1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19 
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32 
33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35 
36 static struct kmem_cache *transaction_cache;
jbd2_journal_init_transaction_cache(void)37 int __init jbd2_journal_init_transaction_cache(void)
38 {
39 	J_ASSERT(!transaction_cache);
40 	transaction_cache = kmem_cache_create("jbd2_transaction_s",
41 					sizeof(transaction_t),
42 					0,
43 					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44 					NULL);
45 	if (transaction_cache)
46 		return 0;
47 	return -ENOMEM;
48 }
49 
jbd2_journal_destroy_transaction_cache(void)50 void jbd2_journal_destroy_transaction_cache(void)
51 {
52 	if (transaction_cache) {
53 		kmem_cache_destroy(transaction_cache);
54 		transaction_cache = NULL;
55 	}
56 }
57 
jbd2_journal_free_transaction(transaction_t * transaction)58 void jbd2_journal_free_transaction(transaction_t *transaction)
59 {
60 	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
61 		return;
62 	kmem_cache_free(transaction_cache, transaction);
63 }
64 
65 /*
66  * jbd2_get_transaction: obtain a new transaction_t object.
67  *
68  * Simply allocate and initialise a new transaction.  Create it in
69  * RUNNING state and add it to the current journal (which should not
70  * have an existing running transaction: we only make a new transaction
71  * once we have started to commit the old one).
72  *
73  * Preconditions:
74  *	The journal MUST be locked.  We don't perform atomic mallocs on the
75  *	new transaction	and we can't block without protecting against other
76  *	processes trying to touch the journal while it is in transition.
77  *
78  */
79 
80 static transaction_t *
jbd2_get_transaction(journal_t * journal,transaction_t * transaction)81 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
82 {
83 	transaction->t_journal = journal;
84 	transaction->t_state = T_RUNNING;
85 	transaction->t_start_time = ktime_get();
86 	transaction->t_tid = journal->j_transaction_sequence++;
87 	transaction->t_expires = jiffies + journal->j_commit_interval;
88 	spin_lock_init(&transaction->t_handle_lock);
89 	atomic_set(&transaction->t_updates, 0);
90 	atomic_set(&transaction->t_outstanding_credits, 0);
91 	atomic_set(&transaction->t_handle_count, 0);
92 	INIT_LIST_HEAD(&transaction->t_inode_list);
93 	INIT_LIST_HEAD(&transaction->t_private_list);
94 
95 	/* Set up the commit timer for the new transaction. */
96 	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
97 	add_timer(&journal->j_commit_timer);
98 
99 	J_ASSERT(journal->j_running_transaction == NULL);
100 	journal->j_running_transaction = transaction;
101 	transaction->t_max_wait = 0;
102 	transaction->t_start = jiffies;
103 
104 	return transaction;
105 }
106 
107 /*
108  * Handle management.
109  *
110  * A handle_t is an object which represents a single atomic update to a
111  * filesystem, and which tracks all of the modifications which form part
112  * of that one update.
113  */
114 
115 /*
116  * Update transaction's maximum wait time, if debugging is enabled.
117  *
118  * In order for t_max_wait to be reliable, it must be protected by a
119  * lock.  But doing so will mean that start_this_handle() can not be
120  * run in parallel on SMP systems, which limits our scalability.  So
121  * unless debugging is enabled, we no longer update t_max_wait, which
122  * means that maximum wait time reported by the jbd2_run_stats
123  * tracepoint will always be zero.
124  */
update_t_max_wait(transaction_t * transaction,unsigned long ts)125 static inline void update_t_max_wait(transaction_t *transaction,
126 				     unsigned long ts)
127 {
128 #ifdef CONFIG_JBD2_DEBUG
129 	if (jbd2_journal_enable_debug &&
130 	    time_after(transaction->t_start, ts)) {
131 		ts = jbd2_time_diff(ts, transaction->t_start);
132 		spin_lock(&transaction->t_handle_lock);
133 		if (ts > transaction->t_max_wait)
134 			transaction->t_max_wait = ts;
135 		spin_unlock(&transaction->t_handle_lock);
136 	}
137 #endif
138 }
139 
140 /*
141  * start_this_handle: Given a handle, deal with any locking or stalling
142  * needed to make sure that there is enough journal space for the handle
143  * to begin.  Attach the handle to a transaction and set up the
144  * transaction's buffer credits.
145  */
146 
start_this_handle(journal_t * journal,handle_t * handle,gfp_t gfp_mask)147 static int start_this_handle(journal_t *journal, handle_t *handle,
148 			     gfp_t gfp_mask)
149 {
150 	transaction_t	*transaction, *new_transaction = NULL;
151 	tid_t		tid;
152 	int		needed, need_to_start;
153 	int		nblocks = handle->h_buffer_credits;
154 	unsigned long ts = jiffies;
155 
156 	if (nblocks > journal->j_max_transaction_buffers) {
157 		printk(KERN_ERR "JBD2: %s wants too many credits (%d > %d)\n",
158 		       current->comm, nblocks,
159 		       journal->j_max_transaction_buffers);
160 		return -ENOSPC;
161 	}
162 
163 alloc_transaction:
164 	if (!journal->j_running_transaction) {
165 		new_transaction = kmem_cache_alloc(transaction_cache,
166 						   gfp_mask | __GFP_ZERO);
167 		if (!new_transaction) {
168 			/*
169 			 * If __GFP_FS is not present, then we may be
170 			 * being called from inside the fs writeback
171 			 * layer, so we MUST NOT fail.  Since
172 			 * __GFP_NOFAIL is going away, we will arrange
173 			 * to retry the allocation ourselves.
174 			 */
175 			if ((gfp_mask & __GFP_FS) == 0) {
176 				congestion_wait(BLK_RW_ASYNC, HZ/50);
177 				goto alloc_transaction;
178 			}
179 			return -ENOMEM;
180 		}
181 	}
182 
183 	jbd_debug(3, "New handle %p going live.\n", handle);
184 
185 	/*
186 	 * We need to hold j_state_lock until t_updates has been incremented,
187 	 * for proper journal barrier handling
188 	 */
189 repeat:
190 	read_lock(&journal->j_state_lock);
191 	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
192 	if (is_journal_aborted(journal) ||
193 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
194 		read_unlock(&journal->j_state_lock);
195 		jbd2_journal_free_transaction(new_transaction);
196 		return -EROFS;
197 	}
198 
199 	/* Wait on the journal's transaction barrier if necessary */
200 	if (journal->j_barrier_count) {
201 		read_unlock(&journal->j_state_lock);
202 		wait_event(journal->j_wait_transaction_locked,
203 				journal->j_barrier_count == 0);
204 		goto repeat;
205 	}
206 
207 	if (!journal->j_running_transaction) {
208 		read_unlock(&journal->j_state_lock);
209 		if (!new_transaction)
210 			goto alloc_transaction;
211 		write_lock(&journal->j_state_lock);
212 		if (!journal->j_running_transaction &&
213 		    !journal->j_barrier_count) {
214 			jbd2_get_transaction(journal, new_transaction);
215 			new_transaction = NULL;
216 		}
217 		write_unlock(&journal->j_state_lock);
218 		goto repeat;
219 	}
220 
221 	transaction = journal->j_running_transaction;
222 
223 	/*
224 	 * If the current transaction is locked down for commit, wait for the
225 	 * lock to be released.
226 	 */
227 	if (transaction->t_state == T_LOCKED) {
228 		DEFINE_WAIT(wait);
229 
230 		prepare_to_wait(&journal->j_wait_transaction_locked,
231 					&wait, TASK_UNINTERRUPTIBLE);
232 		read_unlock(&journal->j_state_lock);
233 		schedule();
234 		finish_wait(&journal->j_wait_transaction_locked, &wait);
235 		goto repeat;
236 	}
237 
238 	/*
239 	 * If there is not enough space left in the log to write all potential
240 	 * buffers requested by this operation, we need to stall pending a log
241 	 * checkpoint to free some more log space.
242 	 */
243 	needed = atomic_add_return(nblocks,
244 				   &transaction->t_outstanding_credits);
245 
246 	if (needed > journal->j_max_transaction_buffers) {
247 		/*
248 		 * If the current transaction is already too large, then start
249 		 * to commit it: we can then go back and attach this handle to
250 		 * a new transaction.
251 		 */
252 		DEFINE_WAIT(wait);
253 
254 		jbd_debug(2, "Handle %p starting new commit...\n", handle);
255 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
256 		prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
257 				TASK_UNINTERRUPTIBLE);
258 		tid = transaction->t_tid;
259 		need_to_start = !tid_geq(journal->j_commit_request, tid);
260 		read_unlock(&journal->j_state_lock);
261 		if (need_to_start)
262 			jbd2_log_start_commit(journal, tid);
263 		schedule();
264 		finish_wait(&journal->j_wait_transaction_locked, &wait);
265 		goto repeat;
266 	}
267 
268 	/*
269 	 * The commit code assumes that it can get enough log space
270 	 * without forcing a checkpoint.  This is *critical* for
271 	 * correctness: a checkpoint of a buffer which is also
272 	 * associated with a committing transaction creates a deadlock,
273 	 * so commit simply cannot force through checkpoints.
274 	 *
275 	 * We must therefore ensure the necessary space in the journal
276 	 * *before* starting to dirty potentially checkpointed buffers
277 	 * in the new transaction.
278 	 *
279 	 * The worst part is, any transaction currently committing can
280 	 * reduce the free space arbitrarily.  Be careful to account for
281 	 * those buffers when checkpointing.
282 	 */
283 
284 	/*
285 	 * @@@ AKPM: This seems rather over-defensive.  We're giving commit
286 	 * a _lot_ of headroom: 1/4 of the journal plus the size of
287 	 * the committing transaction.  Really, we only need to give it
288 	 * committing_transaction->t_outstanding_credits plus "enough" for
289 	 * the log control blocks.
290 	 * Also, this test is inconsistent with the matching one in
291 	 * jbd2_journal_extend().
292 	 */
293 	if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) {
294 		jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
295 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
296 		read_unlock(&journal->j_state_lock);
297 		write_lock(&journal->j_state_lock);
298 		if (__jbd2_log_space_left(journal) < jbd_space_needed(journal))
299 			__jbd2_log_wait_for_space(journal);
300 		write_unlock(&journal->j_state_lock);
301 		goto repeat;
302 	}
303 
304 	/* OK, account for the buffers that this operation expects to
305 	 * use and add the handle to the running transaction.
306 	 */
307 	update_t_max_wait(transaction, ts);
308 	handle->h_transaction = transaction;
309 	atomic_inc(&transaction->t_updates);
310 	atomic_inc(&transaction->t_handle_count);
311 	jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
312 		  handle, nblocks,
313 		  atomic_read(&transaction->t_outstanding_credits),
314 		  __jbd2_log_space_left(journal));
315 	read_unlock(&journal->j_state_lock);
316 
317 	lock_map_acquire(&handle->h_lockdep_map);
318 	jbd2_journal_free_transaction(new_transaction);
319 	return 0;
320 }
321 
322 static struct lock_class_key jbd2_handle_key;
323 
324 /* Allocate a new handle.  This should probably be in a slab... */
new_handle(int nblocks)325 static handle_t *new_handle(int nblocks)
326 {
327 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
328 	if (!handle)
329 		return NULL;
330 	memset(handle, 0, sizeof(*handle));
331 	handle->h_buffer_credits = nblocks;
332 	handle->h_ref = 1;
333 
334 	lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
335 						&jbd2_handle_key, 0);
336 
337 	return handle;
338 }
339 
340 /**
341  * handle_t *jbd2_journal_start() - Obtain a new handle.
342  * @journal: Journal to start transaction on.
343  * @nblocks: number of block buffer we might modify
344  *
345  * We make sure that the transaction can guarantee at least nblocks of
346  * modified buffers in the log.  We block until the log can guarantee
347  * that much space.
348  *
349  * This function is visible to journal users (like ext3fs), so is not
350  * called with the journal already locked.
351  *
352  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
353  * on failure.
354  */
jbd2__journal_start(journal_t * journal,int nblocks,gfp_t gfp_mask)355 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, gfp_t gfp_mask)
356 {
357 	handle_t *handle = journal_current_handle();
358 	int err;
359 
360 	if (!journal)
361 		return ERR_PTR(-EROFS);
362 
363 	if (handle) {
364 		J_ASSERT(handle->h_transaction->t_journal == journal);
365 		handle->h_ref++;
366 		return handle;
367 	}
368 
369 	handle = new_handle(nblocks);
370 	if (!handle)
371 		return ERR_PTR(-ENOMEM);
372 
373 	current->journal_info = handle;
374 
375 	err = start_this_handle(journal, handle, gfp_mask);
376 	if (err < 0) {
377 		jbd2_free_handle(handle);
378 		current->journal_info = NULL;
379 		handle = ERR_PTR(err);
380 	}
381 	return handle;
382 }
383 EXPORT_SYMBOL(jbd2__journal_start);
384 
385 
jbd2_journal_start(journal_t * journal,int nblocks)386 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
387 {
388 	return jbd2__journal_start(journal, nblocks, GFP_NOFS);
389 }
390 EXPORT_SYMBOL(jbd2_journal_start);
391 
392 
393 /**
394  * int jbd2_journal_extend() - extend buffer credits.
395  * @handle:  handle to 'extend'
396  * @nblocks: nr blocks to try to extend by.
397  *
398  * Some transactions, such as large extends and truncates, can be done
399  * atomically all at once or in several stages.  The operation requests
400  * a credit for a number of buffer modications in advance, but can
401  * extend its credit if it needs more.
402  *
403  * jbd2_journal_extend tries to give the running handle more buffer credits.
404  * It does not guarantee that allocation - this is a best-effort only.
405  * The calling process MUST be able to deal cleanly with a failure to
406  * extend here.
407  *
408  * Return 0 on success, non-zero on failure.
409  *
410  * return code < 0 implies an error
411  * return code > 0 implies normal transaction-full status.
412  */
jbd2_journal_extend(handle_t * handle,int nblocks)413 int jbd2_journal_extend(handle_t *handle, int nblocks)
414 {
415 	transaction_t *transaction = handle->h_transaction;
416 	journal_t *journal = transaction->t_journal;
417 	int result;
418 	int wanted;
419 
420 	result = -EIO;
421 	if (is_handle_aborted(handle))
422 		goto out;
423 
424 	result = 1;
425 
426 	read_lock(&journal->j_state_lock);
427 
428 	/* Don't extend a locked-down transaction! */
429 	if (handle->h_transaction->t_state != T_RUNNING) {
430 		jbd_debug(3, "denied handle %p %d blocks: "
431 			  "transaction not running\n", handle, nblocks);
432 		goto error_out;
433 	}
434 
435 	spin_lock(&transaction->t_handle_lock);
436 	wanted = atomic_read(&transaction->t_outstanding_credits) + nblocks;
437 
438 	if (wanted > journal->j_max_transaction_buffers) {
439 		jbd_debug(3, "denied handle %p %d blocks: "
440 			  "transaction too large\n", handle, nblocks);
441 		goto unlock;
442 	}
443 
444 	if (wanted > __jbd2_log_space_left(journal)) {
445 		jbd_debug(3, "denied handle %p %d blocks: "
446 			  "insufficient log space\n", handle, nblocks);
447 		goto unlock;
448 	}
449 
450 	handle->h_buffer_credits += nblocks;
451 	atomic_add(nblocks, &transaction->t_outstanding_credits);
452 	result = 0;
453 
454 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
455 unlock:
456 	spin_unlock(&transaction->t_handle_lock);
457 error_out:
458 	read_unlock(&journal->j_state_lock);
459 out:
460 	return result;
461 }
462 
463 
464 /**
465  * int jbd2_journal_restart() - restart a handle .
466  * @handle:  handle to restart
467  * @nblocks: nr credits requested
468  *
469  * Restart a handle for a multi-transaction filesystem
470  * operation.
471  *
472  * If the jbd2_journal_extend() call above fails to grant new buffer credits
473  * to a running handle, a call to jbd2_journal_restart will commit the
474  * handle's transaction so far and reattach the handle to a new
475  * transaction capabable of guaranteeing the requested number of
476  * credits.
477  */
jbd2__journal_restart(handle_t * handle,int nblocks,gfp_t gfp_mask)478 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
479 {
480 	transaction_t *transaction = handle->h_transaction;
481 	journal_t *journal = transaction->t_journal;
482 	tid_t		tid;
483 	int		need_to_start, ret;
484 
485 	/* If we've had an abort of any type, don't even think about
486 	 * actually doing the restart! */
487 	if (is_handle_aborted(handle))
488 		return 0;
489 
490 	/*
491 	 * First unlink the handle from its current transaction, and start the
492 	 * commit on that.
493 	 */
494 	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
495 	J_ASSERT(journal_current_handle() == handle);
496 
497 	read_lock(&journal->j_state_lock);
498 	spin_lock(&transaction->t_handle_lock);
499 	atomic_sub(handle->h_buffer_credits,
500 		   &transaction->t_outstanding_credits);
501 	if (atomic_dec_and_test(&transaction->t_updates))
502 		wake_up(&journal->j_wait_updates);
503 	tid = transaction->t_tid;
504 	spin_unlock(&transaction->t_handle_lock);
505 
506 	jbd_debug(2, "restarting handle %p\n", handle);
507 	need_to_start = !tid_geq(journal->j_commit_request, tid);
508 	read_unlock(&journal->j_state_lock);
509 	if (need_to_start)
510 		jbd2_log_start_commit(journal, tid);
511 
512 	lock_map_release(&handle->h_lockdep_map);
513 	handle->h_buffer_credits = nblocks;
514 	ret = start_this_handle(journal, handle, gfp_mask);
515 	return ret;
516 }
517 EXPORT_SYMBOL(jbd2__journal_restart);
518 
519 
jbd2_journal_restart(handle_t * handle,int nblocks)520 int jbd2_journal_restart(handle_t *handle, int nblocks)
521 {
522 	return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
523 }
524 EXPORT_SYMBOL(jbd2_journal_restart);
525 
526 /**
527  * void jbd2_journal_lock_updates () - establish a transaction barrier.
528  * @journal:  Journal to establish a barrier on.
529  *
530  * This locks out any further updates from being started, and blocks
531  * until all existing updates have completed, returning only once the
532  * journal is in a quiescent state with no updates running.
533  *
534  * The journal lock should not be held on entry.
535  */
jbd2_journal_lock_updates(journal_t * journal)536 void jbd2_journal_lock_updates(journal_t *journal)
537 {
538 	DEFINE_WAIT(wait);
539 
540 	write_lock(&journal->j_state_lock);
541 	++journal->j_barrier_count;
542 
543 	/* Wait until there are no running updates */
544 	while (1) {
545 		transaction_t *transaction = journal->j_running_transaction;
546 
547 		if (!transaction)
548 			break;
549 
550 		spin_lock(&transaction->t_handle_lock);
551 		prepare_to_wait(&journal->j_wait_updates, &wait,
552 				TASK_UNINTERRUPTIBLE);
553 		if (!atomic_read(&transaction->t_updates)) {
554 			spin_unlock(&transaction->t_handle_lock);
555 			finish_wait(&journal->j_wait_updates, &wait);
556 			break;
557 		}
558 		spin_unlock(&transaction->t_handle_lock);
559 		write_unlock(&journal->j_state_lock);
560 		schedule();
561 		finish_wait(&journal->j_wait_updates, &wait);
562 		write_lock(&journal->j_state_lock);
563 	}
564 	write_unlock(&journal->j_state_lock);
565 
566 	/*
567 	 * We have now established a barrier against other normal updates, but
568 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
569 	 * to make sure that we serialise special journal-locked operations
570 	 * too.
571 	 */
572 	mutex_lock(&journal->j_barrier);
573 }
574 
575 /**
576  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
577  * @journal:  Journal to release the barrier on.
578  *
579  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
580  *
581  * Should be called without the journal lock held.
582  */
jbd2_journal_unlock_updates(journal_t * journal)583 void jbd2_journal_unlock_updates (journal_t *journal)
584 {
585 	J_ASSERT(journal->j_barrier_count != 0);
586 
587 	mutex_unlock(&journal->j_barrier);
588 	write_lock(&journal->j_state_lock);
589 	--journal->j_barrier_count;
590 	write_unlock(&journal->j_state_lock);
591 	wake_up(&journal->j_wait_transaction_locked);
592 }
593 
warn_dirty_buffer(struct buffer_head * bh)594 static void warn_dirty_buffer(struct buffer_head *bh)
595 {
596 	char b[BDEVNAME_SIZE];
597 
598 	printk(KERN_WARNING
599 	       "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
600 	       "There's a risk of filesystem corruption in case of system "
601 	       "crash.\n",
602 	       bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
603 }
604 
605 /*
606  * If the buffer is already part of the current transaction, then there
607  * is nothing we need to do.  If it is already part of a prior
608  * transaction which we are still committing to disk, then we need to
609  * make sure that we do not overwrite the old copy: we do copy-out to
610  * preserve the copy going to disk.  We also account the buffer against
611  * the handle's metadata buffer credits (unless the buffer is already
612  * part of the transaction, that is).
613  *
614  */
615 static int
do_get_write_access(handle_t * handle,struct journal_head * jh,int force_copy)616 do_get_write_access(handle_t *handle, struct journal_head *jh,
617 			int force_copy)
618 {
619 	struct buffer_head *bh;
620 	transaction_t *transaction;
621 	journal_t *journal;
622 	int error;
623 	char *frozen_buffer = NULL;
624 	int need_copy = 0;
625 
626 	if (is_handle_aborted(handle))
627 		return -EROFS;
628 
629 	transaction = handle->h_transaction;
630 	journal = transaction->t_journal;
631 
632 	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
633 
634 	JBUFFER_TRACE(jh, "entry");
635 repeat:
636 	bh = jh2bh(jh);
637 
638 	/* @@@ Need to check for errors here at some point. */
639 
640 	lock_buffer(bh);
641 	jbd_lock_bh_state(bh);
642 
643 	/* We now hold the buffer lock so it is safe to query the buffer
644 	 * state.  Is the buffer dirty?
645 	 *
646 	 * If so, there are two possibilities.  The buffer may be
647 	 * non-journaled, and undergoing a quite legitimate writeback.
648 	 * Otherwise, it is journaled, and we don't expect dirty buffers
649 	 * in that state (the buffers should be marked JBD_Dirty
650 	 * instead.)  So either the IO is being done under our own
651 	 * control and this is a bug, or it's a third party IO such as
652 	 * dump(8) (which may leave the buffer scheduled for read ---
653 	 * ie. locked but not dirty) or tune2fs (which may actually have
654 	 * the buffer dirtied, ugh.)  */
655 
656 	if (buffer_dirty(bh)) {
657 		/*
658 		 * First question: is this buffer already part of the current
659 		 * transaction or the existing committing transaction?
660 		 */
661 		if (jh->b_transaction) {
662 			J_ASSERT_JH(jh,
663 				jh->b_transaction == transaction ||
664 				jh->b_transaction ==
665 					journal->j_committing_transaction);
666 			if (jh->b_next_transaction)
667 				J_ASSERT_JH(jh, jh->b_next_transaction ==
668 							transaction);
669 			warn_dirty_buffer(bh);
670 		}
671 		/*
672 		 * In any case we need to clean the dirty flag and we must
673 		 * do it under the buffer lock to be sure we don't race
674 		 * with running write-out.
675 		 */
676 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
677 		clear_buffer_dirty(bh);
678 		set_buffer_jbddirty(bh);
679 	}
680 
681 	unlock_buffer(bh);
682 
683 	error = -EROFS;
684 	if (is_handle_aborted(handle)) {
685 		jbd_unlock_bh_state(bh);
686 		goto out;
687 	}
688 	error = 0;
689 
690 	/*
691 	 * The buffer is already part of this transaction if b_transaction or
692 	 * b_next_transaction points to it
693 	 */
694 	if (jh->b_transaction == transaction ||
695 	    jh->b_next_transaction == transaction)
696 		goto done;
697 
698 	/*
699 	 * this is the first time this transaction is touching this buffer,
700 	 * reset the modified flag
701 	 */
702        jh->b_modified = 0;
703 
704 	/*
705 	 * If there is already a copy-out version of this buffer, then we don't
706 	 * need to make another one
707 	 */
708 	if (jh->b_frozen_data) {
709 		JBUFFER_TRACE(jh, "has frozen data");
710 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
711 		jh->b_next_transaction = transaction;
712 		goto done;
713 	}
714 
715 	/* Is there data here we need to preserve? */
716 
717 	if (jh->b_transaction && jh->b_transaction != transaction) {
718 		JBUFFER_TRACE(jh, "owned by older transaction");
719 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
720 		J_ASSERT_JH(jh, jh->b_transaction ==
721 					journal->j_committing_transaction);
722 
723 		/* There is one case we have to be very careful about.
724 		 * If the committing transaction is currently writing
725 		 * this buffer out to disk and has NOT made a copy-out,
726 		 * then we cannot modify the buffer contents at all
727 		 * right now.  The essence of copy-out is that it is the
728 		 * extra copy, not the primary copy, which gets
729 		 * journaled.  If the primary copy is already going to
730 		 * disk then we cannot do copy-out here. */
731 
732 		if (jh->b_jlist == BJ_Shadow) {
733 			DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
734 			wait_queue_head_t *wqh;
735 
736 			wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
737 
738 			JBUFFER_TRACE(jh, "on shadow: sleep");
739 			jbd_unlock_bh_state(bh);
740 			/* commit wakes up all shadow buffers after IO */
741 			for ( ; ; ) {
742 				prepare_to_wait(wqh, &wait.wait,
743 						TASK_UNINTERRUPTIBLE);
744 				if (jh->b_jlist != BJ_Shadow)
745 					break;
746 				schedule();
747 			}
748 			finish_wait(wqh, &wait.wait);
749 			goto repeat;
750 		}
751 
752 		/* Only do the copy if the currently-owning transaction
753 		 * still needs it.  If it is on the Forget list, the
754 		 * committing transaction is past that stage.  The
755 		 * buffer had better remain locked during the kmalloc,
756 		 * but that should be true --- we hold the journal lock
757 		 * still and the buffer is already on the BUF_JOURNAL
758 		 * list so won't be flushed.
759 		 *
760 		 * Subtle point, though: if this is a get_undo_access,
761 		 * then we will be relying on the frozen_data to contain
762 		 * the new value of the committed_data record after the
763 		 * transaction, so we HAVE to force the frozen_data copy
764 		 * in that case. */
765 
766 		if (jh->b_jlist != BJ_Forget || force_copy) {
767 			JBUFFER_TRACE(jh, "generate frozen data");
768 			if (!frozen_buffer) {
769 				JBUFFER_TRACE(jh, "allocate memory for buffer");
770 				jbd_unlock_bh_state(bh);
771 				frozen_buffer =
772 					jbd2_alloc(jh2bh(jh)->b_size,
773 							 GFP_NOFS);
774 				if (!frozen_buffer) {
775 					printk(KERN_EMERG
776 					       "%s: OOM for frozen_buffer\n",
777 					       __func__);
778 					JBUFFER_TRACE(jh, "oom!");
779 					error = -ENOMEM;
780 					jbd_lock_bh_state(bh);
781 					goto done;
782 				}
783 				goto repeat;
784 			}
785 			jh->b_frozen_data = frozen_buffer;
786 			frozen_buffer = NULL;
787 			need_copy = 1;
788 		}
789 		jh->b_next_transaction = transaction;
790 	}
791 
792 
793 	/*
794 	 * Finally, if the buffer is not journaled right now, we need to make
795 	 * sure it doesn't get written to disk before the caller actually
796 	 * commits the new data
797 	 */
798 	if (!jh->b_transaction) {
799 		JBUFFER_TRACE(jh, "no transaction");
800 		J_ASSERT_JH(jh, !jh->b_next_transaction);
801 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
802 		spin_lock(&journal->j_list_lock);
803 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
804 		spin_unlock(&journal->j_list_lock);
805 	}
806 
807 done:
808 	if (need_copy) {
809 		struct page *page;
810 		int offset;
811 		char *source;
812 
813 		J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
814 			    "Possible IO failure.\n");
815 		page = jh2bh(jh)->b_page;
816 		offset = offset_in_page(jh2bh(jh)->b_data);
817 		source = kmap_atomic(page);
818 		/* Fire data frozen trigger just before we copy the data */
819 		jbd2_buffer_frozen_trigger(jh, source + offset,
820 					   jh->b_triggers);
821 		memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
822 		kunmap_atomic(source);
823 
824 		/*
825 		 * Now that the frozen data is saved off, we need to store
826 		 * any matching triggers.
827 		 */
828 		jh->b_frozen_triggers = jh->b_triggers;
829 	}
830 	jbd_unlock_bh_state(bh);
831 
832 	/*
833 	 * If we are about to journal a buffer, then any revoke pending on it is
834 	 * no longer valid
835 	 */
836 	jbd2_journal_cancel_revoke(handle, jh);
837 
838 out:
839 	if (unlikely(frozen_buffer))	/* It's usually NULL */
840 		jbd2_free(frozen_buffer, bh->b_size);
841 
842 	JBUFFER_TRACE(jh, "exit");
843 	return error;
844 }
845 
846 /**
847  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
848  * @handle: transaction to add buffer modifications to
849  * @bh:     bh to be used for metadata writes
850  *
851  * Returns an error code or 0 on success.
852  *
853  * In full data journalling mode the buffer may be of type BJ_AsyncData,
854  * because we're write()ing a buffer which is also part of a shared mapping.
855  */
856 
jbd2_journal_get_write_access(handle_t * handle,struct buffer_head * bh)857 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
858 {
859 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
860 	int rc;
861 
862 	/* We do not want to get caught playing with fields which the
863 	 * log thread also manipulates.  Make sure that the buffer
864 	 * completes any outstanding IO before proceeding. */
865 	rc = do_get_write_access(handle, jh, 0);
866 	jbd2_journal_put_journal_head(jh);
867 	return rc;
868 }
869 
870 
871 /*
872  * When the user wants to journal a newly created buffer_head
873  * (ie. getblk() returned a new buffer and we are going to populate it
874  * manually rather than reading off disk), then we need to keep the
875  * buffer_head locked until it has been completely filled with new
876  * data.  In this case, we should be able to make the assertion that
877  * the bh is not already part of an existing transaction.
878  *
879  * The buffer should already be locked by the caller by this point.
880  * There is no lock ranking violation: it was a newly created,
881  * unlocked buffer beforehand. */
882 
883 /**
884  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
885  * @handle: transaction to new buffer to
886  * @bh: new buffer.
887  *
888  * Call this if you create a new bh.
889  */
jbd2_journal_get_create_access(handle_t * handle,struct buffer_head * bh)890 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
891 {
892 	transaction_t *transaction = handle->h_transaction;
893 	journal_t *journal = transaction->t_journal;
894 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
895 	int err;
896 
897 	jbd_debug(5, "journal_head %p\n", jh);
898 	err = -EROFS;
899 	if (is_handle_aborted(handle))
900 		goto out;
901 	err = 0;
902 
903 	JBUFFER_TRACE(jh, "entry");
904 	/*
905 	 * The buffer may already belong to this transaction due to pre-zeroing
906 	 * in the filesystem's new_block code.  It may also be on the previous,
907 	 * committing transaction's lists, but it HAS to be in Forget state in
908 	 * that case: the transaction must have deleted the buffer for it to be
909 	 * reused here.
910 	 */
911 	jbd_lock_bh_state(bh);
912 	spin_lock(&journal->j_list_lock);
913 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
914 		jh->b_transaction == NULL ||
915 		(jh->b_transaction == journal->j_committing_transaction &&
916 			  jh->b_jlist == BJ_Forget)));
917 
918 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
919 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
920 
921 	if (jh->b_transaction == NULL) {
922 		/*
923 		 * Previous jbd2_journal_forget() could have left the buffer
924 		 * with jbddirty bit set because it was being committed. When
925 		 * the commit finished, we've filed the buffer for
926 		 * checkpointing and marked it dirty. Now we are reallocating
927 		 * the buffer so the transaction freeing it must have
928 		 * committed and so it's safe to clear the dirty bit.
929 		 */
930 		clear_buffer_dirty(jh2bh(jh));
931 		/* first access by this transaction */
932 		jh->b_modified = 0;
933 
934 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
935 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
936 	} else if (jh->b_transaction == journal->j_committing_transaction) {
937 		/* first access by this transaction */
938 		jh->b_modified = 0;
939 
940 		JBUFFER_TRACE(jh, "set next transaction");
941 		jh->b_next_transaction = transaction;
942 	}
943 	spin_unlock(&journal->j_list_lock);
944 	jbd_unlock_bh_state(bh);
945 
946 	/*
947 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
948 	 * blocks which contain freed but then revoked metadata.  We need
949 	 * to cancel the revoke in case we end up freeing it yet again
950 	 * and the reallocating as data - this would cause a second revoke,
951 	 * which hits an assertion error.
952 	 */
953 	JBUFFER_TRACE(jh, "cancelling revoke");
954 	jbd2_journal_cancel_revoke(handle, jh);
955 out:
956 	jbd2_journal_put_journal_head(jh);
957 	return err;
958 }
959 
960 /**
961  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
962  *     non-rewindable consequences
963  * @handle: transaction
964  * @bh: buffer to undo
965  *
966  * Sometimes there is a need to distinguish between metadata which has
967  * been committed to disk and that which has not.  The ext3fs code uses
968  * this for freeing and allocating space, we have to make sure that we
969  * do not reuse freed space until the deallocation has been committed,
970  * since if we overwrote that space we would make the delete
971  * un-rewindable in case of a crash.
972  *
973  * To deal with that, jbd2_journal_get_undo_access requests write access to a
974  * buffer for parts of non-rewindable operations such as delete
975  * operations on the bitmaps.  The journaling code must keep a copy of
976  * the buffer's contents prior to the undo_access call until such time
977  * as we know that the buffer has definitely been committed to disk.
978  *
979  * We never need to know which transaction the committed data is part
980  * of, buffers touched here are guaranteed to be dirtied later and so
981  * will be committed to a new transaction in due course, at which point
982  * we can discard the old committed data pointer.
983  *
984  * Returns error number or 0 on success.
985  */
jbd2_journal_get_undo_access(handle_t * handle,struct buffer_head * bh)986 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
987 {
988 	int err;
989 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
990 	char *committed_data = NULL;
991 
992 	JBUFFER_TRACE(jh, "entry");
993 
994 	/*
995 	 * Do this first --- it can drop the journal lock, so we want to
996 	 * make sure that obtaining the committed_data is done
997 	 * atomically wrt. completion of any outstanding commits.
998 	 */
999 	err = do_get_write_access(handle, jh, 1);
1000 	if (err)
1001 		goto out;
1002 
1003 repeat:
1004 	if (!jh->b_committed_data) {
1005 		committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
1006 		if (!committed_data) {
1007 			printk(KERN_EMERG "%s: No memory for committed data\n",
1008 				__func__);
1009 			err = -ENOMEM;
1010 			goto out;
1011 		}
1012 	}
1013 
1014 	jbd_lock_bh_state(bh);
1015 	if (!jh->b_committed_data) {
1016 		/* Copy out the current buffer contents into the
1017 		 * preserved, committed copy. */
1018 		JBUFFER_TRACE(jh, "generate b_committed data");
1019 		if (!committed_data) {
1020 			jbd_unlock_bh_state(bh);
1021 			goto repeat;
1022 		}
1023 
1024 		jh->b_committed_data = committed_data;
1025 		committed_data = NULL;
1026 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1027 	}
1028 	jbd_unlock_bh_state(bh);
1029 out:
1030 	jbd2_journal_put_journal_head(jh);
1031 	if (unlikely(committed_data))
1032 		jbd2_free(committed_data, bh->b_size);
1033 	return err;
1034 }
1035 
1036 /**
1037  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1038  * @bh: buffer to trigger on
1039  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1040  *
1041  * Set any triggers on this journal_head.  This is always safe, because
1042  * triggers for a committing buffer will be saved off, and triggers for
1043  * a running transaction will match the buffer in that transaction.
1044  *
1045  * Call with NULL to clear the triggers.
1046  */
jbd2_journal_set_triggers(struct buffer_head * bh,struct jbd2_buffer_trigger_type * type)1047 void jbd2_journal_set_triggers(struct buffer_head *bh,
1048 			       struct jbd2_buffer_trigger_type *type)
1049 {
1050 	struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1051 
1052 	if (WARN_ON(!jh))
1053 		return;
1054 	jh->b_triggers = type;
1055 	jbd2_journal_put_journal_head(jh);
1056 }
1057 
jbd2_buffer_frozen_trigger(struct journal_head * jh,void * mapped_data,struct jbd2_buffer_trigger_type * triggers)1058 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1059 				struct jbd2_buffer_trigger_type *triggers)
1060 {
1061 	struct buffer_head *bh = jh2bh(jh);
1062 
1063 	if (!triggers || !triggers->t_frozen)
1064 		return;
1065 
1066 	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1067 }
1068 
jbd2_buffer_abort_trigger(struct journal_head * jh,struct jbd2_buffer_trigger_type * triggers)1069 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1070 			       struct jbd2_buffer_trigger_type *triggers)
1071 {
1072 	if (!triggers || !triggers->t_abort)
1073 		return;
1074 
1075 	triggers->t_abort(triggers, jh2bh(jh));
1076 }
1077 
1078 
1079 
1080 /**
1081  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1082  * @handle: transaction to add buffer to.
1083  * @bh: buffer to mark
1084  *
1085  * mark dirty metadata which needs to be journaled as part of the current
1086  * transaction.
1087  *
1088  * The buffer must have previously had jbd2_journal_get_write_access()
1089  * called so that it has a valid journal_head attached to the buffer
1090  * head.
1091  *
1092  * The buffer is placed on the transaction's metadata list and is marked
1093  * as belonging to the transaction.
1094  *
1095  * Returns error number or 0 on success.
1096  *
1097  * Special care needs to be taken if the buffer already belongs to the
1098  * current committing transaction (in which case we should have frozen
1099  * data present for that commit).  In that case, we don't relink the
1100  * buffer: that only gets done when the old transaction finally
1101  * completes its commit.
1102  */
jbd2_journal_dirty_metadata(handle_t * handle,struct buffer_head * bh)1103 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1104 {
1105 	transaction_t *transaction = handle->h_transaction;
1106 	journal_t *journal = transaction->t_journal;
1107 	struct journal_head *jh;
1108 	int ret = 0;
1109 
1110 	if (is_handle_aborted(handle))
1111 		goto out;
1112 	jh = jbd2_journal_grab_journal_head(bh);
1113 	if (!jh) {
1114 		ret = -EUCLEAN;
1115 		goto out;
1116 	}
1117 	jbd_debug(5, "journal_head %p\n", jh);
1118 	JBUFFER_TRACE(jh, "entry");
1119 
1120 	jbd_lock_bh_state(bh);
1121 
1122 	if (jh->b_modified == 0) {
1123 		/*
1124 		 * This buffer's got modified and becoming part
1125 		 * of the transaction. This needs to be done
1126 		 * once a transaction -bzzz
1127 		 */
1128 		jh->b_modified = 1;
1129 		if (handle->h_buffer_credits <= 0) {
1130 			ret = -ENOSPC;
1131 			goto out_unlock_bh;
1132 		}
1133 		handle->h_buffer_credits--;
1134 	}
1135 
1136 	/*
1137 	 * fastpath, to avoid expensive locking.  If this buffer is already
1138 	 * on the running transaction's metadata list there is nothing to do.
1139 	 * Nobody can take it off again because there is a handle open.
1140 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1141 	 * result in this test being false, so we go in and take the locks.
1142 	 */
1143 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1144 		JBUFFER_TRACE(jh, "fastpath");
1145 		if (unlikely(jh->b_transaction !=
1146 			     journal->j_running_transaction)) {
1147 			printk(KERN_EMERG "JBD: %s: "
1148 			       "jh->b_transaction (%llu, %p, %u) != "
1149 			       "journal->j_running_transaction (%p, %u)",
1150 			       journal->j_devname,
1151 			       (unsigned long long) bh->b_blocknr,
1152 			       jh->b_transaction,
1153 			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1154 			       journal->j_running_transaction,
1155 			       journal->j_running_transaction ?
1156 			       journal->j_running_transaction->t_tid : 0);
1157 			ret = -EINVAL;
1158 		}
1159 		goto out_unlock_bh;
1160 	}
1161 
1162 	set_buffer_jbddirty(bh);
1163 
1164 	/*
1165 	 * Metadata already on the current transaction list doesn't
1166 	 * need to be filed.  Metadata on another transaction's list must
1167 	 * be committing, and will be refiled once the commit completes:
1168 	 * leave it alone for now.
1169 	 */
1170 	if (jh->b_transaction != transaction) {
1171 		JBUFFER_TRACE(jh, "already on other transaction");
1172 		if (unlikely(jh->b_transaction !=
1173 			     journal->j_committing_transaction)) {
1174 			printk(KERN_EMERG "JBD: %s: "
1175 			       "jh->b_transaction (%llu, %p, %u) != "
1176 			       "journal->j_committing_transaction (%p, %u)",
1177 			       journal->j_devname,
1178 			       (unsigned long long) bh->b_blocknr,
1179 			       jh->b_transaction,
1180 			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1181 			       journal->j_committing_transaction,
1182 			       journal->j_committing_transaction ?
1183 			       journal->j_committing_transaction->t_tid : 0);
1184 			ret = -EINVAL;
1185 		}
1186 		if (unlikely(jh->b_next_transaction != transaction)) {
1187 			printk(KERN_EMERG "JBD: %s: "
1188 			       "jh->b_next_transaction (%llu, %p, %u) != "
1189 			       "transaction (%p, %u)",
1190 			       journal->j_devname,
1191 			       (unsigned long long) bh->b_blocknr,
1192 			       jh->b_next_transaction,
1193 			       jh->b_next_transaction ?
1194 			       jh->b_next_transaction->t_tid : 0,
1195 			       transaction, transaction->t_tid);
1196 			ret = -EINVAL;
1197 		}
1198 		/* And this case is illegal: we can't reuse another
1199 		 * transaction's data buffer, ever. */
1200 		goto out_unlock_bh;
1201 	}
1202 
1203 	/* That test should have eliminated the following case: */
1204 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1205 
1206 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1207 	spin_lock(&journal->j_list_lock);
1208 	__jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1209 	spin_unlock(&journal->j_list_lock);
1210 out_unlock_bh:
1211 	jbd_unlock_bh_state(bh);
1212 	jbd2_journal_put_journal_head(jh);
1213 out:
1214 	JBUFFER_TRACE(jh, "exit");
1215 	return ret;
1216 }
1217 
1218 /*
1219  * jbd2_journal_release_buffer: undo a get_write_access without any buffer
1220  * updates, if the update decided in the end that it didn't need access.
1221  *
1222  */
1223 void
jbd2_journal_release_buffer(handle_t * handle,struct buffer_head * bh)1224 jbd2_journal_release_buffer(handle_t *handle, struct buffer_head *bh)
1225 {
1226 	BUFFER_TRACE(bh, "entry");
1227 }
1228 
1229 /**
1230  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1231  * @handle: transaction handle
1232  * @bh:     bh to 'forget'
1233  *
1234  * We can only do the bforget if there are no commits pending against the
1235  * buffer.  If the buffer is dirty in the current running transaction we
1236  * can safely unlink it.
1237  *
1238  * bh may not be a journalled buffer at all - it may be a non-JBD
1239  * buffer which came off the hashtable.  Check for this.
1240  *
1241  * Decrements bh->b_count by one.
1242  *
1243  * Allow this call even if the handle has aborted --- it may be part of
1244  * the caller's cleanup after an abort.
1245  */
jbd2_journal_forget(handle_t * handle,struct buffer_head * bh)1246 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1247 {
1248 	transaction_t *transaction = handle->h_transaction;
1249 	journal_t *journal = transaction->t_journal;
1250 	struct journal_head *jh;
1251 	int drop_reserve = 0;
1252 	int err = 0;
1253 	int was_modified = 0;
1254 
1255 	BUFFER_TRACE(bh, "entry");
1256 
1257 	jbd_lock_bh_state(bh);
1258 	spin_lock(&journal->j_list_lock);
1259 
1260 	if (!buffer_jbd(bh))
1261 		goto not_jbd;
1262 	jh = bh2jh(bh);
1263 
1264 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1265 	 * Don't do any jbd operations, and return an error. */
1266 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1267 			 "inconsistent data on disk")) {
1268 		err = -EIO;
1269 		goto not_jbd;
1270 	}
1271 
1272 	/* keep track of wether or not this transaction modified us */
1273 	was_modified = jh->b_modified;
1274 
1275 	/*
1276 	 * The buffer's going from the transaction, we must drop
1277 	 * all references -bzzz
1278 	 */
1279 	jh->b_modified = 0;
1280 
1281 	if (jh->b_transaction == handle->h_transaction) {
1282 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1283 
1284 		/* If we are forgetting a buffer which is already part
1285 		 * of this transaction, then we can just drop it from
1286 		 * the transaction immediately. */
1287 		clear_buffer_dirty(bh);
1288 		clear_buffer_jbddirty(bh);
1289 
1290 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1291 
1292 		/*
1293 		 * we only want to drop a reference if this transaction
1294 		 * modified the buffer
1295 		 */
1296 		if (was_modified)
1297 			drop_reserve = 1;
1298 
1299 		/*
1300 		 * We are no longer going to journal this buffer.
1301 		 * However, the commit of this transaction is still
1302 		 * important to the buffer: the delete that we are now
1303 		 * processing might obsolete an old log entry, so by
1304 		 * committing, we can satisfy the buffer's checkpoint.
1305 		 *
1306 		 * So, if we have a checkpoint on the buffer, we should
1307 		 * now refile the buffer on our BJ_Forget list so that
1308 		 * we know to remove the checkpoint after we commit.
1309 		 */
1310 
1311 		if (jh->b_cp_transaction) {
1312 			__jbd2_journal_temp_unlink_buffer(jh);
1313 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1314 		} else {
1315 			__jbd2_journal_unfile_buffer(jh);
1316 			if (!buffer_jbd(bh)) {
1317 				spin_unlock(&journal->j_list_lock);
1318 				jbd_unlock_bh_state(bh);
1319 				__bforget(bh);
1320 				goto drop;
1321 			}
1322 		}
1323 	} else if (jh->b_transaction) {
1324 		J_ASSERT_JH(jh, (jh->b_transaction ==
1325 				 journal->j_committing_transaction));
1326 		/* However, if the buffer is still owned by a prior
1327 		 * (committing) transaction, we can't drop it yet... */
1328 		JBUFFER_TRACE(jh, "belongs to older transaction");
1329 		/* ... but we CAN drop it from the new transaction if we
1330 		 * have also modified it since the original commit. */
1331 
1332 		if (jh->b_next_transaction) {
1333 			J_ASSERT(jh->b_next_transaction == transaction);
1334 			jh->b_next_transaction = NULL;
1335 
1336 			/*
1337 			 * only drop a reference if this transaction modified
1338 			 * the buffer
1339 			 */
1340 			if (was_modified)
1341 				drop_reserve = 1;
1342 		}
1343 	}
1344 
1345 not_jbd:
1346 	spin_unlock(&journal->j_list_lock);
1347 	jbd_unlock_bh_state(bh);
1348 	__brelse(bh);
1349 drop:
1350 	if (drop_reserve) {
1351 		/* no need to reserve log space for this block -bzzz */
1352 		handle->h_buffer_credits++;
1353 	}
1354 	return err;
1355 }
1356 
1357 /**
1358  * int jbd2_journal_stop() - complete a transaction
1359  * @handle: tranaction to complete.
1360  *
1361  * All done for a particular handle.
1362  *
1363  * There is not much action needed here.  We just return any remaining
1364  * buffer credits to the transaction and remove the handle.  The only
1365  * complication is that we need to start a commit operation if the
1366  * filesystem is marked for synchronous update.
1367  *
1368  * jbd2_journal_stop itself will not usually return an error, but it may
1369  * do so in unusual circumstances.  In particular, expect it to
1370  * return -EIO if a jbd2_journal_abort has been executed since the
1371  * transaction began.
1372  */
jbd2_journal_stop(handle_t * handle)1373 int jbd2_journal_stop(handle_t *handle)
1374 {
1375 	transaction_t *transaction = handle->h_transaction;
1376 	journal_t *journal = transaction->t_journal;
1377 	int err, wait_for_commit = 0;
1378 	tid_t tid;
1379 	pid_t pid;
1380 
1381 	J_ASSERT(journal_current_handle() == handle);
1382 
1383 	if (is_handle_aborted(handle))
1384 		err = -EIO;
1385 	else {
1386 		J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1387 		err = 0;
1388 	}
1389 
1390 	if (--handle->h_ref > 0) {
1391 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1392 			  handle->h_ref);
1393 		return err;
1394 	}
1395 
1396 	jbd_debug(4, "Handle %p going down\n", handle);
1397 
1398 	/*
1399 	 * Implement synchronous transaction batching.  If the handle
1400 	 * was synchronous, don't force a commit immediately.  Let's
1401 	 * yield and let another thread piggyback onto this
1402 	 * transaction.  Keep doing that while new threads continue to
1403 	 * arrive.  It doesn't cost much - we're about to run a commit
1404 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1405 	 * operations by 30x or more...
1406 	 *
1407 	 * We try and optimize the sleep time against what the
1408 	 * underlying disk can do, instead of having a static sleep
1409 	 * time.  This is useful for the case where our storage is so
1410 	 * fast that it is more optimal to go ahead and force a flush
1411 	 * and wait for the transaction to be committed than it is to
1412 	 * wait for an arbitrary amount of time for new writers to
1413 	 * join the transaction.  We achieve this by measuring how
1414 	 * long it takes to commit a transaction, and compare it with
1415 	 * how long this transaction has been running, and if run time
1416 	 * < commit time then we sleep for the delta and commit.  This
1417 	 * greatly helps super fast disks that would see slowdowns as
1418 	 * more threads started doing fsyncs.
1419 	 *
1420 	 * But don't do this if this process was the most recent one
1421 	 * to perform a synchronous write.  We do this to detect the
1422 	 * case where a single process is doing a stream of sync
1423 	 * writes.  No point in waiting for joiners in that case.
1424 	 */
1425 	pid = current->pid;
1426 	if (handle->h_sync && journal->j_last_sync_writer != pid) {
1427 		u64 commit_time, trans_time;
1428 
1429 		journal->j_last_sync_writer = pid;
1430 
1431 		read_lock(&journal->j_state_lock);
1432 		commit_time = journal->j_average_commit_time;
1433 		read_unlock(&journal->j_state_lock);
1434 
1435 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1436 						   transaction->t_start_time));
1437 
1438 		commit_time = max_t(u64, commit_time,
1439 				    1000*journal->j_min_batch_time);
1440 		commit_time = min_t(u64, commit_time,
1441 				    1000*journal->j_max_batch_time);
1442 
1443 		if (trans_time < commit_time) {
1444 			ktime_t expires = ktime_add_ns(ktime_get(),
1445 						       commit_time);
1446 			set_current_state(TASK_UNINTERRUPTIBLE);
1447 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1448 		}
1449 	}
1450 
1451 	if (handle->h_sync)
1452 		transaction->t_synchronous_commit = 1;
1453 	current->journal_info = NULL;
1454 	atomic_sub(handle->h_buffer_credits,
1455 		   &transaction->t_outstanding_credits);
1456 
1457 	/*
1458 	 * If the handle is marked SYNC, we need to set another commit
1459 	 * going!  We also want to force a commit if the current
1460 	 * transaction is occupying too much of the log, or if the
1461 	 * transaction is too old now.
1462 	 */
1463 	if (handle->h_sync ||
1464 	    (atomic_read(&transaction->t_outstanding_credits) >
1465 	     journal->j_max_transaction_buffers) ||
1466 	    time_after_eq(jiffies, transaction->t_expires)) {
1467 		/* Do this even for aborted journals: an abort still
1468 		 * completes the commit thread, it just doesn't write
1469 		 * anything to disk. */
1470 
1471 		jbd_debug(2, "transaction too old, requesting commit for "
1472 					"handle %p\n", handle);
1473 		/* This is non-blocking */
1474 		jbd2_log_start_commit(journal, transaction->t_tid);
1475 
1476 		/*
1477 		 * Special case: JBD2_SYNC synchronous updates require us
1478 		 * to wait for the commit to complete.
1479 		 */
1480 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1481 			wait_for_commit = 1;
1482 	}
1483 
1484 	/*
1485 	 * Once we drop t_updates, if it goes to zero the transaction
1486 	 * could start committing on us and eventually disappear.  So
1487 	 * once we do this, we must not dereference transaction
1488 	 * pointer again.
1489 	 */
1490 	tid = transaction->t_tid;
1491 	if (atomic_dec_and_test(&transaction->t_updates)) {
1492 		wake_up(&journal->j_wait_updates);
1493 		if (journal->j_barrier_count)
1494 			wake_up(&journal->j_wait_transaction_locked);
1495 	}
1496 
1497 	if (wait_for_commit)
1498 		err = jbd2_log_wait_commit(journal, tid);
1499 
1500 	lock_map_release(&handle->h_lockdep_map);
1501 
1502 	jbd2_free_handle(handle);
1503 	return err;
1504 }
1505 
1506 /**
1507  * int jbd2_journal_force_commit() - force any uncommitted transactions
1508  * @journal: journal to force
1509  *
1510  * For synchronous operations: force any uncommitted transactions
1511  * to disk.  May seem kludgy, but it reuses all the handle batching
1512  * code in a very simple manner.
1513  */
jbd2_journal_force_commit(journal_t * journal)1514 int jbd2_journal_force_commit(journal_t *journal)
1515 {
1516 	handle_t *handle;
1517 	int ret;
1518 
1519 	handle = jbd2_journal_start(journal, 1);
1520 	if (IS_ERR(handle)) {
1521 		ret = PTR_ERR(handle);
1522 	} else {
1523 		handle->h_sync = 1;
1524 		ret = jbd2_journal_stop(handle);
1525 	}
1526 	return ret;
1527 }
1528 
1529 /*
1530  *
1531  * List management code snippets: various functions for manipulating the
1532  * transaction buffer lists.
1533  *
1534  */
1535 
1536 /*
1537  * Append a buffer to a transaction list, given the transaction's list head
1538  * pointer.
1539  *
1540  * j_list_lock is held.
1541  *
1542  * jbd_lock_bh_state(jh2bh(jh)) is held.
1543  */
1544 
1545 static inline void
__blist_add_buffer(struct journal_head ** list,struct journal_head * jh)1546 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1547 {
1548 	if (!*list) {
1549 		jh->b_tnext = jh->b_tprev = jh;
1550 		*list = jh;
1551 	} else {
1552 		/* Insert at the tail of the list to preserve order */
1553 		struct journal_head *first = *list, *last = first->b_tprev;
1554 		jh->b_tprev = last;
1555 		jh->b_tnext = first;
1556 		last->b_tnext = first->b_tprev = jh;
1557 	}
1558 }
1559 
1560 /*
1561  * Remove a buffer from a transaction list, given the transaction's list
1562  * head pointer.
1563  *
1564  * Called with j_list_lock held, and the journal may not be locked.
1565  *
1566  * jbd_lock_bh_state(jh2bh(jh)) is held.
1567  */
1568 
1569 static inline void
__blist_del_buffer(struct journal_head ** list,struct journal_head * jh)1570 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1571 {
1572 	if (*list == jh) {
1573 		*list = jh->b_tnext;
1574 		if (*list == jh)
1575 			*list = NULL;
1576 	}
1577 	jh->b_tprev->b_tnext = jh->b_tnext;
1578 	jh->b_tnext->b_tprev = jh->b_tprev;
1579 }
1580 
1581 /*
1582  * Remove a buffer from the appropriate transaction list.
1583  *
1584  * Note that this function can *change* the value of
1585  * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list,
1586  * t_log_list or t_reserved_list.  If the caller is holding onto a copy of one
1587  * of these pointers, it could go bad.  Generally the caller needs to re-read
1588  * the pointer from the transaction_t.
1589  *
1590  * Called under j_list_lock.
1591  */
__jbd2_journal_temp_unlink_buffer(struct journal_head * jh)1592 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1593 {
1594 	struct journal_head **list = NULL;
1595 	transaction_t *transaction;
1596 	struct buffer_head *bh = jh2bh(jh);
1597 
1598 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1599 	transaction = jh->b_transaction;
1600 	if (transaction)
1601 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1602 
1603 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1604 	if (jh->b_jlist != BJ_None)
1605 		J_ASSERT_JH(jh, transaction != NULL);
1606 
1607 	switch (jh->b_jlist) {
1608 	case BJ_None:
1609 		return;
1610 	case BJ_Metadata:
1611 		transaction->t_nr_buffers--;
1612 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1613 		list = &transaction->t_buffers;
1614 		break;
1615 	case BJ_Forget:
1616 		list = &transaction->t_forget;
1617 		break;
1618 	case BJ_IO:
1619 		list = &transaction->t_iobuf_list;
1620 		break;
1621 	case BJ_Shadow:
1622 		list = &transaction->t_shadow_list;
1623 		break;
1624 	case BJ_LogCtl:
1625 		list = &transaction->t_log_list;
1626 		break;
1627 	case BJ_Reserved:
1628 		list = &transaction->t_reserved_list;
1629 		break;
1630 	}
1631 
1632 	__blist_del_buffer(list, jh);
1633 	jh->b_jlist = BJ_None;
1634 	if (test_clear_buffer_jbddirty(bh))
1635 		mark_buffer_dirty(bh);	/* Expose it to the VM */
1636 }
1637 
1638 /*
1639  * Remove buffer from all transactions.
1640  *
1641  * Called with bh_state lock and j_list_lock
1642  *
1643  * jh and bh may be already freed when this function returns.
1644  */
__jbd2_journal_unfile_buffer(struct journal_head * jh)1645 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1646 {
1647 	__jbd2_journal_temp_unlink_buffer(jh);
1648 	jh->b_transaction = NULL;
1649 	jbd2_journal_put_journal_head(jh);
1650 }
1651 
jbd2_journal_unfile_buffer(journal_t * journal,struct journal_head * jh)1652 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1653 {
1654 	struct buffer_head *bh = jh2bh(jh);
1655 
1656 	/* Get reference so that buffer cannot be freed before we unlock it */
1657 	get_bh(bh);
1658 	jbd_lock_bh_state(bh);
1659 	spin_lock(&journal->j_list_lock);
1660 	__jbd2_journal_unfile_buffer(jh);
1661 	spin_unlock(&journal->j_list_lock);
1662 	jbd_unlock_bh_state(bh);
1663 	__brelse(bh);
1664 }
1665 
1666 /*
1667  * Called from jbd2_journal_try_to_free_buffers().
1668  *
1669  * Called under jbd_lock_bh_state(bh)
1670  */
1671 static void
__journal_try_to_free_buffer(journal_t * journal,struct buffer_head * bh)1672 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1673 {
1674 	struct journal_head *jh;
1675 
1676 	jh = bh2jh(bh);
1677 
1678 	if (buffer_locked(bh) || buffer_dirty(bh))
1679 		goto out;
1680 
1681 	if (jh->b_next_transaction != NULL)
1682 		goto out;
1683 
1684 	spin_lock(&journal->j_list_lock);
1685 	if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1686 		/* written-back checkpointed metadata buffer */
1687 		JBUFFER_TRACE(jh, "remove from checkpoint list");
1688 		__jbd2_journal_remove_checkpoint(jh);
1689 	}
1690 	spin_unlock(&journal->j_list_lock);
1691 out:
1692 	return;
1693 }
1694 
1695 /**
1696  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1697  * @journal: journal for operation
1698  * @page: to try and free
1699  * @gfp_mask: we use the mask to detect how hard should we try to release
1700  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1701  * release the buffers.
1702  *
1703  *
1704  * For all the buffers on this page,
1705  * if they are fully written out ordered data, move them onto BUF_CLEAN
1706  * so try_to_free_buffers() can reap them.
1707  *
1708  * This function returns non-zero if we wish try_to_free_buffers()
1709  * to be called. We do this if the page is releasable by try_to_free_buffers().
1710  * We also do it if the page has locked or dirty buffers and the caller wants
1711  * us to perform sync or async writeout.
1712  *
1713  * This complicates JBD locking somewhat.  We aren't protected by the
1714  * BKL here.  We wish to remove the buffer from its committing or
1715  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1716  *
1717  * This may *change* the value of transaction_t->t_datalist, so anyone
1718  * who looks at t_datalist needs to lock against this function.
1719  *
1720  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1721  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1722  * will come out of the lock with the buffer dirty, which makes it
1723  * ineligible for release here.
1724  *
1725  * Who else is affected by this?  hmm...  Really the only contender
1726  * is do_get_write_access() - it could be looking at the buffer while
1727  * journal_try_to_free_buffer() is changing its state.  But that
1728  * cannot happen because we never reallocate freed data as metadata
1729  * while the data is part of a transaction.  Yes?
1730  *
1731  * Return 0 on failure, 1 on success
1732  */
jbd2_journal_try_to_free_buffers(journal_t * journal,struct page * page,gfp_t gfp_mask)1733 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1734 				struct page *page, gfp_t gfp_mask)
1735 {
1736 	struct buffer_head *head;
1737 	struct buffer_head *bh;
1738 	int ret = 0;
1739 
1740 	J_ASSERT(PageLocked(page));
1741 
1742 	head = page_buffers(page);
1743 	bh = head;
1744 	do {
1745 		struct journal_head *jh;
1746 
1747 		/*
1748 		 * We take our own ref against the journal_head here to avoid
1749 		 * having to add tons of locking around each instance of
1750 		 * jbd2_journal_put_journal_head().
1751 		 */
1752 		jh = jbd2_journal_grab_journal_head(bh);
1753 		if (!jh)
1754 			continue;
1755 
1756 		jbd_lock_bh_state(bh);
1757 		__journal_try_to_free_buffer(journal, bh);
1758 		jbd2_journal_put_journal_head(jh);
1759 		jbd_unlock_bh_state(bh);
1760 		if (buffer_jbd(bh))
1761 			goto busy;
1762 	} while ((bh = bh->b_this_page) != head);
1763 
1764 	ret = try_to_free_buffers(page);
1765 
1766 busy:
1767 	return ret;
1768 }
1769 
1770 /*
1771  * This buffer is no longer needed.  If it is on an older transaction's
1772  * checkpoint list we need to record it on this transaction's forget list
1773  * to pin this buffer (and hence its checkpointing transaction) down until
1774  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1775  * release it.
1776  * Returns non-zero if JBD no longer has an interest in the buffer.
1777  *
1778  * Called under j_list_lock.
1779  *
1780  * Called under jbd_lock_bh_state(bh).
1781  */
__dispose_buffer(struct journal_head * jh,transaction_t * transaction)1782 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1783 {
1784 	int may_free = 1;
1785 	struct buffer_head *bh = jh2bh(jh);
1786 
1787 	if (jh->b_cp_transaction) {
1788 		JBUFFER_TRACE(jh, "on running+cp transaction");
1789 		__jbd2_journal_temp_unlink_buffer(jh);
1790 		/*
1791 		 * We don't want to write the buffer anymore, clear the
1792 		 * bit so that we don't confuse checks in
1793 		 * __journal_file_buffer
1794 		 */
1795 		clear_buffer_dirty(bh);
1796 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1797 		may_free = 0;
1798 	} else {
1799 		JBUFFER_TRACE(jh, "on running transaction");
1800 		__jbd2_journal_unfile_buffer(jh);
1801 	}
1802 	return may_free;
1803 }
1804 
1805 /*
1806  * jbd2_journal_invalidatepage
1807  *
1808  * This code is tricky.  It has a number of cases to deal with.
1809  *
1810  * There are two invariants which this code relies on:
1811  *
1812  * i_size must be updated on disk before we start calling invalidatepage on the
1813  * data.
1814  *
1815  *  This is done in ext3 by defining an ext3_setattr method which
1816  *  updates i_size before truncate gets going.  By maintaining this
1817  *  invariant, we can be sure that it is safe to throw away any buffers
1818  *  attached to the current transaction: once the transaction commits,
1819  *  we know that the data will not be needed.
1820  *
1821  *  Note however that we can *not* throw away data belonging to the
1822  *  previous, committing transaction!
1823  *
1824  * Any disk blocks which *are* part of the previous, committing
1825  * transaction (and which therefore cannot be discarded immediately) are
1826  * not going to be reused in the new running transaction
1827  *
1828  *  The bitmap committed_data images guarantee this: any block which is
1829  *  allocated in one transaction and removed in the next will be marked
1830  *  as in-use in the committed_data bitmap, so cannot be reused until
1831  *  the next transaction to delete the block commits.  This means that
1832  *  leaving committing buffers dirty is quite safe: the disk blocks
1833  *  cannot be reallocated to a different file and so buffer aliasing is
1834  *  not possible.
1835  *
1836  *
1837  * The above applies mainly to ordered data mode.  In writeback mode we
1838  * don't make guarantees about the order in which data hits disk --- in
1839  * particular we don't guarantee that new dirty data is flushed before
1840  * transaction commit --- so it is always safe just to discard data
1841  * immediately in that mode.  --sct
1842  */
1843 
1844 /*
1845  * The journal_unmap_buffer helper function returns zero if the buffer
1846  * concerned remains pinned as an anonymous buffer belonging to an older
1847  * transaction.
1848  *
1849  * We're outside-transaction here.  Either or both of j_running_transaction
1850  * and j_committing_transaction may be NULL.
1851  */
journal_unmap_buffer(journal_t * journal,struct buffer_head * bh)1852 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh)
1853 {
1854 	transaction_t *transaction;
1855 	struct journal_head *jh;
1856 	int may_free = 1;
1857 	int ret;
1858 
1859 	BUFFER_TRACE(bh, "entry");
1860 
1861 	/*
1862 	 * It is safe to proceed here without the j_list_lock because the
1863 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
1864 	 * holding the page lock. --sct
1865 	 */
1866 
1867 	if (!buffer_jbd(bh))
1868 		goto zap_buffer_unlocked;
1869 
1870 	/* OK, we have data buffer in journaled mode */
1871 	write_lock(&journal->j_state_lock);
1872 	jbd_lock_bh_state(bh);
1873 	spin_lock(&journal->j_list_lock);
1874 
1875 	jh = jbd2_journal_grab_journal_head(bh);
1876 	if (!jh)
1877 		goto zap_buffer_no_jh;
1878 
1879 	/*
1880 	 * We cannot remove the buffer from checkpoint lists until the
1881 	 * transaction adding inode to orphan list (let's call it T)
1882 	 * is committed.  Otherwise if the transaction changing the
1883 	 * buffer would be cleaned from the journal before T is
1884 	 * committed, a crash will cause that the correct contents of
1885 	 * the buffer will be lost.  On the other hand we have to
1886 	 * clear the buffer dirty bit at latest at the moment when the
1887 	 * transaction marking the buffer as freed in the filesystem
1888 	 * structures is committed because from that moment on the
1889 	 * buffer can be reallocated and used by a different page.
1890 	 * Since the block hasn't been freed yet but the inode has
1891 	 * already been added to orphan list, it is safe for us to add
1892 	 * the buffer to BJ_Forget list of the newest transaction.
1893 	 */
1894 	transaction = jh->b_transaction;
1895 	if (transaction == NULL) {
1896 		/* First case: not on any transaction.  If it
1897 		 * has no checkpoint link, then we can zap it:
1898 		 * it's a writeback-mode buffer so we don't care
1899 		 * if it hits disk safely. */
1900 		if (!jh->b_cp_transaction) {
1901 			JBUFFER_TRACE(jh, "not on any transaction: zap");
1902 			goto zap_buffer;
1903 		}
1904 
1905 		if (!buffer_dirty(bh)) {
1906 			/* bdflush has written it.  We can drop it now */
1907 			goto zap_buffer;
1908 		}
1909 
1910 		/* OK, it must be in the journal but still not
1911 		 * written fully to disk: it's metadata or
1912 		 * journaled data... */
1913 
1914 		if (journal->j_running_transaction) {
1915 			/* ... and once the current transaction has
1916 			 * committed, the buffer won't be needed any
1917 			 * longer. */
1918 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1919 			ret = __dispose_buffer(jh,
1920 					journal->j_running_transaction);
1921 			jbd2_journal_put_journal_head(jh);
1922 			spin_unlock(&journal->j_list_lock);
1923 			jbd_unlock_bh_state(bh);
1924 			write_unlock(&journal->j_state_lock);
1925 			return ret;
1926 		} else {
1927 			/* There is no currently-running transaction. So the
1928 			 * orphan record which we wrote for this file must have
1929 			 * passed into commit.  We must attach this buffer to
1930 			 * the committing transaction, if it exists. */
1931 			if (journal->j_committing_transaction) {
1932 				JBUFFER_TRACE(jh, "give to committing trans");
1933 				ret = __dispose_buffer(jh,
1934 					journal->j_committing_transaction);
1935 				jbd2_journal_put_journal_head(jh);
1936 				spin_unlock(&journal->j_list_lock);
1937 				jbd_unlock_bh_state(bh);
1938 				write_unlock(&journal->j_state_lock);
1939 				return ret;
1940 			} else {
1941 				/* The orphan record's transaction has
1942 				 * committed.  We can cleanse this buffer */
1943 				clear_buffer_jbddirty(bh);
1944 				goto zap_buffer;
1945 			}
1946 		}
1947 	} else if (transaction == journal->j_committing_transaction) {
1948 		JBUFFER_TRACE(jh, "on committing transaction");
1949 		/*
1950 		 * The buffer is committing, we simply cannot touch
1951 		 * it. So we just set j_next_transaction to the
1952 		 * running transaction (if there is one) and mark
1953 		 * buffer as freed so that commit code knows it should
1954 		 * clear dirty bits when it is done with the buffer.
1955 		 */
1956 		set_buffer_freed(bh);
1957 		if (journal->j_running_transaction && buffer_jbddirty(bh))
1958 			jh->b_next_transaction = journal->j_running_transaction;
1959 		jbd2_journal_put_journal_head(jh);
1960 		spin_unlock(&journal->j_list_lock);
1961 		jbd_unlock_bh_state(bh);
1962 		write_unlock(&journal->j_state_lock);
1963 		return 0;
1964 	} else {
1965 		/* Good, the buffer belongs to the running transaction.
1966 		 * We are writing our own transaction's data, not any
1967 		 * previous one's, so it is safe to throw it away
1968 		 * (remember that we expect the filesystem to have set
1969 		 * i_size already for this truncate so recovery will not
1970 		 * expose the disk blocks we are discarding here.) */
1971 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1972 		JBUFFER_TRACE(jh, "on running transaction");
1973 		may_free = __dispose_buffer(jh, transaction);
1974 	}
1975 
1976 zap_buffer:
1977 	jbd2_journal_put_journal_head(jh);
1978 zap_buffer_no_jh:
1979 	spin_unlock(&journal->j_list_lock);
1980 	jbd_unlock_bh_state(bh);
1981 	write_unlock(&journal->j_state_lock);
1982 zap_buffer_unlocked:
1983 	clear_buffer_dirty(bh);
1984 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
1985 	clear_buffer_mapped(bh);
1986 	clear_buffer_req(bh);
1987 	clear_buffer_new(bh);
1988 	clear_buffer_delay(bh);
1989 	clear_buffer_unwritten(bh);
1990 	bh->b_bdev = NULL;
1991 	return may_free;
1992 }
1993 
1994 /**
1995  * void jbd2_journal_invalidatepage()
1996  * @journal: journal to use for flush...
1997  * @page:    page to flush
1998  * @offset:  length of page to invalidate.
1999  *
2000  * Reap page buffers containing data after offset in page.
2001  *
2002  */
jbd2_journal_invalidatepage(journal_t * journal,struct page * page,unsigned long offset)2003 void jbd2_journal_invalidatepage(journal_t *journal,
2004 		      struct page *page,
2005 		      unsigned long offset)
2006 {
2007 	struct buffer_head *head, *bh, *next;
2008 	unsigned int curr_off = 0;
2009 	int may_free = 1;
2010 
2011 	if (!PageLocked(page))
2012 		BUG();
2013 	if (!page_has_buffers(page))
2014 		return;
2015 
2016 	/* We will potentially be playing with lists other than just the
2017 	 * data lists (especially for journaled data mode), so be
2018 	 * cautious in our locking. */
2019 
2020 	head = bh = page_buffers(page);
2021 	do {
2022 		unsigned int next_off = curr_off + bh->b_size;
2023 		next = bh->b_this_page;
2024 
2025 		if (offset <= curr_off) {
2026 			/* This block is wholly outside the truncation point */
2027 			lock_buffer(bh);
2028 			may_free &= journal_unmap_buffer(journal, bh);
2029 			unlock_buffer(bh);
2030 		}
2031 		curr_off = next_off;
2032 		bh = next;
2033 
2034 	} while (bh != head);
2035 
2036 	if (!offset) {
2037 		if (may_free && try_to_free_buffers(page))
2038 			J_ASSERT(!page_has_buffers(page));
2039 	}
2040 }
2041 
2042 /*
2043  * File a buffer on the given transaction list.
2044  */
__jbd2_journal_file_buffer(struct journal_head * jh,transaction_t * transaction,int jlist)2045 void __jbd2_journal_file_buffer(struct journal_head *jh,
2046 			transaction_t *transaction, int jlist)
2047 {
2048 	struct journal_head **list = NULL;
2049 	int was_dirty = 0;
2050 	struct buffer_head *bh = jh2bh(jh);
2051 
2052 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2053 	assert_spin_locked(&transaction->t_journal->j_list_lock);
2054 
2055 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2056 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2057 				jh->b_transaction == NULL);
2058 
2059 	if (jh->b_transaction && jh->b_jlist == jlist)
2060 		return;
2061 
2062 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2063 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2064 		/*
2065 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2066 		 * instead of buffer_dirty. We should not see a dirty bit set
2067 		 * here because we clear it in do_get_write_access but e.g.
2068 		 * tune2fs can modify the sb and set the dirty bit at any time
2069 		 * so we try to gracefully handle that.
2070 		 */
2071 		if (buffer_dirty(bh))
2072 			warn_dirty_buffer(bh);
2073 		if (test_clear_buffer_dirty(bh) ||
2074 		    test_clear_buffer_jbddirty(bh))
2075 			was_dirty = 1;
2076 	}
2077 
2078 	if (jh->b_transaction)
2079 		__jbd2_journal_temp_unlink_buffer(jh);
2080 	else
2081 		jbd2_journal_grab_journal_head(bh);
2082 	jh->b_transaction = transaction;
2083 
2084 	switch (jlist) {
2085 	case BJ_None:
2086 		J_ASSERT_JH(jh, !jh->b_committed_data);
2087 		J_ASSERT_JH(jh, !jh->b_frozen_data);
2088 		return;
2089 	case BJ_Metadata:
2090 		transaction->t_nr_buffers++;
2091 		list = &transaction->t_buffers;
2092 		break;
2093 	case BJ_Forget:
2094 		list = &transaction->t_forget;
2095 		break;
2096 	case BJ_IO:
2097 		list = &transaction->t_iobuf_list;
2098 		break;
2099 	case BJ_Shadow:
2100 		list = &transaction->t_shadow_list;
2101 		break;
2102 	case BJ_LogCtl:
2103 		list = &transaction->t_log_list;
2104 		break;
2105 	case BJ_Reserved:
2106 		list = &transaction->t_reserved_list;
2107 		break;
2108 	}
2109 
2110 	__blist_add_buffer(list, jh);
2111 	jh->b_jlist = jlist;
2112 
2113 	if (was_dirty)
2114 		set_buffer_jbddirty(bh);
2115 }
2116 
jbd2_journal_file_buffer(struct journal_head * jh,transaction_t * transaction,int jlist)2117 void jbd2_journal_file_buffer(struct journal_head *jh,
2118 				transaction_t *transaction, int jlist)
2119 {
2120 	jbd_lock_bh_state(jh2bh(jh));
2121 	spin_lock(&transaction->t_journal->j_list_lock);
2122 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2123 	spin_unlock(&transaction->t_journal->j_list_lock);
2124 	jbd_unlock_bh_state(jh2bh(jh));
2125 }
2126 
2127 /*
2128  * Remove a buffer from its current buffer list in preparation for
2129  * dropping it from its current transaction entirely.  If the buffer has
2130  * already started to be used by a subsequent transaction, refile the
2131  * buffer on that transaction's metadata list.
2132  *
2133  * Called under j_list_lock
2134  * Called under jbd_lock_bh_state(jh2bh(jh))
2135  *
2136  * jh and bh may be already free when this function returns
2137  */
__jbd2_journal_refile_buffer(struct journal_head * jh)2138 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2139 {
2140 	int was_dirty, jlist;
2141 	struct buffer_head *bh = jh2bh(jh);
2142 
2143 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2144 	if (jh->b_transaction)
2145 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2146 
2147 	/* If the buffer is now unused, just drop it. */
2148 	if (jh->b_next_transaction == NULL) {
2149 		__jbd2_journal_unfile_buffer(jh);
2150 		return;
2151 	}
2152 
2153 	/*
2154 	 * It has been modified by a later transaction: add it to the new
2155 	 * transaction's metadata list.
2156 	 */
2157 
2158 	was_dirty = test_clear_buffer_jbddirty(bh);
2159 	__jbd2_journal_temp_unlink_buffer(jh);
2160 	/*
2161 	 * We set b_transaction here because b_next_transaction will inherit
2162 	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2163 	 * take a new one.
2164 	 */
2165 	jh->b_transaction = jh->b_next_transaction;
2166 	jh->b_next_transaction = NULL;
2167 	if (buffer_freed(bh))
2168 		jlist = BJ_Forget;
2169 	else if (jh->b_modified)
2170 		jlist = BJ_Metadata;
2171 	else
2172 		jlist = BJ_Reserved;
2173 	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2174 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2175 
2176 	if (was_dirty)
2177 		set_buffer_jbddirty(bh);
2178 }
2179 
2180 /*
2181  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2182  * bh reference so that we can safely unlock bh.
2183  *
2184  * The jh and bh may be freed by this call.
2185  */
jbd2_journal_refile_buffer(journal_t * journal,struct journal_head * jh)2186 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2187 {
2188 	struct buffer_head *bh = jh2bh(jh);
2189 
2190 	/* Get reference so that buffer cannot be freed before we unlock it */
2191 	get_bh(bh);
2192 	jbd_lock_bh_state(bh);
2193 	spin_lock(&journal->j_list_lock);
2194 	__jbd2_journal_refile_buffer(jh);
2195 	jbd_unlock_bh_state(bh);
2196 	spin_unlock(&journal->j_list_lock);
2197 	__brelse(bh);
2198 }
2199 
2200 /*
2201  * File inode in the inode list of the handle's transaction
2202  */
jbd2_journal_file_inode(handle_t * handle,struct jbd2_inode * jinode)2203 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2204 {
2205 	transaction_t *transaction = handle->h_transaction;
2206 	journal_t *journal = transaction->t_journal;
2207 
2208 	if (is_handle_aborted(handle))
2209 		return -EIO;
2210 
2211 	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2212 			transaction->t_tid);
2213 
2214 	/*
2215 	 * First check whether inode isn't already on the transaction's
2216 	 * lists without taking the lock. Note that this check is safe
2217 	 * without the lock as we cannot race with somebody removing inode
2218 	 * from the transaction. The reason is that we remove inode from the
2219 	 * transaction only in journal_release_jbd_inode() and when we commit
2220 	 * the transaction. We are guarded from the first case by holding
2221 	 * a reference to the inode. We are safe against the second case
2222 	 * because if jinode->i_transaction == transaction, commit code
2223 	 * cannot touch the transaction because we hold reference to it,
2224 	 * and if jinode->i_next_transaction == transaction, commit code
2225 	 * will only file the inode where we want it.
2226 	 */
2227 	if (jinode->i_transaction == transaction ||
2228 	    jinode->i_next_transaction == transaction)
2229 		return 0;
2230 
2231 	spin_lock(&journal->j_list_lock);
2232 
2233 	if (jinode->i_transaction == transaction ||
2234 	    jinode->i_next_transaction == transaction)
2235 		goto done;
2236 
2237 	/*
2238 	 * We only ever set this variable to 1 so the test is safe. Since
2239 	 * t_need_data_flush is likely to be set, we do the test to save some
2240 	 * cacheline bouncing
2241 	 */
2242 	if (!transaction->t_need_data_flush)
2243 		transaction->t_need_data_flush = 1;
2244 	/* On some different transaction's list - should be
2245 	 * the committing one */
2246 	if (jinode->i_transaction) {
2247 		J_ASSERT(jinode->i_next_transaction == NULL);
2248 		J_ASSERT(jinode->i_transaction ==
2249 					journal->j_committing_transaction);
2250 		jinode->i_next_transaction = transaction;
2251 		goto done;
2252 	}
2253 	/* Not on any transaction list... */
2254 	J_ASSERT(!jinode->i_next_transaction);
2255 	jinode->i_transaction = transaction;
2256 	list_add(&jinode->i_list, &transaction->t_inode_list);
2257 done:
2258 	spin_unlock(&journal->j_list_lock);
2259 
2260 	return 0;
2261 }
2262 
2263 /*
2264  * File truncate and transaction commit interact with each other in a
2265  * non-trivial way.  If a transaction writing data block A is
2266  * committing, we cannot discard the data by truncate until we have
2267  * written them.  Otherwise if we crashed after the transaction with
2268  * write has committed but before the transaction with truncate has
2269  * committed, we could see stale data in block A.  This function is a
2270  * helper to solve this problem.  It starts writeout of the truncated
2271  * part in case it is in the committing transaction.
2272  *
2273  * Filesystem code must call this function when inode is journaled in
2274  * ordered mode before truncation happens and after the inode has been
2275  * placed on orphan list with the new inode size. The second condition
2276  * avoids the race that someone writes new data and we start
2277  * committing the transaction after this function has been called but
2278  * before a transaction for truncate is started (and furthermore it
2279  * allows us to optimize the case where the addition to orphan list
2280  * happens in the same transaction as write --- we don't have to write
2281  * any data in such case).
2282  */
jbd2_journal_begin_ordered_truncate(journal_t * journal,struct jbd2_inode * jinode,loff_t new_size)2283 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2284 					struct jbd2_inode *jinode,
2285 					loff_t new_size)
2286 {
2287 	transaction_t *inode_trans, *commit_trans;
2288 	int ret = 0;
2289 
2290 	/* This is a quick check to avoid locking if not necessary */
2291 	if (!jinode->i_transaction)
2292 		goto out;
2293 	/* Locks are here just to force reading of recent values, it is
2294 	 * enough that the transaction was not committing before we started
2295 	 * a transaction adding the inode to orphan list */
2296 	read_lock(&journal->j_state_lock);
2297 	commit_trans = journal->j_committing_transaction;
2298 	read_unlock(&journal->j_state_lock);
2299 	spin_lock(&journal->j_list_lock);
2300 	inode_trans = jinode->i_transaction;
2301 	spin_unlock(&journal->j_list_lock);
2302 	if (inode_trans == commit_trans) {
2303 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2304 			new_size, LLONG_MAX);
2305 		if (ret)
2306 			jbd2_journal_abort(journal, ret);
2307 	}
2308 out:
2309 	return ret;
2310 }
2311