1 /*
2  * linux/fs/jbd/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19 
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 
30 static void __journal_temp_unlink_buffer(struct journal_head *jh);
31 
32 /*
33  * get_transaction: obtain a new transaction_t object.
34  *
35  * Simply allocate and initialise a new transaction.  Create it in
36  * RUNNING state and add it to the current journal (which should not
37  * have an existing running transaction: we only make a new transaction
38  * once we have started to commit the old one).
39  *
40  * Preconditions:
41  *	The journal MUST be locked.  We don't perform atomic mallocs on the
42  *	new transaction	and we can't block without protecting against other
43  *	processes trying to touch the journal while it is in transition.
44  *
45  * Called under j_state_lock
46  */
47 
48 static transaction_t *
get_transaction(journal_t * journal,transaction_t * transaction)49 get_transaction(journal_t *journal, transaction_t *transaction)
50 {
51 	transaction->t_journal = journal;
52 	transaction->t_state = T_RUNNING;
53 	transaction->t_start_time = ktime_get();
54 	transaction->t_tid = journal->j_transaction_sequence++;
55 	transaction->t_expires = jiffies + journal->j_commit_interval;
56 	spin_lock_init(&transaction->t_handle_lock);
57 
58 	/* Set up the commit timer for the new transaction. */
59 	journal->j_commit_timer.expires =
60 				round_jiffies_up(transaction->t_expires);
61 	add_timer(&journal->j_commit_timer);
62 
63 	J_ASSERT(journal->j_running_transaction == NULL);
64 	journal->j_running_transaction = transaction;
65 
66 	return transaction;
67 }
68 
69 /*
70  * Handle management.
71  *
72  * A handle_t is an object which represents a single atomic update to a
73  * filesystem, and which tracks all of the modifications which form part
74  * of that one update.
75  */
76 
77 /*
78  * start_this_handle: Given a handle, deal with any locking or stalling
79  * needed to make sure that there is enough journal space for the handle
80  * to begin.  Attach the handle to a transaction and set up the
81  * transaction's buffer credits.
82  */
83 
start_this_handle(journal_t * journal,handle_t * handle)84 static int start_this_handle(journal_t *journal, handle_t *handle)
85 {
86 	transaction_t *transaction;
87 	int needed;
88 	int nblocks = handle->h_buffer_credits;
89 	transaction_t *new_transaction = NULL;
90 	int ret = 0;
91 
92 	if (nblocks > journal->j_max_transaction_buffers) {
93 		printk(KERN_ERR "JBD: %s wants too many credits (%d > %d)\n",
94 		       current->comm, nblocks,
95 		       journal->j_max_transaction_buffers);
96 		ret = -ENOSPC;
97 		goto out;
98 	}
99 
100 alloc_transaction:
101 	if (!journal->j_running_transaction) {
102 		new_transaction = kzalloc(sizeof(*new_transaction),
103 						GFP_NOFS|__GFP_NOFAIL);
104 		if (!new_transaction) {
105 			ret = -ENOMEM;
106 			goto out;
107 		}
108 	}
109 
110 	jbd_debug(3, "New handle %p going live.\n", handle);
111 
112 repeat:
113 
114 	/*
115 	 * We need to hold j_state_lock until t_updates has been incremented,
116 	 * for proper journal barrier handling
117 	 */
118 	spin_lock(&journal->j_state_lock);
119 repeat_locked:
120 	if (is_journal_aborted(journal) ||
121 	    (journal->j_errno != 0 && !(journal->j_flags & JFS_ACK_ERR))) {
122 		spin_unlock(&journal->j_state_lock);
123 		ret = -EROFS;
124 		goto out;
125 	}
126 
127 	/* Wait on the journal's transaction barrier if necessary */
128 	if (journal->j_barrier_count) {
129 		spin_unlock(&journal->j_state_lock);
130 		wait_event(journal->j_wait_transaction_locked,
131 				journal->j_barrier_count == 0);
132 		goto repeat;
133 	}
134 
135 	if (!journal->j_running_transaction) {
136 		if (!new_transaction) {
137 			spin_unlock(&journal->j_state_lock);
138 			goto alloc_transaction;
139 		}
140 		get_transaction(journal, new_transaction);
141 		new_transaction = NULL;
142 	}
143 
144 	transaction = journal->j_running_transaction;
145 
146 	/*
147 	 * If the current transaction is locked down for commit, wait for the
148 	 * lock to be released.
149 	 */
150 	if (transaction->t_state == T_LOCKED) {
151 		DEFINE_WAIT(wait);
152 
153 		prepare_to_wait(&journal->j_wait_transaction_locked,
154 					&wait, TASK_UNINTERRUPTIBLE);
155 		spin_unlock(&journal->j_state_lock);
156 		schedule();
157 		finish_wait(&journal->j_wait_transaction_locked, &wait);
158 		goto repeat;
159 	}
160 
161 	/*
162 	 * If there is not enough space left in the log to write all potential
163 	 * buffers requested by this operation, we need to stall pending a log
164 	 * checkpoint to free some more log space.
165 	 */
166 	spin_lock(&transaction->t_handle_lock);
167 	needed = transaction->t_outstanding_credits + nblocks;
168 
169 	if (needed > journal->j_max_transaction_buffers) {
170 		/*
171 		 * If the current transaction is already too large, then start
172 		 * to commit it: we can then go back and attach this handle to
173 		 * a new transaction.
174 		 */
175 		DEFINE_WAIT(wait);
176 
177 		jbd_debug(2, "Handle %p starting new commit...\n", handle);
178 		spin_unlock(&transaction->t_handle_lock);
179 		prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
180 				TASK_UNINTERRUPTIBLE);
181 		__log_start_commit(journal, transaction->t_tid);
182 		spin_unlock(&journal->j_state_lock);
183 		schedule();
184 		finish_wait(&journal->j_wait_transaction_locked, &wait);
185 		goto repeat;
186 	}
187 
188 	/*
189 	 * The commit code assumes that it can get enough log space
190 	 * without forcing a checkpoint.  This is *critical* for
191 	 * correctness: a checkpoint of a buffer which is also
192 	 * associated with a committing transaction creates a deadlock,
193 	 * so commit simply cannot force through checkpoints.
194 	 *
195 	 * We must therefore ensure the necessary space in the journal
196 	 * *before* starting to dirty potentially checkpointed buffers
197 	 * in the new transaction.
198 	 *
199 	 * The worst part is, any transaction currently committing can
200 	 * reduce the free space arbitrarily.  Be careful to account for
201 	 * those buffers when checkpointing.
202 	 */
203 
204 	/*
205 	 * @@@ AKPM: This seems rather over-defensive.  We're giving commit
206 	 * a _lot_ of headroom: 1/4 of the journal plus the size of
207 	 * the committing transaction.  Really, we only need to give it
208 	 * committing_transaction->t_outstanding_credits plus "enough" for
209 	 * the log control blocks.
210 	 * Also, this test is inconsistent with the matching one in
211 	 * journal_extend().
212 	 */
213 	if (__log_space_left(journal) < jbd_space_needed(journal)) {
214 		jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
215 		spin_unlock(&transaction->t_handle_lock);
216 		__log_wait_for_space(journal);
217 		goto repeat_locked;
218 	}
219 
220 	/* OK, account for the buffers that this operation expects to
221 	 * use and add the handle to the running transaction. */
222 
223 	handle->h_transaction = transaction;
224 	transaction->t_outstanding_credits += nblocks;
225 	transaction->t_updates++;
226 	transaction->t_handle_count++;
227 	jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
228 		  handle, nblocks, transaction->t_outstanding_credits,
229 		  __log_space_left(journal));
230 	spin_unlock(&transaction->t_handle_lock);
231 	spin_unlock(&journal->j_state_lock);
232 
233 	lock_map_acquire(&handle->h_lockdep_map);
234 out:
235 	if (unlikely(new_transaction))		/* It's usually NULL */
236 		kfree(new_transaction);
237 	return ret;
238 }
239 
240 static struct lock_class_key jbd_handle_key;
241 
242 /* Allocate a new handle.  This should probably be in a slab... */
new_handle(int nblocks)243 static handle_t *new_handle(int nblocks)
244 {
245 	handle_t *handle = jbd_alloc_handle(GFP_NOFS);
246 	if (!handle)
247 		return NULL;
248 	memset(handle, 0, sizeof(*handle));
249 	handle->h_buffer_credits = nblocks;
250 	handle->h_ref = 1;
251 
252 	lockdep_init_map(&handle->h_lockdep_map, "jbd_handle", &jbd_handle_key, 0);
253 
254 	return handle;
255 }
256 
257 /**
258  * handle_t *journal_start() - Obtain a new handle.
259  * @journal: Journal to start transaction on.
260  * @nblocks: number of block buffer we might modify
261  *
262  * We make sure that the transaction can guarantee at least nblocks of
263  * modified buffers in the log.  We block until the log can guarantee
264  * that much space.
265  *
266  * This function is visible to journal users (like ext3fs), so is not
267  * called with the journal already locked.
268  *
269  * Return a pointer to a newly allocated handle, or NULL on failure
270  */
journal_start(journal_t * journal,int nblocks)271 handle_t *journal_start(journal_t *journal, int nblocks)
272 {
273 	handle_t *handle = journal_current_handle();
274 	int err;
275 
276 	if (!journal)
277 		return ERR_PTR(-EROFS);
278 
279 	if (handle) {
280 		J_ASSERT(handle->h_transaction->t_journal == journal);
281 		handle->h_ref++;
282 		return handle;
283 	}
284 
285 	handle = new_handle(nblocks);
286 	if (!handle)
287 		return ERR_PTR(-ENOMEM);
288 
289 	current->journal_info = handle;
290 
291 	err = start_this_handle(journal, handle);
292 	if (err < 0) {
293 		jbd_free_handle(handle);
294 		current->journal_info = NULL;
295 		handle = ERR_PTR(err);
296 	}
297 	return handle;
298 }
299 
300 /**
301  * int journal_extend() - extend buffer credits.
302  * @handle:  handle to 'extend'
303  * @nblocks: nr blocks to try to extend by.
304  *
305  * Some transactions, such as large extends and truncates, can be done
306  * atomically all at once or in several stages.  The operation requests
307  * a credit for a number of buffer modications in advance, but can
308  * extend its credit if it needs more.
309  *
310  * journal_extend tries to give the running handle more buffer credits.
311  * It does not guarantee that allocation - this is a best-effort only.
312  * The calling process MUST be able to deal cleanly with a failure to
313  * extend here.
314  *
315  * Return 0 on success, non-zero on failure.
316  *
317  * return code < 0 implies an error
318  * return code > 0 implies normal transaction-full status.
319  */
journal_extend(handle_t * handle,int nblocks)320 int journal_extend(handle_t *handle, int nblocks)
321 {
322 	transaction_t *transaction = handle->h_transaction;
323 	journal_t *journal = transaction->t_journal;
324 	int result;
325 	int wanted;
326 
327 	result = -EIO;
328 	if (is_handle_aborted(handle))
329 		goto out;
330 
331 	result = 1;
332 
333 	spin_lock(&journal->j_state_lock);
334 
335 	/* Don't extend a locked-down transaction! */
336 	if (handle->h_transaction->t_state != T_RUNNING) {
337 		jbd_debug(3, "denied handle %p %d blocks: "
338 			  "transaction not running\n", handle, nblocks);
339 		goto error_out;
340 	}
341 
342 	spin_lock(&transaction->t_handle_lock);
343 	wanted = transaction->t_outstanding_credits + nblocks;
344 
345 	if (wanted > journal->j_max_transaction_buffers) {
346 		jbd_debug(3, "denied handle %p %d blocks: "
347 			  "transaction too large\n", handle, nblocks);
348 		goto unlock;
349 	}
350 
351 	if (wanted > __log_space_left(journal)) {
352 		jbd_debug(3, "denied handle %p %d blocks: "
353 			  "insufficient log space\n", handle, nblocks);
354 		goto unlock;
355 	}
356 
357 	handle->h_buffer_credits += nblocks;
358 	transaction->t_outstanding_credits += nblocks;
359 	result = 0;
360 
361 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
362 unlock:
363 	spin_unlock(&transaction->t_handle_lock);
364 error_out:
365 	spin_unlock(&journal->j_state_lock);
366 out:
367 	return result;
368 }
369 
370 
371 /**
372  * int journal_restart() - restart a handle.
373  * @handle:  handle to restart
374  * @nblocks: nr credits requested
375  *
376  * Restart a handle for a multi-transaction filesystem
377  * operation.
378  *
379  * If the journal_extend() call above fails to grant new buffer credits
380  * to a running handle, a call to journal_restart will commit the
381  * handle's transaction so far and reattach the handle to a new
382  * transaction capabable of guaranteeing the requested number of
383  * credits.
384  */
385 
journal_restart(handle_t * handle,int nblocks)386 int journal_restart(handle_t *handle, int nblocks)
387 {
388 	transaction_t *transaction = handle->h_transaction;
389 	journal_t *journal = transaction->t_journal;
390 	int ret;
391 
392 	/* If we've had an abort of any type, don't even think about
393 	 * actually doing the restart! */
394 	if (is_handle_aborted(handle))
395 		return 0;
396 
397 	/*
398 	 * First unlink the handle from its current transaction, and start the
399 	 * commit on that.
400 	 */
401 	J_ASSERT(transaction->t_updates > 0);
402 	J_ASSERT(journal_current_handle() == handle);
403 
404 	spin_lock(&journal->j_state_lock);
405 	spin_lock(&transaction->t_handle_lock);
406 	transaction->t_outstanding_credits -= handle->h_buffer_credits;
407 	transaction->t_updates--;
408 
409 	if (!transaction->t_updates)
410 		wake_up(&journal->j_wait_updates);
411 	spin_unlock(&transaction->t_handle_lock);
412 
413 	jbd_debug(2, "restarting handle %p\n", handle);
414 	__log_start_commit(journal, transaction->t_tid);
415 	spin_unlock(&journal->j_state_lock);
416 
417 	lock_map_release(&handle->h_lockdep_map);
418 	handle->h_buffer_credits = nblocks;
419 	ret = start_this_handle(journal, handle);
420 	return ret;
421 }
422 
423 
424 /**
425  * void journal_lock_updates () - establish a transaction barrier.
426  * @journal:  Journal to establish a barrier on.
427  *
428  * This locks out any further updates from being started, and blocks
429  * until all existing updates have completed, returning only once the
430  * journal is in a quiescent state with no updates running.
431  *
432  * The journal lock should not be held on entry.
433  */
journal_lock_updates(journal_t * journal)434 void journal_lock_updates(journal_t *journal)
435 {
436 	DEFINE_WAIT(wait);
437 
438 	spin_lock(&journal->j_state_lock);
439 	++journal->j_barrier_count;
440 
441 	/* Wait until there are no running updates */
442 	while (1) {
443 		transaction_t *transaction = journal->j_running_transaction;
444 
445 		if (!transaction)
446 			break;
447 
448 		spin_lock(&transaction->t_handle_lock);
449 		if (!transaction->t_updates) {
450 			spin_unlock(&transaction->t_handle_lock);
451 			break;
452 		}
453 		prepare_to_wait(&journal->j_wait_updates, &wait,
454 				TASK_UNINTERRUPTIBLE);
455 		spin_unlock(&transaction->t_handle_lock);
456 		spin_unlock(&journal->j_state_lock);
457 		schedule();
458 		finish_wait(&journal->j_wait_updates, &wait);
459 		spin_lock(&journal->j_state_lock);
460 	}
461 	spin_unlock(&journal->j_state_lock);
462 
463 	/*
464 	 * We have now established a barrier against other normal updates, but
465 	 * we also need to barrier against other journal_lock_updates() calls
466 	 * to make sure that we serialise special journal-locked operations
467 	 * too.
468 	 */
469 	mutex_lock(&journal->j_barrier);
470 }
471 
472 /**
473  * void journal_unlock_updates (journal_t* journal) - release barrier
474  * @journal:  Journal to release the barrier on.
475  *
476  * Release a transaction barrier obtained with journal_lock_updates().
477  *
478  * Should be called without the journal lock held.
479  */
journal_unlock_updates(journal_t * journal)480 void journal_unlock_updates (journal_t *journal)
481 {
482 	J_ASSERT(journal->j_barrier_count != 0);
483 
484 	mutex_unlock(&journal->j_barrier);
485 	spin_lock(&journal->j_state_lock);
486 	--journal->j_barrier_count;
487 	spin_unlock(&journal->j_state_lock);
488 	wake_up(&journal->j_wait_transaction_locked);
489 }
490 
warn_dirty_buffer(struct buffer_head * bh)491 static void warn_dirty_buffer(struct buffer_head *bh)
492 {
493 	char b[BDEVNAME_SIZE];
494 
495 	printk(KERN_WARNING
496 	       "JBD: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
497 	       "There's a risk of filesystem corruption in case of system "
498 	       "crash.\n",
499 	       bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
500 }
501 
502 /*
503  * If the buffer is already part of the current transaction, then there
504  * is nothing we need to do.  If it is already part of a prior
505  * transaction which we are still committing to disk, then we need to
506  * make sure that we do not overwrite the old copy: we do copy-out to
507  * preserve the copy going to disk.  We also account the buffer against
508  * the handle's metadata buffer credits (unless the buffer is already
509  * part of the transaction, that is).
510  *
511  */
512 static int
do_get_write_access(handle_t * handle,struct journal_head * jh,int force_copy)513 do_get_write_access(handle_t *handle, struct journal_head *jh,
514 			int force_copy)
515 {
516 	struct buffer_head *bh;
517 	transaction_t *transaction;
518 	journal_t *journal;
519 	int error;
520 	char *frozen_buffer = NULL;
521 	int need_copy = 0;
522 
523 	if (is_handle_aborted(handle))
524 		return -EROFS;
525 
526 	transaction = handle->h_transaction;
527 	journal = transaction->t_journal;
528 
529 	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
530 
531 	JBUFFER_TRACE(jh, "entry");
532 repeat:
533 	bh = jh2bh(jh);
534 
535 	/* @@@ Need to check for errors here at some point. */
536 
537 	lock_buffer(bh);
538 	jbd_lock_bh_state(bh);
539 
540 	/* We now hold the buffer lock so it is safe to query the buffer
541 	 * state.  Is the buffer dirty?
542 	 *
543 	 * If so, there are two possibilities.  The buffer may be
544 	 * non-journaled, and undergoing a quite legitimate writeback.
545 	 * Otherwise, it is journaled, and we don't expect dirty buffers
546 	 * in that state (the buffers should be marked JBD_Dirty
547 	 * instead.)  So either the IO is being done under our own
548 	 * control and this is a bug, or it's a third party IO such as
549 	 * dump(8) (which may leave the buffer scheduled for read ---
550 	 * ie. locked but not dirty) or tune2fs (which may actually have
551 	 * the buffer dirtied, ugh.)  */
552 
553 	if (buffer_dirty(bh)) {
554 		/*
555 		 * First question: is this buffer already part of the current
556 		 * transaction or the existing committing transaction?
557 		 */
558 		if (jh->b_transaction) {
559 			J_ASSERT_JH(jh,
560 				jh->b_transaction == transaction ||
561 				jh->b_transaction ==
562 					journal->j_committing_transaction);
563 			if (jh->b_next_transaction)
564 				J_ASSERT_JH(jh, jh->b_next_transaction ==
565 							transaction);
566 			warn_dirty_buffer(bh);
567 		}
568 		/*
569 		 * In any case we need to clean the dirty flag and we must
570 		 * do it under the buffer lock to be sure we don't race
571 		 * with running write-out.
572 		 */
573 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
574 		clear_buffer_dirty(bh);
575 		set_buffer_jbddirty(bh);
576 	}
577 
578 	unlock_buffer(bh);
579 
580 	error = -EROFS;
581 	if (is_handle_aborted(handle)) {
582 		jbd_unlock_bh_state(bh);
583 		goto out;
584 	}
585 	error = 0;
586 
587 	/*
588 	 * The buffer is already part of this transaction if b_transaction or
589 	 * b_next_transaction points to it
590 	 */
591 	if (jh->b_transaction == transaction ||
592 	    jh->b_next_transaction == transaction)
593 		goto done;
594 
595 	/*
596 	 * this is the first time this transaction is touching this buffer,
597 	 * reset the modified flag
598 	 */
599 	jh->b_modified = 0;
600 
601 	/*
602 	 * If there is already a copy-out version of this buffer, then we don't
603 	 * need to make another one
604 	 */
605 	if (jh->b_frozen_data) {
606 		JBUFFER_TRACE(jh, "has frozen data");
607 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
608 		jh->b_next_transaction = transaction;
609 		goto done;
610 	}
611 
612 	/* Is there data here we need to preserve? */
613 
614 	if (jh->b_transaction && jh->b_transaction != transaction) {
615 		JBUFFER_TRACE(jh, "owned by older transaction");
616 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
617 		J_ASSERT_JH(jh, jh->b_transaction ==
618 					journal->j_committing_transaction);
619 
620 		/* There is one case we have to be very careful about.
621 		 * If the committing transaction is currently writing
622 		 * this buffer out to disk and has NOT made a copy-out,
623 		 * then we cannot modify the buffer contents at all
624 		 * right now.  The essence of copy-out is that it is the
625 		 * extra copy, not the primary copy, which gets
626 		 * journaled.  If the primary copy is already going to
627 		 * disk then we cannot do copy-out here. */
628 
629 		if (jh->b_jlist == BJ_Shadow) {
630 			DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
631 			wait_queue_head_t *wqh;
632 
633 			wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
634 
635 			JBUFFER_TRACE(jh, "on shadow: sleep");
636 			jbd_unlock_bh_state(bh);
637 			/* commit wakes up all shadow buffers after IO */
638 			for ( ; ; ) {
639 				prepare_to_wait(wqh, &wait.wait,
640 						TASK_UNINTERRUPTIBLE);
641 				if (jh->b_jlist != BJ_Shadow)
642 					break;
643 				schedule();
644 			}
645 			finish_wait(wqh, &wait.wait);
646 			goto repeat;
647 		}
648 
649 		/* Only do the copy if the currently-owning transaction
650 		 * still needs it.  If it is on the Forget list, the
651 		 * committing transaction is past that stage.  The
652 		 * buffer had better remain locked during the kmalloc,
653 		 * but that should be true --- we hold the journal lock
654 		 * still and the buffer is already on the BUF_JOURNAL
655 		 * list so won't be flushed.
656 		 *
657 		 * Subtle point, though: if this is a get_undo_access,
658 		 * then we will be relying on the frozen_data to contain
659 		 * the new value of the committed_data record after the
660 		 * transaction, so we HAVE to force the frozen_data copy
661 		 * in that case. */
662 
663 		if (jh->b_jlist != BJ_Forget || force_copy) {
664 			JBUFFER_TRACE(jh, "generate frozen data");
665 			if (!frozen_buffer) {
666 				JBUFFER_TRACE(jh, "allocate memory for buffer");
667 				jbd_unlock_bh_state(bh);
668 				frozen_buffer =
669 					jbd_alloc(jh2bh(jh)->b_size,
670 							 GFP_NOFS);
671 				if (!frozen_buffer) {
672 					printk(KERN_EMERG
673 					       "%s: OOM for frozen_buffer\n",
674 					       __func__);
675 					JBUFFER_TRACE(jh, "oom!");
676 					error = -ENOMEM;
677 					jbd_lock_bh_state(bh);
678 					goto done;
679 				}
680 				goto repeat;
681 			}
682 			jh->b_frozen_data = frozen_buffer;
683 			frozen_buffer = NULL;
684 			need_copy = 1;
685 		}
686 		jh->b_next_transaction = transaction;
687 	}
688 
689 
690 	/*
691 	 * Finally, if the buffer is not journaled right now, we need to make
692 	 * sure it doesn't get written to disk before the caller actually
693 	 * commits the new data
694 	 */
695 	if (!jh->b_transaction) {
696 		JBUFFER_TRACE(jh, "no transaction");
697 		J_ASSERT_JH(jh, !jh->b_next_transaction);
698 		jh->b_transaction = transaction;
699 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
700 		spin_lock(&journal->j_list_lock);
701 		__journal_file_buffer(jh, transaction, BJ_Reserved);
702 		spin_unlock(&journal->j_list_lock);
703 	}
704 
705 done:
706 	if (need_copy) {
707 		struct page *page;
708 		int offset;
709 		char *source;
710 
711 		J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
712 			    "Possible IO failure.\n");
713 		page = jh2bh(jh)->b_page;
714 		offset = offset_in_page(jh2bh(jh)->b_data);
715 		source = kmap_atomic(page, KM_USER0);
716 		memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
717 		kunmap_atomic(source, KM_USER0);
718 	}
719 	jbd_unlock_bh_state(bh);
720 
721 	/*
722 	 * If we are about to journal a buffer, then any revoke pending on it is
723 	 * no longer valid
724 	 */
725 	journal_cancel_revoke(handle, jh);
726 
727 out:
728 	if (unlikely(frozen_buffer))	/* It's usually NULL */
729 		jbd_free(frozen_buffer, bh->b_size);
730 
731 	JBUFFER_TRACE(jh, "exit");
732 	return error;
733 }
734 
735 /**
736  * int journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
737  * @handle: transaction to add buffer modifications to
738  * @bh:     bh to be used for metadata writes
739  *
740  * Returns an error code or 0 on success.
741  *
742  * In full data journalling mode the buffer may be of type BJ_AsyncData,
743  * because we're write()ing a buffer which is also part of a shared mapping.
744  */
745 
journal_get_write_access(handle_t * handle,struct buffer_head * bh)746 int journal_get_write_access(handle_t *handle, struct buffer_head *bh)
747 {
748 	struct journal_head *jh = journal_add_journal_head(bh);
749 	int rc;
750 
751 	/* We do not want to get caught playing with fields which the
752 	 * log thread also manipulates.  Make sure that the buffer
753 	 * completes any outstanding IO before proceeding. */
754 	rc = do_get_write_access(handle, jh, 0);
755 	journal_put_journal_head(jh);
756 	return rc;
757 }
758 
759 
760 /*
761  * When the user wants to journal a newly created buffer_head
762  * (ie. getblk() returned a new buffer and we are going to populate it
763  * manually rather than reading off disk), then we need to keep the
764  * buffer_head locked until it has been completely filled with new
765  * data.  In this case, we should be able to make the assertion that
766  * the bh is not already part of an existing transaction.
767  *
768  * The buffer should already be locked by the caller by this point.
769  * There is no lock ranking violation: it was a newly created,
770  * unlocked buffer beforehand. */
771 
772 /**
773  * int journal_get_create_access () - notify intent to use newly created bh
774  * @handle: transaction to new buffer to
775  * @bh: new buffer.
776  *
777  * Call this if you create a new bh.
778  */
journal_get_create_access(handle_t * handle,struct buffer_head * bh)779 int journal_get_create_access(handle_t *handle, struct buffer_head *bh)
780 {
781 	transaction_t *transaction = handle->h_transaction;
782 	journal_t *journal = transaction->t_journal;
783 	struct journal_head *jh = journal_add_journal_head(bh);
784 	int err;
785 
786 	jbd_debug(5, "journal_head %p\n", jh);
787 	err = -EROFS;
788 	if (is_handle_aborted(handle))
789 		goto out;
790 	err = 0;
791 
792 	JBUFFER_TRACE(jh, "entry");
793 	/*
794 	 * The buffer may already belong to this transaction due to pre-zeroing
795 	 * in the filesystem's new_block code.  It may also be on the previous,
796 	 * committing transaction's lists, but it HAS to be in Forget state in
797 	 * that case: the transaction must have deleted the buffer for it to be
798 	 * reused here.
799 	 */
800 	jbd_lock_bh_state(bh);
801 	spin_lock(&journal->j_list_lock);
802 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
803 		jh->b_transaction == NULL ||
804 		(jh->b_transaction == journal->j_committing_transaction &&
805 			  jh->b_jlist == BJ_Forget)));
806 
807 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
808 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
809 
810 	if (jh->b_transaction == NULL) {
811 		/*
812 		 * Previous journal_forget() could have left the buffer
813 		 * with jbddirty bit set because it was being committed. When
814 		 * the commit finished, we've filed the buffer for
815 		 * checkpointing and marked it dirty. Now we are reallocating
816 		 * the buffer so the transaction freeing it must have
817 		 * committed and so it's safe to clear the dirty bit.
818 		 */
819 		clear_buffer_dirty(jh2bh(jh));
820 		jh->b_transaction = transaction;
821 
822 		/* first access by this transaction */
823 		jh->b_modified = 0;
824 
825 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
826 		__journal_file_buffer(jh, transaction, BJ_Reserved);
827 	} else if (jh->b_transaction == journal->j_committing_transaction) {
828 		/* first access by this transaction */
829 		jh->b_modified = 0;
830 
831 		JBUFFER_TRACE(jh, "set next transaction");
832 		jh->b_next_transaction = transaction;
833 	}
834 	spin_unlock(&journal->j_list_lock);
835 	jbd_unlock_bh_state(bh);
836 
837 	/*
838 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
839 	 * blocks which contain freed but then revoked metadata.  We need
840 	 * to cancel the revoke in case we end up freeing it yet again
841 	 * and the reallocating as data - this would cause a second revoke,
842 	 * which hits an assertion error.
843 	 */
844 	JBUFFER_TRACE(jh, "cancelling revoke");
845 	journal_cancel_revoke(handle, jh);
846 	journal_put_journal_head(jh);
847 out:
848 	return err;
849 }
850 
851 /**
852  * int journal_get_undo_access() - Notify intent to modify metadata with non-rewindable consequences
853  * @handle: transaction
854  * @bh: buffer to undo
855  *
856  * Sometimes there is a need to distinguish between metadata which has
857  * been committed to disk and that which has not.  The ext3fs code uses
858  * this for freeing and allocating space, we have to make sure that we
859  * do not reuse freed space until the deallocation has been committed,
860  * since if we overwrote that space we would make the delete
861  * un-rewindable in case of a crash.
862  *
863  * To deal with that, journal_get_undo_access requests write access to a
864  * buffer for parts of non-rewindable operations such as delete
865  * operations on the bitmaps.  The journaling code must keep a copy of
866  * the buffer's contents prior to the undo_access call until such time
867  * as we know that the buffer has definitely been committed to disk.
868  *
869  * We never need to know which transaction the committed data is part
870  * of, buffers touched here are guaranteed to be dirtied later and so
871  * will be committed to a new transaction in due course, at which point
872  * we can discard the old committed data pointer.
873  *
874  * Returns error number or 0 on success.
875  */
journal_get_undo_access(handle_t * handle,struct buffer_head * bh)876 int journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
877 {
878 	int err;
879 	struct journal_head *jh = journal_add_journal_head(bh);
880 	char *committed_data = NULL;
881 
882 	JBUFFER_TRACE(jh, "entry");
883 
884 	/*
885 	 * Do this first --- it can drop the journal lock, so we want to
886 	 * make sure that obtaining the committed_data is done
887 	 * atomically wrt. completion of any outstanding commits.
888 	 */
889 	err = do_get_write_access(handle, jh, 1);
890 	if (err)
891 		goto out;
892 
893 repeat:
894 	if (!jh->b_committed_data) {
895 		committed_data = jbd_alloc(jh2bh(jh)->b_size, GFP_NOFS);
896 		if (!committed_data) {
897 			printk(KERN_EMERG "%s: No memory for committed data\n",
898 				__func__);
899 			err = -ENOMEM;
900 			goto out;
901 		}
902 	}
903 
904 	jbd_lock_bh_state(bh);
905 	if (!jh->b_committed_data) {
906 		/* Copy out the current buffer contents into the
907 		 * preserved, committed copy. */
908 		JBUFFER_TRACE(jh, "generate b_committed data");
909 		if (!committed_data) {
910 			jbd_unlock_bh_state(bh);
911 			goto repeat;
912 		}
913 
914 		jh->b_committed_data = committed_data;
915 		committed_data = NULL;
916 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
917 	}
918 	jbd_unlock_bh_state(bh);
919 out:
920 	journal_put_journal_head(jh);
921 	if (unlikely(committed_data))
922 		jbd_free(committed_data, bh->b_size);
923 	return err;
924 }
925 
926 /**
927  * int journal_dirty_data() - mark a buffer as containing dirty data to be flushed
928  * @handle: transaction
929  * @bh: bufferhead to mark
930  *
931  * Description:
932  * Mark a buffer as containing dirty data which needs to be flushed before
933  * we can commit the current transaction.
934  *
935  * The buffer is placed on the transaction's data list and is marked as
936  * belonging to the transaction.
937  *
938  * Returns error number or 0 on success.
939  *
940  * journal_dirty_data() can be called via page_launder->ext3_writepage
941  * by kswapd.
942  */
journal_dirty_data(handle_t * handle,struct buffer_head * bh)943 int journal_dirty_data(handle_t *handle, struct buffer_head *bh)
944 {
945 	journal_t *journal = handle->h_transaction->t_journal;
946 	int need_brelse = 0;
947 	struct journal_head *jh;
948 	int ret = 0;
949 
950 	if (is_handle_aborted(handle))
951 		return ret;
952 
953 	jh = journal_add_journal_head(bh);
954 	JBUFFER_TRACE(jh, "entry");
955 
956 	/*
957 	 * The buffer could *already* be dirty.  Writeout can start
958 	 * at any time.
959 	 */
960 	jbd_debug(4, "jh: %p, tid:%d\n", jh, handle->h_transaction->t_tid);
961 
962 	/*
963 	 * What if the buffer is already part of a running transaction?
964 	 *
965 	 * There are two cases:
966 	 * 1) It is part of the current running transaction.  Refile it,
967 	 *    just in case we have allocated it as metadata, deallocated
968 	 *    it, then reallocated it as data.
969 	 * 2) It is part of the previous, still-committing transaction.
970 	 *    If all we want to do is to guarantee that the buffer will be
971 	 *    written to disk before this new transaction commits, then
972 	 *    being sure that the *previous* transaction has this same
973 	 *    property is sufficient for us!  Just leave it on its old
974 	 *    transaction.
975 	 *
976 	 * In case (2), the buffer must not already exist as metadata
977 	 * --- that would violate write ordering (a transaction is free
978 	 * to write its data at any point, even before the previous
979 	 * committing transaction has committed).  The caller must
980 	 * never, ever allow this to happen: there's nothing we can do
981 	 * about it in this layer.
982 	 */
983 	jbd_lock_bh_state(bh);
984 	spin_lock(&journal->j_list_lock);
985 
986 	/* Now that we have bh_state locked, are we really still mapped? */
987 	if (!buffer_mapped(bh)) {
988 		JBUFFER_TRACE(jh, "unmapped buffer, bailing out");
989 		goto no_journal;
990 	}
991 
992 	if (jh->b_transaction) {
993 		JBUFFER_TRACE(jh, "has transaction");
994 		if (jh->b_transaction != handle->h_transaction) {
995 			JBUFFER_TRACE(jh, "belongs to older transaction");
996 			J_ASSERT_JH(jh, jh->b_transaction ==
997 					journal->j_committing_transaction);
998 
999 			/* @@@ IS THIS TRUE  ? */
1000 			/*
1001 			 * Not any more.  Scenario: someone does a write()
1002 			 * in data=journal mode.  The buffer's transaction has
1003 			 * moved into commit.  Then someone does another
1004 			 * write() to the file.  We do the frozen data copyout
1005 			 * and set b_next_transaction to point to j_running_t.
1006 			 * And while we're in that state, someone does a
1007 			 * writepage() in an attempt to pageout the same area
1008 			 * of the file via a shared mapping.  At present that
1009 			 * calls journal_dirty_data(), and we get right here.
1010 			 * It may be too late to journal the data.  Simply
1011 			 * falling through to the next test will suffice: the
1012 			 * data will be dirty and wil be checkpointed.  The
1013 			 * ordering comments in the next comment block still
1014 			 * apply.
1015 			 */
1016 			//J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1017 
1018 			/*
1019 			 * If we're journalling data, and this buffer was
1020 			 * subject to a write(), it could be metadata, forget
1021 			 * or shadow against the committing transaction.  Now,
1022 			 * someone has dirtied the same darn page via a mapping
1023 			 * and it is being writepage()'d.
1024 			 * We *could* just steal the page from commit, with some
1025 			 * fancy locking there.  Instead, we just skip it -
1026 			 * don't tie the page's buffers to the new transaction
1027 			 * at all.
1028 			 * Implication: if we crash before the writepage() data
1029 			 * is written into the filesystem, recovery will replay
1030 			 * the write() data.
1031 			 */
1032 			if (jh->b_jlist != BJ_None &&
1033 					jh->b_jlist != BJ_SyncData &&
1034 					jh->b_jlist != BJ_Locked) {
1035 				JBUFFER_TRACE(jh, "Not stealing");
1036 				goto no_journal;
1037 			}
1038 
1039 			/*
1040 			 * This buffer may be undergoing writeout in commit.  We
1041 			 * can't return from here and let the caller dirty it
1042 			 * again because that can cause the write-out loop in
1043 			 * commit to never terminate.
1044 			 */
1045 			if (buffer_dirty(bh)) {
1046 				get_bh(bh);
1047 				spin_unlock(&journal->j_list_lock);
1048 				jbd_unlock_bh_state(bh);
1049 				need_brelse = 1;
1050 				sync_dirty_buffer(bh);
1051 				jbd_lock_bh_state(bh);
1052 				spin_lock(&journal->j_list_lock);
1053 				/* Since we dropped the lock... */
1054 				if (!buffer_mapped(bh)) {
1055 					JBUFFER_TRACE(jh, "buffer got unmapped");
1056 					goto no_journal;
1057 				}
1058 				/* The buffer may become locked again at any
1059 				   time if it is redirtied */
1060 			}
1061 
1062 			/*
1063 			 * We cannot remove the buffer with io error from the
1064 			 * committing transaction, because otherwise it would
1065 			 * miss the error and the commit would not abort.
1066 			 */
1067 			if (unlikely(!buffer_uptodate(bh))) {
1068 				ret = -EIO;
1069 				goto no_journal;
1070 			}
1071 
1072 			if (jh->b_transaction != NULL) {
1073 				JBUFFER_TRACE(jh, "unfile from commit");
1074 				__journal_temp_unlink_buffer(jh);
1075 				/* It still points to the committing
1076 				 * transaction; move it to this one so
1077 				 * that the refile assert checks are
1078 				 * happy. */
1079 				jh->b_transaction = handle->h_transaction;
1080 			}
1081 			/* The buffer will be refiled below */
1082 
1083 		}
1084 		/*
1085 		 * Special case --- the buffer might actually have been
1086 		 * allocated and then immediately deallocated in the previous,
1087 		 * committing transaction, so might still be left on that
1088 		 * transaction's metadata lists.
1089 		 */
1090 		if (jh->b_jlist != BJ_SyncData && jh->b_jlist != BJ_Locked) {
1091 			JBUFFER_TRACE(jh, "not on correct data list: unfile");
1092 			J_ASSERT_JH(jh, jh->b_jlist != BJ_Shadow);
1093 			__journal_temp_unlink_buffer(jh);
1094 			jh->b_transaction = handle->h_transaction;
1095 			JBUFFER_TRACE(jh, "file as data");
1096 			__journal_file_buffer(jh, handle->h_transaction,
1097 						BJ_SyncData);
1098 		}
1099 	} else {
1100 		JBUFFER_TRACE(jh, "not on a transaction");
1101 		__journal_file_buffer(jh, handle->h_transaction, BJ_SyncData);
1102 	}
1103 no_journal:
1104 	spin_unlock(&journal->j_list_lock);
1105 	jbd_unlock_bh_state(bh);
1106 	if (need_brelse) {
1107 		BUFFER_TRACE(bh, "brelse");
1108 		__brelse(bh);
1109 	}
1110 	JBUFFER_TRACE(jh, "exit");
1111 	journal_put_journal_head(jh);
1112 	return ret;
1113 }
1114 
1115 /**
1116  * int journal_dirty_metadata() - mark a buffer as containing dirty metadata
1117  * @handle: transaction to add buffer to.
1118  * @bh: buffer to mark
1119  *
1120  * Mark dirty metadata which needs to be journaled as part of the current
1121  * transaction.
1122  *
1123  * The buffer is placed on the transaction's metadata list and is marked
1124  * as belonging to the transaction.
1125  *
1126  * Returns error number or 0 on success.
1127  *
1128  * Special care needs to be taken if the buffer already belongs to the
1129  * current committing transaction (in which case we should have frozen
1130  * data present for that commit).  In that case, we don't relink the
1131  * buffer: that only gets done when the old transaction finally
1132  * completes its commit.
1133  */
journal_dirty_metadata(handle_t * handle,struct buffer_head * bh)1134 int journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1135 {
1136 	transaction_t *transaction = handle->h_transaction;
1137 	journal_t *journal = transaction->t_journal;
1138 	struct journal_head *jh = bh2jh(bh);
1139 
1140 	jbd_debug(5, "journal_head %p\n", jh);
1141 	JBUFFER_TRACE(jh, "entry");
1142 	if (is_handle_aborted(handle))
1143 		goto out;
1144 
1145 	jbd_lock_bh_state(bh);
1146 
1147 	if (jh->b_modified == 0) {
1148 		/*
1149 		 * This buffer's got modified and becoming part
1150 		 * of the transaction. This needs to be done
1151 		 * once a transaction -bzzz
1152 		 */
1153 		jh->b_modified = 1;
1154 		J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1155 		handle->h_buffer_credits--;
1156 	}
1157 
1158 	/*
1159 	 * fastpath, to avoid expensive locking.  If this buffer is already
1160 	 * on the running transaction's metadata list there is nothing to do.
1161 	 * Nobody can take it off again because there is a handle open.
1162 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1163 	 * result in this test being false, so we go in and take the locks.
1164 	 */
1165 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1166 		JBUFFER_TRACE(jh, "fastpath");
1167 		J_ASSERT_JH(jh, jh->b_transaction ==
1168 					journal->j_running_transaction);
1169 		goto out_unlock_bh;
1170 	}
1171 
1172 	set_buffer_jbddirty(bh);
1173 
1174 	/*
1175 	 * Metadata already on the current transaction list doesn't
1176 	 * need to be filed.  Metadata on another transaction's list must
1177 	 * be committing, and will be refiled once the commit completes:
1178 	 * leave it alone for now.
1179 	 */
1180 	if (jh->b_transaction != transaction) {
1181 		JBUFFER_TRACE(jh, "already on other transaction");
1182 		J_ASSERT_JH(jh, jh->b_transaction ==
1183 					journal->j_committing_transaction);
1184 		J_ASSERT_JH(jh, jh->b_next_transaction == transaction);
1185 		/* And this case is illegal: we can't reuse another
1186 		 * transaction's data buffer, ever. */
1187 		goto out_unlock_bh;
1188 	}
1189 
1190 	/* That test should have eliminated the following case: */
1191 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1192 
1193 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1194 	spin_lock(&journal->j_list_lock);
1195 	__journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1196 	spin_unlock(&journal->j_list_lock);
1197 out_unlock_bh:
1198 	jbd_unlock_bh_state(bh);
1199 out:
1200 	JBUFFER_TRACE(jh, "exit");
1201 	return 0;
1202 }
1203 
1204 /*
1205  * journal_release_buffer: undo a get_write_access without any buffer
1206  * updates, if the update decided in the end that it didn't need access.
1207  *
1208  */
1209 void
journal_release_buffer(handle_t * handle,struct buffer_head * bh)1210 journal_release_buffer(handle_t *handle, struct buffer_head *bh)
1211 {
1212 	BUFFER_TRACE(bh, "entry");
1213 }
1214 
1215 /**
1216  * void journal_forget() - bforget() for potentially-journaled buffers.
1217  * @handle: transaction handle
1218  * @bh:     bh to 'forget'
1219  *
1220  * We can only do the bforget if there are no commits pending against the
1221  * buffer.  If the buffer is dirty in the current running transaction we
1222  * can safely unlink it.
1223  *
1224  * bh may not be a journalled buffer at all - it may be a non-JBD
1225  * buffer which came off the hashtable.  Check for this.
1226  *
1227  * Decrements bh->b_count by one.
1228  *
1229  * Allow this call even if the handle has aborted --- it may be part of
1230  * the caller's cleanup after an abort.
1231  */
journal_forget(handle_t * handle,struct buffer_head * bh)1232 int journal_forget (handle_t *handle, struct buffer_head *bh)
1233 {
1234 	transaction_t *transaction = handle->h_transaction;
1235 	journal_t *journal = transaction->t_journal;
1236 	struct journal_head *jh;
1237 	int drop_reserve = 0;
1238 	int err = 0;
1239 	int was_modified = 0;
1240 
1241 	BUFFER_TRACE(bh, "entry");
1242 
1243 	jbd_lock_bh_state(bh);
1244 	spin_lock(&journal->j_list_lock);
1245 
1246 	if (!buffer_jbd(bh))
1247 		goto not_jbd;
1248 	jh = bh2jh(bh);
1249 
1250 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1251 	 * Don't do any jbd operations, and return an error. */
1252 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1253 			 "inconsistent data on disk")) {
1254 		err = -EIO;
1255 		goto not_jbd;
1256 	}
1257 
1258 	/* keep track of wether or not this transaction modified us */
1259 	was_modified = jh->b_modified;
1260 
1261 	/*
1262 	 * The buffer's going from the transaction, we must drop
1263 	 * all references -bzzz
1264 	 */
1265 	jh->b_modified = 0;
1266 
1267 	if (jh->b_transaction == handle->h_transaction) {
1268 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1269 
1270 		/* If we are forgetting a buffer which is already part
1271 		 * of this transaction, then we can just drop it from
1272 		 * the transaction immediately. */
1273 		clear_buffer_dirty(bh);
1274 		clear_buffer_jbddirty(bh);
1275 
1276 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1277 
1278 		/*
1279 		 * we only want to drop a reference if this transaction
1280 		 * modified the buffer
1281 		 */
1282 		if (was_modified)
1283 			drop_reserve = 1;
1284 
1285 		/*
1286 		 * We are no longer going to journal this buffer.
1287 		 * However, the commit of this transaction is still
1288 		 * important to the buffer: the delete that we are now
1289 		 * processing might obsolete an old log entry, so by
1290 		 * committing, we can satisfy the buffer's checkpoint.
1291 		 *
1292 		 * So, if we have a checkpoint on the buffer, we should
1293 		 * now refile the buffer on our BJ_Forget list so that
1294 		 * we know to remove the checkpoint after we commit.
1295 		 */
1296 
1297 		if (jh->b_cp_transaction) {
1298 			__journal_temp_unlink_buffer(jh);
1299 			__journal_file_buffer(jh, transaction, BJ_Forget);
1300 		} else {
1301 			__journal_unfile_buffer(jh);
1302 			journal_remove_journal_head(bh);
1303 			__brelse(bh);
1304 			if (!buffer_jbd(bh)) {
1305 				spin_unlock(&journal->j_list_lock);
1306 				jbd_unlock_bh_state(bh);
1307 				__bforget(bh);
1308 				goto drop;
1309 			}
1310 		}
1311 	} else if (jh->b_transaction) {
1312 		J_ASSERT_JH(jh, (jh->b_transaction ==
1313 				 journal->j_committing_transaction));
1314 		/* However, if the buffer is still owned by a prior
1315 		 * (committing) transaction, we can't drop it yet... */
1316 		JBUFFER_TRACE(jh, "belongs to older transaction");
1317 		/* ... but we CAN drop it from the new transaction if we
1318 		 * have also modified it since the original commit. */
1319 
1320 		if (jh->b_next_transaction) {
1321 			J_ASSERT(jh->b_next_transaction == transaction);
1322 			jh->b_next_transaction = NULL;
1323 
1324 			/*
1325 			 * only drop a reference if this transaction modified
1326 			 * the buffer
1327 			 */
1328 			if (was_modified)
1329 				drop_reserve = 1;
1330 		}
1331 	}
1332 
1333 not_jbd:
1334 	spin_unlock(&journal->j_list_lock);
1335 	jbd_unlock_bh_state(bh);
1336 	__brelse(bh);
1337 drop:
1338 	if (drop_reserve) {
1339 		/* no need to reserve log space for this block -bzzz */
1340 		handle->h_buffer_credits++;
1341 	}
1342 	return err;
1343 }
1344 
1345 /**
1346  * int journal_stop() - complete a transaction
1347  * @handle: tranaction to complete.
1348  *
1349  * All done for a particular handle.
1350  *
1351  * There is not much action needed here.  We just return any remaining
1352  * buffer credits to the transaction and remove the handle.  The only
1353  * complication is that we need to start a commit operation if the
1354  * filesystem is marked for synchronous update.
1355  *
1356  * journal_stop itself will not usually return an error, but it may
1357  * do so in unusual circumstances.  In particular, expect it to
1358  * return -EIO if a journal_abort has been executed since the
1359  * transaction began.
1360  */
journal_stop(handle_t * handle)1361 int journal_stop(handle_t *handle)
1362 {
1363 	transaction_t *transaction = handle->h_transaction;
1364 	journal_t *journal = transaction->t_journal;
1365 	int err;
1366 	pid_t pid;
1367 
1368 	J_ASSERT(journal_current_handle() == handle);
1369 
1370 	if (is_handle_aborted(handle))
1371 		err = -EIO;
1372 	else {
1373 		J_ASSERT(transaction->t_updates > 0);
1374 		err = 0;
1375 	}
1376 
1377 	if (--handle->h_ref > 0) {
1378 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1379 			  handle->h_ref);
1380 		return err;
1381 	}
1382 
1383 	jbd_debug(4, "Handle %p going down\n", handle);
1384 
1385 	/*
1386 	 * Implement synchronous transaction batching.  If the handle
1387 	 * was synchronous, don't force a commit immediately.  Let's
1388 	 * yield and let another thread piggyback onto this transaction.
1389 	 * Keep doing that while new threads continue to arrive.
1390 	 * It doesn't cost much - we're about to run a commit and sleep
1391 	 * on IO anyway.  Speeds up many-threaded, many-dir operations
1392 	 * by 30x or more...
1393 	 *
1394 	 * We try and optimize the sleep time against what the underlying disk
1395 	 * can do, instead of having a static sleep time.  This is useful for
1396 	 * the case where our storage is so fast that it is more optimal to go
1397 	 * ahead and force a flush and wait for the transaction to be committed
1398 	 * than it is to wait for an arbitrary amount of time for new writers to
1399 	 * join the transaction.  We achieve this by measuring how long it takes
1400 	 * to commit a transaction, and compare it with how long this
1401 	 * transaction has been running, and if run time < commit time then we
1402 	 * sleep for the delta and commit.  This greatly helps super fast disks
1403 	 * that would see slowdowns as more threads started doing fsyncs.
1404 	 *
1405 	 * But don't do this if this process was the most recent one to
1406 	 * perform a synchronous write.  We do this to detect the case where a
1407 	 * single process is doing a stream of sync writes.  No point in waiting
1408 	 * for joiners in that case.
1409 	 */
1410 	pid = current->pid;
1411 	if (handle->h_sync && journal->j_last_sync_writer != pid) {
1412 		u64 commit_time, trans_time;
1413 
1414 		journal->j_last_sync_writer = pid;
1415 
1416 		spin_lock(&journal->j_state_lock);
1417 		commit_time = journal->j_average_commit_time;
1418 		spin_unlock(&journal->j_state_lock);
1419 
1420 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1421 						   transaction->t_start_time));
1422 
1423 		commit_time = min_t(u64, commit_time,
1424 				    1000*jiffies_to_usecs(1));
1425 
1426 		if (trans_time < commit_time) {
1427 			ktime_t expires = ktime_add_ns(ktime_get(),
1428 						       commit_time);
1429 			set_current_state(TASK_UNINTERRUPTIBLE);
1430 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1431 		}
1432 	}
1433 
1434 	if (handle->h_sync)
1435 		transaction->t_synchronous_commit = 1;
1436 	current->journal_info = NULL;
1437 	spin_lock(&journal->j_state_lock);
1438 	spin_lock(&transaction->t_handle_lock);
1439 	transaction->t_outstanding_credits -= handle->h_buffer_credits;
1440 	transaction->t_updates--;
1441 	if (!transaction->t_updates) {
1442 		wake_up(&journal->j_wait_updates);
1443 		if (journal->j_barrier_count)
1444 			wake_up(&journal->j_wait_transaction_locked);
1445 	}
1446 
1447 	/*
1448 	 * If the handle is marked SYNC, we need to set another commit
1449 	 * going!  We also want to force a commit if the current
1450 	 * transaction is occupying too much of the log, or if the
1451 	 * transaction is too old now.
1452 	 */
1453 	if (handle->h_sync ||
1454 			transaction->t_outstanding_credits >
1455 				journal->j_max_transaction_buffers ||
1456 			time_after_eq(jiffies, transaction->t_expires)) {
1457 		/* Do this even for aborted journals: an abort still
1458 		 * completes the commit thread, it just doesn't write
1459 		 * anything to disk. */
1460 		tid_t tid = transaction->t_tid;
1461 
1462 		spin_unlock(&transaction->t_handle_lock);
1463 		jbd_debug(2, "transaction too old, requesting commit for "
1464 					"handle %p\n", handle);
1465 		/* This is non-blocking */
1466 		__log_start_commit(journal, transaction->t_tid);
1467 		spin_unlock(&journal->j_state_lock);
1468 
1469 		/*
1470 		 * Special case: JFS_SYNC synchronous updates require us
1471 		 * to wait for the commit to complete.
1472 		 */
1473 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1474 			err = log_wait_commit(journal, tid);
1475 	} else {
1476 		spin_unlock(&transaction->t_handle_lock);
1477 		spin_unlock(&journal->j_state_lock);
1478 	}
1479 
1480 	lock_map_release(&handle->h_lockdep_map);
1481 
1482 	jbd_free_handle(handle);
1483 	return err;
1484 }
1485 
1486 /**
1487  * int journal_force_commit() - force any uncommitted transactions
1488  * @journal: journal to force
1489  *
1490  * For synchronous operations: force any uncommitted transactions
1491  * to disk.  May seem kludgy, but it reuses all the handle batching
1492  * code in a very simple manner.
1493  */
journal_force_commit(journal_t * journal)1494 int journal_force_commit(journal_t *journal)
1495 {
1496 	handle_t *handle;
1497 	int ret;
1498 
1499 	handle = journal_start(journal, 1);
1500 	if (IS_ERR(handle)) {
1501 		ret = PTR_ERR(handle);
1502 	} else {
1503 		handle->h_sync = 1;
1504 		ret = journal_stop(handle);
1505 	}
1506 	return ret;
1507 }
1508 
1509 /*
1510  *
1511  * List management code snippets: various functions for manipulating the
1512  * transaction buffer lists.
1513  *
1514  */
1515 
1516 /*
1517  * Append a buffer to a transaction list, given the transaction's list head
1518  * pointer.
1519  *
1520  * j_list_lock is held.
1521  *
1522  * jbd_lock_bh_state(jh2bh(jh)) is held.
1523  */
1524 
1525 static inline void
__blist_add_buffer(struct journal_head ** list,struct journal_head * jh)1526 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1527 {
1528 	if (!*list) {
1529 		jh->b_tnext = jh->b_tprev = jh;
1530 		*list = jh;
1531 	} else {
1532 		/* Insert at the tail of the list to preserve order */
1533 		struct journal_head *first = *list, *last = first->b_tprev;
1534 		jh->b_tprev = last;
1535 		jh->b_tnext = first;
1536 		last->b_tnext = first->b_tprev = jh;
1537 	}
1538 }
1539 
1540 /*
1541  * Remove a buffer from a transaction list, given the transaction's list
1542  * head pointer.
1543  *
1544  * Called with j_list_lock held, and the journal may not be locked.
1545  *
1546  * jbd_lock_bh_state(jh2bh(jh)) is held.
1547  */
1548 
1549 static inline void
__blist_del_buffer(struct journal_head ** list,struct journal_head * jh)1550 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1551 {
1552 	if (*list == jh) {
1553 		*list = jh->b_tnext;
1554 		if (*list == jh)
1555 			*list = NULL;
1556 	}
1557 	jh->b_tprev->b_tnext = jh->b_tnext;
1558 	jh->b_tnext->b_tprev = jh->b_tprev;
1559 }
1560 
1561 /*
1562  * Remove a buffer from the appropriate transaction list.
1563  *
1564  * Note that this function can *change* the value of
1565  * bh->b_transaction->t_sync_datalist, t_buffers, t_forget,
1566  * t_iobuf_list, t_shadow_list, t_log_list or t_reserved_list.  If the caller
1567  * is holding onto a copy of one of thee pointers, it could go bad.
1568  * Generally the caller needs to re-read the pointer from the transaction_t.
1569  *
1570  * Called under j_list_lock.  The journal may not be locked.
1571  */
__journal_temp_unlink_buffer(struct journal_head * jh)1572 static void __journal_temp_unlink_buffer(struct journal_head *jh)
1573 {
1574 	struct journal_head **list = NULL;
1575 	transaction_t *transaction;
1576 	struct buffer_head *bh = jh2bh(jh);
1577 
1578 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1579 	transaction = jh->b_transaction;
1580 	if (transaction)
1581 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1582 
1583 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1584 	if (jh->b_jlist != BJ_None)
1585 		J_ASSERT_JH(jh, transaction != NULL);
1586 
1587 	switch (jh->b_jlist) {
1588 	case BJ_None:
1589 		return;
1590 	case BJ_SyncData:
1591 		list = &transaction->t_sync_datalist;
1592 		break;
1593 	case BJ_Metadata:
1594 		transaction->t_nr_buffers--;
1595 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1596 		list = &transaction->t_buffers;
1597 		break;
1598 	case BJ_Forget:
1599 		list = &transaction->t_forget;
1600 		break;
1601 	case BJ_IO:
1602 		list = &transaction->t_iobuf_list;
1603 		break;
1604 	case BJ_Shadow:
1605 		list = &transaction->t_shadow_list;
1606 		break;
1607 	case BJ_LogCtl:
1608 		list = &transaction->t_log_list;
1609 		break;
1610 	case BJ_Reserved:
1611 		list = &transaction->t_reserved_list;
1612 		break;
1613 	case BJ_Locked:
1614 		list = &transaction->t_locked_list;
1615 		break;
1616 	}
1617 
1618 	__blist_del_buffer(list, jh);
1619 	jh->b_jlist = BJ_None;
1620 	if (test_clear_buffer_jbddirty(bh))
1621 		mark_buffer_dirty(bh);	/* Expose it to the VM */
1622 }
1623 
__journal_unfile_buffer(struct journal_head * jh)1624 void __journal_unfile_buffer(struct journal_head *jh)
1625 {
1626 	__journal_temp_unlink_buffer(jh);
1627 	jh->b_transaction = NULL;
1628 }
1629 
journal_unfile_buffer(journal_t * journal,struct journal_head * jh)1630 void journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1631 {
1632 	jbd_lock_bh_state(jh2bh(jh));
1633 	spin_lock(&journal->j_list_lock);
1634 	__journal_unfile_buffer(jh);
1635 	spin_unlock(&journal->j_list_lock);
1636 	jbd_unlock_bh_state(jh2bh(jh));
1637 }
1638 
1639 /*
1640  * Called from journal_try_to_free_buffers().
1641  *
1642  * Called under jbd_lock_bh_state(bh)
1643  */
1644 static void
__journal_try_to_free_buffer(journal_t * journal,struct buffer_head * bh)1645 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1646 {
1647 	struct journal_head *jh;
1648 
1649 	jh = bh2jh(bh);
1650 
1651 	if (buffer_locked(bh) || buffer_dirty(bh))
1652 		goto out;
1653 
1654 	if (jh->b_next_transaction != NULL)
1655 		goto out;
1656 
1657 	spin_lock(&journal->j_list_lock);
1658 	if (jh->b_transaction != NULL && jh->b_cp_transaction == NULL) {
1659 		if (jh->b_jlist == BJ_SyncData || jh->b_jlist == BJ_Locked) {
1660 			/* A written-back ordered data buffer */
1661 			JBUFFER_TRACE(jh, "release data");
1662 			__journal_unfile_buffer(jh);
1663 			journal_remove_journal_head(bh);
1664 			__brelse(bh);
1665 		}
1666 	} else if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1667 		/* written-back checkpointed metadata buffer */
1668 		if (jh->b_jlist == BJ_None) {
1669 			JBUFFER_TRACE(jh, "remove from checkpoint list");
1670 			__journal_remove_checkpoint(jh);
1671 			journal_remove_journal_head(bh);
1672 			__brelse(bh);
1673 		}
1674 	}
1675 	spin_unlock(&journal->j_list_lock);
1676 out:
1677 	return;
1678 }
1679 
1680 /**
1681  * int journal_try_to_free_buffers() - try to free page buffers.
1682  * @journal: journal for operation
1683  * @page: to try and free
1684  * @gfp_mask: we use the mask to detect how hard should we try to release
1685  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1686  * release the buffers.
1687  *
1688  *
1689  * For all the buffers on this page,
1690  * if they are fully written out ordered data, move them onto BUF_CLEAN
1691  * so try_to_free_buffers() can reap them.
1692  *
1693  * This function returns non-zero if we wish try_to_free_buffers()
1694  * to be called. We do this if the page is releasable by try_to_free_buffers().
1695  * We also do it if the page has locked or dirty buffers and the caller wants
1696  * us to perform sync or async writeout.
1697  *
1698  * This complicates JBD locking somewhat.  We aren't protected by the
1699  * BKL here.  We wish to remove the buffer from its committing or
1700  * running transaction's ->t_datalist via __journal_unfile_buffer.
1701  *
1702  * This may *change* the value of transaction_t->t_datalist, so anyone
1703  * who looks at t_datalist needs to lock against this function.
1704  *
1705  * Even worse, someone may be doing a journal_dirty_data on this
1706  * buffer.  So we need to lock against that.  journal_dirty_data()
1707  * will come out of the lock with the buffer dirty, which makes it
1708  * ineligible for release here.
1709  *
1710  * Who else is affected by this?  hmm...  Really the only contender
1711  * is do_get_write_access() - it could be looking at the buffer while
1712  * journal_try_to_free_buffer() is changing its state.  But that
1713  * cannot happen because we never reallocate freed data as metadata
1714  * while the data is part of a transaction.  Yes?
1715  *
1716  * Return 0 on failure, 1 on success
1717  */
journal_try_to_free_buffers(journal_t * journal,struct page * page,gfp_t gfp_mask)1718 int journal_try_to_free_buffers(journal_t *journal,
1719 				struct page *page, gfp_t gfp_mask)
1720 {
1721 	struct buffer_head *head;
1722 	struct buffer_head *bh;
1723 	int ret = 0;
1724 
1725 	J_ASSERT(PageLocked(page));
1726 
1727 	head = page_buffers(page);
1728 	bh = head;
1729 	do {
1730 		struct journal_head *jh;
1731 
1732 		/*
1733 		 * We take our own ref against the journal_head here to avoid
1734 		 * having to add tons of locking around each instance of
1735 		 * journal_remove_journal_head() and journal_put_journal_head().
1736 		 */
1737 		jh = journal_grab_journal_head(bh);
1738 		if (!jh)
1739 			continue;
1740 
1741 		jbd_lock_bh_state(bh);
1742 		__journal_try_to_free_buffer(journal, bh);
1743 		journal_put_journal_head(jh);
1744 		jbd_unlock_bh_state(bh);
1745 		if (buffer_jbd(bh))
1746 			goto busy;
1747 	} while ((bh = bh->b_this_page) != head);
1748 
1749 	ret = try_to_free_buffers(page);
1750 
1751 busy:
1752 	return ret;
1753 }
1754 
1755 /*
1756  * This buffer is no longer needed.  If it is on an older transaction's
1757  * checkpoint list we need to record it on this transaction's forget list
1758  * to pin this buffer (and hence its checkpointing transaction) down until
1759  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1760  * release it.
1761  * Returns non-zero if JBD no longer has an interest in the buffer.
1762  *
1763  * Called under j_list_lock.
1764  *
1765  * Called under jbd_lock_bh_state(bh).
1766  */
__dispose_buffer(struct journal_head * jh,transaction_t * transaction)1767 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1768 {
1769 	int may_free = 1;
1770 	struct buffer_head *bh = jh2bh(jh);
1771 
1772 	__journal_unfile_buffer(jh);
1773 
1774 	if (jh->b_cp_transaction) {
1775 		JBUFFER_TRACE(jh, "on running+cp transaction");
1776 		/*
1777 		 * We don't want to write the buffer anymore, clear the
1778 		 * bit so that we don't confuse checks in
1779 		 * __journal_file_buffer
1780 		 */
1781 		clear_buffer_dirty(bh);
1782 		__journal_file_buffer(jh, transaction, BJ_Forget);
1783 		may_free = 0;
1784 	} else {
1785 		JBUFFER_TRACE(jh, "on running transaction");
1786 		journal_remove_journal_head(bh);
1787 		__brelse(bh);
1788 	}
1789 	return may_free;
1790 }
1791 
1792 /*
1793  * journal_invalidatepage
1794  *
1795  * This code is tricky.  It has a number of cases to deal with.
1796  *
1797  * There are two invariants which this code relies on:
1798  *
1799  * i_size must be updated on disk before we start calling invalidatepage on the
1800  * data.
1801  *
1802  *  This is done in ext3 by defining an ext3_setattr method which
1803  *  updates i_size before truncate gets going.  By maintaining this
1804  *  invariant, we can be sure that it is safe to throw away any buffers
1805  *  attached to the current transaction: once the transaction commits,
1806  *  we know that the data will not be needed.
1807  *
1808  *  Note however that we can *not* throw away data belonging to the
1809  *  previous, committing transaction!
1810  *
1811  * Any disk blocks which *are* part of the previous, committing
1812  * transaction (and which therefore cannot be discarded immediately) are
1813  * not going to be reused in the new running transaction
1814  *
1815  *  The bitmap committed_data images guarantee this: any block which is
1816  *  allocated in one transaction and removed in the next will be marked
1817  *  as in-use in the committed_data bitmap, so cannot be reused until
1818  *  the next transaction to delete the block commits.  This means that
1819  *  leaving committing buffers dirty is quite safe: the disk blocks
1820  *  cannot be reallocated to a different file and so buffer aliasing is
1821  *  not possible.
1822  *
1823  *
1824  * The above applies mainly to ordered data mode.  In writeback mode we
1825  * don't make guarantees about the order in which data hits disk --- in
1826  * particular we don't guarantee that new dirty data is flushed before
1827  * transaction commit --- so it is always safe just to discard data
1828  * immediately in that mode.  --sct
1829  */
1830 
1831 /*
1832  * The journal_unmap_buffer helper function returns zero if the buffer
1833  * concerned remains pinned as an anonymous buffer belonging to an older
1834  * transaction.
1835  *
1836  * We're outside-transaction here.  Either or both of j_running_transaction
1837  * and j_committing_transaction may be NULL.
1838  */
journal_unmap_buffer(journal_t * journal,struct buffer_head * bh)1839 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh)
1840 {
1841 	transaction_t *transaction;
1842 	struct journal_head *jh;
1843 	int may_free = 1;
1844 	int ret;
1845 
1846 	BUFFER_TRACE(bh, "entry");
1847 
1848 	/*
1849 	 * It is safe to proceed here without the j_list_lock because the
1850 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
1851 	 * holding the page lock. --sct
1852 	 */
1853 
1854 	if (!buffer_jbd(bh))
1855 		goto zap_buffer_unlocked;
1856 
1857 	spin_lock(&journal->j_state_lock);
1858 	jbd_lock_bh_state(bh);
1859 	spin_lock(&journal->j_list_lock);
1860 
1861 	jh = journal_grab_journal_head(bh);
1862 	if (!jh)
1863 		goto zap_buffer_no_jh;
1864 
1865 	/*
1866 	 * We cannot remove the buffer from checkpoint lists until the
1867 	 * transaction adding inode to orphan list (let's call it T)
1868 	 * is committed.  Otherwise if the transaction changing the
1869 	 * buffer would be cleaned from the journal before T is
1870 	 * committed, a crash will cause that the correct contents of
1871 	 * the buffer will be lost.  On the other hand we have to
1872 	 * clear the buffer dirty bit at latest at the moment when the
1873 	 * transaction marking the buffer as freed in the filesystem
1874 	 * structures is committed because from that moment on the
1875 	 * buffer can be reallocated and used by a different page.
1876 	 * Since the block hasn't been freed yet but the inode has
1877 	 * already been added to orphan list, it is safe for us to add
1878 	 * the buffer to BJ_Forget list of the newest transaction.
1879 	 */
1880 	transaction = jh->b_transaction;
1881 	if (transaction == NULL) {
1882 		/* First case: not on any transaction.  If it
1883 		 * has no checkpoint link, then we can zap it:
1884 		 * it's a writeback-mode buffer so we don't care
1885 		 * if it hits disk safely. */
1886 		if (!jh->b_cp_transaction) {
1887 			JBUFFER_TRACE(jh, "not on any transaction: zap");
1888 			goto zap_buffer;
1889 		}
1890 
1891 		if (!buffer_dirty(bh)) {
1892 			/* bdflush has written it.  We can drop it now */
1893 			goto zap_buffer;
1894 		}
1895 
1896 		/* OK, it must be in the journal but still not
1897 		 * written fully to disk: it's metadata or
1898 		 * journaled data... */
1899 
1900 		if (journal->j_running_transaction) {
1901 			/* ... and once the current transaction has
1902 			 * committed, the buffer won't be needed any
1903 			 * longer. */
1904 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1905 			ret = __dispose_buffer(jh,
1906 					journal->j_running_transaction);
1907 			journal_put_journal_head(jh);
1908 			spin_unlock(&journal->j_list_lock);
1909 			jbd_unlock_bh_state(bh);
1910 			spin_unlock(&journal->j_state_lock);
1911 			return ret;
1912 		} else {
1913 			/* There is no currently-running transaction. So the
1914 			 * orphan record which we wrote for this file must have
1915 			 * passed into commit.  We must attach this buffer to
1916 			 * the committing transaction, if it exists. */
1917 			if (journal->j_committing_transaction) {
1918 				JBUFFER_TRACE(jh, "give to committing trans");
1919 				ret = __dispose_buffer(jh,
1920 					journal->j_committing_transaction);
1921 				journal_put_journal_head(jh);
1922 				spin_unlock(&journal->j_list_lock);
1923 				jbd_unlock_bh_state(bh);
1924 				spin_unlock(&journal->j_state_lock);
1925 				return ret;
1926 			} else {
1927 				/* The orphan record's transaction has
1928 				 * committed.  We can cleanse this buffer */
1929 				clear_buffer_jbddirty(bh);
1930 				goto zap_buffer;
1931 			}
1932 		}
1933 	} else if (transaction == journal->j_committing_transaction) {
1934 		JBUFFER_TRACE(jh, "on committing transaction");
1935 		if (jh->b_jlist == BJ_Locked) {
1936 			/*
1937 			 * The buffer is on the committing transaction's locked
1938 			 * list.  We have the buffer locked, so I/O has
1939 			 * completed.  So we can nail the buffer now.
1940 			 */
1941 			may_free = __dispose_buffer(jh, transaction);
1942 			goto zap_buffer;
1943 		}
1944 		/*
1945 		 * The buffer is committing, we simply cannot touch
1946 		 * it. So we just set j_next_transaction to the
1947 		 * running transaction (if there is one) and mark
1948 		 * buffer as freed so that commit code knows it should
1949 		 * clear dirty bits when it is done with the buffer.
1950 		 */
1951 		set_buffer_freed(bh);
1952 		if (journal->j_running_transaction && buffer_jbddirty(bh))
1953 			jh->b_next_transaction = journal->j_running_transaction;
1954 		journal_put_journal_head(jh);
1955 		spin_unlock(&journal->j_list_lock);
1956 		jbd_unlock_bh_state(bh);
1957 		spin_unlock(&journal->j_state_lock);
1958 		return 0;
1959 	} else {
1960 		/* Good, the buffer belongs to the running transaction.
1961 		 * We are writing our own transaction's data, not any
1962 		 * previous one's, so it is safe to throw it away
1963 		 * (remember that we expect the filesystem to have set
1964 		 * i_size already for this truncate so recovery will not
1965 		 * expose the disk blocks we are discarding here.) */
1966 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1967 		JBUFFER_TRACE(jh, "on running transaction");
1968 		may_free = __dispose_buffer(jh, transaction);
1969 	}
1970 
1971 zap_buffer:
1972 	journal_put_journal_head(jh);
1973 zap_buffer_no_jh:
1974 	spin_unlock(&journal->j_list_lock);
1975 	jbd_unlock_bh_state(bh);
1976 	spin_unlock(&journal->j_state_lock);
1977 zap_buffer_unlocked:
1978 	clear_buffer_dirty(bh);
1979 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
1980 	clear_buffer_mapped(bh);
1981 	clear_buffer_req(bh);
1982 	clear_buffer_new(bh);
1983 	bh->b_bdev = NULL;
1984 	return may_free;
1985 }
1986 
1987 /**
1988  * void journal_invalidatepage() - invalidate a journal page
1989  * @journal: journal to use for flush
1990  * @page:    page to flush
1991  * @offset:  length of page to invalidate.
1992  *
1993  * Reap page buffers containing data after offset in page.
1994  */
journal_invalidatepage(journal_t * journal,struct page * page,unsigned long offset)1995 void journal_invalidatepage(journal_t *journal,
1996 		      struct page *page,
1997 		      unsigned long offset)
1998 {
1999 	struct buffer_head *head, *bh, *next;
2000 	unsigned int curr_off = 0;
2001 	int may_free = 1;
2002 
2003 	if (!PageLocked(page))
2004 		BUG();
2005 	if (!page_has_buffers(page))
2006 		return;
2007 
2008 	/* We will potentially be playing with lists other than just the
2009 	 * data lists (especially for journaled data mode), so be
2010 	 * cautious in our locking. */
2011 
2012 	head = bh = page_buffers(page);
2013 	do {
2014 		unsigned int next_off = curr_off + bh->b_size;
2015 		next = bh->b_this_page;
2016 
2017 		if (offset <= curr_off) {
2018 			/* This block is wholly outside the truncation point */
2019 			lock_buffer(bh);
2020 			may_free &= journal_unmap_buffer(journal, bh);
2021 			unlock_buffer(bh);
2022 		}
2023 		curr_off = next_off;
2024 		bh = next;
2025 
2026 	} while (bh != head);
2027 
2028 	if (!offset) {
2029 		if (may_free && try_to_free_buffers(page))
2030 			J_ASSERT(!page_has_buffers(page));
2031 	}
2032 }
2033 
2034 /*
2035  * File a buffer on the given transaction list.
2036  */
__journal_file_buffer(struct journal_head * jh,transaction_t * transaction,int jlist)2037 void __journal_file_buffer(struct journal_head *jh,
2038 			transaction_t *transaction, int jlist)
2039 {
2040 	struct journal_head **list = NULL;
2041 	int was_dirty = 0;
2042 	struct buffer_head *bh = jh2bh(jh);
2043 
2044 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2045 	assert_spin_locked(&transaction->t_journal->j_list_lock);
2046 
2047 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2048 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2049 				jh->b_transaction == NULL);
2050 
2051 	if (jh->b_transaction && jh->b_jlist == jlist)
2052 		return;
2053 
2054 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2055 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2056 		/*
2057 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2058 		 * instead of buffer_dirty. We should not see a dirty bit set
2059 		 * here because we clear it in do_get_write_access but e.g.
2060 		 * tune2fs can modify the sb and set the dirty bit at any time
2061 		 * so we try to gracefully handle that.
2062 		 */
2063 		if (buffer_dirty(bh))
2064 			warn_dirty_buffer(bh);
2065 		if (test_clear_buffer_dirty(bh) ||
2066 		    test_clear_buffer_jbddirty(bh))
2067 			was_dirty = 1;
2068 	}
2069 
2070 	if (jh->b_transaction)
2071 		__journal_temp_unlink_buffer(jh);
2072 	jh->b_transaction = transaction;
2073 
2074 	switch (jlist) {
2075 	case BJ_None:
2076 		J_ASSERT_JH(jh, !jh->b_committed_data);
2077 		J_ASSERT_JH(jh, !jh->b_frozen_data);
2078 		return;
2079 	case BJ_SyncData:
2080 		list = &transaction->t_sync_datalist;
2081 		break;
2082 	case BJ_Metadata:
2083 		transaction->t_nr_buffers++;
2084 		list = &transaction->t_buffers;
2085 		break;
2086 	case BJ_Forget:
2087 		list = &transaction->t_forget;
2088 		break;
2089 	case BJ_IO:
2090 		list = &transaction->t_iobuf_list;
2091 		break;
2092 	case BJ_Shadow:
2093 		list = &transaction->t_shadow_list;
2094 		break;
2095 	case BJ_LogCtl:
2096 		list = &transaction->t_log_list;
2097 		break;
2098 	case BJ_Reserved:
2099 		list = &transaction->t_reserved_list;
2100 		break;
2101 	case BJ_Locked:
2102 		list =  &transaction->t_locked_list;
2103 		break;
2104 	}
2105 
2106 	__blist_add_buffer(list, jh);
2107 	jh->b_jlist = jlist;
2108 
2109 	if (was_dirty)
2110 		set_buffer_jbddirty(bh);
2111 }
2112 
journal_file_buffer(struct journal_head * jh,transaction_t * transaction,int jlist)2113 void journal_file_buffer(struct journal_head *jh,
2114 				transaction_t *transaction, int jlist)
2115 {
2116 	jbd_lock_bh_state(jh2bh(jh));
2117 	spin_lock(&transaction->t_journal->j_list_lock);
2118 	__journal_file_buffer(jh, transaction, jlist);
2119 	spin_unlock(&transaction->t_journal->j_list_lock);
2120 	jbd_unlock_bh_state(jh2bh(jh));
2121 }
2122 
2123 /*
2124  * Remove a buffer from its current buffer list in preparation for
2125  * dropping it from its current transaction entirely.  If the buffer has
2126  * already started to be used by a subsequent transaction, refile the
2127  * buffer on that transaction's metadata list.
2128  *
2129  * Called under journal->j_list_lock
2130  *
2131  * Called under jbd_lock_bh_state(jh2bh(jh))
2132  */
__journal_refile_buffer(struct journal_head * jh)2133 void __journal_refile_buffer(struct journal_head *jh)
2134 {
2135 	int was_dirty, jlist;
2136 	struct buffer_head *bh = jh2bh(jh);
2137 
2138 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2139 	if (jh->b_transaction)
2140 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2141 
2142 	/* If the buffer is now unused, just drop it. */
2143 	if (jh->b_next_transaction == NULL) {
2144 		__journal_unfile_buffer(jh);
2145 		return;
2146 	}
2147 
2148 	/*
2149 	 * It has been modified by a later transaction: add it to the new
2150 	 * transaction's metadata list.
2151 	 */
2152 
2153 	was_dirty = test_clear_buffer_jbddirty(bh);
2154 	__journal_temp_unlink_buffer(jh);
2155 	jh->b_transaction = jh->b_next_transaction;
2156 	jh->b_next_transaction = NULL;
2157 	if (buffer_freed(bh))
2158 		jlist = BJ_Forget;
2159 	else if (jh->b_modified)
2160 		jlist = BJ_Metadata;
2161 	else
2162 		jlist = BJ_Reserved;
2163 	__journal_file_buffer(jh, jh->b_transaction, jlist);
2164 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2165 
2166 	if (was_dirty)
2167 		set_buffer_jbddirty(bh);
2168 }
2169 
2170 /*
2171  * For the unlocked version of this call, also make sure that any
2172  * hanging journal_head is cleaned up if necessary.
2173  *
2174  * __journal_refile_buffer is usually called as part of a single locked
2175  * operation on a buffer_head, in which the caller is probably going to
2176  * be hooking the journal_head onto other lists.  In that case it is up
2177  * to the caller to remove the journal_head if necessary.  For the
2178  * unlocked journal_refile_buffer call, the caller isn't going to be
2179  * doing anything else to the buffer so we need to do the cleanup
2180  * ourselves to avoid a jh leak.
2181  *
2182  * *** The journal_head may be freed by this call! ***
2183  */
journal_refile_buffer(journal_t * journal,struct journal_head * jh)2184 void journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2185 {
2186 	struct buffer_head *bh = jh2bh(jh);
2187 
2188 	jbd_lock_bh_state(bh);
2189 	spin_lock(&journal->j_list_lock);
2190 
2191 	__journal_refile_buffer(jh);
2192 	jbd_unlock_bh_state(bh);
2193 	journal_remove_journal_head(bh);
2194 
2195 	spin_unlock(&journal->j_list_lock);
2196 	__brelse(bh);
2197 }
2198