal,struct journal_head * jh)2219 void journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2220 {
2221 	struct buffer_head *bh = jh2bh(jh);
2222 
2223 	/* Get reference so that buffer cannot be freed before we unlock it */
2224 	get_bh(bh);
2225 	jbd_lock_bh_state(bh);
2226 	spin_lock(&journal->j_list_lock);
2227 	__journal_refile_buffer(jh);
2228 	jbd_unlock_bh_state(bh);
2229 	spin_unlock(&journal->j_list_lock);
2230 	__brelse(bh);
2231 }
2232