1 /*
2  *  linux/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  This file contains the interface functions for the various
7  *  time related system calls: time, stime, gettimeofday, settimeofday,
8  *			       adjtime
9  */
10 /*
11  * Modification history kernel/time.c
12  *
13  * 1993-09-02    Philip Gladstone
14  *      Created file with time related functions from sched.c and adjtimex()
15  * 1993-10-08    Torsten Duwe
16  *      adjtime interface update and CMOS clock write code
17  * 1995-08-13    Torsten Duwe
18  *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
19  * 1999-01-16    Ulrich Windl
20  *	Introduced error checking for many cases in adjtimex().
21  *	Updated NTP code according to technical memorandum Jan '96
22  *	"A Kernel Model for Precision Timekeeping" by Dave Mills
23  *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24  *	(Even though the technical memorandum forbids it)
25  * 2004-07-14	 Christoph Lameter
26  *	Added getnstimeofday to allow the posix timer functions to return
27  *	with nanosecond accuracy
28  */
29 
30 #include <linux/export.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/clocksource.h>
34 #include <linux/errno.h>
35 #include <linux/syscalls.h>
36 #include <linux/security.h>
37 #include <linux/fs.h>
38 #include <linux/math64.h>
39 #include <linux/ptrace.h>
40 
41 #include <asm/uaccess.h>
42 #include <asm/unistd.h>
43 
44 #include "timeconst.h"
45 
46 /*
47  * The timezone where the local system is located.  Used as a default by some
48  * programs who obtain this value by using gettimeofday.
49  */
50 struct timezone sys_tz;
51 
52 EXPORT_SYMBOL(sys_tz);
53 
54 #ifdef __ARCH_WANT_SYS_TIME
55 
56 /*
57  * sys_time() can be implemented in user-level using
58  * sys_gettimeofday().  Is this for backwards compatibility?  If so,
59  * why not move it into the appropriate arch directory (for those
60  * architectures that need it).
61  */
SYSCALL_DEFINE1(time,time_t __user *,tloc)62 SYSCALL_DEFINE1(time, time_t __user *, tloc)
63 {
64 	time_t i = get_seconds();
65 
66 	if (tloc) {
67 		if (put_user(i,tloc))
68 			return -EFAULT;
69 	}
70 	force_successful_syscall_return();
71 	return i;
72 }
73 
74 /*
75  * sys_stime() can be implemented in user-level using
76  * sys_settimeofday().  Is this for backwards compatibility?  If so,
77  * why not move it into the appropriate arch directory (for those
78  * architectures that need it).
79  */
80 
SYSCALL_DEFINE1(stime,time_t __user *,tptr)81 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
82 {
83 	struct timespec tv;
84 	int err;
85 
86 	if (get_user(tv.tv_sec, tptr))
87 		return -EFAULT;
88 
89 	tv.tv_nsec = 0;
90 
91 	err = security_settime(&tv, NULL);
92 	if (err)
93 		return err;
94 
95 	do_settimeofday(&tv);
96 	return 0;
97 }
98 
99 #endif /* __ARCH_WANT_SYS_TIME */
100 
SYSCALL_DEFINE2(gettimeofday,struct timeval __user *,tv,struct timezone __user *,tz)101 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
102 		struct timezone __user *, tz)
103 {
104 	if (likely(tv != NULL)) {
105 		struct timeval ktv;
106 		do_gettimeofday(&ktv);
107 		if (copy_to_user(tv, &ktv, sizeof(ktv)))
108 			return -EFAULT;
109 	}
110 	if (unlikely(tz != NULL)) {
111 		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
112 			return -EFAULT;
113 	}
114 	return 0;
115 }
116 
117 /*
118  * Adjust the time obtained from the CMOS to be UTC time instead of
119  * local time.
120  *
121  * This is ugly, but preferable to the alternatives.  Otherwise we
122  * would either need to write a program to do it in /etc/rc (and risk
123  * confusion if the program gets run more than once; it would also be
124  * hard to make the program warp the clock precisely n hours)  or
125  * compile in the timezone information into the kernel.  Bad, bad....
126  *
127  *						- TYT, 1992-01-01
128  *
129  * The best thing to do is to keep the CMOS clock in universal time (UTC)
130  * as real UNIX machines always do it. This avoids all headaches about
131  * daylight saving times and warping kernel clocks.
132  */
warp_clock(void)133 static inline void warp_clock(void)
134 {
135 	struct timespec adjust;
136 
137 	adjust = current_kernel_time();
138 	adjust.tv_sec += sys_tz.tz_minuteswest * 60;
139 	do_settimeofday(&adjust);
140 }
141 
142 /*
143  * In case for some reason the CMOS clock has not already been running
144  * in UTC, but in some local time: The first time we set the timezone,
145  * we will warp the clock so that it is ticking UTC time instead of
146  * local time. Presumably, if someone is setting the timezone then we
147  * are running in an environment where the programs understand about
148  * timezones. This should be done at boot time in the /etc/rc script,
149  * as soon as possible, so that the clock can be set right. Otherwise,
150  * various programs will get confused when the clock gets warped.
151  */
152 
do_sys_settimeofday(const struct timespec * tv,const struct timezone * tz)153 int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
154 {
155 	static int firsttime = 1;
156 	int error = 0;
157 
158 	if (tv && !timespec_valid(tv))
159 		return -EINVAL;
160 
161 	error = security_settime(tv, tz);
162 	if (error)
163 		return error;
164 
165 	if (tz) {
166 		sys_tz = *tz;
167 		update_vsyscall_tz();
168 		if (firsttime) {
169 			firsttime = 0;
170 			if (!tv)
171 				warp_clock();
172 		}
173 	}
174 	if (tv)
175 		return do_settimeofday(tv);
176 	return 0;
177 }
178 
SYSCALL_DEFINE2(settimeofday,struct timeval __user *,tv,struct timezone __user *,tz)179 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
180 		struct timezone __user *, tz)
181 {
182 	struct timeval user_tv;
183 	struct timespec	new_ts;
184 	struct timezone new_tz;
185 
186 	if (tv) {
187 		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
188 			return -EFAULT;
189 		new_ts.tv_sec = user_tv.tv_sec;
190 		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
191 	}
192 	if (tz) {
193 		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
194 			return -EFAULT;
195 	}
196 
197 	return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
198 }
199 
SYSCALL_DEFINE1(adjtimex,struct timex __user *,txc_p)200 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
201 {
202 	struct timex txc;		/* Local copy of parameter */
203 	int ret;
204 
205 	/* Copy the user data space into the kernel copy
206 	 * structure. But bear in mind that the structures
207 	 * may change
208 	 */
209 	if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
210 		return -EFAULT;
211 	ret = do_adjtimex(&txc);
212 	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
213 }
214 
215 /**
216  * current_fs_time - Return FS time
217  * @sb: Superblock.
218  *
219  * Return the current time truncated to the time granularity supported by
220  * the fs.
221  */
current_fs_time(struct super_block * sb)222 struct timespec current_fs_time(struct super_block *sb)
223 {
224 	struct timespec now = current_kernel_time();
225 	return timespec_trunc(now, sb->s_time_gran);
226 }
227 EXPORT_SYMBOL(current_fs_time);
228 
229 /*
230  * Convert jiffies to milliseconds and back.
231  *
232  * Avoid unnecessary multiplications/divisions in the
233  * two most common HZ cases:
234  */
jiffies_to_msecs(const unsigned long j)235 inline unsigned int jiffies_to_msecs(const unsigned long j)
236 {
237 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
238 	return (MSEC_PER_SEC / HZ) * j;
239 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
240 	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
241 #else
242 # if BITS_PER_LONG == 32
243 	return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
244 # else
245 	return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
246 # endif
247 #endif
248 }
249 EXPORT_SYMBOL(jiffies_to_msecs);
250 
jiffies_to_usecs(const unsigned long j)251 inline unsigned int jiffies_to_usecs(const unsigned long j)
252 {
253 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
254 	return (USEC_PER_SEC / HZ) * j;
255 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
256 	return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
257 #else
258 # if BITS_PER_LONG == 32
259 	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
260 # else
261 	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
262 # endif
263 #endif
264 }
265 EXPORT_SYMBOL(jiffies_to_usecs);
266 
267 /**
268  * timespec_trunc - Truncate timespec to a granularity
269  * @t: Timespec
270  * @gran: Granularity in ns.
271  *
272  * Truncate a timespec to a granularity. gran must be smaller than a second.
273  * Always rounds down.
274  *
275  * This function should be only used for timestamps returned by
276  * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
277  * it doesn't handle the better resolution of the latter.
278  */
timespec_trunc(struct timespec t,unsigned gran)279 struct timespec timespec_trunc(struct timespec t, unsigned gran)
280 {
281 	/*
282 	 * Division is pretty slow so avoid it for common cases.
283 	 * Currently current_kernel_time() never returns better than
284 	 * jiffies resolution. Exploit that.
285 	 */
286 	if (gran <= jiffies_to_usecs(1) * 1000) {
287 		/* nothing */
288 	} else if (gran == 1000000000) {
289 		t.tv_nsec = 0;
290 	} else {
291 		t.tv_nsec -= t.tv_nsec % gran;
292 	}
293 	return t;
294 }
295 EXPORT_SYMBOL(timespec_trunc);
296 
297 /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
298  * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
299  * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
300  *
301  * [For the Julian calendar (which was used in Russia before 1917,
302  * Britain & colonies before 1752, anywhere else before 1582,
303  * and is still in use by some communities) leave out the
304  * -year/100+year/400 terms, and add 10.]
305  *
306  * This algorithm was first published by Gauss (I think).
307  *
308  * WARNING: this function will overflow on 2106-02-07 06:28:16 on
309  * machines where long is 32-bit! (However, as time_t is signed, we
310  * will already get problems at other places on 2038-01-19 03:14:08)
311  */
312 unsigned long
mktime(const unsigned int year0,const unsigned int mon0,const unsigned int day,const unsigned int hour,const unsigned int min,const unsigned int sec)313 mktime(const unsigned int year0, const unsigned int mon0,
314        const unsigned int day, const unsigned int hour,
315        const unsigned int min, const unsigned int sec)
316 {
317 	unsigned int mon = mon0, year = year0;
318 
319 	/* 1..12 -> 11,12,1..10 */
320 	if (0 >= (int) (mon -= 2)) {
321 		mon += 12;	/* Puts Feb last since it has leap day */
322 		year -= 1;
323 	}
324 
325 	return ((((unsigned long)
326 		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
327 		  year*365 - 719499
328 	    )*24 + hour /* now have hours */
329 	  )*60 + min /* now have minutes */
330 	)*60 + sec; /* finally seconds */
331 }
332 
333 EXPORT_SYMBOL(mktime);
334 
335 /**
336  * set_normalized_timespec - set timespec sec and nsec parts and normalize
337  *
338  * @ts:		pointer to timespec variable to be set
339  * @sec:	seconds to set
340  * @nsec:	nanoseconds to set
341  *
342  * Set seconds and nanoseconds field of a timespec variable and
343  * normalize to the timespec storage format
344  *
345  * Note: The tv_nsec part is always in the range of
346  *	0 <= tv_nsec < NSEC_PER_SEC
347  * For negative values only the tv_sec field is negative !
348  */
set_normalized_timespec(struct timespec * ts,time_t sec,s64 nsec)349 void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
350 {
351 	while (nsec >= NSEC_PER_SEC) {
352 		/*
353 		 * The following asm() prevents the compiler from
354 		 * optimising this loop into a modulo operation. See
355 		 * also __iter_div_u64_rem() in include/linux/time.h
356 		 */
357 		asm("" : "+rm"(nsec));
358 		nsec -= NSEC_PER_SEC;
359 		++sec;
360 	}
361 	while (nsec < 0) {
362 		asm("" : "+rm"(nsec));
363 		nsec += NSEC_PER_SEC;
364 		--sec;
365 	}
366 	ts->tv_sec = sec;
367 	ts->tv_nsec = nsec;
368 }
369 EXPORT_SYMBOL(set_normalized_timespec);
370 
371 /**
372  * ns_to_timespec - Convert nanoseconds to timespec
373  * @nsec:       the nanoseconds value to be converted
374  *
375  * Returns the timespec representation of the nsec parameter.
376  */
ns_to_timespec(const s64 nsec)377 struct timespec ns_to_timespec(const s64 nsec)
378 {
379 	struct timespec ts;
380 	s32 rem;
381 
382 	if (!nsec)
383 		return (struct timespec) {0, 0};
384 
385 	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
386 	if (unlikely(rem < 0)) {
387 		ts.tv_sec--;
388 		rem += NSEC_PER_SEC;
389 	}
390 	ts.tv_nsec = rem;
391 
392 	return ts;
393 }
394 EXPORT_SYMBOL(ns_to_timespec);
395 
396 /**
397  * ns_to_timeval - Convert nanoseconds to timeval
398  * @nsec:       the nanoseconds value to be converted
399  *
400  * Returns the timeval representation of the nsec parameter.
401  */
ns_to_timeval(const s64 nsec)402 struct timeval ns_to_timeval(const s64 nsec)
403 {
404 	struct timespec ts = ns_to_timespec(nsec);
405 	struct timeval tv;
406 
407 	tv.tv_sec = ts.tv_sec;
408 	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
409 
410 	return tv;
411 }
412 EXPORT_SYMBOL(ns_to_timeval);
413 
414 /*
415  * When we convert to jiffies then we interpret incoming values
416  * the following way:
417  *
418  * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
419  *
420  * - 'too large' values [that would result in larger than
421  *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
422  *
423  * - all other values are converted to jiffies by either multiplying
424  *   the input value by a factor or dividing it with a factor
425  *
426  * We must also be careful about 32-bit overflows.
427  */
msecs_to_jiffies(const unsigned int m)428 unsigned long msecs_to_jiffies(const unsigned int m)
429 {
430 	/*
431 	 * Negative value, means infinite timeout:
432 	 */
433 	if ((int)m < 0)
434 		return MAX_JIFFY_OFFSET;
435 
436 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
437 	/*
438 	 * HZ is equal to or smaller than 1000, and 1000 is a nice
439 	 * round multiple of HZ, divide with the factor between them,
440 	 * but round upwards:
441 	 */
442 	return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
443 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
444 	/*
445 	 * HZ is larger than 1000, and HZ is a nice round multiple of
446 	 * 1000 - simply multiply with the factor between them.
447 	 *
448 	 * But first make sure the multiplication result cannot
449 	 * overflow:
450 	 */
451 	if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
452 		return MAX_JIFFY_OFFSET;
453 
454 	return m * (HZ / MSEC_PER_SEC);
455 #else
456 	/*
457 	 * Generic case - multiply, round and divide. But first
458 	 * check that if we are doing a net multiplication, that
459 	 * we wouldn't overflow:
460 	 */
461 	if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
462 		return MAX_JIFFY_OFFSET;
463 
464 	return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
465 		>> MSEC_TO_HZ_SHR32;
466 #endif
467 }
468 EXPORT_SYMBOL(msecs_to_jiffies);
469 
usecs_to_jiffies(const unsigned int u)470 unsigned long usecs_to_jiffies(const unsigned int u)
471 {
472 	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
473 		return MAX_JIFFY_OFFSET;
474 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
475 	return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
476 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
477 	return u * (HZ / USEC_PER_SEC);
478 #else
479 	return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
480 		>> USEC_TO_HZ_SHR32;
481 #endif
482 }
483 EXPORT_SYMBOL(usecs_to_jiffies);
484 
485 /*
486  * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
487  * that a remainder subtract here would not do the right thing as the
488  * resolution values don't fall on second boundries.  I.e. the line:
489  * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
490  *
491  * Rather, we just shift the bits off the right.
492  *
493  * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
494  * value to a scaled second value.
495  */
496 unsigned long
timespec_to_jiffies(const struct timespec * value)497 timespec_to_jiffies(const struct timespec *value)
498 {
499 	unsigned long sec = value->tv_sec;
500 	long nsec = value->tv_nsec + TICK_NSEC - 1;
501 
502 	if (sec >= MAX_SEC_IN_JIFFIES){
503 		sec = MAX_SEC_IN_JIFFIES;
504 		nsec = 0;
505 	}
506 	return (((u64)sec * SEC_CONVERSION) +
507 		(((u64)nsec * NSEC_CONVERSION) >>
508 		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
509 
510 }
511 EXPORT_SYMBOL(timespec_to_jiffies);
512 
513 void
jiffies_to_timespec(const unsigned long jiffies,struct timespec * value)514 jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
515 {
516 	/*
517 	 * Convert jiffies to nanoseconds and separate with
518 	 * one divide.
519 	 */
520 	u32 rem;
521 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
522 				    NSEC_PER_SEC, &rem);
523 	value->tv_nsec = rem;
524 }
525 EXPORT_SYMBOL(jiffies_to_timespec);
526 
527 /* Same for "timeval"
528  *
529  * Well, almost.  The problem here is that the real system resolution is
530  * in nanoseconds and the value being converted is in micro seconds.
531  * Also for some machines (those that use HZ = 1024, in-particular),
532  * there is a LARGE error in the tick size in microseconds.
533 
534  * The solution we use is to do the rounding AFTER we convert the
535  * microsecond part.  Thus the USEC_ROUND, the bits to be shifted off.
536  * Instruction wise, this should cost only an additional add with carry
537  * instruction above the way it was done above.
538  */
539 unsigned long
timeval_to_jiffies(const struct timeval * value)540 timeval_to_jiffies(const struct timeval *value)
541 {
542 	unsigned long sec = value->tv_sec;
543 	long usec = value->tv_usec;
544 
545 	if (sec >= MAX_SEC_IN_JIFFIES){
546 		sec = MAX_SEC_IN_JIFFIES;
547 		usec = 0;
548 	}
549 	return (((u64)sec * SEC_CONVERSION) +
550 		(((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
551 		 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
552 }
553 EXPORT_SYMBOL(timeval_to_jiffies);
554 
jiffies_to_timeval(const unsigned long jiffies,struct timeval * value)555 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
556 {
557 	/*
558 	 * Convert jiffies to nanoseconds and separate with
559 	 * one divide.
560 	 */
561 	u32 rem;
562 
563 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
564 				    NSEC_PER_SEC, &rem);
565 	value->tv_usec = rem / NSEC_PER_USEC;
566 }
567 EXPORT_SYMBOL(jiffies_to_timeval);
568 
569 /*
570  * Convert jiffies/jiffies_64 to clock_t and back.
571  */
jiffies_to_clock_t(unsigned long x)572 clock_t jiffies_to_clock_t(unsigned long x)
573 {
574 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
575 # if HZ < USER_HZ
576 	return x * (USER_HZ / HZ);
577 # else
578 	return x / (HZ / USER_HZ);
579 # endif
580 #else
581 	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
582 #endif
583 }
584 EXPORT_SYMBOL(jiffies_to_clock_t);
585 
clock_t_to_jiffies(unsigned long x)586 unsigned long clock_t_to_jiffies(unsigned long x)
587 {
588 #if (HZ % USER_HZ)==0
589 	if (x >= ~0UL / (HZ / USER_HZ))
590 		return ~0UL;
591 	return x * (HZ / USER_HZ);
592 #else
593 	/* Don't worry about loss of precision here .. */
594 	if (x >= ~0UL / HZ * USER_HZ)
595 		return ~0UL;
596 
597 	/* .. but do try to contain it here */
598 	return div_u64((u64)x * HZ, USER_HZ);
599 #endif
600 }
601 EXPORT_SYMBOL(clock_t_to_jiffies);
602 
jiffies_64_to_clock_t(u64 x)603 u64 jiffies_64_to_clock_t(u64 x)
604 {
605 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
606 # if HZ < USER_HZ
607 	x = div_u64(x * USER_HZ, HZ);
608 # elif HZ > USER_HZ
609 	x = div_u64(x, HZ / USER_HZ);
610 # else
611 	/* Nothing to do */
612 # endif
613 #else
614 	/*
615 	 * There are better ways that don't overflow early,
616 	 * but even this doesn't overflow in hundreds of years
617 	 * in 64 bits, so..
618 	 */
619 	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
620 #endif
621 	return x;
622 }
623 EXPORT_SYMBOL(jiffies_64_to_clock_t);
624 
nsec_to_clock_t(u64 x)625 u64 nsec_to_clock_t(u64 x)
626 {
627 #if (NSEC_PER_SEC % USER_HZ) == 0
628 	return div_u64(x, NSEC_PER_SEC / USER_HZ);
629 #elif (USER_HZ % 512) == 0
630 	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
631 #else
632 	/*
633          * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
634          * overflow after 64.99 years.
635          * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
636          */
637 	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
638 #endif
639 }
640 
641 /**
642  * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
643  *
644  * @n:	nsecs in u64
645  *
646  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
647  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
648  * for scheduler, not for use in device drivers to calculate timeout value.
649  *
650  * note:
651  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
652  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
653  */
nsecs_to_jiffies64(u64 n)654 u64 nsecs_to_jiffies64(u64 n)
655 {
656 #if (NSEC_PER_SEC % HZ) == 0
657 	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
658 	return div_u64(n, NSEC_PER_SEC / HZ);
659 #elif (HZ % 512) == 0
660 	/* overflow after 292 years if HZ = 1024 */
661 	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
662 #else
663 	/*
664 	 * Generic case - optimized for cases where HZ is a multiple of 3.
665 	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
666 	 */
667 	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
668 #endif
669 }
670 
671 /**
672  * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
673  *
674  * @n:	nsecs in u64
675  *
676  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
677  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
678  * for scheduler, not for use in device drivers to calculate timeout value.
679  *
680  * note:
681  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
682  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
683  */
nsecs_to_jiffies(u64 n)684 unsigned long nsecs_to_jiffies(u64 n)
685 {
686 	return (unsigned long)nsecs_to_jiffies64(n);
687 }
688 
689 /*
690  * Add two timespec values and do a safety check for overflow.
691  * It's assumed that both values are valid (>= 0)
692  */
timespec_add_safe(const struct timespec lhs,const struct timespec rhs)693 struct timespec timespec_add_safe(const struct timespec lhs,
694 				  const struct timespec rhs)
695 {
696 	struct timespec res;
697 
698 	set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
699 				lhs.tv_nsec + rhs.tv_nsec);
700 
701 	if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
702 		res.tv_sec = TIME_T_MAX;
703 
704 	return res;
705 }
706