1 /*
2  * linux/fs/jbd/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24 
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/ratelimit.h>
40 
41 #include <asm/uaccess.h>
42 #include <asm/page.h>
43 
44 EXPORT_SYMBOL(journal_start);
45 EXPORT_SYMBOL(journal_restart);
46 EXPORT_SYMBOL(journal_extend);
47 EXPORT_SYMBOL(journal_stop);
48 EXPORT_SYMBOL(journal_lock_updates);
49 EXPORT_SYMBOL(journal_unlock_updates);
50 EXPORT_SYMBOL(journal_get_write_access);
51 EXPORT_SYMBOL(journal_get_create_access);
52 EXPORT_SYMBOL(journal_get_undo_access);
53 EXPORT_SYMBOL(journal_dirty_data);
54 EXPORT_SYMBOL(journal_dirty_metadata);
55 EXPORT_SYMBOL(journal_release_buffer);
56 EXPORT_SYMBOL(journal_forget);
57 #if 0
58 EXPORT_SYMBOL(journal_sync_buffer);
59 #endif
60 EXPORT_SYMBOL(journal_flush);
61 EXPORT_SYMBOL(journal_revoke);
62 
63 EXPORT_SYMBOL(journal_init_dev);
64 EXPORT_SYMBOL(journal_init_inode);
65 EXPORT_SYMBOL(journal_update_format);
66 EXPORT_SYMBOL(journal_check_used_features);
67 EXPORT_SYMBOL(journal_check_available_features);
68 EXPORT_SYMBOL(journal_set_features);
69 EXPORT_SYMBOL(journal_create);
70 EXPORT_SYMBOL(journal_load);
71 EXPORT_SYMBOL(journal_destroy);
72 EXPORT_SYMBOL(journal_abort);
73 EXPORT_SYMBOL(journal_errno);
74 EXPORT_SYMBOL(journal_ack_err);
75 EXPORT_SYMBOL(journal_clear_err);
76 EXPORT_SYMBOL(log_wait_commit);
77 EXPORT_SYMBOL(log_start_commit);
78 EXPORT_SYMBOL(journal_start_commit);
79 EXPORT_SYMBOL(journal_force_commit_nested);
80 EXPORT_SYMBOL(journal_wipe);
81 EXPORT_SYMBOL(journal_blocks_per_page);
82 EXPORT_SYMBOL(journal_invalidatepage);
83 EXPORT_SYMBOL(journal_try_to_free_buffers);
84 EXPORT_SYMBOL(journal_force_commit);
85 
86 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
87 static void __journal_abort_soft (journal_t *journal, int errno);
88 static const char *journal_dev_name(journal_t *journal, char *buffer);
89 
90 /*
91  * Helper function used to manage commit timeouts
92  */
93 
commit_timeout(unsigned long __data)94 static void commit_timeout(unsigned long __data)
95 {
96 	struct task_struct * p = (struct task_struct *) __data;
97 
98 	wake_up_process(p);
99 }
100 
101 /*
102  * kjournald: The main thread function used to manage a logging device
103  * journal.
104  *
105  * This kernel thread is responsible for two things:
106  *
107  * 1) COMMIT:  Every so often we need to commit the current state of the
108  *    filesystem to disk.  The journal thread is responsible for writing
109  *    all of the metadata buffers to disk.
110  *
111  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
112  *    of the data in that part of the log has been rewritten elsewhere on
113  *    the disk.  Flushing these old buffers to reclaim space in the log is
114  *    known as checkpointing, and this thread is responsible for that job.
115  */
116 
kjournald(void * arg)117 static int kjournald(void *arg)
118 {
119 	journal_t *journal = arg;
120 	transaction_t *transaction;
121 
122 	/*
123 	 * Set up an interval timer which can be used to trigger a commit wakeup
124 	 * after the commit interval expires
125 	 */
126 	setup_timer(&journal->j_commit_timer, commit_timeout,
127 			(unsigned long)current);
128 
129 	/* Record that the journal thread is running */
130 	journal->j_task = current;
131 	wake_up(&journal->j_wait_done_commit);
132 
133 	printk(KERN_INFO "kjournald starting.  Commit interval %ld seconds\n",
134 			journal->j_commit_interval / HZ);
135 
136 	/*
137 	 * And now, wait forever for commit wakeup events.
138 	 */
139 	spin_lock(&journal->j_state_lock);
140 
141 loop:
142 	if (journal->j_flags & JFS_UNMOUNT)
143 		goto end_loop;
144 
145 	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
146 		journal->j_commit_sequence, journal->j_commit_request);
147 
148 	if (journal->j_commit_sequence != journal->j_commit_request) {
149 		jbd_debug(1, "OK, requests differ\n");
150 		spin_unlock(&journal->j_state_lock);
151 		del_timer_sync(&journal->j_commit_timer);
152 		journal_commit_transaction(journal);
153 		spin_lock(&journal->j_state_lock);
154 		goto loop;
155 	}
156 
157 	wake_up(&journal->j_wait_done_commit);
158 	if (freezing(current)) {
159 		/*
160 		 * The simpler the better. Flushing journal isn't a
161 		 * good idea, because that depends on threads that may
162 		 * be already stopped.
163 		 */
164 		jbd_debug(1, "Now suspending kjournald\n");
165 		spin_unlock(&journal->j_state_lock);
166 		refrigerator();
167 		spin_lock(&journal->j_state_lock);
168 	} else {
169 		/*
170 		 * We assume on resume that commits are already there,
171 		 * so we don't sleep
172 		 */
173 		DEFINE_WAIT(wait);
174 		int should_sleep = 1;
175 
176 		prepare_to_wait(&journal->j_wait_commit, &wait,
177 				TASK_INTERRUPTIBLE);
178 		if (journal->j_commit_sequence != journal->j_commit_request)
179 			should_sleep = 0;
180 		transaction = journal->j_running_transaction;
181 		if (transaction && time_after_eq(jiffies,
182 						transaction->t_expires))
183 			should_sleep = 0;
184 		if (journal->j_flags & JFS_UNMOUNT)
185 			should_sleep = 0;
186 		if (should_sleep) {
187 			spin_unlock(&journal->j_state_lock);
188 			schedule();
189 			spin_lock(&journal->j_state_lock);
190 		}
191 		finish_wait(&journal->j_wait_commit, &wait);
192 	}
193 
194 	jbd_debug(1, "kjournald wakes\n");
195 
196 	/*
197 	 * Were we woken up by a commit wakeup event?
198 	 */
199 	transaction = journal->j_running_transaction;
200 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
201 		journal->j_commit_request = transaction->t_tid;
202 		jbd_debug(1, "woke because of timeout\n");
203 	}
204 	goto loop;
205 
206 end_loop:
207 	spin_unlock(&journal->j_state_lock);
208 	del_timer_sync(&journal->j_commit_timer);
209 	journal->j_task = NULL;
210 	wake_up(&journal->j_wait_done_commit);
211 	jbd_debug(1, "Journal thread exiting.\n");
212 	return 0;
213 }
214 
journal_start_thread(journal_t * journal)215 static int journal_start_thread(journal_t *journal)
216 {
217 	struct task_struct *t;
218 
219 	t = kthread_run(kjournald, journal, "kjournald");
220 	if (IS_ERR(t))
221 		return PTR_ERR(t);
222 
223 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
224 	return 0;
225 }
226 
journal_kill_thread(journal_t * journal)227 static void journal_kill_thread(journal_t *journal)
228 {
229 	spin_lock(&journal->j_state_lock);
230 	journal->j_flags |= JFS_UNMOUNT;
231 
232 	while (journal->j_task) {
233 		wake_up(&journal->j_wait_commit);
234 		spin_unlock(&journal->j_state_lock);
235 		wait_event(journal->j_wait_done_commit,
236 				journal->j_task == NULL);
237 		spin_lock(&journal->j_state_lock);
238 	}
239 	spin_unlock(&journal->j_state_lock);
240 }
241 
242 /*
243  * journal_write_metadata_buffer: write a metadata buffer to the journal.
244  *
245  * Writes a metadata buffer to a given disk block.  The actual IO is not
246  * performed but a new buffer_head is constructed which labels the data
247  * to be written with the correct destination disk block.
248  *
249  * Any magic-number escaping which needs to be done will cause a
250  * copy-out here.  If the buffer happens to start with the
251  * JFS_MAGIC_NUMBER, then we can't write it to the log directly: the
252  * magic number is only written to the log for descripter blocks.  In
253  * this case, we copy the data and replace the first word with 0, and we
254  * return a result code which indicates that this buffer needs to be
255  * marked as an escaped buffer in the corresponding log descriptor
256  * block.  The missing word can then be restored when the block is read
257  * during recovery.
258  *
259  * If the source buffer has already been modified by a new transaction
260  * since we took the last commit snapshot, we use the frozen copy of
261  * that data for IO.  If we end up using the existing buffer_head's data
262  * for the write, then we *have* to lock the buffer to prevent anyone
263  * else from using and possibly modifying it while the IO is in
264  * progress.
265  *
266  * The function returns a pointer to the buffer_heads to be used for IO.
267  *
268  * We assume that the journal has already been locked in this function.
269  *
270  * Return value:
271  *  <0: Error
272  * >=0: Finished OK
273  *
274  * On success:
275  * Bit 0 set == escape performed on the data
276  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
277  */
278 
journal_write_metadata_buffer(transaction_t * transaction,struct journal_head * jh_in,struct journal_head ** jh_out,unsigned int blocknr)279 int journal_write_metadata_buffer(transaction_t *transaction,
280 				  struct journal_head  *jh_in,
281 				  struct journal_head **jh_out,
282 				  unsigned int blocknr)
283 {
284 	int need_copy_out = 0;
285 	int done_copy_out = 0;
286 	int do_escape = 0;
287 	char *mapped_data;
288 	struct buffer_head *new_bh;
289 	struct journal_head *new_jh;
290 	struct page *new_page;
291 	unsigned int new_offset;
292 	struct buffer_head *bh_in = jh2bh(jh_in);
293 	journal_t *journal = transaction->t_journal;
294 
295 	/*
296 	 * The buffer really shouldn't be locked: only the current committing
297 	 * transaction is allowed to write it, so nobody else is allowed
298 	 * to do any IO.
299 	 *
300 	 * akpm: except if we're journalling data, and write() output is
301 	 * also part of a shared mapping, and another thread has
302 	 * decided to launch a writepage() against this buffer.
303 	 */
304 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
305 
306 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
307 	/* keep subsequent assertions sane */
308 	new_bh->b_state = 0;
309 	init_buffer(new_bh, NULL, NULL);
310 	atomic_set(&new_bh->b_count, 1);
311 	new_jh = journal_add_journal_head(new_bh);	/* This sleeps */
312 
313 	/*
314 	 * If a new transaction has already done a buffer copy-out, then
315 	 * we use that version of the data for the commit.
316 	 */
317 	jbd_lock_bh_state(bh_in);
318 repeat:
319 	if (jh_in->b_frozen_data) {
320 		done_copy_out = 1;
321 		new_page = virt_to_page(jh_in->b_frozen_data);
322 		new_offset = offset_in_page(jh_in->b_frozen_data);
323 	} else {
324 		new_page = jh2bh(jh_in)->b_page;
325 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
326 	}
327 
328 	mapped_data = kmap_atomic(new_page, KM_USER0);
329 	/*
330 	 * Check for escaping
331 	 */
332 	if (*((__be32 *)(mapped_data + new_offset)) ==
333 				cpu_to_be32(JFS_MAGIC_NUMBER)) {
334 		need_copy_out = 1;
335 		do_escape = 1;
336 	}
337 	kunmap_atomic(mapped_data, KM_USER0);
338 
339 	/*
340 	 * Do we need to do a data copy?
341 	 */
342 	if (need_copy_out && !done_copy_out) {
343 		char *tmp;
344 
345 		jbd_unlock_bh_state(bh_in);
346 		tmp = jbd_alloc(bh_in->b_size, GFP_NOFS);
347 		jbd_lock_bh_state(bh_in);
348 		if (jh_in->b_frozen_data) {
349 			jbd_free(tmp, bh_in->b_size);
350 			goto repeat;
351 		}
352 
353 		jh_in->b_frozen_data = tmp;
354 		mapped_data = kmap_atomic(new_page, KM_USER0);
355 		memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
356 		kunmap_atomic(mapped_data, KM_USER0);
357 
358 		new_page = virt_to_page(tmp);
359 		new_offset = offset_in_page(tmp);
360 		done_copy_out = 1;
361 	}
362 
363 	/*
364 	 * Did we need to do an escaping?  Now we've done all the
365 	 * copying, we can finally do so.
366 	 */
367 	if (do_escape) {
368 		mapped_data = kmap_atomic(new_page, KM_USER0);
369 		*((unsigned int *)(mapped_data + new_offset)) = 0;
370 		kunmap_atomic(mapped_data, KM_USER0);
371 	}
372 
373 	set_bh_page(new_bh, new_page, new_offset);
374 	new_jh->b_transaction = NULL;
375 	new_bh->b_size = jh2bh(jh_in)->b_size;
376 	new_bh->b_bdev = transaction->t_journal->j_dev;
377 	new_bh->b_blocknr = blocknr;
378 	set_buffer_mapped(new_bh);
379 	set_buffer_dirty(new_bh);
380 
381 	*jh_out = new_jh;
382 
383 	/*
384 	 * The to-be-written buffer needs to get moved to the io queue,
385 	 * and the original buffer whose contents we are shadowing or
386 	 * copying is moved to the transaction's shadow queue.
387 	 */
388 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
389 	spin_lock(&journal->j_list_lock);
390 	__journal_file_buffer(jh_in, transaction, BJ_Shadow);
391 	spin_unlock(&journal->j_list_lock);
392 	jbd_unlock_bh_state(bh_in);
393 
394 	JBUFFER_TRACE(new_jh, "file as BJ_IO");
395 	journal_file_buffer(new_jh, transaction, BJ_IO);
396 
397 	return do_escape | (done_copy_out << 1);
398 }
399 
400 /*
401  * Allocation code for the journal file.  Manage the space left in the
402  * journal, so that we can begin checkpointing when appropriate.
403  */
404 
405 /*
406  * __log_space_left: Return the number of free blocks left in the journal.
407  *
408  * Called with the journal already locked.
409  *
410  * Called under j_state_lock
411  */
412 
__log_space_left(journal_t * journal)413 int __log_space_left(journal_t *journal)
414 {
415 	int left = journal->j_free;
416 
417 	assert_spin_locked(&journal->j_state_lock);
418 
419 	/*
420 	 * Be pessimistic here about the number of those free blocks which
421 	 * might be required for log descriptor control blocks.
422 	 */
423 
424 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
425 
426 	left -= MIN_LOG_RESERVED_BLOCKS;
427 
428 	if (left <= 0)
429 		return 0;
430 	left -= (left >> 3);
431 	return left;
432 }
433 
434 /*
435  * Called under j_state_lock.  Returns true if a transaction commit was started.
436  */
__log_start_commit(journal_t * journal,tid_t target)437 int __log_start_commit(journal_t *journal, tid_t target)
438 {
439 	/*
440 	 * Are we already doing a recent enough commit?
441 	 */
442 	if (!tid_geq(journal->j_commit_request, target)) {
443 		/*
444 		 * We want a new commit: OK, mark the request and wakeup the
445 		 * commit thread.  We do _not_ do the commit ourselves.
446 		 */
447 
448 		journal->j_commit_request = target;
449 		jbd_debug(1, "JBD: requesting commit %d/%d\n",
450 			  journal->j_commit_request,
451 			  journal->j_commit_sequence);
452 		wake_up(&journal->j_wait_commit);
453 		return 1;
454 	}
455 	return 0;
456 }
457 
log_start_commit(journal_t * journal,tid_t tid)458 int log_start_commit(journal_t *journal, tid_t tid)
459 {
460 	int ret;
461 
462 	spin_lock(&journal->j_state_lock);
463 	ret = __log_start_commit(journal, tid);
464 	spin_unlock(&journal->j_state_lock);
465 	return ret;
466 }
467 
468 /*
469  * Force and wait upon a commit if the calling process is not within
470  * transaction.  This is used for forcing out undo-protected data which contains
471  * bitmaps, when the fs is running out of space.
472  *
473  * We can only force the running transaction if we don't have an active handle;
474  * otherwise, we will deadlock.
475  *
476  * Returns true if a transaction was started.
477  */
journal_force_commit_nested(journal_t * journal)478 int journal_force_commit_nested(journal_t *journal)
479 {
480 	transaction_t *transaction = NULL;
481 	tid_t tid;
482 
483 	spin_lock(&journal->j_state_lock);
484 	if (journal->j_running_transaction && !current->journal_info) {
485 		transaction = journal->j_running_transaction;
486 		__log_start_commit(journal, transaction->t_tid);
487 	} else if (journal->j_committing_transaction)
488 		transaction = journal->j_committing_transaction;
489 
490 	if (!transaction) {
491 		spin_unlock(&journal->j_state_lock);
492 		return 0;	/* Nothing to retry */
493 	}
494 
495 	tid = transaction->t_tid;
496 	spin_unlock(&journal->j_state_lock);
497 	log_wait_commit(journal, tid);
498 	return 1;
499 }
500 
501 /*
502  * Start a commit of the current running transaction (if any).  Returns true
503  * if a transaction is going to be committed (or is currently already
504  * committing), and fills its tid in at *ptid
505  */
journal_start_commit(journal_t * journal,tid_t * ptid)506 int journal_start_commit(journal_t *journal, tid_t *ptid)
507 {
508 	int ret = 0;
509 
510 	spin_lock(&journal->j_state_lock);
511 	if (journal->j_running_transaction) {
512 		tid_t tid = journal->j_running_transaction->t_tid;
513 
514 		__log_start_commit(journal, tid);
515 		/* There's a running transaction and we've just made sure
516 		 * it's commit has been scheduled. */
517 		if (ptid)
518 			*ptid = tid;
519 		ret = 1;
520 	} else if (journal->j_committing_transaction) {
521 		/*
522 		 * If ext3_write_super() recently started a commit, then we
523 		 * have to wait for completion of that transaction
524 		 */
525 		if (ptid)
526 			*ptid = journal->j_committing_transaction->t_tid;
527 		ret = 1;
528 	}
529 	spin_unlock(&journal->j_state_lock);
530 	return ret;
531 }
532 
533 /*
534  * Wait for a specified commit to complete.
535  * The caller may not hold the journal lock.
536  */
log_wait_commit(journal_t * journal,tid_t tid)537 int log_wait_commit(journal_t *journal, tid_t tid)
538 {
539 	int err = 0;
540 
541 #ifdef CONFIG_JBD_DEBUG
542 	spin_lock(&journal->j_state_lock);
543 	if (!tid_geq(journal->j_commit_request, tid)) {
544 		printk(KERN_EMERG
545 		       "%s: error: j_commit_request=%d, tid=%d\n",
546 		       __func__, journal->j_commit_request, tid);
547 	}
548 	spin_unlock(&journal->j_state_lock);
549 #endif
550 	spin_lock(&journal->j_state_lock);
551 	while (tid_gt(tid, journal->j_commit_sequence)) {
552 		jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
553 				  tid, journal->j_commit_sequence);
554 		wake_up(&journal->j_wait_commit);
555 		spin_unlock(&journal->j_state_lock);
556 		wait_event(journal->j_wait_done_commit,
557 				!tid_gt(tid, journal->j_commit_sequence));
558 		spin_lock(&journal->j_state_lock);
559 	}
560 	spin_unlock(&journal->j_state_lock);
561 
562 	if (unlikely(is_journal_aborted(journal))) {
563 		printk(KERN_EMERG "journal commit I/O error\n");
564 		err = -EIO;
565 	}
566 	return err;
567 }
568 
569 /*
570  * Return 1 if a given transaction has not yet sent barrier request
571  * connected with a transaction commit. If 0 is returned, transaction
572  * may or may not have sent the barrier. Used to avoid sending barrier
573  * twice in common cases.
574  */
journal_trans_will_send_data_barrier(journal_t * journal,tid_t tid)575 int journal_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
576 {
577 	int ret = 0;
578 	transaction_t *commit_trans;
579 
580 	if (!(journal->j_flags & JFS_BARRIER))
581 		return 0;
582 	spin_lock(&journal->j_state_lock);
583 	/* Transaction already committed? */
584 	if (tid_geq(journal->j_commit_sequence, tid))
585 		goto out;
586 	/*
587 	 * Transaction is being committed and we already proceeded to
588 	 * writing commit record?
589 	 */
590 	commit_trans = journal->j_committing_transaction;
591 	if (commit_trans && commit_trans->t_tid == tid &&
592 	    commit_trans->t_state >= T_COMMIT_RECORD)
593 		goto out;
594 	ret = 1;
595 out:
596 	spin_unlock(&journal->j_state_lock);
597 	return ret;
598 }
599 EXPORT_SYMBOL(journal_trans_will_send_data_barrier);
600 
601 /*
602  * Log buffer allocation routines:
603  */
604 
journal_next_log_block(journal_t * journal,unsigned int * retp)605 int journal_next_log_block(journal_t *journal, unsigned int *retp)
606 {
607 	unsigned int blocknr;
608 
609 	spin_lock(&journal->j_state_lock);
610 	J_ASSERT(journal->j_free > 1);
611 
612 	blocknr = journal->j_head;
613 	journal->j_head++;
614 	journal->j_free--;
615 	if (journal->j_head == journal->j_last)
616 		journal->j_head = journal->j_first;
617 	spin_unlock(&journal->j_state_lock);
618 	return journal_bmap(journal, blocknr, retp);
619 }
620 
621 /*
622  * Conversion of logical to physical block numbers for the journal
623  *
624  * On external journals the journal blocks are identity-mapped, so
625  * this is a no-op.  If needed, we can use j_blk_offset - everything is
626  * ready.
627  */
journal_bmap(journal_t * journal,unsigned int blocknr,unsigned int * retp)628 int journal_bmap(journal_t *journal, unsigned int blocknr,
629 		 unsigned int *retp)
630 {
631 	int err = 0;
632 	unsigned int ret;
633 
634 	if (journal->j_inode) {
635 		ret = bmap(journal->j_inode, blocknr);
636 		if (ret)
637 			*retp = ret;
638 		else {
639 			char b[BDEVNAME_SIZE];
640 
641 			printk(KERN_ALERT "%s: journal block not found "
642 					"at offset %u on %s\n",
643 				__func__,
644 				blocknr,
645 				bdevname(journal->j_dev, b));
646 			err = -EIO;
647 			__journal_abort_soft(journal, err);
648 		}
649 	} else {
650 		*retp = blocknr; /* +journal->j_blk_offset */
651 	}
652 	return err;
653 }
654 
655 /*
656  * We play buffer_head aliasing tricks to write data/metadata blocks to
657  * the journal without copying their contents, but for journal
658  * descriptor blocks we do need to generate bona fide buffers.
659  *
660  * After the caller of journal_get_descriptor_buffer() has finished modifying
661  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
662  * But we don't bother doing that, so there will be coherency problems with
663  * mmaps of blockdevs which hold live JBD-controlled filesystems.
664  */
journal_get_descriptor_buffer(journal_t * journal)665 struct journal_head *journal_get_descriptor_buffer(journal_t *journal)
666 {
667 	struct buffer_head *bh;
668 	unsigned int blocknr;
669 	int err;
670 
671 	err = journal_next_log_block(journal, &blocknr);
672 
673 	if (err)
674 		return NULL;
675 
676 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
677 	if (!bh)
678 		return NULL;
679 	lock_buffer(bh);
680 	memset(bh->b_data, 0, journal->j_blocksize);
681 	set_buffer_uptodate(bh);
682 	unlock_buffer(bh);
683 	BUFFER_TRACE(bh, "return this buffer");
684 	return journal_add_journal_head(bh);
685 }
686 
687 /*
688  * Management for journal control blocks: functions to create and
689  * destroy journal_t structures, and to initialise and read existing
690  * journal blocks from disk.  */
691 
692 /* First: create and setup a journal_t object in memory.  We initialise
693  * very few fields yet: that has to wait until we have created the
694  * journal structures from from scratch, or loaded them from disk. */
695 
journal_init_common(void)696 static journal_t * journal_init_common (void)
697 {
698 	journal_t *journal;
699 	int err;
700 
701 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
702 	if (!journal)
703 		goto fail;
704 
705 	init_waitqueue_head(&journal->j_wait_transaction_locked);
706 	init_waitqueue_head(&journal->j_wait_logspace);
707 	init_waitqueue_head(&journal->j_wait_done_commit);
708 	init_waitqueue_head(&journal->j_wait_checkpoint);
709 	init_waitqueue_head(&journal->j_wait_commit);
710 	init_waitqueue_head(&journal->j_wait_updates);
711 	mutex_init(&journal->j_barrier);
712 	mutex_init(&journal->j_checkpoint_mutex);
713 	spin_lock_init(&journal->j_revoke_lock);
714 	spin_lock_init(&journal->j_list_lock);
715 	spin_lock_init(&journal->j_state_lock);
716 
717 	journal->j_commit_interval = (HZ * JBD_DEFAULT_MAX_COMMIT_AGE);
718 
719 	/* The journal is marked for error until we succeed with recovery! */
720 	journal->j_flags = JFS_ABORT;
721 
722 	/* Set up a default-sized revoke table for the new mount. */
723 	err = journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
724 	if (err) {
725 		kfree(journal);
726 		goto fail;
727 	}
728 	return journal;
729 fail:
730 	return NULL;
731 }
732 
733 /* journal_init_dev and journal_init_inode:
734  *
735  * Create a journal structure assigned some fixed set of disk blocks to
736  * the journal.  We don't actually touch those disk blocks yet, but we
737  * need to set up all of the mapping information to tell the journaling
738  * system where the journal blocks are.
739  *
740  */
741 
742 /**
743  *  journal_t * journal_init_dev() - creates and initialises a journal structure
744  *  @bdev: Block device on which to create the journal
745  *  @fs_dev: Device which hold journalled filesystem for this journal.
746  *  @start: Block nr Start of journal.
747  *  @len:  Length of the journal in blocks.
748  *  @blocksize: blocksize of journalling device
749  *
750  *  Returns: a newly created journal_t *
751  *
752  *  journal_init_dev creates a journal which maps a fixed contiguous
753  *  range of blocks on an arbitrary block device.
754  *
755  */
journal_init_dev(struct block_device * bdev,struct block_device * fs_dev,int start,int len,int blocksize)756 journal_t * journal_init_dev(struct block_device *bdev,
757 			struct block_device *fs_dev,
758 			int start, int len, int blocksize)
759 {
760 	journal_t *journal = journal_init_common();
761 	struct buffer_head *bh;
762 	int n;
763 
764 	if (!journal)
765 		return NULL;
766 
767 	/* journal descriptor can store up to n blocks -bzzz */
768 	journal->j_blocksize = blocksize;
769 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
770 	journal->j_wbufsize = n;
771 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
772 	if (!journal->j_wbuf) {
773 		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
774 			__func__);
775 		goto out_err;
776 	}
777 	journal->j_dev = bdev;
778 	journal->j_fs_dev = fs_dev;
779 	journal->j_blk_offset = start;
780 	journal->j_maxlen = len;
781 
782 	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
783 	if (!bh) {
784 		printk(KERN_ERR
785 		       "%s: Cannot get buffer for journal superblock\n",
786 		       __func__);
787 		goto out_err;
788 	}
789 	journal->j_sb_buffer = bh;
790 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
791 
792 	return journal;
793 out_err:
794 	kfree(journal->j_wbuf);
795 	kfree(journal);
796 	return NULL;
797 }
798 
799 /**
800  *  journal_t * journal_init_inode () - creates a journal which maps to a inode.
801  *  @inode: An inode to create the journal in
802  *
803  * journal_init_inode creates a journal which maps an on-disk inode as
804  * the journal.  The inode must exist already, must support bmap() and
805  * must have all data blocks preallocated.
806  */
journal_init_inode(struct inode * inode)807 journal_t * journal_init_inode (struct inode *inode)
808 {
809 	struct buffer_head *bh;
810 	journal_t *journal = journal_init_common();
811 	int err;
812 	int n;
813 	unsigned int blocknr;
814 
815 	if (!journal)
816 		return NULL;
817 
818 	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
819 	journal->j_inode = inode;
820 	jbd_debug(1,
821 		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
822 		  journal, inode->i_sb->s_id, inode->i_ino,
823 		  (long long) inode->i_size,
824 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
825 
826 	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
827 	journal->j_blocksize = inode->i_sb->s_blocksize;
828 
829 	/* journal descriptor can store up to n blocks -bzzz */
830 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
831 	journal->j_wbufsize = n;
832 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
833 	if (!journal->j_wbuf) {
834 		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
835 			__func__);
836 		goto out_err;
837 	}
838 
839 	err = journal_bmap(journal, 0, &blocknr);
840 	/* If that failed, give up */
841 	if (err) {
842 		printk(KERN_ERR "%s: Cannot locate journal superblock\n",
843 		       __func__);
844 		goto out_err;
845 	}
846 
847 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
848 	if (!bh) {
849 		printk(KERN_ERR
850 		       "%s: Cannot get buffer for journal superblock\n",
851 		       __func__);
852 		goto out_err;
853 	}
854 	journal->j_sb_buffer = bh;
855 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
856 
857 	return journal;
858 out_err:
859 	kfree(journal->j_wbuf);
860 	kfree(journal);
861 	return NULL;
862 }
863 
864 /*
865  * If the journal init or create aborts, we need to mark the journal
866  * superblock as being NULL to prevent the journal destroy from writing
867  * back a bogus superblock.
868  */
journal_fail_superblock(journal_t * journal)869 static void journal_fail_superblock (journal_t *journal)
870 {
871 	struct buffer_head *bh = journal->j_sb_buffer;
872 	brelse(bh);
873 	journal->j_sb_buffer = NULL;
874 }
875 
876 /*
877  * Given a journal_t structure, initialise the various fields for
878  * startup of a new journaling session.  We use this both when creating
879  * a journal, and after recovering an old journal to reset it for
880  * subsequent use.
881  */
882 
journal_reset(journal_t * journal)883 static int journal_reset(journal_t *journal)
884 {
885 	journal_superblock_t *sb = journal->j_superblock;
886 	unsigned int first, last;
887 
888 	first = be32_to_cpu(sb->s_first);
889 	last = be32_to_cpu(sb->s_maxlen);
890 	if (first + JFS_MIN_JOURNAL_BLOCKS > last + 1) {
891 		printk(KERN_ERR "JBD: Journal too short (blocks %u-%u).\n",
892 		       first, last);
893 		journal_fail_superblock(journal);
894 		return -EINVAL;
895 	}
896 
897 	journal->j_first = first;
898 	journal->j_last = last;
899 
900 	journal->j_head = first;
901 	journal->j_tail = first;
902 	journal->j_free = last - first;
903 
904 	journal->j_tail_sequence = journal->j_transaction_sequence;
905 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
906 	journal->j_commit_request = journal->j_commit_sequence;
907 
908 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
909 
910 	/* Add the dynamic fields and write it to disk. */
911 	journal_update_superblock(journal, 1);
912 	return journal_start_thread(journal);
913 }
914 
915 /**
916  * int journal_create() - Initialise the new journal file
917  * @journal: Journal to create. This structure must have been initialised
918  *
919  * Given a journal_t structure which tells us which disk blocks we can
920  * use, create a new journal superblock and initialise all of the
921  * journal fields from scratch.
922  **/
journal_create(journal_t * journal)923 int journal_create(journal_t *journal)
924 {
925 	unsigned int blocknr;
926 	struct buffer_head *bh;
927 	journal_superblock_t *sb;
928 	int i, err;
929 
930 	if (journal->j_maxlen < JFS_MIN_JOURNAL_BLOCKS) {
931 		printk (KERN_ERR "Journal length (%d blocks) too short.\n",
932 			journal->j_maxlen);
933 		journal_fail_superblock(journal);
934 		return -EINVAL;
935 	}
936 
937 	if (journal->j_inode == NULL) {
938 		/*
939 		 * We don't know what block to start at!
940 		 */
941 		printk(KERN_EMERG
942 		       "%s: creation of journal on external device!\n",
943 		       __func__);
944 		BUG();
945 	}
946 
947 	/* Zero out the entire journal on disk.  We cannot afford to
948 	   have any blocks on disk beginning with JFS_MAGIC_NUMBER. */
949 	jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
950 	for (i = 0; i < journal->j_maxlen; i++) {
951 		err = journal_bmap(journal, i, &blocknr);
952 		if (err)
953 			return err;
954 		bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
955 		if (unlikely(!bh))
956 			return -ENOMEM;
957 		lock_buffer(bh);
958 		memset (bh->b_data, 0, journal->j_blocksize);
959 		BUFFER_TRACE(bh, "marking dirty");
960 		mark_buffer_dirty(bh);
961 		BUFFER_TRACE(bh, "marking uptodate");
962 		set_buffer_uptodate(bh);
963 		unlock_buffer(bh);
964 		__brelse(bh);
965 	}
966 
967 	sync_blockdev(journal->j_dev);
968 	jbd_debug(1, "JBD: journal cleared.\n");
969 
970 	/* OK, fill in the initial static fields in the new superblock */
971 	sb = journal->j_superblock;
972 
973 	sb->s_header.h_magic	 = cpu_to_be32(JFS_MAGIC_NUMBER);
974 	sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
975 
976 	sb->s_blocksize	= cpu_to_be32(journal->j_blocksize);
977 	sb->s_maxlen	= cpu_to_be32(journal->j_maxlen);
978 	sb->s_first	= cpu_to_be32(1);
979 
980 	journal->j_transaction_sequence = 1;
981 
982 	journal->j_flags &= ~JFS_ABORT;
983 	journal->j_format_version = 2;
984 
985 	return journal_reset(journal);
986 }
987 
988 /**
989  * void journal_update_superblock() - Update journal sb on disk.
990  * @journal: The journal to update.
991  * @wait: Set to '0' if you don't want to wait for IO completion.
992  *
993  * Update a journal's dynamic superblock fields and write it to disk,
994  * optionally waiting for the IO to complete.
995  */
journal_update_superblock(journal_t * journal,int wait)996 void journal_update_superblock(journal_t *journal, int wait)
997 {
998 	journal_superblock_t *sb = journal->j_superblock;
999 	struct buffer_head *bh = journal->j_sb_buffer;
1000 
1001 	/*
1002 	 * As a special case, if the on-disk copy is already marked as needing
1003 	 * no recovery (s_start == 0) and there are no outstanding transactions
1004 	 * in the filesystem, then we can safely defer the superblock update
1005 	 * until the next commit by setting JFS_FLUSHED.  This avoids
1006 	 * attempting a write to a potential-readonly device.
1007 	 */
1008 	if (sb->s_start == 0 && journal->j_tail_sequence ==
1009 				journal->j_transaction_sequence) {
1010 		jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
1011 			"(start %u, seq %d, errno %d)\n",
1012 			journal->j_tail, journal->j_tail_sequence,
1013 			journal->j_errno);
1014 		goto out;
1015 	}
1016 
1017 	if (buffer_write_io_error(bh)) {
1018 		char b[BDEVNAME_SIZE];
1019 		/*
1020 		 * Oh, dear.  A previous attempt to write the journal
1021 		 * superblock failed.  This could happen because the
1022 		 * USB device was yanked out.  Or it could happen to
1023 		 * be a transient write error and maybe the block will
1024 		 * be remapped.  Nothing we can do but to retry the
1025 		 * write and hope for the best.
1026 		 */
1027 		printk(KERN_ERR "JBD: previous I/O error detected "
1028 		       "for journal superblock update for %s.\n",
1029 		       journal_dev_name(journal, b));
1030 		clear_buffer_write_io_error(bh);
1031 		set_buffer_uptodate(bh);
1032 	}
1033 
1034 	spin_lock(&journal->j_state_lock);
1035 	jbd_debug(1,"JBD: updating superblock (start %u, seq %d, errno %d)\n",
1036 		  journal->j_tail, journal->j_tail_sequence, journal->j_errno);
1037 
1038 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1039 	sb->s_start    = cpu_to_be32(journal->j_tail);
1040 	sb->s_errno    = cpu_to_be32(journal->j_errno);
1041 	spin_unlock(&journal->j_state_lock);
1042 
1043 	BUFFER_TRACE(bh, "marking dirty");
1044 	mark_buffer_dirty(bh);
1045 	if (wait) {
1046 		sync_dirty_buffer(bh);
1047 		if (buffer_write_io_error(bh)) {
1048 			char b[BDEVNAME_SIZE];
1049 			printk(KERN_ERR "JBD: I/O error detected "
1050 			       "when updating journal superblock for %s.\n",
1051 			       journal_dev_name(journal, b));
1052 			clear_buffer_write_io_error(bh);
1053 			set_buffer_uptodate(bh);
1054 		}
1055 	} else
1056 		write_dirty_buffer(bh, WRITE);
1057 
1058 out:
1059 	/* If we have just flushed the log (by marking s_start==0), then
1060 	 * any future commit will have to be careful to update the
1061 	 * superblock again to re-record the true start of the log. */
1062 
1063 	spin_lock(&journal->j_state_lock);
1064 	if (sb->s_start)
1065 		journal->j_flags &= ~JFS_FLUSHED;
1066 	else
1067 		journal->j_flags |= JFS_FLUSHED;
1068 	spin_unlock(&journal->j_state_lock);
1069 }
1070 
1071 /*
1072  * Read the superblock for a given journal, performing initial
1073  * validation of the format.
1074  */
1075 
journal_get_superblock(journal_t * journal)1076 static int journal_get_superblock(journal_t *journal)
1077 {
1078 	struct buffer_head *bh;
1079 	journal_superblock_t *sb;
1080 	int err = -EIO;
1081 
1082 	bh = journal->j_sb_buffer;
1083 
1084 	J_ASSERT(bh != NULL);
1085 	if (!buffer_uptodate(bh)) {
1086 		ll_rw_block(READ, 1, &bh);
1087 		wait_on_buffer(bh);
1088 		if (!buffer_uptodate(bh)) {
1089 			printk (KERN_ERR
1090 				"JBD: IO error reading journal superblock\n");
1091 			goto out;
1092 		}
1093 	}
1094 
1095 	sb = journal->j_superblock;
1096 
1097 	err = -EINVAL;
1098 
1099 	if (sb->s_header.h_magic != cpu_to_be32(JFS_MAGIC_NUMBER) ||
1100 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1101 		printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1102 		goto out;
1103 	}
1104 
1105 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1106 	case JFS_SUPERBLOCK_V1:
1107 		journal->j_format_version = 1;
1108 		break;
1109 	case JFS_SUPERBLOCK_V2:
1110 		journal->j_format_version = 2;
1111 		break;
1112 	default:
1113 		printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1114 		goto out;
1115 	}
1116 
1117 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1118 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1119 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1120 		printk (KERN_WARNING "JBD: journal file too short\n");
1121 		goto out;
1122 	}
1123 
1124 	return 0;
1125 
1126 out:
1127 	journal_fail_superblock(journal);
1128 	return err;
1129 }
1130 
1131 /*
1132  * Load the on-disk journal superblock and read the key fields into the
1133  * journal_t.
1134  */
1135 
load_superblock(journal_t * journal)1136 static int load_superblock(journal_t *journal)
1137 {
1138 	int err;
1139 	journal_superblock_t *sb;
1140 
1141 	err = journal_get_superblock(journal);
1142 	if (err)
1143 		return err;
1144 
1145 	sb = journal->j_superblock;
1146 
1147 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1148 	journal->j_tail = be32_to_cpu(sb->s_start);
1149 	journal->j_first = be32_to_cpu(sb->s_first);
1150 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1151 	journal->j_errno = be32_to_cpu(sb->s_errno);
1152 
1153 	return 0;
1154 }
1155 
1156 
1157 /**
1158  * int journal_load() - Read journal from disk.
1159  * @journal: Journal to act on.
1160  *
1161  * Given a journal_t structure which tells us which disk blocks contain
1162  * a journal, read the journal from disk to initialise the in-memory
1163  * structures.
1164  */
journal_load(journal_t * journal)1165 int journal_load(journal_t *journal)
1166 {
1167 	int err;
1168 	journal_superblock_t *sb;
1169 
1170 	err = load_superblock(journal);
1171 	if (err)
1172 		return err;
1173 
1174 	sb = journal->j_superblock;
1175 	/* If this is a V2 superblock, then we have to check the
1176 	 * features flags on it. */
1177 
1178 	if (journal->j_format_version >= 2) {
1179 		if ((sb->s_feature_ro_compat &
1180 		     ~cpu_to_be32(JFS_KNOWN_ROCOMPAT_FEATURES)) ||
1181 		    (sb->s_feature_incompat &
1182 		     ~cpu_to_be32(JFS_KNOWN_INCOMPAT_FEATURES))) {
1183 			printk (KERN_WARNING
1184 				"JBD: Unrecognised features on journal\n");
1185 			return -EINVAL;
1186 		}
1187 	}
1188 
1189 	/* Let the recovery code check whether it needs to recover any
1190 	 * data from the journal. */
1191 	if (journal_recover(journal))
1192 		goto recovery_error;
1193 
1194 	/* OK, we've finished with the dynamic journal bits:
1195 	 * reinitialise the dynamic contents of the superblock in memory
1196 	 * and reset them on disk. */
1197 	if (journal_reset(journal))
1198 		goto recovery_error;
1199 
1200 	journal->j_flags &= ~JFS_ABORT;
1201 	journal->j_flags |= JFS_LOADED;
1202 	return 0;
1203 
1204 recovery_error:
1205 	printk (KERN_WARNING "JBD: recovery failed\n");
1206 	return -EIO;
1207 }
1208 
1209 /**
1210  * void journal_destroy() - Release a journal_t structure.
1211  * @journal: Journal to act on.
1212  *
1213  * Release a journal_t structure once it is no longer in use by the
1214  * journaled object.
1215  * Return <0 if we couldn't clean up the journal.
1216  */
journal_destroy(journal_t * journal)1217 int journal_destroy(journal_t *journal)
1218 {
1219 	int err = 0;
1220 
1221 
1222 	/* Wait for the commit thread to wake up and die. */
1223 	journal_kill_thread(journal);
1224 
1225 	/* Force a final log commit */
1226 	if (journal->j_running_transaction)
1227 		journal_commit_transaction(journal);
1228 
1229 	/* Force any old transactions to disk */
1230 
1231 	/* Totally anal locking here... */
1232 	spin_lock(&journal->j_list_lock);
1233 	while (journal->j_checkpoint_transactions != NULL) {
1234 		spin_unlock(&journal->j_list_lock);
1235 		log_do_checkpoint(journal);
1236 		spin_lock(&journal->j_list_lock);
1237 	}
1238 
1239 	J_ASSERT(journal->j_running_transaction == NULL);
1240 	J_ASSERT(journal->j_committing_transaction == NULL);
1241 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1242 	spin_unlock(&journal->j_list_lock);
1243 
1244 	if (journal->j_sb_buffer) {
1245 		if (!is_journal_aborted(journal)) {
1246 			/* We can now mark the journal as empty. */
1247 			journal->j_tail = 0;
1248 			journal->j_tail_sequence =
1249 				++journal->j_transaction_sequence;
1250 			journal_update_superblock(journal, 1);
1251 		} else {
1252 			err = -EIO;
1253 		}
1254 		brelse(journal->j_sb_buffer);
1255 	}
1256 
1257 	if (journal->j_inode)
1258 		iput(journal->j_inode);
1259 	if (journal->j_revoke)
1260 		journal_destroy_revoke(journal);
1261 	kfree(journal->j_wbuf);
1262 	kfree(journal);
1263 
1264 	return err;
1265 }
1266 
1267 
1268 /**
1269  *int journal_check_used_features () - Check if features specified are used.
1270  * @journal: Journal to check.
1271  * @compat: bitmask of compatible features
1272  * @ro: bitmask of features that force read-only mount
1273  * @incompat: bitmask of incompatible features
1274  *
1275  * Check whether the journal uses all of a given set of
1276  * features.  Return true (non-zero) if it does.
1277  **/
1278 
journal_check_used_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1279 int journal_check_used_features (journal_t *journal, unsigned long compat,
1280 				 unsigned long ro, unsigned long incompat)
1281 {
1282 	journal_superblock_t *sb;
1283 
1284 	if (!compat && !ro && !incompat)
1285 		return 1;
1286 	if (journal->j_format_version == 1)
1287 		return 0;
1288 
1289 	sb = journal->j_superblock;
1290 
1291 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1292 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1293 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1294 		return 1;
1295 
1296 	return 0;
1297 }
1298 
1299 /**
1300  * int journal_check_available_features() - Check feature set in journalling layer
1301  * @journal: Journal to check.
1302  * @compat: bitmask of compatible features
1303  * @ro: bitmask of features that force read-only mount
1304  * @incompat: bitmask of incompatible features
1305  *
1306  * Check whether the journaling code supports the use of
1307  * all of a given set of features on this journal.  Return true
1308  * (non-zero) if it can. */
1309 
journal_check_available_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1310 int journal_check_available_features (journal_t *journal, unsigned long compat,
1311 				      unsigned long ro, unsigned long incompat)
1312 {
1313 	if (!compat && !ro && !incompat)
1314 		return 1;
1315 
1316 	/* We can support any known requested features iff the
1317 	 * superblock is in version 2.  Otherwise we fail to support any
1318 	 * extended sb features. */
1319 
1320 	if (journal->j_format_version != 2)
1321 		return 0;
1322 
1323 	if ((compat   & JFS_KNOWN_COMPAT_FEATURES) == compat &&
1324 	    (ro       & JFS_KNOWN_ROCOMPAT_FEATURES) == ro &&
1325 	    (incompat & JFS_KNOWN_INCOMPAT_FEATURES) == incompat)
1326 		return 1;
1327 
1328 	return 0;
1329 }
1330 
1331 /**
1332  * int journal_set_features () - Mark a given journal feature in the superblock
1333  * @journal: Journal to act on.
1334  * @compat: bitmask of compatible features
1335  * @ro: bitmask of features that force read-only mount
1336  * @incompat: bitmask of incompatible features
1337  *
1338  * Mark a given journal feature as present on the
1339  * superblock.  Returns true if the requested features could be set.
1340  *
1341  */
1342 
journal_set_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1343 int journal_set_features (journal_t *journal, unsigned long compat,
1344 			  unsigned long ro, unsigned long incompat)
1345 {
1346 	journal_superblock_t *sb;
1347 
1348 	if (journal_check_used_features(journal, compat, ro, incompat))
1349 		return 1;
1350 
1351 	if (!journal_check_available_features(journal, compat, ro, incompat))
1352 		return 0;
1353 
1354 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1355 		  compat, ro, incompat);
1356 
1357 	sb = journal->j_superblock;
1358 
1359 	sb->s_feature_compat    |= cpu_to_be32(compat);
1360 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1361 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1362 
1363 	return 1;
1364 }
1365 
1366 
1367 /**
1368  * int journal_update_format () - Update on-disk journal structure.
1369  * @journal: Journal to act on.
1370  *
1371  * Given an initialised but unloaded journal struct, poke about in the
1372  * on-disk structure to update it to the most recent supported version.
1373  */
journal_update_format(journal_t * journal)1374 int journal_update_format (journal_t *journal)
1375 {
1376 	journal_superblock_t *sb;
1377 	int err;
1378 
1379 	err = journal_get_superblock(journal);
1380 	if (err)
1381 		return err;
1382 
1383 	sb = journal->j_superblock;
1384 
1385 	switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1386 	case JFS_SUPERBLOCK_V2:
1387 		return 0;
1388 	case JFS_SUPERBLOCK_V1:
1389 		return journal_convert_superblock_v1(journal, sb);
1390 	default:
1391 		break;
1392 	}
1393 	return -EINVAL;
1394 }
1395 
journal_convert_superblock_v1(journal_t * journal,journal_superblock_t * sb)1396 static int journal_convert_superblock_v1(journal_t *journal,
1397 					 journal_superblock_t *sb)
1398 {
1399 	int offset, blocksize;
1400 	struct buffer_head *bh;
1401 
1402 	printk(KERN_WARNING
1403 		"JBD: Converting superblock from version 1 to 2.\n");
1404 
1405 	/* Pre-initialise new fields to zero */
1406 	offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1407 	blocksize = be32_to_cpu(sb->s_blocksize);
1408 	memset(&sb->s_feature_compat, 0, blocksize-offset);
1409 
1410 	sb->s_nr_users = cpu_to_be32(1);
1411 	sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
1412 	journal->j_format_version = 2;
1413 
1414 	bh = journal->j_sb_buffer;
1415 	BUFFER_TRACE(bh, "marking dirty");
1416 	mark_buffer_dirty(bh);
1417 	sync_dirty_buffer(bh);
1418 	return 0;
1419 }
1420 
1421 
1422 /**
1423  * int journal_flush () - Flush journal
1424  * @journal: Journal to act on.
1425  *
1426  * Flush all data for a given journal to disk and empty the journal.
1427  * Filesystems can use this when remounting readonly to ensure that
1428  * recovery does not need to happen on remount.
1429  */
1430 
journal_flush(journal_t * journal)1431 int journal_flush(journal_t *journal)
1432 {
1433 	int err = 0;
1434 	transaction_t *transaction = NULL;
1435 	unsigned int old_tail;
1436 
1437 	spin_lock(&journal->j_state_lock);
1438 
1439 	/* Force everything buffered to the log... */
1440 	if (journal->j_running_transaction) {
1441 		transaction = journal->j_running_transaction;
1442 		__log_start_commit(journal, transaction->t_tid);
1443 	} else if (journal->j_committing_transaction)
1444 		transaction = journal->j_committing_transaction;
1445 
1446 	/* Wait for the log commit to complete... */
1447 	if (transaction) {
1448 		tid_t tid = transaction->t_tid;
1449 
1450 		spin_unlock(&journal->j_state_lock);
1451 		log_wait_commit(journal, tid);
1452 	} else {
1453 		spin_unlock(&journal->j_state_lock);
1454 	}
1455 
1456 	/* ...and flush everything in the log out to disk. */
1457 	spin_lock(&journal->j_list_lock);
1458 	while (!err && journal->j_checkpoint_transactions != NULL) {
1459 		spin_unlock(&journal->j_list_lock);
1460 		mutex_lock(&journal->j_checkpoint_mutex);
1461 		err = log_do_checkpoint(journal);
1462 		mutex_unlock(&journal->j_checkpoint_mutex);
1463 		spin_lock(&journal->j_list_lock);
1464 	}
1465 	spin_unlock(&journal->j_list_lock);
1466 
1467 	if (is_journal_aborted(journal))
1468 		return -EIO;
1469 
1470 	cleanup_journal_tail(journal);
1471 
1472 	/* Finally, mark the journal as really needing no recovery.
1473 	 * This sets s_start==0 in the underlying superblock, which is
1474 	 * the magic code for a fully-recovered superblock.  Any future
1475 	 * commits of data to the journal will restore the current
1476 	 * s_start value. */
1477 	spin_lock(&journal->j_state_lock);
1478 	old_tail = journal->j_tail;
1479 	journal->j_tail = 0;
1480 	spin_unlock(&journal->j_state_lock);
1481 	journal_update_superblock(journal, 1);
1482 	spin_lock(&journal->j_state_lock);
1483 	journal->j_tail = old_tail;
1484 
1485 	J_ASSERT(!journal->j_running_transaction);
1486 	J_ASSERT(!journal->j_committing_transaction);
1487 	J_ASSERT(!journal->j_checkpoint_transactions);
1488 	J_ASSERT(journal->j_head == journal->j_tail);
1489 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1490 	spin_unlock(&journal->j_state_lock);
1491 	return 0;
1492 }
1493 
1494 /**
1495  * int journal_wipe() - Wipe journal contents
1496  * @journal: Journal to act on.
1497  * @write: flag (see below)
1498  *
1499  * Wipe out all of the contents of a journal, safely.  This will produce
1500  * a warning if the journal contains any valid recovery information.
1501  * Must be called between journal_init_*() and journal_load().
1502  *
1503  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1504  * we merely suppress recovery.
1505  */
1506 
journal_wipe(journal_t * journal,int write)1507 int journal_wipe(journal_t *journal, int write)
1508 {
1509 	int err = 0;
1510 
1511 	J_ASSERT (!(journal->j_flags & JFS_LOADED));
1512 
1513 	err = load_superblock(journal);
1514 	if (err)
1515 		return err;
1516 
1517 	if (!journal->j_tail)
1518 		goto no_recovery;
1519 
1520 	printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1521 		write ? "Clearing" : "Ignoring");
1522 
1523 	err = journal_skip_recovery(journal);
1524 	if (write)
1525 		journal_update_superblock(journal, 1);
1526 
1527  no_recovery:
1528 	return err;
1529 }
1530 
1531 /*
1532  * journal_dev_name: format a character string to describe on what
1533  * device this journal is present.
1534  */
1535 
journal_dev_name(journal_t * journal,char * buffer)1536 static const char *journal_dev_name(journal_t *journal, char *buffer)
1537 {
1538 	struct block_device *bdev;
1539 
1540 	if (journal->j_inode)
1541 		bdev = journal->j_inode->i_sb->s_bdev;
1542 	else
1543 		bdev = journal->j_dev;
1544 
1545 	return bdevname(bdev, buffer);
1546 }
1547 
1548 /*
1549  * Journal abort has very specific semantics, which we describe
1550  * for journal abort.
1551  *
1552  * Two internal function, which provide abort to te jbd layer
1553  * itself are here.
1554  */
1555 
1556 /*
1557  * Quick version for internal journal use (doesn't lock the journal).
1558  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1559  * and don't attempt to make any other journal updates.
1560  */
__journal_abort_hard(journal_t * journal)1561 static void __journal_abort_hard(journal_t *journal)
1562 {
1563 	transaction_t *transaction;
1564 	char b[BDEVNAME_SIZE];
1565 
1566 	if (journal->j_flags & JFS_ABORT)
1567 		return;
1568 
1569 	printk(KERN_ERR "Aborting journal on device %s.\n",
1570 		journal_dev_name(journal, b));
1571 
1572 	spin_lock(&journal->j_state_lock);
1573 	journal->j_flags |= JFS_ABORT;
1574 	transaction = journal->j_running_transaction;
1575 	if (transaction)
1576 		__log_start_commit(journal, transaction->t_tid);
1577 	spin_unlock(&journal->j_state_lock);
1578 }
1579 
1580 /* Soft abort: record the abort error status in the journal superblock,
1581  * but don't do any other IO. */
__journal_abort_soft(journal_t * journal,int errno)1582 static void __journal_abort_soft (journal_t *journal, int errno)
1583 {
1584 	if (journal->j_flags & JFS_ABORT)
1585 		return;
1586 
1587 	if (!journal->j_errno)
1588 		journal->j_errno = errno;
1589 
1590 	__journal_abort_hard(journal);
1591 
1592 	if (errno)
1593 		journal_update_superblock(journal, 1);
1594 }
1595 
1596 /**
1597  * void journal_abort () - Shutdown the journal immediately.
1598  * @journal: the journal to shutdown.
1599  * @errno:   an error number to record in the journal indicating
1600  *           the reason for the shutdown.
1601  *
1602  * Perform a complete, immediate shutdown of the ENTIRE
1603  * journal (not of a single transaction).  This operation cannot be
1604  * undone without closing and reopening the journal.
1605  *
1606  * The journal_abort function is intended to support higher level error
1607  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1608  * mode.
1609  *
1610  * Journal abort has very specific semantics.  Any existing dirty,
1611  * unjournaled buffers in the main filesystem will still be written to
1612  * disk by bdflush, but the journaling mechanism will be suspended
1613  * immediately and no further transaction commits will be honoured.
1614  *
1615  * Any dirty, journaled buffers will be written back to disk without
1616  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1617  * filesystem, but we _do_ attempt to leave as much data as possible
1618  * behind for fsck to use for cleanup.
1619  *
1620  * Any attempt to get a new transaction handle on a journal which is in
1621  * ABORT state will just result in an -EROFS error return.  A
1622  * journal_stop on an existing handle will return -EIO if we have
1623  * entered abort state during the update.
1624  *
1625  * Recursive transactions are not disturbed by journal abort until the
1626  * final journal_stop, which will receive the -EIO error.
1627  *
1628  * Finally, the journal_abort call allows the caller to supply an errno
1629  * which will be recorded (if possible) in the journal superblock.  This
1630  * allows a client to record failure conditions in the middle of a
1631  * transaction without having to complete the transaction to record the
1632  * failure to disk.  ext3_error, for example, now uses this
1633  * functionality.
1634  *
1635  * Errors which originate from within the journaling layer will NOT
1636  * supply an errno; a null errno implies that absolutely no further
1637  * writes are done to the journal (unless there are any already in
1638  * progress).
1639  *
1640  */
1641 
journal_abort(journal_t * journal,int errno)1642 void journal_abort(journal_t *journal, int errno)
1643 {
1644 	__journal_abort_soft(journal, errno);
1645 }
1646 
1647 /**
1648  * int journal_errno () - returns the journal's error state.
1649  * @journal: journal to examine.
1650  *
1651  * This is the errno numbet set with journal_abort(), the last
1652  * time the journal was mounted - if the journal was stopped
1653  * without calling abort this will be 0.
1654  *
1655  * If the journal has been aborted on this mount time -EROFS will
1656  * be returned.
1657  */
journal_errno(journal_t * journal)1658 int journal_errno(journal_t *journal)
1659 {
1660 	int err;
1661 
1662 	spin_lock(&journal->j_state_lock);
1663 	if (journal->j_flags & JFS_ABORT)
1664 		err = -EROFS;
1665 	else
1666 		err = journal->j_errno;
1667 	spin_unlock(&journal->j_state_lock);
1668 	return err;
1669 }
1670 
1671 /**
1672  * int journal_clear_err () - clears the journal's error state
1673  * @journal: journal to act on.
1674  *
1675  * An error must be cleared or Acked to take a FS out of readonly
1676  * mode.
1677  */
journal_clear_err(journal_t * journal)1678 int journal_clear_err(journal_t *journal)
1679 {
1680 	int err = 0;
1681 
1682 	spin_lock(&journal->j_state_lock);
1683 	if (journal->j_flags & JFS_ABORT)
1684 		err = -EROFS;
1685 	else
1686 		journal->j_errno = 0;
1687 	spin_unlock(&journal->j_state_lock);
1688 	return err;
1689 }
1690 
1691 /**
1692  * void journal_ack_err() - Ack journal err.
1693  * @journal: journal to act on.
1694  *
1695  * An error must be cleared or Acked to take a FS out of readonly
1696  * mode.
1697  */
journal_ack_err(journal_t * journal)1698 void journal_ack_err(journal_t *journal)
1699 {
1700 	spin_lock(&journal->j_state_lock);
1701 	if (journal->j_errno)
1702 		journal->j_flags |= JFS_ACK_ERR;
1703 	spin_unlock(&journal->j_state_lock);
1704 }
1705 
journal_blocks_per_page(struct inode * inode)1706 int journal_blocks_per_page(struct inode *inode)
1707 {
1708 	return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1709 }
1710 
1711 /*
1712  * Journal_head storage management
1713  */
1714 static struct kmem_cache *journal_head_cache;
1715 #ifdef CONFIG_JBD_DEBUG
1716 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1717 #endif
1718 
journal_init_journal_head_cache(void)1719 static int journal_init_journal_head_cache(void)
1720 {
1721 	int retval;
1722 
1723 	J_ASSERT(journal_head_cache == NULL);
1724 	journal_head_cache = kmem_cache_create("journal_head",
1725 				sizeof(struct journal_head),
1726 				0,		/* offset */
1727 				SLAB_TEMPORARY,	/* flags */
1728 				NULL);		/* ctor */
1729 	retval = 0;
1730 	if (!journal_head_cache) {
1731 		retval = -ENOMEM;
1732 		printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1733 	}
1734 	return retval;
1735 }
1736 
journal_destroy_journal_head_cache(void)1737 static void journal_destroy_journal_head_cache(void)
1738 {
1739 	if (journal_head_cache) {
1740 		kmem_cache_destroy(journal_head_cache);
1741 		journal_head_cache = NULL;
1742 	}
1743 }
1744 
1745 /*
1746  * journal_head splicing and dicing
1747  */
journal_alloc_journal_head(void)1748 static struct journal_head *journal_alloc_journal_head(void)
1749 {
1750 	struct journal_head *ret;
1751 
1752 #ifdef CONFIG_JBD_DEBUG
1753 	atomic_inc(&nr_journal_heads);
1754 #endif
1755 	ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1756 	if (ret == NULL) {
1757 		jbd_debug(1, "out of memory for journal_head\n");
1758 		printk_ratelimited(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1759 				   __func__);
1760 
1761 		while (ret == NULL) {
1762 			yield();
1763 			ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1764 		}
1765 	}
1766 	return ret;
1767 }
1768 
journal_free_journal_head(struct journal_head * jh)1769 static void journal_free_journal_head(struct journal_head *jh)
1770 {
1771 #ifdef CONFIG_JBD_DEBUG
1772 	atomic_dec(&nr_journal_heads);
1773 	memset(jh, JBD_POISON_FREE, sizeof(*jh));
1774 #endif
1775 	kmem_cache_free(journal_head_cache, jh);
1776 }
1777 
1778 /*
1779  * A journal_head is attached to a buffer_head whenever JBD has an
1780  * interest in the buffer.
1781  *
1782  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1783  * is set.  This bit is tested in core kernel code where we need to take
1784  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
1785  * there.
1786  *
1787  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1788  *
1789  * When a buffer has its BH_JBD bit set it is immune from being released by
1790  * core kernel code, mainly via ->b_count.
1791  *
1792  * A journal_head may be detached from its buffer_head when the journal_head's
1793  * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
1794  * Various places in JBD call journal_remove_journal_head() to indicate that the
1795  * journal_head can be dropped if needed.
1796  *
1797  * Various places in the kernel want to attach a journal_head to a buffer_head
1798  * _before_ attaching the journal_head to a transaction.  To protect the
1799  * journal_head in this situation, journal_add_journal_head elevates the
1800  * journal_head's b_jcount refcount by one.  The caller must call
1801  * journal_put_journal_head() to undo this.
1802  *
1803  * So the typical usage would be:
1804  *
1805  *	(Attach a journal_head if needed.  Increments b_jcount)
1806  *	struct journal_head *jh = journal_add_journal_head(bh);
1807  *	...
1808  *	jh->b_transaction = xxx;
1809  *	journal_put_journal_head(jh);
1810  *
1811  * Now, the journal_head's b_jcount is zero, but it is safe from being released
1812  * because it has a non-zero b_transaction.
1813  */
1814 
1815 /*
1816  * Give a buffer_head a journal_head.
1817  *
1818  * Doesn't need the journal lock.
1819  * May sleep.
1820  */
journal_add_journal_head(struct buffer_head * bh)1821 struct journal_head *journal_add_journal_head(struct buffer_head *bh)
1822 {
1823 	struct journal_head *jh;
1824 	struct journal_head *new_jh = NULL;
1825 
1826 repeat:
1827 	if (!buffer_jbd(bh)) {
1828 		new_jh = journal_alloc_journal_head();
1829 		memset(new_jh, 0, sizeof(*new_jh));
1830 	}
1831 
1832 	jbd_lock_bh_journal_head(bh);
1833 	if (buffer_jbd(bh)) {
1834 		jh = bh2jh(bh);
1835 	} else {
1836 		J_ASSERT_BH(bh,
1837 			(atomic_read(&bh->b_count) > 0) ||
1838 			(bh->b_page && bh->b_page->mapping));
1839 
1840 		if (!new_jh) {
1841 			jbd_unlock_bh_journal_head(bh);
1842 			goto repeat;
1843 		}
1844 
1845 		jh = new_jh;
1846 		new_jh = NULL;		/* We consumed it */
1847 		set_buffer_jbd(bh);
1848 		bh->b_private = jh;
1849 		jh->b_bh = bh;
1850 		get_bh(bh);
1851 		BUFFER_TRACE(bh, "added journal_head");
1852 	}
1853 	jh->b_jcount++;
1854 	jbd_unlock_bh_journal_head(bh);
1855 	if (new_jh)
1856 		journal_free_journal_head(new_jh);
1857 	return bh->b_private;
1858 }
1859 
1860 /*
1861  * Grab a ref against this buffer_head's journal_head.  If it ended up not
1862  * having a journal_head, return NULL
1863  */
journal_grab_journal_head(struct buffer_head * bh)1864 struct journal_head *journal_grab_journal_head(struct buffer_head *bh)
1865 {
1866 	struct journal_head *jh = NULL;
1867 
1868 	jbd_lock_bh_journal_head(bh);
1869 	if (buffer_jbd(bh)) {
1870 		jh = bh2jh(bh);
1871 		jh->b_jcount++;
1872 	}
1873 	jbd_unlock_bh_journal_head(bh);
1874 	return jh;
1875 }
1876 
__journal_remove_journal_head(struct buffer_head * bh)1877 static void __journal_remove_journal_head(struct buffer_head *bh)
1878 {
1879 	struct journal_head *jh = bh2jh(bh);
1880 
1881 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
1882 
1883 	get_bh(bh);
1884 	if (jh->b_jcount == 0) {
1885 		if (jh->b_transaction == NULL &&
1886 				jh->b_next_transaction == NULL &&
1887 				jh->b_cp_transaction == NULL) {
1888 			J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
1889 			J_ASSERT_BH(bh, buffer_jbd(bh));
1890 			J_ASSERT_BH(bh, jh2bh(jh) == bh);
1891 			BUFFER_TRACE(bh, "remove journal_head");
1892 			if (jh->b_frozen_data) {
1893 				printk(KERN_WARNING "%s: freeing "
1894 						"b_frozen_data\n",
1895 						__func__);
1896 				jbd_free(jh->b_frozen_data, bh->b_size);
1897 			}
1898 			if (jh->b_committed_data) {
1899 				printk(KERN_WARNING "%s: freeing "
1900 						"b_committed_data\n",
1901 						__func__);
1902 				jbd_free(jh->b_committed_data, bh->b_size);
1903 			}
1904 			bh->b_private = NULL;
1905 			jh->b_bh = NULL;	/* debug, really */
1906 			clear_buffer_jbd(bh);
1907 			__brelse(bh);
1908 			journal_free_journal_head(jh);
1909 		} else {
1910 			BUFFER_TRACE(bh, "journal_head was locked");
1911 		}
1912 	}
1913 }
1914 
1915 /*
1916  * journal_remove_journal_head(): if the buffer isn't attached to a transaction
1917  * and has a zero b_jcount then remove and release its journal_head.   If we did
1918  * see that the buffer is not used by any transaction we also "logically"
1919  * decrement ->b_count.
1920  *
1921  * We in fact take an additional increment on ->b_count as a convenience,
1922  * because the caller usually wants to do additional things with the bh
1923  * after calling here.
1924  * The caller of journal_remove_journal_head() *must* run __brelse(bh) at some
1925  * time.  Once the caller has run __brelse(), the buffer is eligible for
1926  * reaping by try_to_free_buffers().
1927  */
journal_remove_journal_head(struct buffer_head * bh)1928 void journal_remove_journal_head(struct buffer_head *bh)
1929 {
1930 	jbd_lock_bh_journal_head(bh);
1931 	__journal_remove_journal_head(bh);
1932 	jbd_unlock_bh_journal_head(bh);
1933 }
1934 
1935 /*
1936  * Drop a reference on the passed journal_head.  If it fell to zero then try to
1937  * release the journal_head from the buffer_head.
1938  */
journal_put_journal_head(struct journal_head * jh)1939 void journal_put_journal_head(struct journal_head *jh)
1940 {
1941 	struct buffer_head *bh = jh2bh(jh);
1942 
1943 	jbd_lock_bh_journal_head(bh);
1944 	J_ASSERT_JH(jh, jh->b_jcount > 0);
1945 	--jh->b_jcount;
1946 	if (!jh->b_jcount && !jh->b_transaction) {
1947 		__journal_remove_journal_head(bh);
1948 		__brelse(bh);
1949 	}
1950 	jbd_unlock_bh_journal_head(bh);
1951 }
1952 
1953 /*
1954  * debugfs tunables
1955  */
1956 #ifdef CONFIG_JBD_DEBUG
1957 
1958 u8 journal_enable_debug __read_mostly;
1959 EXPORT_SYMBOL(journal_enable_debug);
1960 
1961 static struct dentry *jbd_debugfs_dir;
1962 static struct dentry *jbd_debug;
1963 
jbd_create_debugfs_entry(void)1964 static void __init jbd_create_debugfs_entry(void)
1965 {
1966 	jbd_debugfs_dir = debugfs_create_dir("jbd", NULL);
1967 	if (jbd_debugfs_dir)
1968 		jbd_debug = debugfs_create_u8("jbd-debug", S_IRUGO | S_IWUSR,
1969 					       jbd_debugfs_dir,
1970 					       &journal_enable_debug);
1971 }
1972 
jbd_remove_debugfs_entry(void)1973 static void __exit jbd_remove_debugfs_entry(void)
1974 {
1975 	debugfs_remove(jbd_debug);
1976 	debugfs_remove(jbd_debugfs_dir);
1977 }
1978 
1979 #else
1980 
jbd_create_debugfs_entry(void)1981 static inline void jbd_create_debugfs_entry(void)
1982 {
1983 }
1984 
jbd_remove_debugfs_entry(void)1985 static inline void jbd_remove_debugfs_entry(void)
1986 {
1987 }
1988 
1989 #endif
1990 
1991 struct kmem_cache *jbd_handle_cache;
1992 
journal_init_handle_cache(void)1993 static int __init journal_init_handle_cache(void)
1994 {
1995 	jbd_handle_cache = kmem_cache_create("journal_handle",
1996 				sizeof(handle_t),
1997 				0,		/* offset */
1998 				SLAB_TEMPORARY,	/* flags */
1999 				NULL);		/* ctor */
2000 	if (jbd_handle_cache == NULL) {
2001 		printk(KERN_EMERG "JBD: failed to create handle cache\n");
2002 		return -ENOMEM;
2003 	}
2004 	return 0;
2005 }
2006 
journal_destroy_handle_cache(void)2007 static void journal_destroy_handle_cache(void)
2008 {
2009 	if (jbd_handle_cache)
2010 		kmem_cache_destroy(jbd_handle_cache);
2011 }
2012 
2013 /*
2014  * Module startup and shutdown
2015  */
2016 
journal_init_caches(void)2017 static int __init journal_init_caches(void)
2018 {
2019 	int ret;
2020 
2021 	ret = journal_init_revoke_caches();
2022 	if (ret == 0)
2023 		ret = journal_init_journal_head_cache();
2024 	if (ret == 0)
2025 		ret = journal_init_handle_cache();
2026 	return ret;
2027 }
2028 
journal_destroy_caches(void)2029 static void journal_destroy_caches(void)
2030 {
2031 	journal_destroy_revoke_caches();
2032 	journal_destroy_journal_head_cache();
2033 	journal_destroy_handle_cache();
2034 }
2035 
journal_init(void)2036 static int __init journal_init(void)
2037 {
2038 	int ret;
2039 
2040 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2041 
2042 	ret = journal_init_caches();
2043 	if (ret != 0)
2044 		journal_destroy_caches();
2045 	jbd_create_debugfs_entry();
2046 	return ret;
2047 }
2048 
journal_exit(void)2049 static void __exit journal_exit(void)
2050 {
2051 #ifdef CONFIG_JBD_DEBUG
2052 	int n = atomic_read(&nr_journal_heads);
2053 	if (n)
2054 		printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2055 #endif
2056 	jbd_remove_debugfs_entry();
2057 	journal_destroy_caches();
2058 }
2059 
2060 MODULE_LICENSE("GPL");
2061 module_init(journal_init);
2062 module_exit(journal_exit);
2063 
2064