1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * linux/fs/jbd2/commit.c
4 *
5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 *
7 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 *
9 * Journal commit routines for the generic filesystem journaling code;
10 * part of the ext2fs journaling system.
11 */
12
13 #include <linux/time.h>
14 #include <linux/fs.h>
15 #include <linux/jbd2.h>
16 #include <linux/errno.h>
17 #include <linux/slab.h>
18 #include <linux/mm.h>
19 #include <linux/pagemap.h>
20 #include <linux/jiffies.h>
21 #include <linux/crc32.h>
22 #include <linux/writeback.h>
23 #include <linux/backing-dev.h>
24 #include <linux/bio.h>
25 #include <linux/blkdev.h>
26 #include <linux/bitops.h>
27 #include <trace/events/jbd2.h>
28
29 /*
30 * IO end handler for temporary buffer_heads handling writes to the journal.
31 */
journal_end_buffer_io_sync(struct buffer_head * bh,int uptodate)32 static void journal_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
33 {
34 struct buffer_head *orig_bh = bh->b_private;
35
36 BUFFER_TRACE(bh, "");
37 if (uptodate)
38 set_buffer_uptodate(bh);
39 else
40 clear_buffer_uptodate(bh);
41 if (orig_bh) {
42 clear_bit_unlock(BH_Shadow, &orig_bh->b_state);
43 smp_mb__after_atomic();
44 wake_up_bit(&orig_bh->b_state, BH_Shadow);
45 }
46 unlock_buffer(bh);
47 }
48
49 /*
50 * When an ext4 file is truncated, it is possible that some pages are not
51 * successfully freed, because they are attached to a committing transaction.
52 * After the transaction commits, these pages are left on the LRU, with no
53 * ->mapping, and with attached buffers. These pages are trivially reclaimable
54 * by the VM, but their apparent absence upsets the VM accounting, and it makes
55 * the numbers in /proc/meminfo look odd.
56 *
57 * So here, we have a buffer which has just come off the forget list. Look to
58 * see if we can strip all buffers from the backing page.
59 *
60 * Called under lock_journal(), and possibly under journal_datalist_lock. The
61 * caller provided us with a ref against the buffer, and we drop that here.
62 */
release_buffer_page(struct buffer_head * bh)63 static void release_buffer_page(struct buffer_head *bh)
64 {
65 struct folio *folio;
66 struct page *page;
67
68 if (buffer_dirty(bh))
69 goto nope;
70 if (atomic_read(&bh->b_count) != 1)
71 goto nope;
72 page = bh->b_page;
73 if (!page)
74 goto nope;
75 folio = page_folio(page);
76 if (folio->mapping)
77 goto nope;
78
79 /* OK, it's a truncated page */
80 if (!folio_trylock(folio))
81 goto nope;
82
83 folio_get(folio);
84 __brelse(bh);
85 try_to_free_buffers(folio);
86 folio_unlock(folio);
87 folio_put(folio);
88 return;
89
90 nope:
91 __brelse(bh);
92 }
93
jbd2_commit_block_csum_set(journal_t * j,struct buffer_head * bh)94 static void jbd2_commit_block_csum_set(journal_t *j, struct buffer_head *bh)
95 {
96 struct commit_header *h;
97 __u32 csum;
98
99 if (!jbd2_journal_has_csum_v2or3(j))
100 return;
101
102 h = (struct commit_header *)(bh->b_data);
103 h->h_chksum_type = 0;
104 h->h_chksum_size = 0;
105 h->h_chksum[0] = 0;
106 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
107 h->h_chksum[0] = cpu_to_be32(csum);
108 }
109
110 /*
111 * Done it all: now submit the commit record. We should have
112 * cleaned up our previous buffers by now, so if we are in abort
113 * mode we can now just skip the rest of the journal write
114 * entirely.
115 *
116 * Returns 1 if the journal needs to be aborted or 0 on success
117 */
journal_submit_commit_record(journal_t * journal,transaction_t * commit_transaction,struct buffer_head ** cbh,__u32 crc32_sum)118 static int journal_submit_commit_record(journal_t *journal,
119 transaction_t *commit_transaction,
120 struct buffer_head **cbh,
121 __u32 crc32_sum)
122 {
123 struct commit_header *tmp;
124 struct buffer_head *bh;
125 struct timespec64 now;
126 blk_opf_t write_flags = REQ_OP_WRITE | REQ_SYNC;
127
128 *cbh = NULL;
129
130 if (is_journal_aborted(journal))
131 return 0;
132
133 bh = jbd2_journal_get_descriptor_buffer(commit_transaction,
134 JBD2_COMMIT_BLOCK);
135 if (!bh)
136 return 1;
137
138 tmp = (struct commit_header *)bh->b_data;
139 ktime_get_coarse_real_ts64(&now);
140 tmp->h_commit_sec = cpu_to_be64(now.tv_sec);
141 tmp->h_commit_nsec = cpu_to_be32(now.tv_nsec);
142
143 if (jbd2_has_feature_checksum(journal)) {
144 tmp->h_chksum_type = JBD2_CRC32_CHKSUM;
145 tmp->h_chksum_size = JBD2_CRC32_CHKSUM_SIZE;
146 tmp->h_chksum[0] = cpu_to_be32(crc32_sum);
147 }
148 jbd2_commit_block_csum_set(journal, bh);
149
150 BUFFER_TRACE(bh, "submit commit block");
151 lock_buffer(bh);
152 clear_buffer_dirty(bh);
153 set_buffer_uptodate(bh);
154 bh->b_end_io = journal_end_buffer_io_sync;
155
156 if (journal->j_flags & JBD2_BARRIER &&
157 !jbd2_has_feature_async_commit(journal))
158 write_flags |= REQ_PREFLUSH | REQ_FUA;
159
160 submit_bh(write_flags, bh);
161 *cbh = bh;
162 return 0;
163 }
164
165 /*
166 * This function along with journal_submit_commit_record
167 * allows to write the commit record asynchronously.
168 */
journal_wait_on_commit_record(journal_t * journal,struct buffer_head * bh)169 static int journal_wait_on_commit_record(journal_t *journal,
170 struct buffer_head *bh)
171 {
172 int ret = 0;
173
174 clear_buffer_dirty(bh);
175 wait_on_buffer(bh);
176
177 if (unlikely(!buffer_uptodate(bh)))
178 ret = -EIO;
179 put_bh(bh); /* One for getblk() */
180
181 return ret;
182 }
183
184 /*
185 * write the filemap data using writepage() address_space_operations.
186 * We don't do block allocation here even for delalloc. We don't
187 * use writepages() because with delayed allocation we may be doing
188 * block allocation in writepages().
189 */
jbd2_journal_submit_inode_data_buffers(struct jbd2_inode * jinode)190 int jbd2_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
191 {
192 struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
193 struct writeback_control wbc = {
194 .sync_mode = WB_SYNC_ALL,
195 .nr_to_write = mapping->nrpages * 2,
196 .range_start = jinode->i_dirty_start,
197 .range_end = jinode->i_dirty_end,
198 };
199
200 /*
201 * submit the inode data buffers. We use writepage
202 * instead of writepages. Because writepages can do
203 * block allocation with delalloc. We need to write
204 * only allocated blocks here.
205 */
206 return generic_writepages(mapping, &wbc);
207 }
208
209 /* Send all the data buffers related to an inode */
jbd2_submit_inode_data(struct jbd2_inode * jinode)210 int jbd2_submit_inode_data(struct jbd2_inode *jinode)
211 {
212
213 if (!jinode || !(jinode->i_flags & JI_WRITE_DATA))
214 return 0;
215
216 trace_jbd2_submit_inode_data(jinode->i_vfs_inode);
217 return jbd2_journal_submit_inode_data_buffers(jinode);
218
219 }
220 EXPORT_SYMBOL(jbd2_submit_inode_data);
221
jbd2_wait_inode_data(journal_t * journal,struct jbd2_inode * jinode)222 int jbd2_wait_inode_data(journal_t *journal, struct jbd2_inode *jinode)
223 {
224 if (!jinode || !(jinode->i_flags & JI_WAIT_DATA) ||
225 !jinode->i_vfs_inode || !jinode->i_vfs_inode->i_mapping)
226 return 0;
227 return filemap_fdatawait_range_keep_errors(
228 jinode->i_vfs_inode->i_mapping, jinode->i_dirty_start,
229 jinode->i_dirty_end);
230 }
231 EXPORT_SYMBOL(jbd2_wait_inode_data);
232
233 /*
234 * Submit all the data buffers of inode associated with the transaction to
235 * disk.
236 *
237 * We are in a committing transaction. Therefore no new inode can be added to
238 * our inode list. We use JI_COMMIT_RUNNING flag to protect inode we currently
239 * operate on from being released while we write out pages.
240 */
journal_submit_data_buffers(journal_t * journal,transaction_t * commit_transaction)241 static int journal_submit_data_buffers(journal_t *journal,
242 transaction_t *commit_transaction)
243 {
244 struct jbd2_inode *jinode;
245 int err, ret = 0;
246
247 spin_lock(&journal->j_list_lock);
248 list_for_each_entry(jinode, &commit_transaction->t_inode_list, i_list) {
249 if (!(jinode->i_flags & JI_WRITE_DATA))
250 continue;
251 jinode->i_flags |= JI_COMMIT_RUNNING;
252 spin_unlock(&journal->j_list_lock);
253 /* submit the inode data buffers. */
254 trace_jbd2_submit_inode_data(jinode->i_vfs_inode);
255 if (journal->j_submit_inode_data_buffers) {
256 err = journal->j_submit_inode_data_buffers(jinode);
257 if (!ret)
258 ret = err;
259 }
260 spin_lock(&journal->j_list_lock);
261 J_ASSERT(jinode->i_transaction == commit_transaction);
262 jinode->i_flags &= ~JI_COMMIT_RUNNING;
263 smp_mb();
264 wake_up_bit(&jinode->i_flags, __JI_COMMIT_RUNNING);
265 }
266 spin_unlock(&journal->j_list_lock);
267 return ret;
268 }
269
jbd2_journal_finish_inode_data_buffers(struct jbd2_inode * jinode)270 int jbd2_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
271 {
272 struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
273
274 return filemap_fdatawait_range_keep_errors(mapping,
275 jinode->i_dirty_start,
276 jinode->i_dirty_end);
277 }
278
279 /*
280 * Wait for data submitted for writeout, refile inodes to proper
281 * transaction if needed.
282 *
283 */
journal_finish_inode_data_buffers(journal_t * journal,transaction_t * commit_transaction)284 static int journal_finish_inode_data_buffers(journal_t *journal,
285 transaction_t *commit_transaction)
286 {
287 struct jbd2_inode *jinode, *next_i;
288 int err, ret = 0;
289
290 /* For locking, see the comment in journal_submit_data_buffers() */
291 spin_lock(&journal->j_list_lock);
292 list_for_each_entry(jinode, &commit_transaction->t_inode_list, i_list) {
293 if (!(jinode->i_flags & JI_WAIT_DATA))
294 continue;
295 jinode->i_flags |= JI_COMMIT_RUNNING;
296 spin_unlock(&journal->j_list_lock);
297 /* wait for the inode data buffers writeout. */
298 if (journal->j_finish_inode_data_buffers) {
299 err = journal->j_finish_inode_data_buffers(jinode);
300 if (!ret)
301 ret = err;
302 }
303 spin_lock(&journal->j_list_lock);
304 jinode->i_flags &= ~JI_COMMIT_RUNNING;
305 smp_mb();
306 wake_up_bit(&jinode->i_flags, __JI_COMMIT_RUNNING);
307 }
308
309 /* Now refile inode to proper lists */
310 list_for_each_entry_safe(jinode, next_i,
311 &commit_transaction->t_inode_list, i_list) {
312 list_del(&jinode->i_list);
313 if (jinode->i_next_transaction) {
314 jinode->i_transaction = jinode->i_next_transaction;
315 jinode->i_next_transaction = NULL;
316 list_add(&jinode->i_list,
317 &jinode->i_transaction->t_inode_list);
318 } else {
319 jinode->i_transaction = NULL;
320 jinode->i_dirty_start = 0;
321 jinode->i_dirty_end = 0;
322 }
323 }
324 spin_unlock(&journal->j_list_lock);
325
326 return ret;
327 }
328
jbd2_checksum_data(__u32 crc32_sum,struct buffer_head * bh)329 static __u32 jbd2_checksum_data(__u32 crc32_sum, struct buffer_head *bh)
330 {
331 struct page *page = bh->b_page;
332 char *addr;
333 __u32 checksum;
334
335 addr = kmap_atomic(page);
336 checksum = crc32_be(crc32_sum,
337 (void *)(addr + offset_in_page(bh->b_data)), bh->b_size);
338 kunmap_atomic(addr);
339
340 return checksum;
341 }
342
write_tag_block(journal_t * j,journal_block_tag_t * tag,unsigned long long block)343 static void write_tag_block(journal_t *j, journal_block_tag_t *tag,
344 unsigned long long block)
345 {
346 tag->t_blocknr = cpu_to_be32(block & (u32)~0);
347 if (jbd2_has_feature_64bit(j))
348 tag->t_blocknr_high = cpu_to_be32((block >> 31) >> 1);
349 }
350
jbd2_block_tag_csum_set(journal_t * j,journal_block_tag_t * tag,struct buffer_head * bh,__u32 sequence)351 static void jbd2_block_tag_csum_set(journal_t *j, journal_block_tag_t *tag,
352 struct buffer_head *bh, __u32 sequence)
353 {
354 journal_block_tag3_t *tag3 = (journal_block_tag3_t *)tag;
355 struct page *page = bh->b_page;
356 __u8 *addr;
357 __u32 csum32;
358 __be32 seq;
359
360 if (!jbd2_journal_has_csum_v2or3(j))
361 return;
362
363 seq = cpu_to_be32(sequence);
364 addr = kmap_atomic(page);
365 csum32 = jbd2_chksum(j, j->j_csum_seed, (__u8 *)&seq, sizeof(seq));
366 csum32 = jbd2_chksum(j, csum32, addr + offset_in_page(bh->b_data),
367 bh->b_size);
368 kunmap_atomic(addr);
369
370 if (jbd2_has_feature_csum3(j))
371 tag3->t_checksum = cpu_to_be32(csum32);
372 else
373 tag->t_checksum = cpu_to_be16(csum32);
374 }
375 /*
376 * jbd2_journal_commit_transaction
377 *
378 * The primary function for committing a transaction to the log. This
379 * function is called by the journal thread to begin a complete commit.
380 */
jbd2_journal_commit_transaction(journal_t * journal)381 void jbd2_journal_commit_transaction(journal_t *journal)
382 {
383 struct transaction_stats_s stats;
384 transaction_t *commit_transaction;
385 struct journal_head *jh;
386 struct buffer_head *descriptor;
387 struct buffer_head **wbuf = journal->j_wbuf;
388 int bufs;
389 int flags;
390 int err;
391 unsigned long long blocknr;
392 ktime_t start_time;
393 u64 commit_time;
394 char *tagp = NULL;
395 journal_block_tag_t *tag = NULL;
396 int space_left = 0;
397 int first_tag = 0;
398 int tag_flag;
399 int i;
400 int tag_bytes = journal_tag_bytes(journal);
401 struct buffer_head *cbh = NULL; /* For transactional checksums */
402 __u32 crc32_sum = ~0;
403 struct blk_plug plug;
404 /* Tail of the journal */
405 unsigned long first_block;
406 tid_t first_tid;
407 int update_tail;
408 int csum_size = 0;
409 LIST_HEAD(io_bufs);
410 LIST_HEAD(log_bufs);
411
412 if (jbd2_journal_has_csum_v2or3(journal))
413 csum_size = sizeof(struct jbd2_journal_block_tail);
414
415 /*
416 * First job: lock down the current transaction and wait for
417 * all outstanding updates to complete.
418 */
419
420 /* Do we need to erase the effects of a prior jbd2_journal_flush? */
421 if (journal->j_flags & JBD2_FLUSHED) {
422 jbd2_debug(3, "super block updated\n");
423 mutex_lock_io(&journal->j_checkpoint_mutex);
424 /*
425 * We hold j_checkpoint_mutex so tail cannot change under us.
426 * We don't need any special data guarantees for writing sb
427 * since journal is empty and it is ok for write to be
428 * flushed only with transaction commit.
429 */
430 jbd2_journal_update_sb_log_tail(journal,
431 journal->j_tail_sequence,
432 journal->j_tail,
433 REQ_SYNC);
434 mutex_unlock(&journal->j_checkpoint_mutex);
435 } else {
436 jbd2_debug(3, "superblock not updated\n");
437 }
438
439 J_ASSERT(journal->j_running_transaction != NULL);
440 J_ASSERT(journal->j_committing_transaction == NULL);
441
442 write_lock(&journal->j_state_lock);
443 journal->j_flags |= JBD2_FULL_COMMIT_ONGOING;
444 while (journal->j_flags & JBD2_FAST_COMMIT_ONGOING) {
445 DEFINE_WAIT(wait);
446
447 prepare_to_wait(&journal->j_fc_wait, &wait,
448 TASK_UNINTERRUPTIBLE);
449 write_unlock(&journal->j_state_lock);
450 schedule();
451 write_lock(&journal->j_state_lock);
452 finish_wait(&journal->j_fc_wait, &wait);
453 /*
454 * TODO: by blocking fast commits here, we are increasing
455 * fsync() latency slightly. Strictly speaking, we don't need
456 * to block fast commits until the transaction enters T_FLUSH
457 * state. So an optimization is possible where we block new fast
458 * commits here and wait for existing ones to complete
459 * just before we enter T_FLUSH. That way, the existing fast
460 * commits and this full commit can proceed parallely.
461 */
462 }
463 write_unlock(&journal->j_state_lock);
464
465 commit_transaction = journal->j_running_transaction;
466
467 trace_jbd2_start_commit(journal, commit_transaction);
468 jbd2_debug(1, "JBD2: starting commit of transaction %d\n",
469 commit_transaction->t_tid);
470
471 write_lock(&journal->j_state_lock);
472 journal->j_fc_off = 0;
473 J_ASSERT(commit_transaction->t_state == T_RUNNING);
474 commit_transaction->t_state = T_LOCKED;
475
476 trace_jbd2_commit_locking(journal, commit_transaction);
477 stats.run.rs_wait = commit_transaction->t_max_wait;
478 stats.run.rs_request_delay = 0;
479 stats.run.rs_locked = jiffies;
480 if (commit_transaction->t_requested)
481 stats.run.rs_request_delay =
482 jbd2_time_diff(commit_transaction->t_requested,
483 stats.run.rs_locked);
484 stats.run.rs_running = jbd2_time_diff(commit_transaction->t_start,
485 stats.run.rs_locked);
486
487 // waits for any t_updates to finish
488 jbd2_journal_wait_updates(journal);
489
490 commit_transaction->t_state = T_SWITCH;
491
492 J_ASSERT (atomic_read(&commit_transaction->t_outstanding_credits) <=
493 journal->j_max_transaction_buffers);
494
495 /*
496 * First thing we are allowed to do is to discard any remaining
497 * BJ_Reserved buffers. Note, it is _not_ permissible to assume
498 * that there are no such buffers: if a large filesystem
499 * operation like a truncate needs to split itself over multiple
500 * transactions, then it may try to do a jbd2_journal_restart() while
501 * there are still BJ_Reserved buffers outstanding. These must
502 * be released cleanly from the current transaction.
503 *
504 * In this case, the filesystem must still reserve write access
505 * again before modifying the buffer in the new transaction, but
506 * we do not require it to remember exactly which old buffers it
507 * has reserved. This is consistent with the existing behaviour
508 * that multiple jbd2_journal_get_write_access() calls to the same
509 * buffer are perfectly permissible.
510 * We use journal->j_state_lock here to serialize processing of
511 * t_reserved_list with eviction of buffers from journal_unmap_buffer().
512 */
513 while (commit_transaction->t_reserved_list) {
514 jh = commit_transaction->t_reserved_list;
515 JBUFFER_TRACE(jh, "reserved, unused: refile");
516 /*
517 * A jbd2_journal_get_undo_access()+jbd2_journal_release_buffer() may
518 * leave undo-committed data.
519 */
520 if (jh->b_committed_data) {
521 struct buffer_head *bh = jh2bh(jh);
522
523 spin_lock(&jh->b_state_lock);
524 jbd2_free(jh->b_committed_data, bh->b_size);
525 jh->b_committed_data = NULL;
526 spin_unlock(&jh->b_state_lock);
527 }
528 jbd2_journal_refile_buffer(journal, jh);
529 }
530
531 write_unlock(&journal->j_state_lock);
532 /*
533 * Now try to drop any written-back buffers from the journal's
534 * checkpoint lists. We do this *before* commit because it potentially
535 * frees some memory
536 */
537 spin_lock(&journal->j_list_lock);
538 __jbd2_journal_clean_checkpoint_list(journal, false);
539 spin_unlock(&journal->j_list_lock);
540
541 jbd2_debug(3, "JBD2: commit phase 1\n");
542
543 /*
544 * Clear revoked flag to reflect there is no revoked buffers
545 * in the next transaction which is going to be started.
546 */
547 jbd2_clear_buffer_revoked_flags(journal);
548
549 /*
550 * Switch to a new revoke table.
551 */
552 jbd2_journal_switch_revoke_table(journal);
553
554 write_lock(&journal->j_state_lock);
555 /*
556 * Reserved credits cannot be claimed anymore, free them
557 */
558 atomic_sub(atomic_read(&journal->j_reserved_credits),
559 &commit_transaction->t_outstanding_credits);
560
561 trace_jbd2_commit_flushing(journal, commit_transaction);
562 stats.run.rs_flushing = jiffies;
563 stats.run.rs_locked = jbd2_time_diff(stats.run.rs_locked,
564 stats.run.rs_flushing);
565
566 commit_transaction->t_state = T_FLUSH;
567 journal->j_committing_transaction = commit_transaction;
568 journal->j_running_transaction = NULL;
569 start_time = ktime_get();
570 commit_transaction->t_log_start = journal->j_head;
571 wake_up_all(&journal->j_wait_transaction_locked);
572 write_unlock(&journal->j_state_lock);
573
574 jbd2_debug(3, "JBD2: commit phase 2a\n");
575
576 /*
577 * Now start flushing things to disk, in the order they appear
578 * on the transaction lists. Data blocks go first.
579 */
580 err = journal_submit_data_buffers(journal, commit_transaction);
581 if (err)
582 jbd2_journal_abort(journal, err);
583
584 blk_start_plug(&plug);
585 jbd2_journal_write_revoke_records(commit_transaction, &log_bufs);
586
587 jbd2_debug(3, "JBD2: commit phase 2b\n");
588
589 /*
590 * Way to go: we have now written out all of the data for a
591 * transaction! Now comes the tricky part: we need to write out
592 * metadata. Loop over the transaction's entire buffer list:
593 */
594 write_lock(&journal->j_state_lock);
595 commit_transaction->t_state = T_COMMIT;
596 write_unlock(&journal->j_state_lock);
597
598 trace_jbd2_commit_logging(journal, commit_transaction);
599 stats.run.rs_logging = jiffies;
600 stats.run.rs_flushing = jbd2_time_diff(stats.run.rs_flushing,
601 stats.run.rs_logging);
602 stats.run.rs_blocks = commit_transaction->t_nr_buffers;
603 stats.run.rs_blocks_logged = 0;
604
605 J_ASSERT(commit_transaction->t_nr_buffers <=
606 atomic_read(&commit_transaction->t_outstanding_credits));
607
608 err = 0;
609 bufs = 0;
610 descriptor = NULL;
611 while (commit_transaction->t_buffers) {
612
613 /* Find the next buffer to be journaled... */
614
615 jh = commit_transaction->t_buffers;
616
617 /* If we're in abort mode, we just un-journal the buffer and
618 release it. */
619
620 if (is_journal_aborted(journal)) {
621 clear_buffer_jbddirty(jh2bh(jh));
622 JBUFFER_TRACE(jh, "journal is aborting: refile");
623 jbd2_buffer_abort_trigger(jh,
624 jh->b_frozen_data ?
625 jh->b_frozen_triggers :
626 jh->b_triggers);
627 jbd2_journal_refile_buffer(journal, jh);
628 /* If that was the last one, we need to clean up
629 * any descriptor buffers which may have been
630 * already allocated, even if we are now
631 * aborting. */
632 if (!commit_transaction->t_buffers)
633 goto start_journal_io;
634 continue;
635 }
636
637 /* Make sure we have a descriptor block in which to
638 record the metadata buffer. */
639
640 if (!descriptor) {
641 J_ASSERT (bufs == 0);
642
643 jbd2_debug(4, "JBD2: get descriptor\n");
644
645 descriptor = jbd2_journal_get_descriptor_buffer(
646 commit_transaction,
647 JBD2_DESCRIPTOR_BLOCK);
648 if (!descriptor) {
649 jbd2_journal_abort(journal, -EIO);
650 continue;
651 }
652
653 jbd2_debug(4, "JBD2: got buffer %llu (%p)\n",
654 (unsigned long long)descriptor->b_blocknr,
655 descriptor->b_data);
656 tagp = &descriptor->b_data[sizeof(journal_header_t)];
657 space_left = descriptor->b_size -
658 sizeof(journal_header_t);
659 first_tag = 1;
660 set_buffer_jwrite(descriptor);
661 set_buffer_dirty(descriptor);
662 wbuf[bufs++] = descriptor;
663
664 /* Record it so that we can wait for IO
665 completion later */
666 BUFFER_TRACE(descriptor, "ph3: file as descriptor");
667 jbd2_file_log_bh(&log_bufs, descriptor);
668 }
669
670 /* Where is the buffer to be written? */
671
672 err = jbd2_journal_next_log_block(journal, &blocknr);
673 /* If the block mapping failed, just abandon the buffer
674 and repeat this loop: we'll fall into the
675 refile-on-abort condition above. */
676 if (err) {
677 jbd2_journal_abort(journal, err);
678 continue;
679 }
680
681 /*
682 * start_this_handle() uses t_outstanding_credits to determine
683 * the free space in the log.
684 */
685 atomic_dec(&commit_transaction->t_outstanding_credits);
686
687 /* Bump b_count to prevent truncate from stumbling over
688 the shadowed buffer! @@@ This can go if we ever get
689 rid of the shadow pairing of buffers. */
690 atomic_inc(&jh2bh(jh)->b_count);
691
692 /*
693 * Make a temporary IO buffer with which to write it out
694 * (this will requeue the metadata buffer to BJ_Shadow).
695 */
696 set_bit(BH_JWrite, &jh2bh(jh)->b_state);
697 JBUFFER_TRACE(jh, "ph3: write metadata");
698 flags = jbd2_journal_write_metadata_buffer(commit_transaction,
699 jh, &wbuf[bufs], blocknr);
700 if (flags < 0) {
701 jbd2_journal_abort(journal, flags);
702 continue;
703 }
704 jbd2_file_log_bh(&io_bufs, wbuf[bufs]);
705
706 /* Record the new block's tag in the current descriptor
707 buffer */
708
709 tag_flag = 0;
710 if (flags & 1)
711 tag_flag |= JBD2_FLAG_ESCAPE;
712 if (!first_tag)
713 tag_flag |= JBD2_FLAG_SAME_UUID;
714
715 tag = (journal_block_tag_t *) tagp;
716 write_tag_block(journal, tag, jh2bh(jh)->b_blocknr);
717 tag->t_flags = cpu_to_be16(tag_flag);
718 jbd2_block_tag_csum_set(journal, tag, wbuf[bufs],
719 commit_transaction->t_tid);
720 tagp += tag_bytes;
721 space_left -= tag_bytes;
722 bufs++;
723
724 if (first_tag) {
725 memcpy (tagp, journal->j_uuid, 16);
726 tagp += 16;
727 space_left -= 16;
728 first_tag = 0;
729 }
730
731 /* If there's no more to do, or if the descriptor is full,
732 let the IO rip! */
733
734 if (bufs == journal->j_wbufsize ||
735 commit_transaction->t_buffers == NULL ||
736 space_left < tag_bytes + 16 + csum_size) {
737
738 jbd2_debug(4, "JBD2: Submit %d IOs\n", bufs);
739
740 /* Write an end-of-descriptor marker before
741 submitting the IOs. "tag" still points to
742 the last tag we set up. */
743
744 tag->t_flags |= cpu_to_be16(JBD2_FLAG_LAST_TAG);
745 start_journal_io:
746 if (descriptor)
747 jbd2_descriptor_block_csum_set(journal,
748 descriptor);
749
750 for (i = 0; i < bufs; i++) {
751 struct buffer_head *bh = wbuf[i];
752 /*
753 * Compute checksum.
754 */
755 if (jbd2_has_feature_checksum(journal)) {
756 crc32_sum =
757 jbd2_checksum_data(crc32_sum, bh);
758 }
759
760 lock_buffer(bh);
761 clear_buffer_dirty(bh);
762 set_buffer_uptodate(bh);
763 bh->b_end_io = journal_end_buffer_io_sync;
764 submit_bh(REQ_OP_WRITE | REQ_SYNC, bh);
765 }
766 cond_resched();
767
768 /* Force a new descriptor to be generated next
769 time round the loop. */
770 descriptor = NULL;
771 bufs = 0;
772 }
773 }
774
775 err = journal_finish_inode_data_buffers(journal, commit_transaction);
776 if (err) {
777 printk(KERN_WARNING
778 "JBD2: Detected IO errors while flushing file data "
779 "on %s\n", journal->j_devname);
780 if (journal->j_flags & JBD2_ABORT_ON_SYNCDATA_ERR)
781 jbd2_journal_abort(journal, err);
782 err = 0;
783 }
784
785 /*
786 * Get current oldest transaction in the log before we issue flush
787 * to the filesystem device. After the flush we can be sure that
788 * blocks of all older transactions are checkpointed to persistent
789 * storage and we will be safe to update journal start in the
790 * superblock with the numbers we get here.
791 */
792 update_tail =
793 jbd2_journal_get_log_tail(journal, &first_tid, &first_block);
794
795 write_lock(&journal->j_state_lock);
796 if (update_tail) {
797 long freed = first_block - journal->j_tail;
798
799 if (first_block < journal->j_tail)
800 freed += journal->j_last - journal->j_first;
801 /* Update tail only if we free significant amount of space */
802 if (freed < jbd2_journal_get_max_txn_bufs(journal))
803 update_tail = 0;
804 }
805 J_ASSERT(commit_transaction->t_state == T_COMMIT);
806 commit_transaction->t_state = T_COMMIT_DFLUSH;
807 write_unlock(&journal->j_state_lock);
808
809 /*
810 * If the journal is not located on the file system device,
811 * then we must flush the file system device before we issue
812 * the commit record
813 */
814 if (commit_transaction->t_need_data_flush &&
815 (journal->j_fs_dev != journal->j_dev) &&
816 (journal->j_flags & JBD2_BARRIER))
817 blkdev_issue_flush(journal->j_fs_dev);
818
819 /* Done it all: now write the commit record asynchronously. */
820 if (jbd2_has_feature_async_commit(journal)) {
821 err = journal_submit_commit_record(journal, commit_transaction,
822 &cbh, crc32_sum);
823 if (err)
824 jbd2_journal_abort(journal, err);
825 }
826
827 blk_finish_plug(&plug);
828
829 /* Lo and behold: we have just managed to send a transaction to
830 the log. Before we can commit it, wait for the IO so far to
831 complete. Control buffers being written are on the
832 transaction's t_log_list queue, and metadata buffers are on
833 the io_bufs list.
834
835 Wait for the buffers in reverse order. That way we are
836 less likely to be woken up until all IOs have completed, and
837 so we incur less scheduling load.
838 */
839
840 jbd2_debug(3, "JBD2: commit phase 3\n");
841
842 while (!list_empty(&io_bufs)) {
843 struct buffer_head *bh = list_entry(io_bufs.prev,
844 struct buffer_head,
845 b_assoc_buffers);
846
847 wait_on_buffer(bh);
848 cond_resched();
849
850 if (unlikely(!buffer_uptodate(bh)))
851 err = -EIO;
852 jbd2_unfile_log_bh(bh);
853 stats.run.rs_blocks_logged++;
854
855 /*
856 * The list contains temporary buffer heads created by
857 * jbd2_journal_write_metadata_buffer().
858 */
859 BUFFER_TRACE(bh, "dumping temporary bh");
860 __brelse(bh);
861 J_ASSERT_BH(bh, atomic_read(&bh->b_count) == 0);
862 free_buffer_head(bh);
863
864 /* We also have to refile the corresponding shadowed buffer */
865 jh = commit_transaction->t_shadow_list->b_tprev;
866 bh = jh2bh(jh);
867 clear_buffer_jwrite(bh);
868 J_ASSERT_BH(bh, buffer_jbddirty(bh));
869 J_ASSERT_BH(bh, !buffer_shadow(bh));
870
871 /* The metadata is now released for reuse, but we need
872 to remember it against this transaction so that when
873 we finally commit, we can do any checkpointing
874 required. */
875 JBUFFER_TRACE(jh, "file as BJ_Forget");
876 jbd2_journal_file_buffer(jh, commit_transaction, BJ_Forget);
877 JBUFFER_TRACE(jh, "brelse shadowed buffer");
878 __brelse(bh);
879 }
880
881 J_ASSERT (commit_transaction->t_shadow_list == NULL);
882
883 jbd2_debug(3, "JBD2: commit phase 4\n");
884
885 /* Here we wait for the revoke record and descriptor record buffers */
886 while (!list_empty(&log_bufs)) {
887 struct buffer_head *bh;
888
889 bh = list_entry(log_bufs.prev, struct buffer_head, b_assoc_buffers);
890 wait_on_buffer(bh);
891 cond_resched();
892
893 if (unlikely(!buffer_uptodate(bh)))
894 err = -EIO;
895
896 BUFFER_TRACE(bh, "ph5: control buffer writeout done: unfile");
897 clear_buffer_jwrite(bh);
898 jbd2_unfile_log_bh(bh);
899 stats.run.rs_blocks_logged++;
900 __brelse(bh); /* One for getblk */
901 /* AKPM: bforget here */
902 }
903
904 if (err)
905 jbd2_journal_abort(journal, err);
906
907 jbd2_debug(3, "JBD2: commit phase 5\n");
908 write_lock(&journal->j_state_lock);
909 J_ASSERT(commit_transaction->t_state == T_COMMIT_DFLUSH);
910 commit_transaction->t_state = T_COMMIT_JFLUSH;
911 write_unlock(&journal->j_state_lock);
912
913 if (!jbd2_has_feature_async_commit(journal)) {
914 err = journal_submit_commit_record(journal, commit_transaction,
915 &cbh, crc32_sum);
916 if (err)
917 jbd2_journal_abort(journal, err);
918 }
919 if (cbh)
920 err = journal_wait_on_commit_record(journal, cbh);
921 stats.run.rs_blocks_logged++;
922 if (jbd2_has_feature_async_commit(journal) &&
923 journal->j_flags & JBD2_BARRIER) {
924 blkdev_issue_flush(journal->j_dev);
925 }
926
927 if (err)
928 jbd2_journal_abort(journal, err);
929
930 WARN_ON_ONCE(
931 atomic_read(&commit_transaction->t_outstanding_credits) < 0);
932
933 /*
934 * Now disk caches for filesystem device are flushed so we are safe to
935 * erase checkpointed transactions from the log by updating journal
936 * superblock.
937 */
938 if (update_tail)
939 jbd2_update_log_tail(journal, first_tid, first_block);
940
941 /* End of a transaction! Finally, we can do checkpoint
942 processing: any buffers committed as a result of this
943 transaction can be removed from any checkpoint list it was on
944 before. */
945
946 jbd2_debug(3, "JBD2: commit phase 6\n");
947
948 J_ASSERT(list_empty(&commit_transaction->t_inode_list));
949 J_ASSERT(commit_transaction->t_buffers == NULL);
950 J_ASSERT(commit_transaction->t_checkpoint_list == NULL);
951 J_ASSERT(commit_transaction->t_shadow_list == NULL);
952
953 restart_loop:
954 /*
955 * As there are other places (journal_unmap_buffer()) adding buffers
956 * to this list we have to be careful and hold the j_list_lock.
957 */
958 spin_lock(&journal->j_list_lock);
959 while (commit_transaction->t_forget) {
960 transaction_t *cp_transaction;
961 struct buffer_head *bh;
962 int try_to_free = 0;
963 bool drop_ref;
964
965 jh = commit_transaction->t_forget;
966 spin_unlock(&journal->j_list_lock);
967 bh = jh2bh(jh);
968 /*
969 * Get a reference so that bh cannot be freed before we are
970 * done with it.
971 */
972 get_bh(bh);
973 spin_lock(&jh->b_state_lock);
974 J_ASSERT_JH(jh, jh->b_transaction == commit_transaction);
975
976 /*
977 * If there is undo-protected committed data against
978 * this buffer, then we can remove it now. If it is a
979 * buffer needing such protection, the old frozen_data
980 * field now points to a committed version of the
981 * buffer, so rotate that field to the new committed
982 * data.
983 *
984 * Otherwise, we can just throw away the frozen data now.
985 *
986 * We also know that the frozen data has already fired
987 * its triggers if they exist, so we can clear that too.
988 */
989 if (jh->b_committed_data) {
990 jbd2_free(jh->b_committed_data, bh->b_size);
991 jh->b_committed_data = NULL;
992 if (jh->b_frozen_data) {
993 jh->b_committed_data = jh->b_frozen_data;
994 jh->b_frozen_data = NULL;
995 jh->b_frozen_triggers = NULL;
996 }
997 } else if (jh->b_frozen_data) {
998 jbd2_free(jh->b_frozen_data, bh->b_size);
999 jh->b_frozen_data = NULL;
1000 jh->b_frozen_triggers = NULL;
1001 }
1002
1003 spin_lock(&journal->j_list_lock);
1004 cp_transaction = jh->b_cp_transaction;
1005 if (cp_transaction) {
1006 JBUFFER_TRACE(jh, "remove from old cp transaction");
1007 cp_transaction->t_chp_stats.cs_dropped++;
1008 __jbd2_journal_remove_checkpoint(jh);
1009 }
1010
1011 /* Only re-checkpoint the buffer_head if it is marked
1012 * dirty. If the buffer was added to the BJ_Forget list
1013 * by jbd2_journal_forget, it may no longer be dirty and
1014 * there's no point in keeping a checkpoint record for
1015 * it. */
1016
1017 /*
1018 * A buffer which has been freed while still being journaled
1019 * by a previous transaction, refile the buffer to BJ_Forget of
1020 * the running transaction. If the just committed transaction
1021 * contains "add to orphan" operation, we can completely
1022 * invalidate the buffer now. We are rather through in that
1023 * since the buffer may be still accessible when blocksize <
1024 * pagesize and it is attached to the last partial page.
1025 */
1026 if (buffer_freed(bh) && !jh->b_next_transaction) {
1027 struct address_space *mapping;
1028
1029 clear_buffer_freed(bh);
1030 clear_buffer_jbddirty(bh);
1031
1032 /*
1033 * Block device buffers need to stay mapped all the
1034 * time, so it is enough to clear buffer_jbddirty and
1035 * buffer_freed bits. For the file mapping buffers (i.e.
1036 * journalled data) we need to unmap buffer and clear
1037 * more bits. We also need to be careful about the check
1038 * because the data page mapping can get cleared under
1039 * our hands. Note that if mapping == NULL, we don't
1040 * need to make buffer unmapped because the page is
1041 * already detached from the mapping and buffers cannot
1042 * get reused.
1043 */
1044 mapping = READ_ONCE(bh->b_page->mapping);
1045 if (mapping && !sb_is_blkdev_sb(mapping->host->i_sb)) {
1046 clear_buffer_mapped(bh);
1047 clear_buffer_new(bh);
1048 clear_buffer_req(bh);
1049 bh->b_bdev = NULL;
1050 }
1051 }
1052
1053 if (buffer_jbddirty(bh)) {
1054 JBUFFER_TRACE(jh, "add to new checkpointing trans");
1055 __jbd2_journal_insert_checkpoint(jh, commit_transaction);
1056 if (is_journal_aborted(journal))
1057 clear_buffer_jbddirty(bh);
1058 } else {
1059 J_ASSERT_BH(bh, !buffer_dirty(bh));
1060 /*
1061 * The buffer on BJ_Forget list and not jbddirty means
1062 * it has been freed by this transaction and hence it
1063 * could not have been reallocated until this
1064 * transaction has committed. *BUT* it could be
1065 * reallocated once we have written all the data to
1066 * disk and before we process the buffer on BJ_Forget
1067 * list.
1068 */
1069 if (!jh->b_next_transaction)
1070 try_to_free = 1;
1071 }
1072 JBUFFER_TRACE(jh, "refile or unfile buffer");
1073 drop_ref = __jbd2_journal_refile_buffer(jh);
1074 spin_unlock(&jh->b_state_lock);
1075 if (drop_ref)
1076 jbd2_journal_put_journal_head(jh);
1077 if (try_to_free)
1078 release_buffer_page(bh); /* Drops bh reference */
1079 else
1080 __brelse(bh);
1081 cond_resched_lock(&journal->j_list_lock);
1082 }
1083 spin_unlock(&journal->j_list_lock);
1084 /*
1085 * This is a bit sleazy. We use j_list_lock to protect transition
1086 * of a transaction into T_FINISHED state and calling
1087 * __jbd2_journal_drop_transaction(). Otherwise we could race with
1088 * other checkpointing code processing the transaction...
1089 */
1090 write_lock(&journal->j_state_lock);
1091 spin_lock(&journal->j_list_lock);
1092 /*
1093 * Now recheck if some buffers did not get attached to the transaction
1094 * while the lock was dropped...
1095 */
1096 if (commit_transaction->t_forget) {
1097 spin_unlock(&journal->j_list_lock);
1098 write_unlock(&journal->j_state_lock);
1099 goto restart_loop;
1100 }
1101
1102 /* Add the transaction to the checkpoint list
1103 * __journal_remove_checkpoint() can not destroy transaction
1104 * under us because it is not marked as T_FINISHED yet */
1105 if (journal->j_checkpoint_transactions == NULL) {
1106 journal->j_checkpoint_transactions = commit_transaction;
1107 commit_transaction->t_cpnext = commit_transaction;
1108 commit_transaction->t_cpprev = commit_transaction;
1109 } else {
1110 commit_transaction->t_cpnext =
1111 journal->j_checkpoint_transactions;
1112 commit_transaction->t_cpprev =
1113 commit_transaction->t_cpnext->t_cpprev;
1114 commit_transaction->t_cpnext->t_cpprev =
1115 commit_transaction;
1116 commit_transaction->t_cpprev->t_cpnext =
1117 commit_transaction;
1118 }
1119 spin_unlock(&journal->j_list_lock);
1120
1121 /* Done with this transaction! */
1122
1123 jbd2_debug(3, "JBD2: commit phase 7\n");
1124
1125 J_ASSERT(commit_transaction->t_state == T_COMMIT_JFLUSH);
1126
1127 commit_transaction->t_start = jiffies;
1128 stats.run.rs_logging = jbd2_time_diff(stats.run.rs_logging,
1129 commit_transaction->t_start);
1130
1131 /*
1132 * File the transaction statistics
1133 */
1134 stats.ts_tid = commit_transaction->t_tid;
1135 stats.run.rs_handle_count =
1136 atomic_read(&commit_transaction->t_handle_count);
1137 trace_jbd2_run_stats(journal->j_fs_dev->bd_dev,
1138 commit_transaction->t_tid, &stats.run);
1139 stats.ts_requested = (commit_transaction->t_requested) ? 1 : 0;
1140
1141 commit_transaction->t_state = T_COMMIT_CALLBACK;
1142 J_ASSERT(commit_transaction == journal->j_committing_transaction);
1143 journal->j_commit_sequence = commit_transaction->t_tid;
1144 journal->j_committing_transaction = NULL;
1145 commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1146
1147 /*
1148 * weight the commit time higher than the average time so we don't
1149 * react too strongly to vast changes in the commit time
1150 */
1151 if (likely(journal->j_average_commit_time))
1152 journal->j_average_commit_time = (commit_time +
1153 journal->j_average_commit_time*3) / 4;
1154 else
1155 journal->j_average_commit_time = commit_time;
1156
1157 write_unlock(&journal->j_state_lock);
1158
1159 if (journal->j_commit_callback)
1160 journal->j_commit_callback(journal, commit_transaction);
1161 if (journal->j_fc_cleanup_callback)
1162 journal->j_fc_cleanup_callback(journal, 1, commit_transaction->t_tid);
1163
1164 trace_jbd2_end_commit(journal, commit_transaction);
1165 jbd2_debug(1, "JBD2: commit %d complete, head %d\n",
1166 journal->j_commit_sequence, journal->j_tail_sequence);
1167
1168 write_lock(&journal->j_state_lock);
1169 journal->j_flags &= ~JBD2_FULL_COMMIT_ONGOING;
1170 journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING;
1171 spin_lock(&journal->j_list_lock);
1172 commit_transaction->t_state = T_FINISHED;
1173 /* Check if the transaction can be dropped now that we are finished */
1174 if (commit_transaction->t_checkpoint_list == NULL &&
1175 commit_transaction->t_checkpoint_io_list == NULL) {
1176 __jbd2_journal_drop_transaction(journal, commit_transaction);
1177 jbd2_journal_free_transaction(commit_transaction);
1178 }
1179 spin_unlock(&journal->j_list_lock);
1180 write_unlock(&journal->j_state_lock);
1181 wake_up(&journal->j_wait_done_commit);
1182 wake_up(&journal->j_fc_wait);
1183
1184 /*
1185 * Calculate overall stats
1186 */
1187 spin_lock(&journal->j_history_lock);
1188 journal->j_stats.ts_tid++;
1189 journal->j_stats.ts_requested += stats.ts_requested;
1190 journal->j_stats.run.rs_wait += stats.run.rs_wait;
1191 journal->j_stats.run.rs_request_delay += stats.run.rs_request_delay;
1192 journal->j_stats.run.rs_running += stats.run.rs_running;
1193 journal->j_stats.run.rs_locked += stats.run.rs_locked;
1194 journal->j_stats.run.rs_flushing += stats.run.rs_flushing;
1195 journal->j_stats.run.rs_logging += stats.run.rs_logging;
1196 journal->j_stats.run.rs_handle_count += stats.run.rs_handle_count;
1197 journal->j_stats.run.rs_blocks += stats.run.rs_blocks;
1198 journal->j_stats.run.rs_blocks_logged += stats.run.rs_blocks_logged;
1199 spin_unlock(&journal->j_history_lock);
1200 }
1201