1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * linux/fs/jbd2/transaction.c
4 *
5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 *
7 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 *
9 * Generic filesystem transaction handling code; part of the ext2fs
10 * journaling system.
11 *
12 * This file manages transactions (compound commits managed by the
13 * journaling code) and handles (individual atomic operations by the
14 * filesystem).
15 */
16
17 #include <linux/time.h>
18 #include <linux/fs.h>
19 #include <linux/jbd2.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/timer.h>
23 #include <linux/mm.h>
24 #include <linux/highmem.h>
25 #include <linux/hrtimer.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/sched/mm.h>
30
31 #include <trace/events/jbd2.h>
32
33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35
36 static struct kmem_cache *transaction_cache;
jbd2_journal_init_transaction_cache(void)37 int __init jbd2_journal_init_transaction_cache(void)
38 {
39 J_ASSERT(!transaction_cache);
40 transaction_cache = kmem_cache_create("jbd2_transaction_s",
41 sizeof(transaction_t),
42 0,
43 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44 NULL);
45 if (!transaction_cache) {
46 pr_emerg("JBD2: failed to create transaction cache\n");
47 return -ENOMEM;
48 }
49 return 0;
50 }
51
jbd2_journal_destroy_transaction_cache(void)52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54 kmem_cache_destroy(transaction_cache);
55 transaction_cache = NULL;
56 }
57
jbd2_journal_free_transaction(transaction_t * transaction)58 void jbd2_journal_free_transaction(transaction_t *transaction)
59 {
60 if (unlikely(ZERO_OR_NULL_PTR(transaction)))
61 return;
62 kmem_cache_free(transaction_cache, transaction);
63 }
64
65 /*
66 * Base amount of descriptor blocks we reserve for each transaction.
67 */
jbd2_descriptor_blocks_per_trans(journal_t * journal)68 static int jbd2_descriptor_blocks_per_trans(journal_t *journal)
69 {
70 int tag_space = journal->j_blocksize - sizeof(journal_header_t);
71 int tags_per_block;
72
73 /* Subtract UUID */
74 tag_space -= 16;
75 if (jbd2_journal_has_csum_v2or3(journal))
76 tag_space -= sizeof(struct jbd2_journal_block_tail);
77 /* Commit code leaves a slack space of 16 bytes at the end of block */
78 tags_per_block = (tag_space - 16) / journal_tag_bytes(journal);
79 /*
80 * Revoke descriptors are accounted separately so we need to reserve
81 * space for commit block and normal transaction descriptor blocks.
82 */
83 return 1 + DIV_ROUND_UP(journal->j_max_transaction_buffers,
84 tags_per_block);
85 }
86
87 /*
88 * jbd2_get_transaction: obtain a new transaction_t object.
89 *
90 * Simply initialise a new transaction. Initialize it in
91 * RUNNING state and add it to the current journal (which should not
92 * have an existing running transaction: we only make a new transaction
93 * once we have started to commit the old one).
94 *
95 * Preconditions:
96 * The journal MUST be locked. We don't perform atomic mallocs on the
97 * new transaction and we can't block without protecting against other
98 * processes trying to touch the journal while it is in transition.
99 *
100 */
101
jbd2_get_transaction(journal_t * journal,transaction_t * transaction)102 static void jbd2_get_transaction(journal_t *journal,
103 transaction_t *transaction)
104 {
105 transaction->t_journal = journal;
106 transaction->t_state = T_RUNNING;
107 transaction->t_start_time = ktime_get();
108 transaction->t_tid = journal->j_transaction_sequence++;
109 transaction->t_expires = jiffies + journal->j_commit_interval;
110 atomic_set(&transaction->t_updates, 0);
111 atomic_set(&transaction->t_outstanding_credits,
112 jbd2_descriptor_blocks_per_trans(journal) +
113 atomic_read(&journal->j_reserved_credits));
114 atomic_set(&transaction->t_outstanding_revokes, 0);
115 atomic_set(&transaction->t_handle_count, 0);
116 INIT_LIST_HEAD(&transaction->t_inode_list);
117 INIT_LIST_HEAD(&transaction->t_private_list);
118
119 /* Set up the commit timer for the new transaction. */
120 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
121 add_timer(&journal->j_commit_timer);
122
123 J_ASSERT(journal->j_running_transaction == NULL);
124 journal->j_running_transaction = transaction;
125 transaction->t_max_wait = 0;
126 transaction->t_start = jiffies;
127 transaction->t_requested = 0;
128 }
129
130 /*
131 * Handle management.
132 *
133 * A handle_t is an object which represents a single atomic update to a
134 * filesystem, and which tracks all of the modifications which form part
135 * of that one update.
136 */
137
138 /*
139 * Update transaction's maximum wait time, if debugging is enabled.
140 *
141 * t_max_wait is carefully updated here with use of atomic compare exchange.
142 * Note that there could be multiplre threads trying to do this simultaneously
143 * hence using cmpxchg to avoid any use of locks in this case.
144 * With this t_max_wait can be updated w/o enabling jbd2_journal_enable_debug.
145 */
update_t_max_wait(transaction_t * transaction,unsigned long ts)146 static inline void update_t_max_wait(transaction_t *transaction,
147 unsigned long ts)
148 {
149 unsigned long oldts, newts;
150
151 if (time_after(transaction->t_start, ts)) {
152 newts = jbd2_time_diff(ts, transaction->t_start);
153 oldts = READ_ONCE(transaction->t_max_wait);
154 while (oldts < newts)
155 oldts = cmpxchg(&transaction->t_max_wait, oldts, newts);
156 }
157 }
158
159 /*
160 * Wait until running transaction passes to T_FLUSH state and new transaction
161 * can thus be started. Also starts the commit if needed. The function expects
162 * running transaction to exist and releases j_state_lock.
163 */
wait_transaction_locked(journal_t * journal)164 static void wait_transaction_locked(journal_t *journal)
165 __releases(journal->j_state_lock)
166 {
167 DEFINE_WAIT(wait);
168 int need_to_start;
169 tid_t tid = journal->j_running_transaction->t_tid;
170
171 prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait,
172 TASK_UNINTERRUPTIBLE);
173 need_to_start = !tid_geq(journal->j_commit_request, tid);
174 read_unlock(&journal->j_state_lock);
175 if (need_to_start)
176 jbd2_log_start_commit(journal, tid);
177 jbd2_might_wait_for_commit(journal);
178 schedule();
179 finish_wait(&journal->j_wait_transaction_locked, &wait);
180 }
181
182 /*
183 * Wait until running transaction transitions from T_SWITCH to T_FLUSH
184 * state and new transaction can thus be started. The function releases
185 * j_state_lock.
186 */
wait_transaction_switching(journal_t * journal)187 static void wait_transaction_switching(journal_t *journal)
188 __releases(journal->j_state_lock)
189 {
190 DEFINE_WAIT(wait);
191
192 if (WARN_ON(!journal->j_running_transaction ||
193 journal->j_running_transaction->t_state != T_SWITCH)) {
194 read_unlock(&journal->j_state_lock);
195 return;
196 }
197 prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait,
198 TASK_UNINTERRUPTIBLE);
199 read_unlock(&journal->j_state_lock);
200 /*
201 * We don't call jbd2_might_wait_for_commit() here as there's no
202 * waiting for outstanding handles happening anymore in T_SWITCH state
203 * and handling of reserved handles actually relies on that for
204 * correctness.
205 */
206 schedule();
207 finish_wait(&journal->j_wait_transaction_locked, &wait);
208 }
209
sub_reserved_credits(journal_t * journal,int blocks)210 static void sub_reserved_credits(journal_t *journal, int blocks)
211 {
212 atomic_sub(blocks, &journal->j_reserved_credits);
213 wake_up(&journal->j_wait_reserved);
214 }
215
216 /*
217 * Wait until we can add credits for handle to the running transaction. Called
218 * with j_state_lock held for reading. Returns 0 if handle joined the running
219 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
220 * caller must retry.
221 *
222 * Note: because j_state_lock may be dropped depending on the return
223 * value, we need to fake out sparse so ti doesn't complain about a
224 * locking imbalance. Callers of add_transaction_credits will need to
225 * make a similar accomodation.
226 */
add_transaction_credits(journal_t * journal,int blocks,int rsv_blocks)227 static int add_transaction_credits(journal_t *journal, int blocks,
228 int rsv_blocks)
229 __must_hold(&journal->j_state_lock)
230 {
231 transaction_t *t = journal->j_running_transaction;
232 int needed;
233 int total = blocks + rsv_blocks;
234
235 /*
236 * If the current transaction is locked down for commit, wait
237 * for the lock to be released.
238 */
239 if (t->t_state != T_RUNNING) {
240 WARN_ON_ONCE(t->t_state >= T_FLUSH);
241 wait_transaction_locked(journal);
242 __acquire(&journal->j_state_lock); /* fake out sparse */
243 return 1;
244 }
245
246 /*
247 * If there is not enough space left in the log to write all
248 * potential buffers requested by this operation, we need to
249 * stall pending a log checkpoint to free some more log space.
250 */
251 needed = atomic_add_return(total, &t->t_outstanding_credits);
252 if (needed > journal->j_max_transaction_buffers) {
253 /*
254 * If the current transaction is already too large,
255 * then start to commit it: we can then go back and
256 * attach this handle to a new transaction.
257 */
258 atomic_sub(total, &t->t_outstanding_credits);
259
260 /*
261 * Is the number of reserved credits in the current transaction too
262 * big to fit this handle? Wait until reserved credits are freed.
263 */
264 if (atomic_read(&journal->j_reserved_credits) + total >
265 journal->j_max_transaction_buffers) {
266 read_unlock(&journal->j_state_lock);
267 jbd2_might_wait_for_commit(journal);
268 wait_event(journal->j_wait_reserved,
269 atomic_read(&journal->j_reserved_credits) + total <=
270 journal->j_max_transaction_buffers);
271 __acquire(&journal->j_state_lock); /* fake out sparse */
272 return 1;
273 }
274
275 wait_transaction_locked(journal);
276 __acquire(&journal->j_state_lock); /* fake out sparse */
277 return 1;
278 }
279
280 /*
281 * The commit code assumes that it can get enough log space
282 * without forcing a checkpoint. This is *critical* for
283 * correctness: a checkpoint of a buffer which is also
284 * associated with a committing transaction creates a deadlock,
285 * so commit simply cannot force through checkpoints.
286 *
287 * We must therefore ensure the necessary space in the journal
288 * *before* starting to dirty potentially checkpointed buffers
289 * in the new transaction.
290 */
291 if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) {
292 atomic_sub(total, &t->t_outstanding_credits);
293 read_unlock(&journal->j_state_lock);
294 jbd2_might_wait_for_commit(journal);
295 write_lock(&journal->j_state_lock);
296 if (jbd2_log_space_left(journal) <
297 journal->j_max_transaction_buffers)
298 __jbd2_log_wait_for_space(journal);
299 write_unlock(&journal->j_state_lock);
300 __acquire(&journal->j_state_lock); /* fake out sparse */
301 return 1;
302 }
303
304 /* No reservation? We are done... */
305 if (!rsv_blocks)
306 return 0;
307
308 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
309 /* We allow at most half of a transaction to be reserved */
310 if (needed > journal->j_max_transaction_buffers / 2) {
311 sub_reserved_credits(journal, rsv_blocks);
312 atomic_sub(total, &t->t_outstanding_credits);
313 read_unlock(&journal->j_state_lock);
314 jbd2_might_wait_for_commit(journal);
315 wait_event(journal->j_wait_reserved,
316 atomic_read(&journal->j_reserved_credits) + rsv_blocks
317 <= journal->j_max_transaction_buffers / 2);
318 __acquire(&journal->j_state_lock); /* fake out sparse */
319 return 1;
320 }
321 return 0;
322 }
323
324 /*
325 * start_this_handle: Given a handle, deal with any locking or stalling
326 * needed to make sure that there is enough journal space for the handle
327 * to begin. Attach the handle to a transaction and set up the
328 * transaction's buffer credits.
329 */
330
start_this_handle(journal_t * journal,handle_t * handle,gfp_t gfp_mask)331 static int start_this_handle(journal_t *journal, handle_t *handle,
332 gfp_t gfp_mask)
333 {
334 transaction_t *transaction, *new_transaction = NULL;
335 int blocks = handle->h_total_credits;
336 int rsv_blocks = 0;
337 unsigned long ts = jiffies;
338
339 if (handle->h_rsv_handle)
340 rsv_blocks = handle->h_rsv_handle->h_total_credits;
341
342 /*
343 * Limit the number of reserved credits to 1/2 of maximum transaction
344 * size and limit the number of total credits to not exceed maximum
345 * transaction size per operation.
346 */
347 if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
348 (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
349 printk(KERN_ERR "JBD2: %s wants too many credits "
350 "credits:%d rsv_credits:%d max:%d\n",
351 current->comm, blocks, rsv_blocks,
352 journal->j_max_transaction_buffers);
353 WARN_ON(1);
354 return -ENOSPC;
355 }
356
357 alloc_transaction:
358 /*
359 * This check is racy but it is just an optimization of allocating new
360 * transaction early if there are high chances we'll need it. If we
361 * guess wrong, we'll retry or free unused transaction.
362 */
363 if (!data_race(journal->j_running_transaction)) {
364 /*
365 * If __GFP_FS is not present, then we may be being called from
366 * inside the fs writeback layer, so we MUST NOT fail.
367 */
368 if ((gfp_mask & __GFP_FS) == 0)
369 gfp_mask |= __GFP_NOFAIL;
370 new_transaction = kmem_cache_zalloc(transaction_cache,
371 gfp_mask);
372 if (!new_transaction)
373 return -ENOMEM;
374 }
375
376 jbd2_debug(3, "New handle %p going live.\n", handle);
377
378 /*
379 * We need to hold j_state_lock until t_updates has been incremented,
380 * for proper journal barrier handling
381 */
382 repeat:
383 read_lock(&journal->j_state_lock);
384 BUG_ON(journal->j_flags & JBD2_UNMOUNT);
385 if (is_journal_aborted(journal) ||
386 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
387 read_unlock(&journal->j_state_lock);
388 jbd2_journal_free_transaction(new_transaction);
389 return -EROFS;
390 }
391
392 /*
393 * Wait on the journal's transaction barrier if necessary. Specifically
394 * we allow reserved handles to proceed because otherwise commit could
395 * deadlock on page writeback not being able to complete.
396 */
397 if (!handle->h_reserved && journal->j_barrier_count) {
398 read_unlock(&journal->j_state_lock);
399 wait_event(journal->j_wait_transaction_locked,
400 journal->j_barrier_count == 0);
401 goto repeat;
402 }
403
404 if (!journal->j_running_transaction) {
405 read_unlock(&journal->j_state_lock);
406 if (!new_transaction)
407 goto alloc_transaction;
408 write_lock(&journal->j_state_lock);
409 if (!journal->j_running_transaction &&
410 (handle->h_reserved || !journal->j_barrier_count)) {
411 jbd2_get_transaction(journal, new_transaction);
412 new_transaction = NULL;
413 }
414 write_unlock(&journal->j_state_lock);
415 goto repeat;
416 }
417
418 transaction = journal->j_running_transaction;
419
420 if (!handle->h_reserved) {
421 /* We may have dropped j_state_lock - restart in that case */
422 if (add_transaction_credits(journal, blocks, rsv_blocks)) {
423 /*
424 * add_transaction_credits releases
425 * j_state_lock on a non-zero return
426 */
427 __release(&journal->j_state_lock);
428 goto repeat;
429 }
430 } else {
431 /*
432 * We have handle reserved so we are allowed to join T_LOCKED
433 * transaction and we don't have to check for transaction size
434 * and journal space. But we still have to wait while running
435 * transaction is being switched to a committing one as it
436 * won't wait for any handles anymore.
437 */
438 if (transaction->t_state == T_SWITCH) {
439 wait_transaction_switching(journal);
440 goto repeat;
441 }
442 sub_reserved_credits(journal, blocks);
443 handle->h_reserved = 0;
444 }
445
446 /* OK, account for the buffers that this operation expects to
447 * use and add the handle to the running transaction.
448 */
449 update_t_max_wait(transaction, ts);
450 handle->h_transaction = transaction;
451 handle->h_requested_credits = blocks;
452 handle->h_revoke_credits_requested = handle->h_revoke_credits;
453 handle->h_start_jiffies = jiffies;
454 atomic_inc(&transaction->t_updates);
455 atomic_inc(&transaction->t_handle_count);
456 jbd2_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
457 handle, blocks,
458 atomic_read(&transaction->t_outstanding_credits),
459 jbd2_log_space_left(journal));
460 read_unlock(&journal->j_state_lock);
461 current->journal_info = handle;
462
463 rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
464 jbd2_journal_free_transaction(new_transaction);
465 /*
466 * Ensure that no allocations done while the transaction is open are
467 * going to recurse back to the fs layer.
468 */
469 handle->saved_alloc_context = memalloc_nofs_save();
470 return 0;
471 }
472
473 /* Allocate a new handle. This should probably be in a slab... */
new_handle(int nblocks)474 static handle_t *new_handle(int nblocks)
475 {
476 handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
477 if (!handle)
478 return NULL;
479 handle->h_total_credits = nblocks;
480 handle->h_ref = 1;
481
482 return handle;
483 }
484
jbd2__journal_start(journal_t * journal,int nblocks,int rsv_blocks,int revoke_records,gfp_t gfp_mask,unsigned int type,unsigned int line_no)485 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
486 int revoke_records, gfp_t gfp_mask,
487 unsigned int type, unsigned int line_no)
488 {
489 handle_t *handle = journal_current_handle();
490 int err;
491
492 if (!journal)
493 return ERR_PTR(-EROFS);
494
495 if (handle) {
496 J_ASSERT(handle->h_transaction->t_journal == journal);
497 handle->h_ref++;
498 return handle;
499 }
500
501 nblocks += DIV_ROUND_UP(revoke_records,
502 journal->j_revoke_records_per_block);
503 handle = new_handle(nblocks);
504 if (!handle)
505 return ERR_PTR(-ENOMEM);
506 if (rsv_blocks) {
507 handle_t *rsv_handle;
508
509 rsv_handle = new_handle(rsv_blocks);
510 if (!rsv_handle) {
511 jbd2_free_handle(handle);
512 return ERR_PTR(-ENOMEM);
513 }
514 rsv_handle->h_reserved = 1;
515 rsv_handle->h_journal = journal;
516 handle->h_rsv_handle = rsv_handle;
517 }
518 handle->h_revoke_credits = revoke_records;
519
520 err = start_this_handle(journal, handle, gfp_mask);
521 if (err < 0) {
522 if (handle->h_rsv_handle)
523 jbd2_free_handle(handle->h_rsv_handle);
524 jbd2_free_handle(handle);
525 return ERR_PTR(err);
526 }
527 handle->h_type = type;
528 handle->h_line_no = line_no;
529 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
530 handle->h_transaction->t_tid, type,
531 line_no, nblocks);
532
533 return handle;
534 }
535 EXPORT_SYMBOL(jbd2__journal_start);
536
537
538 /**
539 * jbd2_journal_start() - Obtain a new handle.
540 * @journal: Journal to start transaction on.
541 * @nblocks: number of block buffer we might modify
542 *
543 * We make sure that the transaction can guarantee at least nblocks of
544 * modified buffers in the log. We block until the log can guarantee
545 * that much space. Additionally, if rsv_blocks > 0, we also create another
546 * handle with rsv_blocks reserved blocks in the journal. This handle is
547 * stored in h_rsv_handle. It is not attached to any particular transaction
548 * and thus doesn't block transaction commit. If the caller uses this reserved
549 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
550 * on the parent handle will dispose the reserved one. Reserved handle has to
551 * be converted to a normal handle using jbd2_journal_start_reserved() before
552 * it can be used.
553 *
554 * Return a pointer to a newly allocated handle, or an ERR_PTR() value
555 * on failure.
556 */
jbd2_journal_start(journal_t * journal,int nblocks)557 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
558 {
559 return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0);
560 }
561 EXPORT_SYMBOL(jbd2_journal_start);
562
__jbd2_journal_unreserve_handle(handle_t * handle,transaction_t * t)563 static void __jbd2_journal_unreserve_handle(handle_t *handle, transaction_t *t)
564 {
565 journal_t *journal = handle->h_journal;
566
567 WARN_ON(!handle->h_reserved);
568 sub_reserved_credits(journal, handle->h_total_credits);
569 if (t)
570 atomic_sub(handle->h_total_credits, &t->t_outstanding_credits);
571 }
572
jbd2_journal_free_reserved(handle_t * handle)573 void jbd2_journal_free_reserved(handle_t *handle)
574 {
575 journal_t *journal = handle->h_journal;
576
577 /* Get j_state_lock to pin running transaction if it exists */
578 read_lock(&journal->j_state_lock);
579 __jbd2_journal_unreserve_handle(handle, journal->j_running_transaction);
580 read_unlock(&journal->j_state_lock);
581 jbd2_free_handle(handle);
582 }
583 EXPORT_SYMBOL(jbd2_journal_free_reserved);
584
585 /**
586 * jbd2_journal_start_reserved() - start reserved handle
587 * @handle: handle to start
588 * @type: for handle statistics
589 * @line_no: for handle statistics
590 *
591 * Start handle that has been previously reserved with jbd2_journal_reserve().
592 * This attaches @handle to the running transaction (or creates one if there's
593 * not transaction running). Unlike jbd2_journal_start() this function cannot
594 * block on journal commit, checkpointing, or similar stuff. It can block on
595 * memory allocation or frozen journal though.
596 *
597 * Return 0 on success, non-zero on error - handle is freed in that case.
598 */
jbd2_journal_start_reserved(handle_t * handle,unsigned int type,unsigned int line_no)599 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
600 unsigned int line_no)
601 {
602 journal_t *journal = handle->h_journal;
603 int ret = -EIO;
604
605 if (WARN_ON(!handle->h_reserved)) {
606 /* Someone passed in normal handle? Just stop it. */
607 jbd2_journal_stop(handle);
608 return ret;
609 }
610 /*
611 * Usefulness of mixing of reserved and unreserved handles is
612 * questionable. So far nobody seems to need it so just error out.
613 */
614 if (WARN_ON(current->journal_info)) {
615 jbd2_journal_free_reserved(handle);
616 return ret;
617 }
618
619 handle->h_journal = NULL;
620 /*
621 * GFP_NOFS is here because callers are likely from writeback or
622 * similarly constrained call sites
623 */
624 ret = start_this_handle(journal, handle, GFP_NOFS);
625 if (ret < 0) {
626 handle->h_journal = journal;
627 jbd2_journal_free_reserved(handle);
628 return ret;
629 }
630 handle->h_type = type;
631 handle->h_line_no = line_no;
632 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
633 handle->h_transaction->t_tid, type,
634 line_no, handle->h_total_credits);
635 return 0;
636 }
637 EXPORT_SYMBOL(jbd2_journal_start_reserved);
638
639 /**
640 * jbd2_journal_extend() - extend buffer credits.
641 * @handle: handle to 'extend'
642 * @nblocks: nr blocks to try to extend by.
643 * @revoke_records: number of revoke records to try to extend by.
644 *
645 * Some transactions, such as large extends and truncates, can be done
646 * atomically all at once or in several stages. The operation requests
647 * a credit for a number of buffer modifications in advance, but can
648 * extend its credit if it needs more.
649 *
650 * jbd2_journal_extend tries to give the running handle more buffer credits.
651 * It does not guarantee that allocation - this is a best-effort only.
652 * The calling process MUST be able to deal cleanly with a failure to
653 * extend here.
654 *
655 * Return 0 on success, non-zero on failure.
656 *
657 * return code < 0 implies an error
658 * return code > 0 implies normal transaction-full status.
659 */
jbd2_journal_extend(handle_t * handle,int nblocks,int revoke_records)660 int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records)
661 {
662 transaction_t *transaction = handle->h_transaction;
663 journal_t *journal;
664 int result;
665 int wanted;
666
667 if (is_handle_aborted(handle))
668 return -EROFS;
669 journal = transaction->t_journal;
670
671 result = 1;
672
673 read_lock(&journal->j_state_lock);
674
675 /* Don't extend a locked-down transaction! */
676 if (transaction->t_state != T_RUNNING) {
677 jbd2_debug(3, "denied handle %p %d blocks: "
678 "transaction not running\n", handle, nblocks);
679 goto error_out;
680 }
681
682 nblocks += DIV_ROUND_UP(
683 handle->h_revoke_credits_requested + revoke_records,
684 journal->j_revoke_records_per_block) -
685 DIV_ROUND_UP(
686 handle->h_revoke_credits_requested,
687 journal->j_revoke_records_per_block);
688 wanted = atomic_add_return(nblocks,
689 &transaction->t_outstanding_credits);
690
691 if (wanted > journal->j_max_transaction_buffers) {
692 jbd2_debug(3, "denied handle %p %d blocks: "
693 "transaction too large\n", handle, nblocks);
694 atomic_sub(nblocks, &transaction->t_outstanding_credits);
695 goto error_out;
696 }
697
698 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
699 transaction->t_tid,
700 handle->h_type, handle->h_line_no,
701 handle->h_total_credits,
702 nblocks);
703
704 handle->h_total_credits += nblocks;
705 handle->h_requested_credits += nblocks;
706 handle->h_revoke_credits += revoke_records;
707 handle->h_revoke_credits_requested += revoke_records;
708 result = 0;
709
710 jbd2_debug(3, "extended handle %p by %d\n", handle, nblocks);
711 error_out:
712 read_unlock(&journal->j_state_lock);
713 return result;
714 }
715
stop_this_handle(handle_t * handle)716 static void stop_this_handle(handle_t *handle)
717 {
718 transaction_t *transaction = handle->h_transaction;
719 journal_t *journal = transaction->t_journal;
720 int revokes;
721
722 J_ASSERT(journal_current_handle() == handle);
723 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
724 current->journal_info = NULL;
725 /*
726 * Subtract necessary revoke descriptor blocks from handle credits. We
727 * take care to account only for revoke descriptor blocks the
728 * transaction will really need as large sequences of transactions with
729 * small numbers of revokes are relatively common.
730 */
731 revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits;
732 if (revokes) {
733 int t_revokes, revoke_descriptors;
734 int rr_per_blk = journal->j_revoke_records_per_block;
735
736 WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk)
737 > handle->h_total_credits);
738 t_revokes = atomic_add_return(revokes,
739 &transaction->t_outstanding_revokes);
740 revoke_descriptors =
741 DIV_ROUND_UP(t_revokes, rr_per_blk) -
742 DIV_ROUND_UP(t_revokes - revokes, rr_per_blk);
743 handle->h_total_credits -= revoke_descriptors;
744 }
745 atomic_sub(handle->h_total_credits,
746 &transaction->t_outstanding_credits);
747 if (handle->h_rsv_handle)
748 __jbd2_journal_unreserve_handle(handle->h_rsv_handle,
749 transaction);
750 if (atomic_dec_and_test(&transaction->t_updates))
751 wake_up(&journal->j_wait_updates);
752
753 rwsem_release(&journal->j_trans_commit_map, _THIS_IP_);
754 /*
755 * Scope of the GFP_NOFS context is over here and so we can restore the
756 * original alloc context.
757 */
758 memalloc_nofs_restore(handle->saved_alloc_context);
759 }
760
761 /**
762 * jbd2__journal_restart() - restart a handle .
763 * @handle: handle to restart
764 * @nblocks: nr credits requested
765 * @revoke_records: number of revoke record credits requested
766 * @gfp_mask: memory allocation flags (for start_this_handle)
767 *
768 * Restart a handle for a multi-transaction filesystem
769 * operation.
770 *
771 * If the jbd2_journal_extend() call above fails to grant new buffer credits
772 * to a running handle, a call to jbd2_journal_restart will commit the
773 * handle's transaction so far and reattach the handle to a new
774 * transaction capable of guaranteeing the requested number of
775 * credits. We preserve reserved handle if there's any attached to the
776 * passed in handle.
777 */
jbd2__journal_restart(handle_t * handle,int nblocks,int revoke_records,gfp_t gfp_mask)778 int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records,
779 gfp_t gfp_mask)
780 {
781 transaction_t *transaction = handle->h_transaction;
782 journal_t *journal;
783 tid_t tid;
784 int need_to_start;
785 int ret;
786
787 /* If we've had an abort of any type, don't even think about
788 * actually doing the restart! */
789 if (is_handle_aborted(handle))
790 return 0;
791 journal = transaction->t_journal;
792 tid = transaction->t_tid;
793
794 /*
795 * First unlink the handle from its current transaction, and start the
796 * commit on that.
797 */
798 jbd2_debug(2, "restarting handle %p\n", handle);
799 stop_this_handle(handle);
800 handle->h_transaction = NULL;
801
802 /*
803 * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can
804 * get rid of pointless j_state_lock traffic like this.
805 */
806 read_lock(&journal->j_state_lock);
807 need_to_start = !tid_geq(journal->j_commit_request, tid);
808 read_unlock(&journal->j_state_lock);
809 if (need_to_start)
810 jbd2_log_start_commit(journal, tid);
811 handle->h_total_credits = nblocks +
812 DIV_ROUND_UP(revoke_records,
813 journal->j_revoke_records_per_block);
814 handle->h_revoke_credits = revoke_records;
815 ret = start_this_handle(journal, handle, gfp_mask);
816 trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev,
817 ret ? 0 : handle->h_transaction->t_tid,
818 handle->h_type, handle->h_line_no,
819 handle->h_total_credits);
820 return ret;
821 }
822 EXPORT_SYMBOL(jbd2__journal_restart);
823
824
jbd2_journal_restart(handle_t * handle,int nblocks)825 int jbd2_journal_restart(handle_t *handle, int nblocks)
826 {
827 return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS);
828 }
829 EXPORT_SYMBOL(jbd2_journal_restart);
830
831 /*
832 * Waits for any outstanding t_updates to finish.
833 * This is called with write j_state_lock held.
834 */
jbd2_journal_wait_updates(journal_t * journal)835 void jbd2_journal_wait_updates(journal_t *journal)
836 {
837 DEFINE_WAIT(wait);
838
839 while (1) {
840 /*
841 * Note that the running transaction can get freed under us if
842 * this transaction is getting committed in
843 * jbd2_journal_commit_transaction() ->
844 * jbd2_journal_free_transaction(). This can only happen when we
845 * release j_state_lock -> schedule() -> acquire j_state_lock.
846 * Hence we should everytime retrieve new j_running_transaction
847 * value (after j_state_lock release acquire cycle), else it may
848 * lead to use-after-free of old freed transaction.
849 */
850 transaction_t *transaction = journal->j_running_transaction;
851
852 if (!transaction)
853 break;
854
855 prepare_to_wait(&journal->j_wait_updates, &wait,
856 TASK_UNINTERRUPTIBLE);
857 if (!atomic_read(&transaction->t_updates)) {
858 finish_wait(&journal->j_wait_updates, &wait);
859 break;
860 }
861 write_unlock(&journal->j_state_lock);
862 schedule();
863 finish_wait(&journal->j_wait_updates, &wait);
864 write_lock(&journal->j_state_lock);
865 }
866 }
867
868 /**
869 * jbd2_journal_lock_updates () - establish a transaction barrier.
870 * @journal: Journal to establish a barrier on.
871 *
872 * This locks out any further updates from being started, and blocks
873 * until all existing updates have completed, returning only once the
874 * journal is in a quiescent state with no updates running.
875 *
876 * The journal lock should not be held on entry.
877 */
jbd2_journal_lock_updates(journal_t * journal)878 void jbd2_journal_lock_updates(journal_t *journal)
879 {
880 jbd2_might_wait_for_commit(journal);
881
882 write_lock(&journal->j_state_lock);
883 ++journal->j_barrier_count;
884
885 /* Wait until there are no reserved handles */
886 if (atomic_read(&journal->j_reserved_credits)) {
887 write_unlock(&journal->j_state_lock);
888 wait_event(journal->j_wait_reserved,
889 atomic_read(&journal->j_reserved_credits) == 0);
890 write_lock(&journal->j_state_lock);
891 }
892
893 /* Wait until there are no running t_updates */
894 jbd2_journal_wait_updates(journal);
895
896 write_unlock(&journal->j_state_lock);
897
898 /*
899 * We have now established a barrier against other normal updates, but
900 * we also need to barrier against other jbd2_journal_lock_updates() calls
901 * to make sure that we serialise special journal-locked operations
902 * too.
903 */
904 mutex_lock(&journal->j_barrier);
905 }
906
907 /**
908 * jbd2_journal_unlock_updates () - release barrier
909 * @journal: Journal to release the barrier on.
910 *
911 * Release a transaction barrier obtained with jbd2_journal_lock_updates().
912 *
913 * Should be called without the journal lock held.
914 */
jbd2_journal_unlock_updates(journal_t * journal)915 void jbd2_journal_unlock_updates (journal_t *journal)
916 {
917 J_ASSERT(journal->j_barrier_count != 0);
918
919 mutex_unlock(&journal->j_barrier);
920 write_lock(&journal->j_state_lock);
921 --journal->j_barrier_count;
922 write_unlock(&journal->j_state_lock);
923 wake_up_all(&journal->j_wait_transaction_locked);
924 }
925
warn_dirty_buffer(struct buffer_head * bh)926 static void warn_dirty_buffer(struct buffer_head *bh)
927 {
928 printk(KERN_WARNING
929 "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
930 "There's a risk of filesystem corruption in case of system "
931 "crash.\n",
932 bh->b_bdev, (unsigned long long)bh->b_blocknr);
933 }
934
935 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
jbd2_freeze_jh_data(struct journal_head * jh)936 static void jbd2_freeze_jh_data(struct journal_head *jh)
937 {
938 struct page *page;
939 int offset;
940 char *source;
941 struct buffer_head *bh = jh2bh(jh);
942
943 J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
944 page = bh->b_page;
945 offset = offset_in_page(bh->b_data);
946 source = kmap_atomic(page);
947 /* Fire data frozen trigger just before we copy the data */
948 jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
949 memcpy(jh->b_frozen_data, source + offset, bh->b_size);
950 kunmap_atomic(source);
951
952 /*
953 * Now that the frozen data is saved off, we need to store any matching
954 * triggers.
955 */
956 jh->b_frozen_triggers = jh->b_triggers;
957 }
958
959 /*
960 * If the buffer is already part of the current transaction, then there
961 * is nothing we need to do. If it is already part of a prior
962 * transaction which we are still committing to disk, then we need to
963 * make sure that we do not overwrite the old copy: we do copy-out to
964 * preserve the copy going to disk. We also account the buffer against
965 * the handle's metadata buffer credits (unless the buffer is already
966 * part of the transaction, that is).
967 *
968 */
969 static int
do_get_write_access(handle_t * handle,struct journal_head * jh,int force_copy)970 do_get_write_access(handle_t *handle, struct journal_head *jh,
971 int force_copy)
972 {
973 struct buffer_head *bh;
974 transaction_t *transaction = handle->h_transaction;
975 journal_t *journal;
976 int error;
977 char *frozen_buffer = NULL;
978 unsigned long start_lock, time_lock;
979
980 journal = transaction->t_journal;
981
982 jbd2_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
983
984 JBUFFER_TRACE(jh, "entry");
985 repeat:
986 bh = jh2bh(jh);
987
988 /* @@@ Need to check for errors here at some point. */
989
990 start_lock = jiffies;
991 lock_buffer(bh);
992 spin_lock(&jh->b_state_lock);
993
994 /* If it takes too long to lock the buffer, trace it */
995 time_lock = jbd2_time_diff(start_lock, jiffies);
996 if (time_lock > HZ/10)
997 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
998 jiffies_to_msecs(time_lock));
999
1000 /* We now hold the buffer lock so it is safe to query the buffer
1001 * state. Is the buffer dirty?
1002 *
1003 * If so, there are two possibilities. The buffer may be
1004 * non-journaled, and undergoing a quite legitimate writeback.
1005 * Otherwise, it is journaled, and we don't expect dirty buffers
1006 * in that state (the buffers should be marked JBD_Dirty
1007 * instead.) So either the IO is being done under our own
1008 * control and this is a bug, or it's a third party IO such as
1009 * dump(8) (which may leave the buffer scheduled for read ---
1010 * ie. locked but not dirty) or tune2fs (which may actually have
1011 * the buffer dirtied, ugh.) */
1012
1013 if (buffer_dirty(bh)) {
1014 /*
1015 * First question: is this buffer already part of the current
1016 * transaction or the existing committing transaction?
1017 */
1018 if (jh->b_transaction) {
1019 J_ASSERT_JH(jh,
1020 jh->b_transaction == transaction ||
1021 jh->b_transaction ==
1022 journal->j_committing_transaction);
1023 if (jh->b_next_transaction)
1024 J_ASSERT_JH(jh, jh->b_next_transaction ==
1025 transaction);
1026 warn_dirty_buffer(bh);
1027 }
1028 /*
1029 * In any case we need to clean the dirty flag and we must
1030 * do it under the buffer lock to be sure we don't race
1031 * with running write-out.
1032 */
1033 JBUFFER_TRACE(jh, "Journalling dirty buffer");
1034 clear_buffer_dirty(bh);
1035 set_buffer_jbddirty(bh);
1036 }
1037
1038 unlock_buffer(bh);
1039
1040 error = -EROFS;
1041 if (is_handle_aborted(handle)) {
1042 spin_unlock(&jh->b_state_lock);
1043 goto out;
1044 }
1045 error = 0;
1046
1047 /*
1048 * The buffer is already part of this transaction if b_transaction or
1049 * b_next_transaction points to it
1050 */
1051 if (jh->b_transaction == transaction ||
1052 jh->b_next_transaction == transaction)
1053 goto done;
1054
1055 /*
1056 * this is the first time this transaction is touching this buffer,
1057 * reset the modified flag
1058 */
1059 jh->b_modified = 0;
1060
1061 /*
1062 * If the buffer is not journaled right now, we need to make sure it
1063 * doesn't get written to disk before the caller actually commits the
1064 * new data
1065 */
1066 if (!jh->b_transaction) {
1067 JBUFFER_TRACE(jh, "no transaction");
1068 J_ASSERT_JH(jh, !jh->b_next_transaction);
1069 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1070 /*
1071 * Make sure all stores to jh (b_modified, b_frozen_data) are
1072 * visible before attaching it to the running transaction.
1073 * Paired with barrier in jbd2_write_access_granted()
1074 */
1075 smp_wmb();
1076 spin_lock(&journal->j_list_lock);
1077 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1078 spin_unlock(&journal->j_list_lock);
1079 goto done;
1080 }
1081 /*
1082 * If there is already a copy-out version of this buffer, then we don't
1083 * need to make another one
1084 */
1085 if (jh->b_frozen_data) {
1086 JBUFFER_TRACE(jh, "has frozen data");
1087 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1088 goto attach_next;
1089 }
1090
1091 JBUFFER_TRACE(jh, "owned by older transaction");
1092 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1093 J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
1094
1095 /*
1096 * There is one case we have to be very careful about. If the
1097 * committing transaction is currently writing this buffer out to disk
1098 * and has NOT made a copy-out, then we cannot modify the buffer
1099 * contents at all right now. The essence of copy-out is that it is
1100 * the extra copy, not the primary copy, which gets journaled. If the
1101 * primary copy is already going to disk then we cannot do copy-out
1102 * here.
1103 */
1104 if (buffer_shadow(bh)) {
1105 JBUFFER_TRACE(jh, "on shadow: sleep");
1106 spin_unlock(&jh->b_state_lock);
1107 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
1108 goto repeat;
1109 }
1110
1111 /*
1112 * Only do the copy if the currently-owning transaction still needs it.
1113 * If buffer isn't on BJ_Metadata list, the committing transaction is
1114 * past that stage (here we use the fact that BH_Shadow is set under
1115 * bh_state lock together with refiling to BJ_Shadow list and at this
1116 * point we know the buffer doesn't have BH_Shadow set).
1117 *
1118 * Subtle point, though: if this is a get_undo_access, then we will be
1119 * relying on the frozen_data to contain the new value of the
1120 * committed_data record after the transaction, so we HAVE to force the
1121 * frozen_data copy in that case.
1122 */
1123 if (jh->b_jlist == BJ_Metadata || force_copy) {
1124 JBUFFER_TRACE(jh, "generate frozen data");
1125 if (!frozen_buffer) {
1126 JBUFFER_TRACE(jh, "allocate memory for buffer");
1127 spin_unlock(&jh->b_state_lock);
1128 frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
1129 GFP_NOFS | __GFP_NOFAIL);
1130 goto repeat;
1131 }
1132 jh->b_frozen_data = frozen_buffer;
1133 frozen_buffer = NULL;
1134 jbd2_freeze_jh_data(jh);
1135 }
1136 attach_next:
1137 /*
1138 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
1139 * before attaching it to the running transaction. Paired with barrier
1140 * in jbd2_write_access_granted()
1141 */
1142 smp_wmb();
1143 jh->b_next_transaction = transaction;
1144
1145 done:
1146 spin_unlock(&jh->b_state_lock);
1147
1148 /*
1149 * If we are about to journal a buffer, then any revoke pending on it is
1150 * no longer valid
1151 */
1152 jbd2_journal_cancel_revoke(handle, jh);
1153
1154 out:
1155 if (unlikely(frozen_buffer)) /* It's usually NULL */
1156 jbd2_free(frozen_buffer, bh->b_size);
1157
1158 JBUFFER_TRACE(jh, "exit");
1159 return error;
1160 }
1161
1162 /* Fast check whether buffer is already attached to the required transaction */
jbd2_write_access_granted(handle_t * handle,struct buffer_head * bh,bool undo)1163 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1164 bool undo)
1165 {
1166 struct journal_head *jh;
1167 bool ret = false;
1168
1169 /* Dirty buffers require special handling... */
1170 if (buffer_dirty(bh))
1171 return false;
1172
1173 /*
1174 * RCU protects us from dereferencing freed pages. So the checks we do
1175 * are guaranteed not to oops. However the jh slab object can get freed
1176 * & reallocated while we work with it. So we have to be careful. When
1177 * we see jh attached to the running transaction, we know it must stay
1178 * so until the transaction is committed. Thus jh won't be freed and
1179 * will be attached to the same bh while we run. However it can
1180 * happen jh gets freed, reallocated, and attached to the transaction
1181 * just after we get pointer to it from bh. So we have to be careful
1182 * and recheck jh still belongs to our bh before we return success.
1183 */
1184 rcu_read_lock();
1185 if (!buffer_jbd(bh))
1186 goto out;
1187 /* This should be bh2jh() but that doesn't work with inline functions */
1188 jh = READ_ONCE(bh->b_private);
1189 if (!jh)
1190 goto out;
1191 /* For undo access buffer must have data copied */
1192 if (undo && !jh->b_committed_data)
1193 goto out;
1194 if (READ_ONCE(jh->b_transaction) != handle->h_transaction &&
1195 READ_ONCE(jh->b_next_transaction) != handle->h_transaction)
1196 goto out;
1197 /*
1198 * There are two reasons for the barrier here:
1199 * 1) Make sure to fetch b_bh after we did previous checks so that we
1200 * detect when jh went through free, realloc, attach to transaction
1201 * while we were checking. Paired with implicit barrier in that path.
1202 * 2) So that access to bh done after jbd2_write_access_granted()
1203 * doesn't get reordered and see inconsistent state of concurrent
1204 * do_get_write_access().
1205 */
1206 smp_mb();
1207 if (unlikely(jh->b_bh != bh))
1208 goto out;
1209 ret = true;
1210 out:
1211 rcu_read_unlock();
1212 return ret;
1213 }
1214
1215 /**
1216 * jbd2_journal_get_write_access() - notify intent to modify a buffer
1217 * for metadata (not data) update.
1218 * @handle: transaction to add buffer modifications to
1219 * @bh: bh to be used for metadata writes
1220 *
1221 * Returns: error code or 0 on success.
1222 *
1223 * In full data journalling mode the buffer may be of type BJ_AsyncData,
1224 * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1225 */
1226
jbd2_journal_get_write_access(handle_t * handle,struct buffer_head * bh)1227 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1228 {
1229 struct journal_head *jh;
1230 int rc;
1231
1232 if (is_handle_aborted(handle))
1233 return -EROFS;
1234
1235 if (jbd2_write_access_granted(handle, bh, false))
1236 return 0;
1237
1238 jh = jbd2_journal_add_journal_head(bh);
1239 /* We do not want to get caught playing with fields which the
1240 * log thread also manipulates. Make sure that the buffer
1241 * completes any outstanding IO before proceeding. */
1242 rc = do_get_write_access(handle, jh, 0);
1243 jbd2_journal_put_journal_head(jh);
1244 return rc;
1245 }
1246
1247
1248 /*
1249 * When the user wants to journal a newly created buffer_head
1250 * (ie. getblk() returned a new buffer and we are going to populate it
1251 * manually rather than reading off disk), then we need to keep the
1252 * buffer_head locked until it has been completely filled with new
1253 * data. In this case, we should be able to make the assertion that
1254 * the bh is not already part of an existing transaction.
1255 *
1256 * The buffer should already be locked by the caller by this point.
1257 * There is no lock ranking violation: it was a newly created,
1258 * unlocked buffer beforehand. */
1259
1260 /**
1261 * jbd2_journal_get_create_access () - notify intent to use newly created bh
1262 * @handle: transaction to new buffer to
1263 * @bh: new buffer.
1264 *
1265 * Call this if you create a new bh.
1266 */
jbd2_journal_get_create_access(handle_t * handle,struct buffer_head * bh)1267 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1268 {
1269 transaction_t *transaction = handle->h_transaction;
1270 journal_t *journal;
1271 struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1272 int err;
1273
1274 jbd2_debug(5, "journal_head %p\n", jh);
1275 err = -EROFS;
1276 if (is_handle_aborted(handle))
1277 goto out;
1278 journal = transaction->t_journal;
1279 err = 0;
1280
1281 JBUFFER_TRACE(jh, "entry");
1282 /*
1283 * The buffer may already belong to this transaction due to pre-zeroing
1284 * in the filesystem's new_block code. It may also be on the previous,
1285 * committing transaction's lists, but it HAS to be in Forget state in
1286 * that case: the transaction must have deleted the buffer for it to be
1287 * reused here.
1288 */
1289 spin_lock(&jh->b_state_lock);
1290 J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1291 jh->b_transaction == NULL ||
1292 (jh->b_transaction == journal->j_committing_transaction &&
1293 jh->b_jlist == BJ_Forget)));
1294
1295 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1296 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1297
1298 if (jh->b_transaction == NULL) {
1299 /*
1300 * Previous jbd2_journal_forget() could have left the buffer
1301 * with jbddirty bit set because it was being committed. When
1302 * the commit finished, we've filed the buffer for
1303 * checkpointing and marked it dirty. Now we are reallocating
1304 * the buffer so the transaction freeing it must have
1305 * committed and so it's safe to clear the dirty bit.
1306 */
1307 clear_buffer_dirty(jh2bh(jh));
1308 /* first access by this transaction */
1309 jh->b_modified = 0;
1310
1311 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1312 spin_lock(&journal->j_list_lock);
1313 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1314 spin_unlock(&journal->j_list_lock);
1315 } else if (jh->b_transaction == journal->j_committing_transaction) {
1316 /* first access by this transaction */
1317 jh->b_modified = 0;
1318
1319 JBUFFER_TRACE(jh, "set next transaction");
1320 spin_lock(&journal->j_list_lock);
1321 jh->b_next_transaction = transaction;
1322 spin_unlock(&journal->j_list_lock);
1323 }
1324 spin_unlock(&jh->b_state_lock);
1325
1326 /*
1327 * akpm: I added this. ext3_alloc_branch can pick up new indirect
1328 * blocks which contain freed but then revoked metadata. We need
1329 * to cancel the revoke in case we end up freeing it yet again
1330 * and the reallocating as data - this would cause a second revoke,
1331 * which hits an assertion error.
1332 */
1333 JBUFFER_TRACE(jh, "cancelling revoke");
1334 jbd2_journal_cancel_revoke(handle, jh);
1335 out:
1336 jbd2_journal_put_journal_head(jh);
1337 return err;
1338 }
1339
1340 /**
1341 * jbd2_journal_get_undo_access() - Notify intent to modify metadata with
1342 * non-rewindable consequences
1343 * @handle: transaction
1344 * @bh: buffer to undo
1345 *
1346 * Sometimes there is a need to distinguish between metadata which has
1347 * been committed to disk and that which has not. The ext3fs code uses
1348 * this for freeing and allocating space, we have to make sure that we
1349 * do not reuse freed space until the deallocation has been committed,
1350 * since if we overwrote that space we would make the delete
1351 * un-rewindable in case of a crash.
1352 *
1353 * To deal with that, jbd2_journal_get_undo_access requests write access to a
1354 * buffer for parts of non-rewindable operations such as delete
1355 * operations on the bitmaps. The journaling code must keep a copy of
1356 * the buffer's contents prior to the undo_access call until such time
1357 * as we know that the buffer has definitely been committed to disk.
1358 *
1359 * We never need to know which transaction the committed data is part
1360 * of, buffers touched here are guaranteed to be dirtied later and so
1361 * will be committed to a new transaction in due course, at which point
1362 * we can discard the old committed data pointer.
1363 *
1364 * Returns error number or 0 on success.
1365 */
jbd2_journal_get_undo_access(handle_t * handle,struct buffer_head * bh)1366 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1367 {
1368 int err;
1369 struct journal_head *jh;
1370 char *committed_data = NULL;
1371
1372 if (is_handle_aborted(handle))
1373 return -EROFS;
1374
1375 if (jbd2_write_access_granted(handle, bh, true))
1376 return 0;
1377
1378 jh = jbd2_journal_add_journal_head(bh);
1379 JBUFFER_TRACE(jh, "entry");
1380
1381 /*
1382 * Do this first --- it can drop the journal lock, so we want to
1383 * make sure that obtaining the committed_data is done
1384 * atomically wrt. completion of any outstanding commits.
1385 */
1386 err = do_get_write_access(handle, jh, 1);
1387 if (err)
1388 goto out;
1389
1390 repeat:
1391 if (!jh->b_committed_data)
1392 committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1393 GFP_NOFS|__GFP_NOFAIL);
1394
1395 spin_lock(&jh->b_state_lock);
1396 if (!jh->b_committed_data) {
1397 /* Copy out the current buffer contents into the
1398 * preserved, committed copy. */
1399 JBUFFER_TRACE(jh, "generate b_committed data");
1400 if (!committed_data) {
1401 spin_unlock(&jh->b_state_lock);
1402 goto repeat;
1403 }
1404
1405 jh->b_committed_data = committed_data;
1406 committed_data = NULL;
1407 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1408 }
1409 spin_unlock(&jh->b_state_lock);
1410 out:
1411 jbd2_journal_put_journal_head(jh);
1412 if (unlikely(committed_data))
1413 jbd2_free(committed_data, bh->b_size);
1414 return err;
1415 }
1416
1417 /**
1418 * jbd2_journal_set_triggers() - Add triggers for commit writeout
1419 * @bh: buffer to trigger on
1420 * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1421 *
1422 * Set any triggers on this journal_head. This is always safe, because
1423 * triggers for a committing buffer will be saved off, and triggers for
1424 * a running transaction will match the buffer in that transaction.
1425 *
1426 * Call with NULL to clear the triggers.
1427 */
jbd2_journal_set_triggers(struct buffer_head * bh,struct jbd2_buffer_trigger_type * type)1428 void jbd2_journal_set_triggers(struct buffer_head *bh,
1429 struct jbd2_buffer_trigger_type *type)
1430 {
1431 struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1432
1433 if (WARN_ON_ONCE(!jh))
1434 return;
1435 jh->b_triggers = type;
1436 jbd2_journal_put_journal_head(jh);
1437 }
1438
jbd2_buffer_frozen_trigger(struct journal_head * jh,void * mapped_data,struct jbd2_buffer_trigger_type * triggers)1439 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1440 struct jbd2_buffer_trigger_type *triggers)
1441 {
1442 struct buffer_head *bh = jh2bh(jh);
1443
1444 if (!triggers || !triggers->t_frozen)
1445 return;
1446
1447 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1448 }
1449
jbd2_buffer_abort_trigger(struct journal_head * jh,struct jbd2_buffer_trigger_type * triggers)1450 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1451 struct jbd2_buffer_trigger_type *triggers)
1452 {
1453 if (!triggers || !triggers->t_abort)
1454 return;
1455
1456 triggers->t_abort(triggers, jh2bh(jh));
1457 }
1458
1459 /**
1460 * jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata
1461 * @handle: transaction to add buffer to.
1462 * @bh: buffer to mark
1463 *
1464 * mark dirty metadata which needs to be journaled as part of the current
1465 * transaction.
1466 *
1467 * The buffer must have previously had jbd2_journal_get_write_access()
1468 * called so that it has a valid journal_head attached to the buffer
1469 * head.
1470 *
1471 * The buffer is placed on the transaction's metadata list and is marked
1472 * as belonging to the transaction.
1473 *
1474 * Returns error number or 0 on success.
1475 *
1476 * Special care needs to be taken if the buffer already belongs to the
1477 * current committing transaction (in which case we should have frozen
1478 * data present for that commit). In that case, we don't relink the
1479 * buffer: that only gets done when the old transaction finally
1480 * completes its commit.
1481 */
jbd2_journal_dirty_metadata(handle_t * handle,struct buffer_head * bh)1482 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1483 {
1484 transaction_t *transaction = handle->h_transaction;
1485 journal_t *journal;
1486 struct journal_head *jh;
1487 int ret = 0;
1488
1489 if (!buffer_jbd(bh))
1490 return -EUCLEAN;
1491
1492 /*
1493 * We don't grab jh reference here since the buffer must be part
1494 * of the running transaction.
1495 */
1496 jh = bh2jh(bh);
1497 jbd2_debug(5, "journal_head %p\n", jh);
1498 JBUFFER_TRACE(jh, "entry");
1499
1500 /*
1501 * This and the following assertions are unreliable since we may see jh
1502 * in inconsistent state unless we grab bh_state lock. But this is
1503 * crucial to catch bugs so let's do a reliable check until the
1504 * lockless handling is fully proven.
1505 */
1506 if (data_race(jh->b_transaction != transaction &&
1507 jh->b_next_transaction != transaction)) {
1508 spin_lock(&jh->b_state_lock);
1509 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1510 jh->b_next_transaction == transaction);
1511 spin_unlock(&jh->b_state_lock);
1512 }
1513 if (jh->b_modified == 1) {
1514 /* If it's in our transaction it must be in BJ_Metadata list. */
1515 if (data_race(jh->b_transaction == transaction &&
1516 jh->b_jlist != BJ_Metadata)) {
1517 spin_lock(&jh->b_state_lock);
1518 if (jh->b_transaction == transaction &&
1519 jh->b_jlist != BJ_Metadata)
1520 pr_err("JBD2: assertion failure: h_type=%u "
1521 "h_line_no=%u block_no=%llu jlist=%u\n",
1522 handle->h_type, handle->h_line_no,
1523 (unsigned long long) bh->b_blocknr,
1524 jh->b_jlist);
1525 J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1526 jh->b_jlist == BJ_Metadata);
1527 spin_unlock(&jh->b_state_lock);
1528 }
1529 goto out;
1530 }
1531
1532 journal = transaction->t_journal;
1533 spin_lock(&jh->b_state_lock);
1534
1535 if (is_handle_aborted(handle)) {
1536 /*
1537 * Check journal aborting with @jh->b_state_lock locked,
1538 * since 'jh->b_transaction' could be replaced with
1539 * 'jh->b_next_transaction' during old transaction
1540 * committing if journal aborted, which may fail
1541 * assertion on 'jh->b_frozen_data == NULL'.
1542 */
1543 ret = -EROFS;
1544 goto out_unlock_bh;
1545 }
1546
1547 if (jh->b_modified == 0) {
1548 /*
1549 * This buffer's got modified and becoming part
1550 * of the transaction. This needs to be done
1551 * once a transaction -bzzz
1552 */
1553 if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) {
1554 ret = -ENOSPC;
1555 goto out_unlock_bh;
1556 }
1557 jh->b_modified = 1;
1558 handle->h_total_credits--;
1559 }
1560
1561 /*
1562 * fastpath, to avoid expensive locking. If this buffer is already
1563 * on the running transaction's metadata list there is nothing to do.
1564 * Nobody can take it off again because there is a handle open.
1565 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1566 * result in this test being false, so we go in and take the locks.
1567 */
1568 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1569 JBUFFER_TRACE(jh, "fastpath");
1570 if (unlikely(jh->b_transaction !=
1571 journal->j_running_transaction)) {
1572 printk(KERN_ERR "JBD2: %s: "
1573 "jh->b_transaction (%llu, %p, %u) != "
1574 "journal->j_running_transaction (%p, %u)\n",
1575 journal->j_devname,
1576 (unsigned long long) bh->b_blocknr,
1577 jh->b_transaction,
1578 jh->b_transaction ? jh->b_transaction->t_tid : 0,
1579 journal->j_running_transaction,
1580 journal->j_running_transaction ?
1581 journal->j_running_transaction->t_tid : 0);
1582 ret = -EINVAL;
1583 }
1584 goto out_unlock_bh;
1585 }
1586
1587 set_buffer_jbddirty(bh);
1588
1589 /*
1590 * Metadata already on the current transaction list doesn't
1591 * need to be filed. Metadata on another transaction's list must
1592 * be committing, and will be refiled once the commit completes:
1593 * leave it alone for now.
1594 */
1595 if (jh->b_transaction != transaction) {
1596 JBUFFER_TRACE(jh, "already on other transaction");
1597 if (unlikely(((jh->b_transaction !=
1598 journal->j_committing_transaction)) ||
1599 (jh->b_next_transaction != transaction))) {
1600 printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1601 "bad jh for block %llu: "
1602 "transaction (%p, %u), "
1603 "jh->b_transaction (%p, %u), "
1604 "jh->b_next_transaction (%p, %u), jlist %u\n",
1605 journal->j_devname,
1606 (unsigned long long) bh->b_blocknr,
1607 transaction, transaction->t_tid,
1608 jh->b_transaction,
1609 jh->b_transaction ?
1610 jh->b_transaction->t_tid : 0,
1611 jh->b_next_transaction,
1612 jh->b_next_transaction ?
1613 jh->b_next_transaction->t_tid : 0,
1614 jh->b_jlist);
1615 WARN_ON(1);
1616 ret = -EINVAL;
1617 }
1618 /* And this case is illegal: we can't reuse another
1619 * transaction's data buffer, ever. */
1620 goto out_unlock_bh;
1621 }
1622
1623 /* That test should have eliminated the following case: */
1624 J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1625
1626 JBUFFER_TRACE(jh, "file as BJ_Metadata");
1627 spin_lock(&journal->j_list_lock);
1628 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1629 spin_unlock(&journal->j_list_lock);
1630 out_unlock_bh:
1631 spin_unlock(&jh->b_state_lock);
1632 out:
1633 JBUFFER_TRACE(jh, "exit");
1634 return ret;
1635 }
1636
1637 /**
1638 * jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1639 * @handle: transaction handle
1640 * @bh: bh to 'forget'
1641 *
1642 * We can only do the bforget if there are no commits pending against the
1643 * buffer. If the buffer is dirty in the current running transaction we
1644 * can safely unlink it.
1645 *
1646 * bh may not be a journalled buffer at all - it may be a non-JBD
1647 * buffer which came off the hashtable. Check for this.
1648 *
1649 * Decrements bh->b_count by one.
1650 *
1651 * Allow this call even if the handle has aborted --- it may be part of
1652 * the caller's cleanup after an abort.
1653 */
jbd2_journal_forget(handle_t * handle,struct buffer_head * bh)1654 int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh)
1655 {
1656 transaction_t *transaction = handle->h_transaction;
1657 journal_t *journal;
1658 struct journal_head *jh;
1659 int drop_reserve = 0;
1660 int err = 0;
1661 int was_modified = 0;
1662
1663 if (is_handle_aborted(handle))
1664 return -EROFS;
1665 journal = transaction->t_journal;
1666
1667 BUFFER_TRACE(bh, "entry");
1668
1669 jh = jbd2_journal_grab_journal_head(bh);
1670 if (!jh) {
1671 __bforget(bh);
1672 return 0;
1673 }
1674
1675 spin_lock(&jh->b_state_lock);
1676
1677 /* Critical error: attempting to delete a bitmap buffer, maybe?
1678 * Don't do any jbd operations, and return an error. */
1679 if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1680 "inconsistent data on disk")) {
1681 err = -EIO;
1682 goto drop;
1683 }
1684
1685 /* keep track of whether or not this transaction modified us */
1686 was_modified = jh->b_modified;
1687
1688 /*
1689 * The buffer's going from the transaction, we must drop
1690 * all references -bzzz
1691 */
1692 jh->b_modified = 0;
1693
1694 if (jh->b_transaction == transaction) {
1695 J_ASSERT_JH(jh, !jh->b_frozen_data);
1696
1697 /* If we are forgetting a buffer which is already part
1698 * of this transaction, then we can just drop it from
1699 * the transaction immediately. */
1700 clear_buffer_dirty(bh);
1701 clear_buffer_jbddirty(bh);
1702
1703 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1704
1705 /*
1706 * we only want to drop a reference if this transaction
1707 * modified the buffer
1708 */
1709 if (was_modified)
1710 drop_reserve = 1;
1711
1712 /*
1713 * We are no longer going to journal this buffer.
1714 * However, the commit of this transaction is still
1715 * important to the buffer: the delete that we are now
1716 * processing might obsolete an old log entry, so by
1717 * committing, we can satisfy the buffer's checkpoint.
1718 *
1719 * So, if we have a checkpoint on the buffer, we should
1720 * now refile the buffer on our BJ_Forget list so that
1721 * we know to remove the checkpoint after we commit.
1722 */
1723
1724 spin_lock(&journal->j_list_lock);
1725 if (jh->b_cp_transaction) {
1726 __jbd2_journal_temp_unlink_buffer(jh);
1727 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1728 } else {
1729 __jbd2_journal_unfile_buffer(jh);
1730 jbd2_journal_put_journal_head(jh);
1731 }
1732 spin_unlock(&journal->j_list_lock);
1733 } else if (jh->b_transaction) {
1734 J_ASSERT_JH(jh, (jh->b_transaction ==
1735 journal->j_committing_transaction));
1736 /* However, if the buffer is still owned by a prior
1737 * (committing) transaction, we can't drop it yet... */
1738 JBUFFER_TRACE(jh, "belongs to older transaction");
1739 /* ... but we CAN drop it from the new transaction through
1740 * marking the buffer as freed and set j_next_transaction to
1741 * the new transaction, so that not only the commit code
1742 * knows it should clear dirty bits when it is done with the
1743 * buffer, but also the buffer can be checkpointed only
1744 * after the new transaction commits. */
1745
1746 set_buffer_freed(bh);
1747
1748 if (!jh->b_next_transaction) {
1749 spin_lock(&journal->j_list_lock);
1750 jh->b_next_transaction = transaction;
1751 spin_unlock(&journal->j_list_lock);
1752 } else {
1753 J_ASSERT(jh->b_next_transaction == transaction);
1754
1755 /*
1756 * only drop a reference if this transaction modified
1757 * the buffer
1758 */
1759 if (was_modified)
1760 drop_reserve = 1;
1761 }
1762 } else {
1763 /*
1764 * Finally, if the buffer is not belongs to any
1765 * transaction, we can just drop it now if it has no
1766 * checkpoint.
1767 */
1768 spin_lock(&journal->j_list_lock);
1769 if (!jh->b_cp_transaction) {
1770 JBUFFER_TRACE(jh, "belongs to none transaction");
1771 spin_unlock(&journal->j_list_lock);
1772 goto drop;
1773 }
1774
1775 /*
1776 * Otherwise, if the buffer has been written to disk,
1777 * it is safe to remove the checkpoint and drop it.
1778 */
1779 if (!buffer_dirty(bh)) {
1780 __jbd2_journal_remove_checkpoint(jh);
1781 spin_unlock(&journal->j_list_lock);
1782 goto drop;
1783 }
1784
1785 /*
1786 * The buffer is still not written to disk, we should
1787 * attach this buffer to current transaction so that the
1788 * buffer can be checkpointed only after the current
1789 * transaction commits.
1790 */
1791 clear_buffer_dirty(bh);
1792 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1793 spin_unlock(&journal->j_list_lock);
1794 }
1795 drop:
1796 __brelse(bh);
1797 spin_unlock(&jh->b_state_lock);
1798 jbd2_journal_put_journal_head(jh);
1799 if (drop_reserve) {
1800 /* no need to reserve log space for this block -bzzz */
1801 handle->h_total_credits++;
1802 }
1803 return err;
1804 }
1805
1806 /**
1807 * jbd2_journal_stop() - complete a transaction
1808 * @handle: transaction to complete.
1809 *
1810 * All done for a particular handle.
1811 *
1812 * There is not much action needed here. We just return any remaining
1813 * buffer credits to the transaction and remove the handle. The only
1814 * complication is that we need to start a commit operation if the
1815 * filesystem is marked for synchronous update.
1816 *
1817 * jbd2_journal_stop itself will not usually return an error, but it may
1818 * do so in unusual circumstances. In particular, expect it to
1819 * return -EIO if a jbd2_journal_abort has been executed since the
1820 * transaction began.
1821 */
jbd2_journal_stop(handle_t * handle)1822 int jbd2_journal_stop(handle_t *handle)
1823 {
1824 transaction_t *transaction = handle->h_transaction;
1825 journal_t *journal;
1826 int err = 0, wait_for_commit = 0;
1827 tid_t tid;
1828 pid_t pid;
1829
1830 if (--handle->h_ref > 0) {
1831 jbd2_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1832 handle->h_ref);
1833 if (is_handle_aborted(handle))
1834 return -EIO;
1835 return 0;
1836 }
1837 if (!transaction) {
1838 /*
1839 * Handle is already detached from the transaction so there is
1840 * nothing to do other than free the handle.
1841 */
1842 memalloc_nofs_restore(handle->saved_alloc_context);
1843 goto free_and_exit;
1844 }
1845 journal = transaction->t_journal;
1846 tid = transaction->t_tid;
1847
1848 if (is_handle_aborted(handle))
1849 err = -EIO;
1850
1851 jbd2_debug(4, "Handle %p going down\n", handle);
1852 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1853 tid, handle->h_type, handle->h_line_no,
1854 jiffies - handle->h_start_jiffies,
1855 handle->h_sync, handle->h_requested_credits,
1856 (handle->h_requested_credits -
1857 handle->h_total_credits));
1858
1859 /*
1860 * Implement synchronous transaction batching. If the handle
1861 * was synchronous, don't force a commit immediately. Let's
1862 * yield and let another thread piggyback onto this
1863 * transaction. Keep doing that while new threads continue to
1864 * arrive. It doesn't cost much - we're about to run a commit
1865 * and sleep on IO anyway. Speeds up many-threaded, many-dir
1866 * operations by 30x or more...
1867 *
1868 * We try and optimize the sleep time against what the
1869 * underlying disk can do, instead of having a static sleep
1870 * time. This is useful for the case where our storage is so
1871 * fast that it is more optimal to go ahead and force a flush
1872 * and wait for the transaction to be committed than it is to
1873 * wait for an arbitrary amount of time for new writers to
1874 * join the transaction. We achieve this by measuring how
1875 * long it takes to commit a transaction, and compare it with
1876 * how long this transaction has been running, and if run time
1877 * < commit time then we sleep for the delta and commit. This
1878 * greatly helps super fast disks that would see slowdowns as
1879 * more threads started doing fsyncs.
1880 *
1881 * But don't do this if this process was the most recent one
1882 * to perform a synchronous write. We do this to detect the
1883 * case where a single process is doing a stream of sync
1884 * writes. No point in waiting for joiners in that case.
1885 *
1886 * Setting max_batch_time to 0 disables this completely.
1887 */
1888 pid = current->pid;
1889 if (handle->h_sync && journal->j_last_sync_writer != pid &&
1890 journal->j_max_batch_time) {
1891 u64 commit_time, trans_time;
1892
1893 journal->j_last_sync_writer = pid;
1894
1895 read_lock(&journal->j_state_lock);
1896 commit_time = journal->j_average_commit_time;
1897 read_unlock(&journal->j_state_lock);
1898
1899 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1900 transaction->t_start_time));
1901
1902 commit_time = max_t(u64, commit_time,
1903 1000*journal->j_min_batch_time);
1904 commit_time = min_t(u64, commit_time,
1905 1000*journal->j_max_batch_time);
1906
1907 if (trans_time < commit_time) {
1908 ktime_t expires = ktime_add_ns(ktime_get(),
1909 commit_time);
1910 set_current_state(TASK_UNINTERRUPTIBLE);
1911 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1912 }
1913 }
1914
1915 if (handle->h_sync)
1916 transaction->t_synchronous_commit = 1;
1917
1918 /*
1919 * If the handle is marked SYNC, we need to set another commit
1920 * going! We also want to force a commit if the transaction is too
1921 * old now.
1922 */
1923 if (handle->h_sync ||
1924 time_after_eq(jiffies, transaction->t_expires)) {
1925 /* Do this even for aborted journals: an abort still
1926 * completes the commit thread, it just doesn't write
1927 * anything to disk. */
1928
1929 jbd2_debug(2, "transaction too old, requesting commit for "
1930 "handle %p\n", handle);
1931 /* This is non-blocking */
1932 jbd2_log_start_commit(journal, tid);
1933
1934 /*
1935 * Special case: JBD2_SYNC synchronous updates require us
1936 * to wait for the commit to complete.
1937 */
1938 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1939 wait_for_commit = 1;
1940 }
1941
1942 /*
1943 * Once stop_this_handle() drops t_updates, the transaction could start
1944 * committing on us and eventually disappear. So we must not
1945 * dereference transaction pointer again after calling
1946 * stop_this_handle().
1947 */
1948 stop_this_handle(handle);
1949
1950 if (wait_for_commit)
1951 err = jbd2_log_wait_commit(journal, tid);
1952
1953 free_and_exit:
1954 if (handle->h_rsv_handle)
1955 jbd2_free_handle(handle->h_rsv_handle);
1956 jbd2_free_handle(handle);
1957 return err;
1958 }
1959
1960 /*
1961 *
1962 * List management code snippets: various functions for manipulating the
1963 * transaction buffer lists.
1964 *
1965 */
1966
1967 /*
1968 * Append a buffer to a transaction list, given the transaction's list head
1969 * pointer.
1970 *
1971 * j_list_lock is held.
1972 *
1973 * jh->b_state_lock is held.
1974 */
1975
1976 static inline void
__blist_add_buffer(struct journal_head ** list,struct journal_head * jh)1977 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1978 {
1979 if (!*list) {
1980 jh->b_tnext = jh->b_tprev = jh;
1981 *list = jh;
1982 } else {
1983 /* Insert at the tail of the list to preserve order */
1984 struct journal_head *first = *list, *last = first->b_tprev;
1985 jh->b_tprev = last;
1986 jh->b_tnext = first;
1987 last->b_tnext = first->b_tprev = jh;
1988 }
1989 }
1990
1991 /*
1992 * Remove a buffer from a transaction list, given the transaction's list
1993 * head pointer.
1994 *
1995 * Called with j_list_lock held, and the journal may not be locked.
1996 *
1997 * jh->b_state_lock is held.
1998 */
1999
2000 static inline void
__blist_del_buffer(struct journal_head ** list,struct journal_head * jh)2001 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
2002 {
2003 if (*list == jh) {
2004 *list = jh->b_tnext;
2005 if (*list == jh)
2006 *list = NULL;
2007 }
2008 jh->b_tprev->b_tnext = jh->b_tnext;
2009 jh->b_tnext->b_tprev = jh->b_tprev;
2010 }
2011
2012 /*
2013 * Remove a buffer from the appropriate transaction list.
2014 *
2015 * Note that this function can *change* the value of
2016 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
2017 * t_reserved_list. If the caller is holding onto a copy of one of these
2018 * pointers, it could go bad. Generally the caller needs to re-read the
2019 * pointer from the transaction_t.
2020 *
2021 * Called under j_list_lock.
2022 */
__jbd2_journal_temp_unlink_buffer(struct journal_head * jh)2023 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
2024 {
2025 struct journal_head **list = NULL;
2026 transaction_t *transaction;
2027 struct buffer_head *bh = jh2bh(jh);
2028
2029 lockdep_assert_held(&jh->b_state_lock);
2030 transaction = jh->b_transaction;
2031 if (transaction)
2032 assert_spin_locked(&transaction->t_journal->j_list_lock);
2033
2034 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2035 if (jh->b_jlist != BJ_None)
2036 J_ASSERT_JH(jh, transaction != NULL);
2037
2038 switch (jh->b_jlist) {
2039 case BJ_None:
2040 return;
2041 case BJ_Metadata:
2042 transaction->t_nr_buffers--;
2043 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
2044 list = &transaction->t_buffers;
2045 break;
2046 case BJ_Forget:
2047 list = &transaction->t_forget;
2048 break;
2049 case BJ_Shadow:
2050 list = &transaction->t_shadow_list;
2051 break;
2052 case BJ_Reserved:
2053 list = &transaction->t_reserved_list;
2054 break;
2055 }
2056
2057 __blist_del_buffer(list, jh);
2058 jh->b_jlist = BJ_None;
2059 if (transaction && is_journal_aborted(transaction->t_journal))
2060 clear_buffer_jbddirty(bh);
2061 else if (test_clear_buffer_jbddirty(bh))
2062 mark_buffer_dirty(bh); /* Expose it to the VM */
2063 }
2064
2065 /*
2066 * Remove buffer from all transactions. The caller is responsible for dropping
2067 * the jh reference that belonged to the transaction.
2068 *
2069 * Called with bh_state lock and j_list_lock
2070 */
__jbd2_journal_unfile_buffer(struct journal_head * jh)2071 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
2072 {
2073 J_ASSERT_JH(jh, jh->b_transaction != NULL);
2074 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2075
2076 __jbd2_journal_temp_unlink_buffer(jh);
2077 jh->b_transaction = NULL;
2078 }
2079
jbd2_journal_unfile_buffer(journal_t * journal,struct journal_head * jh)2080 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
2081 {
2082 struct buffer_head *bh = jh2bh(jh);
2083
2084 /* Get reference so that buffer cannot be freed before we unlock it */
2085 get_bh(bh);
2086 spin_lock(&jh->b_state_lock);
2087 spin_lock(&journal->j_list_lock);
2088 __jbd2_journal_unfile_buffer(jh);
2089 spin_unlock(&journal->j_list_lock);
2090 spin_unlock(&jh->b_state_lock);
2091 jbd2_journal_put_journal_head(jh);
2092 __brelse(bh);
2093 }
2094
2095 /*
2096 * Called from jbd2_journal_try_to_free_buffers().
2097 *
2098 * Called under jh->b_state_lock
2099 */
2100 static void
__journal_try_to_free_buffer(journal_t * journal,struct buffer_head * bh)2101 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
2102 {
2103 struct journal_head *jh;
2104
2105 jh = bh2jh(bh);
2106
2107 if (buffer_locked(bh) || buffer_dirty(bh))
2108 goto out;
2109
2110 if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
2111 goto out;
2112
2113 spin_lock(&journal->j_list_lock);
2114 if (jh->b_cp_transaction != NULL) {
2115 /* written-back checkpointed metadata buffer */
2116 JBUFFER_TRACE(jh, "remove from checkpoint list");
2117 __jbd2_journal_remove_checkpoint(jh);
2118 }
2119 spin_unlock(&journal->j_list_lock);
2120 out:
2121 return;
2122 }
2123
2124 /**
2125 * jbd2_journal_try_to_free_buffers() - try to free page buffers.
2126 * @journal: journal for operation
2127 * @folio: Folio to detach data from.
2128 *
2129 * For all the buffers on this page,
2130 * if they are fully written out ordered data, move them onto BUF_CLEAN
2131 * so try_to_free_buffers() can reap them.
2132 *
2133 * This function returns non-zero if we wish try_to_free_buffers()
2134 * to be called. We do this if the page is releasable by try_to_free_buffers().
2135 * We also do it if the page has locked or dirty buffers and the caller wants
2136 * us to perform sync or async writeout.
2137 *
2138 * This complicates JBD locking somewhat. We aren't protected by the
2139 * BKL here. We wish to remove the buffer from its committing or
2140 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2141 *
2142 * This may *change* the value of transaction_t->t_datalist, so anyone
2143 * who looks at t_datalist needs to lock against this function.
2144 *
2145 * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2146 * buffer. So we need to lock against that. jbd2_journal_dirty_data()
2147 * will come out of the lock with the buffer dirty, which makes it
2148 * ineligible for release here.
2149 *
2150 * Who else is affected by this? hmm... Really the only contender
2151 * is do_get_write_access() - it could be looking at the buffer while
2152 * journal_try_to_free_buffer() is changing its state. But that
2153 * cannot happen because we never reallocate freed data as metadata
2154 * while the data is part of a transaction. Yes?
2155 *
2156 * Return false on failure, true on success
2157 */
jbd2_journal_try_to_free_buffers(journal_t * journal,struct folio * folio)2158 bool jbd2_journal_try_to_free_buffers(journal_t *journal, struct folio *folio)
2159 {
2160 struct buffer_head *head;
2161 struct buffer_head *bh;
2162 bool ret = false;
2163
2164 J_ASSERT(folio_test_locked(folio));
2165
2166 head = folio_buffers(folio);
2167 bh = head;
2168 do {
2169 struct journal_head *jh;
2170
2171 /*
2172 * We take our own ref against the journal_head here to avoid
2173 * having to add tons of locking around each instance of
2174 * jbd2_journal_put_journal_head().
2175 */
2176 jh = jbd2_journal_grab_journal_head(bh);
2177 if (!jh)
2178 continue;
2179
2180 spin_lock(&jh->b_state_lock);
2181 __journal_try_to_free_buffer(journal, bh);
2182 spin_unlock(&jh->b_state_lock);
2183 jbd2_journal_put_journal_head(jh);
2184 if (buffer_jbd(bh))
2185 goto busy;
2186 } while ((bh = bh->b_this_page) != head);
2187
2188 ret = try_to_free_buffers(folio);
2189 busy:
2190 return ret;
2191 }
2192
2193 /*
2194 * This buffer is no longer needed. If it is on an older transaction's
2195 * checkpoint list we need to record it on this transaction's forget list
2196 * to pin this buffer (and hence its checkpointing transaction) down until
2197 * this transaction commits. If the buffer isn't on a checkpoint list, we
2198 * release it.
2199 * Returns non-zero if JBD no longer has an interest in the buffer.
2200 *
2201 * Called under j_list_lock.
2202 *
2203 * Called under jh->b_state_lock.
2204 */
__dispose_buffer(struct journal_head * jh,transaction_t * transaction)2205 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2206 {
2207 int may_free = 1;
2208 struct buffer_head *bh = jh2bh(jh);
2209
2210 if (jh->b_cp_transaction) {
2211 JBUFFER_TRACE(jh, "on running+cp transaction");
2212 __jbd2_journal_temp_unlink_buffer(jh);
2213 /*
2214 * We don't want to write the buffer anymore, clear the
2215 * bit so that we don't confuse checks in
2216 * __journal_file_buffer
2217 */
2218 clear_buffer_dirty(bh);
2219 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2220 may_free = 0;
2221 } else {
2222 JBUFFER_TRACE(jh, "on running transaction");
2223 __jbd2_journal_unfile_buffer(jh);
2224 jbd2_journal_put_journal_head(jh);
2225 }
2226 return may_free;
2227 }
2228
2229 /*
2230 * jbd2_journal_invalidate_folio
2231 *
2232 * This code is tricky. It has a number of cases to deal with.
2233 *
2234 * There are two invariants which this code relies on:
2235 *
2236 * i_size must be updated on disk before we start calling invalidate_folio
2237 * on the data.
2238 *
2239 * This is done in ext3 by defining an ext3_setattr method which
2240 * updates i_size before truncate gets going. By maintaining this
2241 * invariant, we can be sure that it is safe to throw away any buffers
2242 * attached to the current transaction: once the transaction commits,
2243 * we know that the data will not be needed.
2244 *
2245 * Note however that we can *not* throw away data belonging to the
2246 * previous, committing transaction!
2247 *
2248 * Any disk blocks which *are* part of the previous, committing
2249 * transaction (and which therefore cannot be discarded immediately) are
2250 * not going to be reused in the new running transaction
2251 *
2252 * The bitmap committed_data images guarantee this: any block which is
2253 * allocated in one transaction and removed in the next will be marked
2254 * as in-use in the committed_data bitmap, so cannot be reused until
2255 * the next transaction to delete the block commits. This means that
2256 * leaving committing buffers dirty is quite safe: the disk blocks
2257 * cannot be reallocated to a different file and so buffer aliasing is
2258 * not possible.
2259 *
2260 *
2261 * The above applies mainly to ordered data mode. In writeback mode we
2262 * don't make guarantees about the order in which data hits disk --- in
2263 * particular we don't guarantee that new dirty data is flushed before
2264 * transaction commit --- so it is always safe just to discard data
2265 * immediately in that mode. --sct
2266 */
2267
2268 /*
2269 * The journal_unmap_buffer helper function returns zero if the buffer
2270 * concerned remains pinned as an anonymous buffer belonging to an older
2271 * transaction.
2272 *
2273 * We're outside-transaction here. Either or both of j_running_transaction
2274 * and j_committing_transaction may be NULL.
2275 */
journal_unmap_buffer(journal_t * journal,struct buffer_head * bh,int partial_page)2276 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2277 int partial_page)
2278 {
2279 transaction_t *transaction;
2280 struct journal_head *jh;
2281 int may_free = 1;
2282
2283 BUFFER_TRACE(bh, "entry");
2284
2285 /*
2286 * It is safe to proceed here without the j_list_lock because the
2287 * buffers cannot be stolen by try_to_free_buffers as long as we are
2288 * holding the page lock. --sct
2289 */
2290
2291 jh = jbd2_journal_grab_journal_head(bh);
2292 if (!jh)
2293 goto zap_buffer_unlocked;
2294
2295 /* OK, we have data buffer in journaled mode */
2296 write_lock(&journal->j_state_lock);
2297 spin_lock(&jh->b_state_lock);
2298 spin_lock(&journal->j_list_lock);
2299
2300 /*
2301 * We cannot remove the buffer from checkpoint lists until the
2302 * transaction adding inode to orphan list (let's call it T)
2303 * is committed. Otherwise if the transaction changing the
2304 * buffer would be cleaned from the journal before T is
2305 * committed, a crash will cause that the correct contents of
2306 * the buffer will be lost. On the other hand we have to
2307 * clear the buffer dirty bit at latest at the moment when the
2308 * transaction marking the buffer as freed in the filesystem
2309 * structures is committed because from that moment on the
2310 * block can be reallocated and used by a different page.
2311 * Since the block hasn't been freed yet but the inode has
2312 * already been added to orphan list, it is safe for us to add
2313 * the buffer to BJ_Forget list of the newest transaction.
2314 *
2315 * Also we have to clear buffer_mapped flag of a truncated buffer
2316 * because the buffer_head may be attached to the page straddling
2317 * i_size (can happen only when blocksize < pagesize) and thus the
2318 * buffer_head can be reused when the file is extended again. So we end
2319 * up keeping around invalidated buffers attached to transactions'
2320 * BJ_Forget list just to stop checkpointing code from cleaning up
2321 * the transaction this buffer was modified in.
2322 */
2323 transaction = jh->b_transaction;
2324 if (transaction == NULL) {
2325 /* First case: not on any transaction. If it
2326 * has no checkpoint link, then we can zap it:
2327 * it's a writeback-mode buffer so we don't care
2328 * if it hits disk safely. */
2329 if (!jh->b_cp_transaction) {
2330 JBUFFER_TRACE(jh, "not on any transaction: zap");
2331 goto zap_buffer;
2332 }
2333
2334 if (!buffer_dirty(bh)) {
2335 /* bdflush has written it. We can drop it now */
2336 __jbd2_journal_remove_checkpoint(jh);
2337 goto zap_buffer;
2338 }
2339
2340 /* OK, it must be in the journal but still not
2341 * written fully to disk: it's metadata or
2342 * journaled data... */
2343
2344 if (journal->j_running_transaction) {
2345 /* ... and once the current transaction has
2346 * committed, the buffer won't be needed any
2347 * longer. */
2348 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2349 may_free = __dispose_buffer(jh,
2350 journal->j_running_transaction);
2351 goto zap_buffer;
2352 } else {
2353 /* There is no currently-running transaction. So the
2354 * orphan record which we wrote for this file must have
2355 * passed into commit. We must attach this buffer to
2356 * the committing transaction, if it exists. */
2357 if (journal->j_committing_transaction) {
2358 JBUFFER_TRACE(jh, "give to committing trans");
2359 may_free = __dispose_buffer(jh,
2360 journal->j_committing_transaction);
2361 goto zap_buffer;
2362 } else {
2363 /* The orphan record's transaction has
2364 * committed. We can cleanse this buffer */
2365 clear_buffer_jbddirty(bh);
2366 __jbd2_journal_remove_checkpoint(jh);
2367 goto zap_buffer;
2368 }
2369 }
2370 } else if (transaction == journal->j_committing_transaction) {
2371 JBUFFER_TRACE(jh, "on committing transaction");
2372 /*
2373 * The buffer is committing, we simply cannot touch
2374 * it. If the page is straddling i_size we have to wait
2375 * for commit and try again.
2376 */
2377 if (partial_page) {
2378 spin_unlock(&journal->j_list_lock);
2379 spin_unlock(&jh->b_state_lock);
2380 write_unlock(&journal->j_state_lock);
2381 jbd2_journal_put_journal_head(jh);
2382 return -EBUSY;
2383 }
2384 /*
2385 * OK, buffer won't be reachable after truncate. We just clear
2386 * b_modified to not confuse transaction credit accounting, and
2387 * set j_next_transaction to the running transaction (if there
2388 * is one) and mark buffer as freed so that commit code knows
2389 * it should clear dirty bits when it is done with the buffer.
2390 */
2391 set_buffer_freed(bh);
2392 if (journal->j_running_transaction && buffer_jbddirty(bh))
2393 jh->b_next_transaction = journal->j_running_transaction;
2394 jh->b_modified = 0;
2395 spin_unlock(&journal->j_list_lock);
2396 spin_unlock(&jh->b_state_lock);
2397 write_unlock(&journal->j_state_lock);
2398 jbd2_journal_put_journal_head(jh);
2399 return 0;
2400 } else {
2401 /* Good, the buffer belongs to the running transaction.
2402 * We are writing our own transaction's data, not any
2403 * previous one's, so it is safe to throw it away
2404 * (remember that we expect the filesystem to have set
2405 * i_size already for this truncate so recovery will not
2406 * expose the disk blocks we are discarding here.) */
2407 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2408 JBUFFER_TRACE(jh, "on running transaction");
2409 may_free = __dispose_buffer(jh, transaction);
2410 }
2411
2412 zap_buffer:
2413 /*
2414 * This is tricky. Although the buffer is truncated, it may be reused
2415 * if blocksize < pagesize and it is attached to the page straddling
2416 * EOF. Since the buffer might have been added to BJ_Forget list of the
2417 * running transaction, journal_get_write_access() won't clear
2418 * b_modified and credit accounting gets confused. So clear b_modified
2419 * here.
2420 */
2421 jh->b_modified = 0;
2422 spin_unlock(&journal->j_list_lock);
2423 spin_unlock(&jh->b_state_lock);
2424 write_unlock(&journal->j_state_lock);
2425 jbd2_journal_put_journal_head(jh);
2426 zap_buffer_unlocked:
2427 clear_buffer_dirty(bh);
2428 J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2429 clear_buffer_mapped(bh);
2430 clear_buffer_req(bh);
2431 clear_buffer_new(bh);
2432 clear_buffer_delay(bh);
2433 clear_buffer_unwritten(bh);
2434 bh->b_bdev = NULL;
2435 return may_free;
2436 }
2437
2438 /**
2439 * jbd2_journal_invalidate_folio()
2440 * @journal: journal to use for flush...
2441 * @folio: folio to flush
2442 * @offset: start of the range to invalidate
2443 * @length: length of the range to invalidate
2444 *
2445 * Reap page buffers containing data after in the specified range in page.
2446 * Can return -EBUSY if buffers are part of the committing transaction and
2447 * the page is straddling i_size. Caller then has to wait for current commit
2448 * and try again.
2449 */
jbd2_journal_invalidate_folio(journal_t * journal,struct folio * folio,size_t offset,size_t length)2450 int jbd2_journal_invalidate_folio(journal_t *journal, struct folio *folio,
2451 size_t offset, size_t length)
2452 {
2453 struct buffer_head *head, *bh, *next;
2454 unsigned int stop = offset + length;
2455 unsigned int curr_off = 0;
2456 int partial_page = (offset || length < folio_size(folio));
2457 int may_free = 1;
2458 int ret = 0;
2459
2460 if (!folio_test_locked(folio))
2461 BUG();
2462 head = folio_buffers(folio);
2463 if (!head)
2464 return 0;
2465
2466 BUG_ON(stop > folio_size(folio) || stop < length);
2467
2468 /* We will potentially be playing with lists other than just the
2469 * data lists (especially for journaled data mode), so be
2470 * cautious in our locking. */
2471
2472 bh = head;
2473 do {
2474 unsigned int next_off = curr_off + bh->b_size;
2475 next = bh->b_this_page;
2476
2477 if (next_off > stop)
2478 return 0;
2479
2480 if (offset <= curr_off) {
2481 /* This block is wholly outside the truncation point */
2482 lock_buffer(bh);
2483 ret = journal_unmap_buffer(journal, bh, partial_page);
2484 unlock_buffer(bh);
2485 if (ret < 0)
2486 return ret;
2487 may_free &= ret;
2488 }
2489 curr_off = next_off;
2490 bh = next;
2491
2492 } while (bh != head);
2493
2494 if (!partial_page) {
2495 if (may_free && try_to_free_buffers(folio))
2496 J_ASSERT(!folio_buffers(folio));
2497 }
2498 return 0;
2499 }
2500
2501 /*
2502 * File a buffer on the given transaction list.
2503 */
__jbd2_journal_file_buffer(struct journal_head * jh,transaction_t * transaction,int jlist)2504 void __jbd2_journal_file_buffer(struct journal_head *jh,
2505 transaction_t *transaction, int jlist)
2506 {
2507 struct journal_head **list = NULL;
2508 int was_dirty = 0;
2509 struct buffer_head *bh = jh2bh(jh);
2510
2511 lockdep_assert_held(&jh->b_state_lock);
2512 assert_spin_locked(&transaction->t_journal->j_list_lock);
2513
2514 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2515 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2516 jh->b_transaction == NULL);
2517
2518 if (jh->b_transaction && jh->b_jlist == jlist)
2519 return;
2520
2521 if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2522 jlist == BJ_Shadow || jlist == BJ_Forget) {
2523 /*
2524 * For metadata buffers, we track dirty bit in buffer_jbddirty
2525 * instead of buffer_dirty. We should not see a dirty bit set
2526 * here because we clear it in do_get_write_access but e.g.
2527 * tune2fs can modify the sb and set the dirty bit at any time
2528 * so we try to gracefully handle that.
2529 */
2530 if (buffer_dirty(bh))
2531 warn_dirty_buffer(bh);
2532 if (test_clear_buffer_dirty(bh) ||
2533 test_clear_buffer_jbddirty(bh))
2534 was_dirty = 1;
2535 }
2536
2537 if (jh->b_transaction)
2538 __jbd2_journal_temp_unlink_buffer(jh);
2539 else
2540 jbd2_journal_grab_journal_head(bh);
2541 jh->b_transaction = transaction;
2542
2543 switch (jlist) {
2544 case BJ_None:
2545 J_ASSERT_JH(jh, !jh->b_committed_data);
2546 J_ASSERT_JH(jh, !jh->b_frozen_data);
2547 return;
2548 case BJ_Metadata:
2549 transaction->t_nr_buffers++;
2550 list = &transaction->t_buffers;
2551 break;
2552 case BJ_Forget:
2553 list = &transaction->t_forget;
2554 break;
2555 case BJ_Shadow:
2556 list = &transaction->t_shadow_list;
2557 break;
2558 case BJ_Reserved:
2559 list = &transaction->t_reserved_list;
2560 break;
2561 }
2562
2563 __blist_add_buffer(list, jh);
2564 jh->b_jlist = jlist;
2565
2566 if (was_dirty)
2567 set_buffer_jbddirty(bh);
2568 }
2569
jbd2_journal_file_buffer(struct journal_head * jh,transaction_t * transaction,int jlist)2570 void jbd2_journal_file_buffer(struct journal_head *jh,
2571 transaction_t *transaction, int jlist)
2572 {
2573 spin_lock(&jh->b_state_lock);
2574 spin_lock(&transaction->t_journal->j_list_lock);
2575 __jbd2_journal_file_buffer(jh, transaction, jlist);
2576 spin_unlock(&transaction->t_journal->j_list_lock);
2577 spin_unlock(&jh->b_state_lock);
2578 }
2579
2580 /*
2581 * Remove a buffer from its current buffer list in preparation for
2582 * dropping it from its current transaction entirely. If the buffer has
2583 * already started to be used by a subsequent transaction, refile the
2584 * buffer on that transaction's metadata list.
2585 *
2586 * Called under j_list_lock
2587 * Called under jh->b_state_lock
2588 *
2589 * When this function returns true, there's no next transaction to refile to
2590 * and the caller has to drop jh reference through
2591 * jbd2_journal_put_journal_head().
2592 */
__jbd2_journal_refile_buffer(struct journal_head * jh)2593 bool __jbd2_journal_refile_buffer(struct journal_head *jh)
2594 {
2595 int was_dirty, jlist;
2596 struct buffer_head *bh = jh2bh(jh);
2597
2598 lockdep_assert_held(&jh->b_state_lock);
2599 if (jh->b_transaction)
2600 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2601
2602 /* If the buffer is now unused, just drop it. */
2603 if (jh->b_next_transaction == NULL) {
2604 __jbd2_journal_unfile_buffer(jh);
2605 return true;
2606 }
2607
2608 /*
2609 * It has been modified by a later transaction: add it to the new
2610 * transaction's metadata list.
2611 */
2612
2613 was_dirty = test_clear_buffer_jbddirty(bh);
2614 __jbd2_journal_temp_unlink_buffer(jh);
2615
2616 /*
2617 * b_transaction must be set, otherwise the new b_transaction won't
2618 * be holding jh reference
2619 */
2620 J_ASSERT_JH(jh, jh->b_transaction != NULL);
2621
2622 /*
2623 * We set b_transaction here because b_next_transaction will inherit
2624 * our jh reference and thus __jbd2_journal_file_buffer() must not
2625 * take a new one.
2626 */
2627 WRITE_ONCE(jh->b_transaction, jh->b_next_transaction);
2628 WRITE_ONCE(jh->b_next_transaction, NULL);
2629 if (buffer_freed(bh))
2630 jlist = BJ_Forget;
2631 else if (jh->b_modified)
2632 jlist = BJ_Metadata;
2633 else
2634 jlist = BJ_Reserved;
2635 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2636 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2637
2638 if (was_dirty)
2639 set_buffer_jbddirty(bh);
2640 return false;
2641 }
2642
2643 /*
2644 * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2645 * bh reference so that we can safely unlock bh.
2646 *
2647 * The jh and bh may be freed by this call.
2648 */
jbd2_journal_refile_buffer(journal_t * journal,struct journal_head * jh)2649 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2650 {
2651 bool drop;
2652
2653 spin_lock(&jh->b_state_lock);
2654 spin_lock(&journal->j_list_lock);
2655 drop = __jbd2_journal_refile_buffer(jh);
2656 spin_unlock(&jh->b_state_lock);
2657 spin_unlock(&journal->j_list_lock);
2658 if (drop)
2659 jbd2_journal_put_journal_head(jh);
2660 }
2661
2662 /*
2663 * File inode in the inode list of the handle's transaction
2664 */
jbd2_journal_file_inode(handle_t * handle,struct jbd2_inode * jinode,unsigned long flags,loff_t start_byte,loff_t end_byte)2665 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2666 unsigned long flags, loff_t start_byte, loff_t end_byte)
2667 {
2668 transaction_t *transaction = handle->h_transaction;
2669 journal_t *journal;
2670
2671 if (is_handle_aborted(handle))
2672 return -EROFS;
2673 journal = transaction->t_journal;
2674
2675 jbd2_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2676 transaction->t_tid);
2677
2678 spin_lock(&journal->j_list_lock);
2679 jinode->i_flags |= flags;
2680
2681 if (jinode->i_dirty_end) {
2682 jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte);
2683 jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte);
2684 } else {
2685 jinode->i_dirty_start = start_byte;
2686 jinode->i_dirty_end = end_byte;
2687 }
2688
2689 /* Is inode already attached where we need it? */
2690 if (jinode->i_transaction == transaction ||
2691 jinode->i_next_transaction == transaction)
2692 goto done;
2693
2694 /*
2695 * We only ever set this variable to 1 so the test is safe. Since
2696 * t_need_data_flush is likely to be set, we do the test to save some
2697 * cacheline bouncing
2698 */
2699 if (!transaction->t_need_data_flush)
2700 transaction->t_need_data_flush = 1;
2701 /* On some different transaction's list - should be
2702 * the committing one */
2703 if (jinode->i_transaction) {
2704 J_ASSERT(jinode->i_next_transaction == NULL);
2705 J_ASSERT(jinode->i_transaction ==
2706 journal->j_committing_transaction);
2707 jinode->i_next_transaction = transaction;
2708 goto done;
2709 }
2710 /* Not on any transaction list... */
2711 J_ASSERT(!jinode->i_next_transaction);
2712 jinode->i_transaction = transaction;
2713 list_add(&jinode->i_list, &transaction->t_inode_list);
2714 done:
2715 spin_unlock(&journal->j_list_lock);
2716
2717 return 0;
2718 }
2719
jbd2_journal_inode_ranged_write(handle_t * handle,struct jbd2_inode * jinode,loff_t start_byte,loff_t length)2720 int jbd2_journal_inode_ranged_write(handle_t *handle,
2721 struct jbd2_inode *jinode, loff_t start_byte, loff_t length)
2722 {
2723 return jbd2_journal_file_inode(handle, jinode,
2724 JI_WRITE_DATA | JI_WAIT_DATA, start_byte,
2725 start_byte + length - 1);
2726 }
2727
jbd2_journal_inode_ranged_wait(handle_t * handle,struct jbd2_inode * jinode,loff_t start_byte,loff_t length)2728 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode,
2729 loff_t start_byte, loff_t length)
2730 {
2731 return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA,
2732 start_byte, start_byte + length - 1);
2733 }
2734
2735 /*
2736 * File truncate and transaction commit interact with each other in a
2737 * non-trivial way. If a transaction writing data block A is
2738 * committing, we cannot discard the data by truncate until we have
2739 * written them. Otherwise if we crashed after the transaction with
2740 * write has committed but before the transaction with truncate has
2741 * committed, we could see stale data in block A. This function is a
2742 * helper to solve this problem. It starts writeout of the truncated
2743 * part in case it is in the committing transaction.
2744 *
2745 * Filesystem code must call this function when inode is journaled in
2746 * ordered mode before truncation happens and after the inode has been
2747 * placed on orphan list with the new inode size. The second condition
2748 * avoids the race that someone writes new data and we start
2749 * committing the transaction after this function has been called but
2750 * before a transaction for truncate is started (and furthermore it
2751 * allows us to optimize the case where the addition to orphan list
2752 * happens in the same transaction as write --- we don't have to write
2753 * any data in such case).
2754 */
jbd2_journal_begin_ordered_truncate(journal_t * journal,struct jbd2_inode * jinode,loff_t new_size)2755 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2756 struct jbd2_inode *jinode,
2757 loff_t new_size)
2758 {
2759 transaction_t *inode_trans, *commit_trans;
2760 int ret = 0;
2761
2762 /* This is a quick check to avoid locking if not necessary */
2763 if (!jinode->i_transaction)
2764 goto out;
2765 /* Locks are here just to force reading of recent values, it is
2766 * enough that the transaction was not committing before we started
2767 * a transaction adding the inode to orphan list */
2768 read_lock(&journal->j_state_lock);
2769 commit_trans = journal->j_committing_transaction;
2770 read_unlock(&journal->j_state_lock);
2771 spin_lock(&journal->j_list_lock);
2772 inode_trans = jinode->i_transaction;
2773 spin_unlock(&journal->j_list_lock);
2774 if (inode_trans == commit_trans) {
2775 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2776 new_size, LLONG_MAX);
2777 if (ret)
2778 jbd2_journal_abort(journal, ret);
2779 }
2780 out:
2781 return ret;
2782 }
2783