1 /*
2  * linux/fs/jbd2/revoke.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
5  *
6  * Copyright 2000 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Journal revoke routines for the generic filesystem journaling code;
13  * part of the ext2fs journaling system.
14  *
15  * Revoke is the mechanism used to prevent old log records for deleted
16  * metadata from being replayed on top of newer data using the same
17  * blocks.  The revoke mechanism is used in two separate places:
18  *
19  * + Commit: during commit we write the entire list of the current
20  *   transaction's revoked blocks to the journal
21  *
22  * + Recovery: during recovery we record the transaction ID of all
23  *   revoked blocks.  If there are multiple revoke records in the log
24  *   for a single block, only the last one counts, and if there is a log
25  *   entry for a block beyond the last revoke, then that log entry still
26  *   gets replayed.
27  *
28  * We can get interactions between revokes and new log data within a
29  * single transaction:
30  *
31  * Block is revoked and then journaled:
32  *   The desired end result is the journaling of the new block, so we
33  *   cancel the revoke before the transaction commits.
34  *
35  * Block is journaled and then revoked:
36  *   The revoke must take precedence over the write of the block, so we
37  *   need either to cancel the journal entry or to write the revoke
38  *   later in the log than the log block.  In this case, we choose the
39  *   latter: journaling a block cancels any revoke record for that block
40  *   in the current transaction, so any revoke for that block in the
41  *   transaction must have happened after the block was journaled and so
42  *   the revoke must take precedence.
43  *
44  * Block is revoked and then written as data:
45  *   The data write is allowed to succeed, but the revoke is _not_
46  *   cancelled.  We still need to prevent old log records from
47  *   overwriting the new data.  We don't even need to clear the revoke
48  *   bit here.
49  *
50  * We cache revoke status of a buffer in the current transaction in b_states
51  * bits.  As the name says, revokevalid flag indicates that the cached revoke
52  * status of a buffer is valid and we can rely on the cached status.
53  *
54  * Revoke information on buffers is a tri-state value:
55  *
56  * RevokeValid clear:	no cached revoke status, need to look it up
57  * RevokeValid set, Revoked clear:
58  *			buffer has not been revoked, and cancel_revoke
59  *			need do nothing.
60  * RevokeValid set, Revoked set:
61  *			buffer has been revoked.
62  *
63  * Locking rules:
64  * We keep two hash tables of revoke records. One hashtable belongs to the
65  * running transaction (is pointed to by journal->j_revoke), the other one
66  * belongs to the committing transaction. Accesses to the second hash table
67  * happen only from the kjournald and no other thread touches this table.  Also
68  * journal_switch_revoke_table() which switches which hashtable belongs to the
69  * running and which to the committing transaction is called only from
70  * kjournald. Therefore we need no locks when accessing the hashtable belonging
71  * to the committing transaction.
72  *
73  * All users operating on the hash table belonging to the running transaction
74  * have a handle to the transaction. Therefore they are safe from kjournald
75  * switching hash tables under them. For operations on the lists of entries in
76  * the hash table j_revoke_lock is used.
77  *
78  * Finally, also replay code uses the hash tables but at this moment no one else
79  * can touch them (filesystem isn't mounted yet) and hence no locking is
80  * needed.
81  */
82 
83 #ifndef __KERNEL__
84 #include "jfs_user.h"
85 #else
86 #include <linux/time.h>
87 #include <linux/fs.h>
88 #include <linux/jbd2.h>
89 #include <linux/errno.h>
90 #include <linux/slab.h>
91 #include <linux/list.h>
92 #include <linux/init.h>
93 #include <linux/bio.h>
94 #endif
95 #include <linux/log2.h>
96 
97 static struct kmem_cache *jbd2_revoke_record_cache;
98 static struct kmem_cache *jbd2_revoke_table_cache;
99 
100 /* Each revoke record represents one single revoked block.  During
101    journal replay, this involves recording the transaction ID of the
102    last transaction to revoke this block. */
103 
104 struct jbd2_revoke_record_s
105 {
106 	struct list_head  hash;
107 	tid_t		  sequence;	/* Used for recovery only */
108 	unsigned long long	  blocknr;
109 };
110 
111 
112 /* The revoke table is just a simple hash table of revoke records. */
113 struct jbd2_revoke_table_s
114 {
115 	/* It is conceivable that we might want a larger hash table
116 	 * for recovery.  Must be a power of two. */
117 	int		  hash_size;
118 	int		  hash_shift;
119 	struct list_head *hash_table;
120 };
121 
122 
123 #ifdef __KERNEL__
124 static void write_one_revoke_record(journal_t *, transaction_t *,
125 				    struct journal_head **, int *,
126 				    struct jbd2_revoke_record_s *, int);
127 static void flush_descriptor(journal_t *, struct journal_head *, int, int);
128 #endif
129 
130 /* Utility functions to maintain the revoke table */
131 
132 /* Borrowed from buffer.c: this is a tried and tested block hash function */
hash(journal_t * journal,unsigned long long block)133 static inline int hash(journal_t *journal, unsigned long long block)
134 {
135 	struct jbd2_revoke_table_s *table = journal->j_revoke;
136 	int hash_shift = table->hash_shift;
137 	int hash = (int)block ^ (int)((block >> 31) >> 1);
138 
139 	return ((hash << (hash_shift - 6)) ^
140 		(hash >> 13) ^
141 		(hash << (hash_shift - 12))) & (table->hash_size - 1);
142 }
143 
insert_revoke_hash(journal_t * journal,unsigned long long blocknr,tid_t seq)144 static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr,
145 			      tid_t seq)
146 {
147 	struct list_head *hash_list;
148 	struct jbd2_revoke_record_s *record;
149 
150 repeat:
151 	record = kmem_cache_alloc(jbd2_revoke_record_cache, GFP_NOFS);
152 	if (!record)
153 		goto oom;
154 
155 	record->sequence = seq;
156 	record->blocknr = blocknr;
157 	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
158 	spin_lock(&journal->j_revoke_lock);
159 	list_add(&record->hash, hash_list);
160 	spin_unlock(&journal->j_revoke_lock);
161 	return 0;
162 
163 oom:
164 	if (!journal_oom_retry)
165 		return -ENOMEM;
166 	jbd_debug(1, "ENOMEM in %s, retrying\n", __func__);
167 	yield();
168 	goto repeat;
169 }
170 
171 /* Find a revoke record in the journal's hash table. */
172 
find_revoke_record(journal_t * journal,unsigned long long blocknr)173 static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal,
174 						      unsigned long long blocknr)
175 {
176 	struct list_head *hash_list;
177 	struct jbd2_revoke_record_s *record;
178 
179 	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
180 
181 	spin_lock(&journal->j_revoke_lock);
182 	record = (struct jbd2_revoke_record_s *) hash_list->next;
183 	while (&(record->hash) != hash_list) {
184 		if (record->blocknr == blocknr) {
185 			spin_unlock(&journal->j_revoke_lock);
186 			return record;
187 		}
188 		record = (struct jbd2_revoke_record_s *) record->hash.next;
189 	}
190 	spin_unlock(&journal->j_revoke_lock);
191 	return NULL;
192 }
193 
jbd2_journal_destroy_revoke_caches(void)194 void jbd2_journal_destroy_revoke_caches(void)
195 {
196 	if (jbd2_revoke_record_cache) {
197 		kmem_cache_destroy(jbd2_revoke_record_cache);
198 		jbd2_revoke_record_cache = NULL;
199 	}
200 	if (jbd2_revoke_table_cache) {
201 		kmem_cache_destroy(jbd2_revoke_table_cache);
202 		jbd2_revoke_table_cache = NULL;
203 	}
204 }
205 
jbd2_journal_init_revoke_caches(void)206 int __init jbd2_journal_init_revoke_caches(void)
207 {
208 	J_ASSERT(!jbd2_revoke_record_cache);
209 	J_ASSERT(!jbd2_revoke_table_cache);
210 
211 	jbd2_revoke_record_cache = KMEM_CACHE(jbd2_revoke_record_s,
212 					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY);
213 	if (!jbd2_revoke_record_cache)
214 		goto record_cache_failure;
215 
216 	jbd2_revoke_table_cache = KMEM_CACHE(jbd2_revoke_table_s,
217 					     SLAB_TEMPORARY);
218 	if (!jbd2_revoke_table_cache)
219 		goto table_cache_failure;
220 	return 0;
221 table_cache_failure:
222 	jbd2_journal_destroy_revoke_caches();
223 record_cache_failure:
224 		return -ENOMEM;
225 }
226 
jbd2_journal_init_revoke_table(int hash_size)227 static struct jbd2_revoke_table_s *jbd2_journal_init_revoke_table(int hash_size)
228 {
229 	int shift = 0;
230 	int tmp = hash_size;
231 	struct jbd2_revoke_table_s *table;
232 
233 	table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL);
234 	if (!table)
235 		goto out;
236 
237 	while((tmp >>= 1UL) != 0UL)
238 		shift++;
239 
240 	table->hash_size = hash_size;
241 	table->hash_shift = shift;
242 	table->hash_table =
243 		kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
244 	if (!table->hash_table) {
245 		kmem_cache_free(jbd2_revoke_table_cache, table);
246 		table = NULL;
247 		goto out;
248 	}
249 
250 	for (tmp = 0; tmp < hash_size; tmp++)
251 		INIT_LIST_HEAD(&table->hash_table[tmp]);
252 
253 out:
254 	return table;
255 }
256 
jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s * table)257 static void jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s *table)
258 {
259 	int i;
260 	struct list_head *hash_list;
261 
262 	for (i = 0; i < table->hash_size; i++) {
263 		hash_list = &table->hash_table[i];
264 		J_ASSERT(list_empty(hash_list));
265 	}
266 
267 	kfree(table->hash_table);
268 	kmem_cache_free(jbd2_revoke_table_cache, table);
269 }
270 
271 /* Initialise the revoke table for a given journal to a given size. */
jbd2_journal_init_revoke(journal_t * journal,int hash_size)272 int jbd2_journal_init_revoke(journal_t *journal, int hash_size)
273 {
274 	J_ASSERT(journal->j_revoke_table[0] == NULL);
275 	J_ASSERT(is_power_of_2(hash_size));
276 
277 	journal->j_revoke_table[0] = jbd2_journal_init_revoke_table(hash_size);
278 	if (!journal->j_revoke_table[0])
279 		goto fail0;
280 
281 	journal->j_revoke_table[1] = jbd2_journal_init_revoke_table(hash_size);
282 	if (!journal->j_revoke_table[1])
283 		goto fail1;
284 
285 	journal->j_revoke = journal->j_revoke_table[1];
286 
287 	spin_lock_init(&journal->j_revoke_lock);
288 
289 	return 0;
290 
291 fail1:
292 	jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
293 fail0:
294 	return -ENOMEM;
295 }
296 
297 /* Destroy a journal's revoke table.  The table must already be empty! */
jbd2_journal_destroy_revoke(journal_t * journal)298 void jbd2_journal_destroy_revoke(journal_t *journal)
299 {
300 	journal->j_revoke = NULL;
301 	if (journal->j_revoke_table[0])
302 		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
303 	if (journal->j_revoke_table[1])
304 		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[1]);
305 }
306 
307 
308 #ifdef __KERNEL__
309 
310 /*
311  * jbd2_journal_revoke: revoke a given buffer_head from the journal.  This
312  * prevents the block from being replayed during recovery if we take a
313  * crash after this current transaction commits.  Any subsequent
314  * metadata writes of the buffer in this transaction cancel the
315  * revoke.
316  *
317  * Note that this call may block --- it is up to the caller to make
318  * sure that there are no further calls to journal_write_metadata
319  * before the revoke is complete.  In ext3, this implies calling the
320  * revoke before clearing the block bitmap when we are deleting
321  * metadata.
322  *
323  * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a
324  * parameter, but does _not_ forget the buffer_head if the bh was only
325  * found implicitly.
326  *
327  * bh_in may not be a journalled buffer - it may have come off
328  * the hash tables without an attached journal_head.
329  *
330  * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count
331  * by one.
332  */
333 
jbd2_journal_revoke(handle_t * handle,unsigned long long blocknr,struct buffer_head * bh_in)334 int jbd2_journal_revoke(handle_t *handle, unsigned long long blocknr,
335 		   struct buffer_head *bh_in)
336 {
337 	struct buffer_head *bh = NULL;
338 	journal_t *journal;
339 	struct block_device *bdev;
340 	int err;
341 
342 	might_sleep();
343 	if (bh_in)
344 		BUFFER_TRACE(bh_in, "enter");
345 
346 	journal = handle->h_transaction->t_journal;
347 	if (!jbd2_journal_set_features(journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)){
348 		J_ASSERT (!"Cannot set revoke feature!");
349 		return -EINVAL;
350 	}
351 
352 	bdev = journal->j_fs_dev;
353 	bh = bh_in;
354 
355 	if (!bh) {
356 		bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
357 		if (bh)
358 			BUFFER_TRACE(bh, "found on hash");
359 	}
360 #ifdef JBD2_EXPENSIVE_CHECKING
361 	else {
362 		struct buffer_head *bh2;
363 
364 		/* If there is a different buffer_head lying around in
365 		 * memory anywhere... */
366 		bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
367 		if (bh2) {
368 			/* ... and it has RevokeValid status... */
369 			if (bh2 != bh && buffer_revokevalid(bh2))
370 				/* ...then it better be revoked too,
371 				 * since it's illegal to create a revoke
372 				 * record against a buffer_head which is
373 				 * not marked revoked --- that would
374 				 * risk missing a subsequent revoke
375 				 * cancel. */
376 				J_ASSERT_BH(bh2, buffer_revoked(bh2));
377 			put_bh(bh2);
378 		}
379 	}
380 #endif
381 
382 	/* We really ought not ever to revoke twice in a row without
383            first having the revoke cancelled: it's illegal to free a
384            block twice without allocating it in between! */
385 	if (bh) {
386 		if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
387 				 "inconsistent data on disk")) {
388 			if (!bh_in)
389 				brelse(bh);
390 			return -EIO;
391 		}
392 		set_buffer_revoked(bh);
393 		set_buffer_revokevalid(bh);
394 		if (bh_in) {
395 			BUFFER_TRACE(bh_in, "call jbd2_journal_forget");
396 			jbd2_journal_forget(handle, bh_in);
397 		} else {
398 			BUFFER_TRACE(bh, "call brelse");
399 			__brelse(bh);
400 		}
401 	}
402 
403 	jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in);
404 	err = insert_revoke_hash(journal, blocknr,
405 				handle->h_transaction->t_tid);
406 	BUFFER_TRACE(bh_in, "exit");
407 	return err;
408 }
409 
410 /*
411  * Cancel an outstanding revoke.  For use only internally by the
412  * journaling code (called from jbd2_journal_get_write_access).
413  *
414  * We trust buffer_revoked() on the buffer if the buffer is already
415  * being journaled: if there is no revoke pending on the buffer, then we
416  * don't do anything here.
417  *
418  * This would break if it were possible for a buffer to be revoked and
419  * discarded, and then reallocated within the same transaction.  In such
420  * a case we would have lost the revoked bit, but when we arrived here
421  * the second time we would still have a pending revoke to cancel.  So,
422  * do not trust the Revoked bit on buffers unless RevokeValid is also
423  * set.
424  */
jbd2_journal_cancel_revoke(handle_t * handle,struct journal_head * jh)425 int jbd2_journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
426 {
427 	struct jbd2_revoke_record_s *record;
428 	journal_t *journal = handle->h_transaction->t_journal;
429 	int need_cancel;
430 	int did_revoke = 0;	/* akpm: debug */
431 	struct buffer_head *bh = jh2bh(jh);
432 
433 	jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
434 
435 	/* Is the existing Revoke bit valid?  If so, we trust it, and
436 	 * only perform the full cancel if the revoke bit is set.  If
437 	 * not, we can't trust the revoke bit, and we need to do the
438 	 * full search for a revoke record. */
439 	if (test_set_buffer_revokevalid(bh)) {
440 		need_cancel = test_clear_buffer_revoked(bh);
441 	} else {
442 		need_cancel = 1;
443 		clear_buffer_revoked(bh);
444 	}
445 
446 	if (need_cancel) {
447 		record = find_revoke_record(journal, bh->b_blocknr);
448 		if (record) {
449 			jbd_debug(4, "cancelled existing revoke on "
450 				  "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
451 			spin_lock(&journal->j_revoke_lock);
452 			list_del(&record->hash);
453 			spin_unlock(&journal->j_revoke_lock);
454 			kmem_cache_free(jbd2_revoke_record_cache, record);
455 			did_revoke = 1;
456 		}
457 	}
458 
459 #ifdef JBD2_EXPENSIVE_CHECKING
460 	/* There better not be one left behind by now! */
461 	record = find_revoke_record(journal, bh->b_blocknr);
462 	J_ASSERT_JH(jh, record == NULL);
463 #endif
464 
465 	/* Finally, have we just cleared revoke on an unhashed
466 	 * buffer_head?  If so, we'd better make sure we clear the
467 	 * revoked status on any hashed alias too, otherwise the revoke
468 	 * state machine will get very upset later on. */
469 	if (need_cancel) {
470 		struct buffer_head *bh2;
471 		bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
472 		if (bh2) {
473 			if (bh2 != bh)
474 				clear_buffer_revoked(bh2);
475 			__brelse(bh2);
476 		}
477 	}
478 	return did_revoke;
479 }
480 
481 /*
482  * journal_clear_revoked_flag clears revoked flag of buffers in
483  * revoke table to reflect there is no revoked buffers in the next
484  * transaction which is going to be started.
485  */
jbd2_clear_buffer_revoked_flags(journal_t * journal)486 void jbd2_clear_buffer_revoked_flags(journal_t *journal)
487 {
488 	struct jbd2_revoke_table_s *revoke = journal->j_revoke;
489 	int i = 0;
490 
491 	for (i = 0; i < revoke->hash_size; i++) {
492 		struct list_head *hash_list;
493 		struct list_head *list_entry;
494 		hash_list = &revoke->hash_table[i];
495 
496 		list_for_each(list_entry, hash_list) {
497 			struct jbd2_revoke_record_s *record;
498 			struct buffer_head *bh;
499 			record = (struct jbd2_revoke_record_s *)list_entry;
500 			bh = __find_get_block(journal->j_fs_dev,
501 					      record->blocknr,
502 					      journal->j_blocksize);
503 			if (bh) {
504 				clear_buffer_revoked(bh);
505 				__brelse(bh);
506 			}
507 		}
508 	}
509 }
510 
511 /* journal_switch_revoke table select j_revoke for next transaction
512  * we do not want to suspend any processing until all revokes are
513  * written -bzzz
514  */
jbd2_journal_switch_revoke_table(journal_t * journal)515 void jbd2_journal_switch_revoke_table(journal_t *journal)
516 {
517 	int i;
518 
519 	if (journal->j_revoke == journal->j_revoke_table[0])
520 		journal->j_revoke = journal->j_revoke_table[1];
521 	else
522 		journal->j_revoke = journal->j_revoke_table[0];
523 
524 	for (i = 0; i < journal->j_revoke->hash_size; i++)
525 		INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
526 }
527 
528 /*
529  * Write revoke records to the journal for all entries in the current
530  * revoke hash, deleting the entries as we go.
531  */
jbd2_journal_write_revoke_records(journal_t * journal,transaction_t * transaction,int write_op)532 void jbd2_journal_write_revoke_records(journal_t *journal,
533 				       transaction_t *transaction,
534 				       int write_op)
535 {
536 	struct journal_head *descriptor;
537 	struct jbd2_revoke_record_s *record;
538 	struct jbd2_revoke_table_s *revoke;
539 	struct list_head *hash_list;
540 	int i, offset, count;
541 
542 	descriptor = NULL;
543 	offset = 0;
544 	count = 0;
545 
546 	/* select revoke table for committing transaction */
547 	revoke = journal->j_revoke == journal->j_revoke_table[0] ?
548 		journal->j_revoke_table[1] : journal->j_revoke_table[0];
549 
550 	for (i = 0; i < revoke->hash_size; i++) {
551 		hash_list = &revoke->hash_table[i];
552 
553 		while (!list_empty(hash_list)) {
554 			record = (struct jbd2_revoke_record_s *)
555 				hash_list->next;
556 			write_one_revoke_record(journal, transaction,
557 						&descriptor, &offset,
558 						record, write_op);
559 			count++;
560 			list_del(&record->hash);
561 			kmem_cache_free(jbd2_revoke_record_cache, record);
562 		}
563 	}
564 	if (descriptor)
565 		flush_descriptor(journal, descriptor, offset, write_op);
566 	jbd_debug(1, "Wrote %d revoke records\n", count);
567 }
568 
569 /*
570  * Write out one revoke record.  We need to create a new descriptor
571  * block if the old one is full or if we have not already created one.
572  */
573 
write_one_revoke_record(journal_t * journal,transaction_t * transaction,struct journal_head ** descriptorp,int * offsetp,struct jbd2_revoke_record_s * record,int write_op)574 static void write_one_revoke_record(journal_t *journal,
575 				    transaction_t *transaction,
576 				    struct journal_head **descriptorp,
577 				    int *offsetp,
578 				    struct jbd2_revoke_record_s *record,
579 				    int write_op)
580 {
581 	struct journal_head *descriptor;
582 	int offset;
583 	journal_header_t *header;
584 
585 	/* If we are already aborting, this all becomes a noop.  We
586            still need to go round the loop in
587            jbd2_journal_write_revoke_records in order to free all of the
588            revoke records: only the IO to the journal is omitted. */
589 	if (is_journal_aborted(journal))
590 		return;
591 
592 	descriptor = *descriptorp;
593 	offset = *offsetp;
594 
595 	/* Make sure we have a descriptor with space left for the record */
596 	if (descriptor) {
597 		if (offset == journal->j_blocksize) {
598 			flush_descriptor(journal, descriptor, offset, write_op);
599 			descriptor = NULL;
600 		}
601 	}
602 
603 	if (!descriptor) {
604 		descriptor = jbd2_journal_get_descriptor_buffer(journal);
605 		if (!descriptor)
606 			return;
607 		header = (journal_header_t *) &jh2bh(descriptor)->b_data[0];
608 		header->h_magic     = cpu_to_be32(JBD2_MAGIC_NUMBER);
609 		header->h_blocktype = cpu_to_be32(JBD2_REVOKE_BLOCK);
610 		header->h_sequence  = cpu_to_be32(transaction->t_tid);
611 
612 		/* Record it so that we can wait for IO completion later */
613 		JBUFFER_TRACE(descriptor, "file as BJ_LogCtl");
614 		jbd2_journal_file_buffer(descriptor, transaction, BJ_LogCtl);
615 
616 		offset = sizeof(jbd2_journal_revoke_header_t);
617 		*descriptorp = descriptor;
618 	}
619 
620 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT)) {
621 		* ((__be64 *)(&jh2bh(descriptor)->b_data[offset])) =
622 			cpu_to_be64(record->blocknr);
623 		offset += 8;
624 
625 	} else {
626 		* ((__be32 *)(&jh2bh(descriptor)->b_data[offset])) =
627 			cpu_to_be32(record->blocknr);
628 		offset += 4;
629 	}
630 
631 	*offsetp = offset;
632 }
633 
634 /*
635  * Flush a revoke descriptor out to the journal.  If we are aborting,
636  * this is a noop; otherwise we are generating a buffer which needs to
637  * be waited for during commit, so it has to go onto the appropriate
638  * journal buffer list.
639  */
640 
flush_descriptor(journal_t * journal,struct journal_head * descriptor,int offset,int write_op)641 static void flush_descriptor(journal_t *journal,
642 			     struct journal_head *descriptor,
643 			     int offset, int write_op)
644 {
645 	jbd2_journal_revoke_header_t *header;
646 	struct buffer_head *bh = jh2bh(descriptor);
647 
648 	if (is_journal_aborted(journal)) {
649 		put_bh(bh);
650 		return;
651 	}
652 
653 	header = (jbd2_journal_revoke_header_t *) jh2bh(descriptor)->b_data;
654 	header->r_count = cpu_to_be32(offset);
655 	set_buffer_jwrite(bh);
656 	BUFFER_TRACE(bh, "write");
657 	set_buffer_dirty(bh);
658 	write_dirty_buffer(bh, write_op);
659 }
660 #endif
661 
662 /*
663  * Revoke support for recovery.
664  *
665  * Recovery needs to be able to:
666  *
667  *  record all revoke records, including the tid of the latest instance
668  *  of each revoke in the journal
669  *
670  *  check whether a given block in a given transaction should be replayed
671  *  (ie. has not been revoked by a revoke record in that or a subsequent
672  *  transaction)
673  *
674  *  empty the revoke table after recovery.
675  */
676 
677 /*
678  * First, setting revoke records.  We create a new revoke record for
679  * every block ever revoked in the log as we scan it for recovery, and
680  * we update the existing records if we find multiple revokes for a
681  * single block.
682  */
683 
jbd2_journal_set_revoke(journal_t * journal,unsigned long long blocknr,tid_t sequence)684 int jbd2_journal_set_revoke(journal_t *journal,
685 		       unsigned long long blocknr,
686 		       tid_t sequence)
687 {
688 	struct jbd2_revoke_record_s *record;
689 
690 	record = find_revoke_record(journal, blocknr);
691 	if (record) {
692 		/* If we have multiple occurrences, only record the
693 		 * latest sequence number in the hashed record */
694 		if (tid_gt(sequence, record->sequence))
695 			record->sequence = sequence;
696 		return 0;
697 	}
698 	return insert_revoke_hash(journal, blocknr, sequence);
699 }
700 
701 /*
702  * Test revoke records.  For a given block referenced in the log, has
703  * that block been revoked?  A revoke record with a given transaction
704  * sequence number revokes all blocks in that transaction and earlier
705  * ones, but later transactions still need replayed.
706  */
707 
jbd2_journal_test_revoke(journal_t * journal,unsigned long long blocknr,tid_t sequence)708 int jbd2_journal_test_revoke(journal_t *journal,
709 			unsigned long long blocknr,
710 			tid_t sequence)
711 {
712 	struct jbd2_revoke_record_s *record;
713 
714 	record = find_revoke_record(journal, blocknr);
715 	if (!record)
716 		return 0;
717 	if (tid_gt(sequence, record->sequence))
718 		return 0;
719 	return 1;
720 }
721 
722 /*
723  * Finally, once recovery is over, we need to clear the revoke table so
724  * that it can be reused by the running filesystem.
725  */
726 
jbd2_journal_clear_revoke(journal_t * journal)727 void jbd2_journal_clear_revoke(journal_t *journal)
728 {
729 	int i;
730 	struct list_head *hash_list;
731 	struct jbd2_revoke_record_s *record;
732 	struct jbd2_revoke_table_s *revoke;
733 
734 	revoke = journal->j_revoke;
735 
736 	for (i = 0; i < revoke->hash_size; i++) {
737 		hash_list = &revoke->hash_table[i];
738 		while (!list_empty(hash_list)) {
739 			record = (struct jbd2_revoke_record_s*) hash_list->next;
740 			list_del(&record->hash);
741 			kmem_cache_free(jbd2_revoke_record_cache, record);
742 		}
743 	}
744 }
745