1 /*******************************************************************************
2 
3   Intel 10 Gigabit PCI Express Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/sched.h>
31 #include <linux/netdevice.h>
32 
33 #include "ixgbe.h"
34 #include "ixgbe_common.h"
35 #include "ixgbe_phy.h"
36 
37 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
38 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
39 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
40 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
41 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
42 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
43                                         u16 count);
44 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
45 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
46 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
48 
49 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
50 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw);
51 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw);
52 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw);
53 static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw);
54 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
55 			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm);
56 static s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num);
57 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
58 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
59 					     u16 words, u16 *data);
60 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
61 					     u16 words, u16 *data);
62 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
63 						 u16 offset);
64 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
65 
66 /**
67  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
68  *  @hw: pointer to hardware structure
69  *
70  *  Starts the hardware by filling the bus info structure and media type, clears
71  *  all on chip counters, initializes receive address registers, multicast
72  *  table, VLAN filter table, calls routine to set up link and flow control
73  *  settings, and leaves transmit and receive units disabled and uninitialized
74  **/
ixgbe_start_hw_generic(struct ixgbe_hw * hw)75 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
76 {
77 	u32 ctrl_ext;
78 
79 	/* Set the media type */
80 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
81 
82 	/* Identify the PHY */
83 	hw->phy.ops.identify(hw);
84 
85 	/* Clear the VLAN filter table */
86 	hw->mac.ops.clear_vfta(hw);
87 
88 	/* Clear statistics registers */
89 	hw->mac.ops.clear_hw_cntrs(hw);
90 
91 	/* Set No Snoop Disable */
92 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
93 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
94 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
95 	IXGBE_WRITE_FLUSH(hw);
96 
97 	/* Setup flow control */
98 	ixgbe_setup_fc(hw, 0);
99 
100 	/* Clear adapter stopped flag */
101 	hw->adapter_stopped = false;
102 
103 	return 0;
104 }
105 
106 /**
107  *  ixgbe_start_hw_gen2 - Init sequence for common device family
108  *  @hw: pointer to hw structure
109  *
110  * Performs the init sequence common to the second generation
111  * of 10 GbE devices.
112  * Devices in the second generation:
113  *     82599
114  *     X540
115  **/
ixgbe_start_hw_gen2(struct ixgbe_hw * hw)116 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
117 {
118 	u32 i;
119 	u32 regval;
120 
121 	/* Clear the rate limiters */
122 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
123 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
124 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
125 	}
126 	IXGBE_WRITE_FLUSH(hw);
127 
128 	/* Disable relaxed ordering */
129 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
130 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
131 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
132 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
133 	}
134 
135 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
136 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
137 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
138 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
139 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
140 	}
141 
142 	return 0;
143 }
144 
145 /**
146  *  ixgbe_init_hw_generic - Generic hardware initialization
147  *  @hw: pointer to hardware structure
148  *
149  *  Initialize the hardware by resetting the hardware, filling the bus info
150  *  structure and media type, clears all on chip counters, initializes receive
151  *  address registers, multicast table, VLAN filter table, calls routine to set
152  *  up link and flow control settings, and leaves transmit and receive units
153  *  disabled and uninitialized
154  **/
ixgbe_init_hw_generic(struct ixgbe_hw * hw)155 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
156 {
157 	s32 status;
158 
159 	/* Reset the hardware */
160 	status = hw->mac.ops.reset_hw(hw);
161 
162 	if (status == 0) {
163 		/* Start the HW */
164 		status = hw->mac.ops.start_hw(hw);
165 	}
166 
167 	return status;
168 }
169 
170 /**
171  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
172  *  @hw: pointer to hardware structure
173  *
174  *  Clears all hardware statistics counters by reading them from the hardware
175  *  Statistics counters are clear on read.
176  **/
ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw * hw)177 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
178 {
179 	u16 i = 0;
180 
181 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
182 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
183 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
184 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
185 	for (i = 0; i < 8; i++)
186 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
187 
188 	IXGBE_READ_REG(hw, IXGBE_MLFC);
189 	IXGBE_READ_REG(hw, IXGBE_MRFC);
190 	IXGBE_READ_REG(hw, IXGBE_RLEC);
191 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
192 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
193 	if (hw->mac.type >= ixgbe_mac_82599EB) {
194 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
195 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
196 	} else {
197 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
198 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
199 	}
200 
201 	for (i = 0; i < 8; i++) {
202 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
203 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
204 		if (hw->mac.type >= ixgbe_mac_82599EB) {
205 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
206 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
207 		} else {
208 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
209 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
210 		}
211 	}
212 	if (hw->mac.type >= ixgbe_mac_82599EB)
213 		for (i = 0; i < 8; i++)
214 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
215 	IXGBE_READ_REG(hw, IXGBE_PRC64);
216 	IXGBE_READ_REG(hw, IXGBE_PRC127);
217 	IXGBE_READ_REG(hw, IXGBE_PRC255);
218 	IXGBE_READ_REG(hw, IXGBE_PRC511);
219 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
220 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
221 	IXGBE_READ_REG(hw, IXGBE_GPRC);
222 	IXGBE_READ_REG(hw, IXGBE_BPRC);
223 	IXGBE_READ_REG(hw, IXGBE_MPRC);
224 	IXGBE_READ_REG(hw, IXGBE_GPTC);
225 	IXGBE_READ_REG(hw, IXGBE_GORCL);
226 	IXGBE_READ_REG(hw, IXGBE_GORCH);
227 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
228 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
229 	if (hw->mac.type == ixgbe_mac_82598EB)
230 		for (i = 0; i < 8; i++)
231 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
232 	IXGBE_READ_REG(hw, IXGBE_RUC);
233 	IXGBE_READ_REG(hw, IXGBE_RFC);
234 	IXGBE_READ_REG(hw, IXGBE_ROC);
235 	IXGBE_READ_REG(hw, IXGBE_RJC);
236 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
237 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
238 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
239 	IXGBE_READ_REG(hw, IXGBE_TORL);
240 	IXGBE_READ_REG(hw, IXGBE_TORH);
241 	IXGBE_READ_REG(hw, IXGBE_TPR);
242 	IXGBE_READ_REG(hw, IXGBE_TPT);
243 	IXGBE_READ_REG(hw, IXGBE_PTC64);
244 	IXGBE_READ_REG(hw, IXGBE_PTC127);
245 	IXGBE_READ_REG(hw, IXGBE_PTC255);
246 	IXGBE_READ_REG(hw, IXGBE_PTC511);
247 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
248 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
249 	IXGBE_READ_REG(hw, IXGBE_MPTC);
250 	IXGBE_READ_REG(hw, IXGBE_BPTC);
251 	for (i = 0; i < 16; i++) {
252 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
253 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
254 		if (hw->mac.type >= ixgbe_mac_82599EB) {
255 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
256 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
257 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
258 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
259 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
260 		} else {
261 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
262 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
263 		}
264 	}
265 
266 	if (hw->mac.type == ixgbe_mac_X540) {
267 		if (hw->phy.id == 0)
268 			hw->phy.ops.identify(hw);
269 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
270 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
271 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
272 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
273 	}
274 
275 	return 0;
276 }
277 
278 /**
279  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
280  *  @hw: pointer to hardware structure
281  *  @pba_num: stores the part number string from the EEPROM
282  *  @pba_num_size: part number string buffer length
283  *
284  *  Reads the part number string from the EEPROM.
285  **/
ixgbe_read_pba_string_generic(struct ixgbe_hw * hw,u8 * pba_num,u32 pba_num_size)286 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
287                                   u32 pba_num_size)
288 {
289 	s32 ret_val;
290 	u16 data;
291 	u16 pba_ptr;
292 	u16 offset;
293 	u16 length;
294 
295 	if (pba_num == NULL) {
296 		hw_dbg(hw, "PBA string buffer was null\n");
297 		return IXGBE_ERR_INVALID_ARGUMENT;
298 	}
299 
300 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
301 	if (ret_val) {
302 		hw_dbg(hw, "NVM Read Error\n");
303 		return ret_val;
304 	}
305 
306 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
307 	if (ret_val) {
308 		hw_dbg(hw, "NVM Read Error\n");
309 		return ret_val;
310 	}
311 
312 	/*
313 	 * if data is not ptr guard the PBA must be in legacy format which
314 	 * means pba_ptr is actually our second data word for the PBA number
315 	 * and we can decode it into an ascii string
316 	 */
317 	if (data != IXGBE_PBANUM_PTR_GUARD) {
318 		hw_dbg(hw, "NVM PBA number is not stored as string\n");
319 
320 		/* we will need 11 characters to store the PBA */
321 		if (pba_num_size < 11) {
322 			hw_dbg(hw, "PBA string buffer too small\n");
323 			return IXGBE_ERR_NO_SPACE;
324 		}
325 
326 		/* extract hex string from data and pba_ptr */
327 		pba_num[0] = (data >> 12) & 0xF;
328 		pba_num[1] = (data >> 8) & 0xF;
329 		pba_num[2] = (data >> 4) & 0xF;
330 		pba_num[3] = data & 0xF;
331 		pba_num[4] = (pba_ptr >> 12) & 0xF;
332 		pba_num[5] = (pba_ptr >> 8) & 0xF;
333 		pba_num[6] = '-';
334 		pba_num[7] = 0;
335 		pba_num[8] = (pba_ptr >> 4) & 0xF;
336 		pba_num[9] = pba_ptr & 0xF;
337 
338 		/* put a null character on the end of our string */
339 		pba_num[10] = '\0';
340 
341 		/* switch all the data but the '-' to hex char */
342 		for (offset = 0; offset < 10; offset++) {
343 			if (pba_num[offset] < 0xA)
344 				pba_num[offset] += '0';
345 			else if (pba_num[offset] < 0x10)
346 				pba_num[offset] += 'A' - 0xA;
347 		}
348 
349 		return 0;
350 	}
351 
352 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
353 	if (ret_val) {
354 		hw_dbg(hw, "NVM Read Error\n");
355 		return ret_val;
356 	}
357 
358 	if (length == 0xFFFF || length == 0) {
359 		hw_dbg(hw, "NVM PBA number section invalid length\n");
360 		return IXGBE_ERR_PBA_SECTION;
361 	}
362 
363 	/* check if pba_num buffer is big enough */
364 	if (pba_num_size  < (((u32)length * 2) - 1)) {
365 		hw_dbg(hw, "PBA string buffer too small\n");
366 		return IXGBE_ERR_NO_SPACE;
367 	}
368 
369 	/* trim pba length from start of string */
370 	pba_ptr++;
371 	length--;
372 
373 	for (offset = 0; offset < length; offset++) {
374 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
375 		if (ret_val) {
376 			hw_dbg(hw, "NVM Read Error\n");
377 			return ret_val;
378 		}
379 		pba_num[offset * 2] = (u8)(data >> 8);
380 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
381 	}
382 	pba_num[offset * 2] = '\0';
383 
384 	return 0;
385 }
386 
387 /**
388  *  ixgbe_get_mac_addr_generic - Generic get MAC address
389  *  @hw: pointer to hardware structure
390  *  @mac_addr: Adapter MAC address
391  *
392  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
393  *  A reset of the adapter must be performed prior to calling this function
394  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
395  **/
ixgbe_get_mac_addr_generic(struct ixgbe_hw * hw,u8 * mac_addr)396 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
397 {
398 	u32 rar_high;
399 	u32 rar_low;
400 	u16 i;
401 
402 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
403 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
404 
405 	for (i = 0; i < 4; i++)
406 		mac_addr[i] = (u8)(rar_low >> (i*8));
407 
408 	for (i = 0; i < 2; i++)
409 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
410 
411 	return 0;
412 }
413 
414 /**
415  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
416  *  @hw: pointer to hardware structure
417  *
418  *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
419  **/
ixgbe_get_bus_info_generic(struct ixgbe_hw * hw)420 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
421 {
422 	struct ixgbe_adapter *adapter = hw->back;
423 	struct ixgbe_mac_info *mac = &hw->mac;
424 	u16 link_status;
425 
426 	hw->bus.type = ixgbe_bus_type_pci_express;
427 
428 	/* Get the negotiated link width and speed from PCI config space */
429 	pci_read_config_word(adapter->pdev, IXGBE_PCI_LINK_STATUS,
430 	                     &link_status);
431 
432 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
433 	case IXGBE_PCI_LINK_WIDTH_1:
434 		hw->bus.width = ixgbe_bus_width_pcie_x1;
435 		break;
436 	case IXGBE_PCI_LINK_WIDTH_2:
437 		hw->bus.width = ixgbe_bus_width_pcie_x2;
438 		break;
439 	case IXGBE_PCI_LINK_WIDTH_4:
440 		hw->bus.width = ixgbe_bus_width_pcie_x4;
441 		break;
442 	case IXGBE_PCI_LINK_WIDTH_8:
443 		hw->bus.width = ixgbe_bus_width_pcie_x8;
444 		break;
445 	default:
446 		hw->bus.width = ixgbe_bus_width_unknown;
447 		break;
448 	}
449 
450 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
451 	case IXGBE_PCI_LINK_SPEED_2500:
452 		hw->bus.speed = ixgbe_bus_speed_2500;
453 		break;
454 	case IXGBE_PCI_LINK_SPEED_5000:
455 		hw->bus.speed = ixgbe_bus_speed_5000;
456 		break;
457 	default:
458 		hw->bus.speed = ixgbe_bus_speed_unknown;
459 		break;
460 	}
461 
462 	mac->ops.set_lan_id(hw);
463 
464 	return 0;
465 }
466 
467 /**
468  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
469  *  @hw: pointer to the HW structure
470  *
471  *  Determines the LAN function id by reading memory-mapped registers
472  *  and swaps the port value if requested.
473  **/
ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw * hw)474 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
475 {
476 	struct ixgbe_bus_info *bus = &hw->bus;
477 	u32 reg;
478 
479 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
480 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
481 	bus->lan_id = bus->func;
482 
483 	/* check for a port swap */
484 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
485 	if (reg & IXGBE_FACTPS_LFS)
486 		bus->func ^= 0x1;
487 }
488 
489 /**
490  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
491  *  @hw: pointer to hardware structure
492  *
493  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
494  *  disables transmit and receive units. The adapter_stopped flag is used by
495  *  the shared code and drivers to determine if the adapter is in a stopped
496  *  state and should not touch the hardware.
497  **/
ixgbe_stop_adapter_generic(struct ixgbe_hw * hw)498 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
499 {
500 	u32 reg_val;
501 	u16 i;
502 
503 	/*
504 	 * Set the adapter_stopped flag so other driver functions stop touching
505 	 * the hardware
506 	 */
507 	hw->adapter_stopped = true;
508 
509 	/* Disable the receive unit */
510 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0);
511 
512 	/* Clear interrupt mask to stop interrupts from being generated */
513 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
514 
515 	/* Clear any pending interrupts, flush previous writes */
516 	IXGBE_READ_REG(hw, IXGBE_EICR);
517 
518 	/* Disable the transmit unit.  Each queue must be disabled. */
519 	for (i = 0; i < hw->mac.max_tx_queues; i++)
520 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
521 
522 	/* Disable the receive unit by stopping each queue */
523 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
524 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
525 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
526 		reg_val |= IXGBE_RXDCTL_SWFLSH;
527 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
528 	}
529 
530 	/* flush all queues disables */
531 	IXGBE_WRITE_FLUSH(hw);
532 	usleep_range(1000, 2000);
533 
534 	/*
535 	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
536 	 * access and verify no pending requests
537 	 */
538 	return ixgbe_disable_pcie_master(hw);
539 }
540 
541 /**
542  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
543  *  @hw: pointer to hardware structure
544  *  @index: led number to turn on
545  **/
ixgbe_led_on_generic(struct ixgbe_hw * hw,u32 index)546 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
547 {
548 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
549 
550 	/* To turn on the LED, set mode to ON. */
551 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
552 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
553 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
554 	IXGBE_WRITE_FLUSH(hw);
555 
556 	return 0;
557 }
558 
559 /**
560  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
561  *  @hw: pointer to hardware structure
562  *  @index: led number to turn off
563  **/
ixgbe_led_off_generic(struct ixgbe_hw * hw,u32 index)564 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
565 {
566 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
567 
568 	/* To turn off the LED, set mode to OFF. */
569 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
570 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
571 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
572 	IXGBE_WRITE_FLUSH(hw);
573 
574 	return 0;
575 }
576 
577 /**
578  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
579  *  @hw: pointer to hardware structure
580  *
581  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
582  *  ixgbe_hw struct in order to set up EEPROM access.
583  **/
ixgbe_init_eeprom_params_generic(struct ixgbe_hw * hw)584 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
585 {
586 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
587 	u32 eec;
588 	u16 eeprom_size;
589 
590 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
591 		eeprom->type = ixgbe_eeprom_none;
592 		/* Set default semaphore delay to 10ms which is a well
593 		 * tested value */
594 		eeprom->semaphore_delay = 10;
595 		/* Clear EEPROM page size, it will be initialized as needed */
596 		eeprom->word_page_size = 0;
597 
598 		/*
599 		 * Check for EEPROM present first.
600 		 * If not present leave as none
601 		 */
602 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
603 		if (eec & IXGBE_EEC_PRES) {
604 			eeprom->type = ixgbe_eeprom_spi;
605 
606 			/*
607 			 * SPI EEPROM is assumed here.  This code would need to
608 			 * change if a future EEPROM is not SPI.
609 			 */
610 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
611 					    IXGBE_EEC_SIZE_SHIFT);
612 			eeprom->word_size = 1 << (eeprom_size +
613 						  IXGBE_EEPROM_WORD_SIZE_SHIFT);
614 		}
615 
616 		if (eec & IXGBE_EEC_ADDR_SIZE)
617 			eeprom->address_bits = 16;
618 		else
619 			eeprom->address_bits = 8;
620 		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
621 			  "%d\n", eeprom->type, eeprom->word_size,
622 			  eeprom->address_bits);
623 	}
624 
625 	return 0;
626 }
627 
628 /**
629  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
630  *  @hw: pointer to hardware structure
631  *  @offset: offset within the EEPROM to write
632  *  @words: number of words
633  *  @data: 16 bit word(s) to write to EEPROM
634  *
635  *  Reads 16 bit word(s) from EEPROM through bit-bang method
636  **/
ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw * hw,u16 offset,u16 words,u16 * data)637 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
638 					       u16 words, u16 *data)
639 {
640 	s32 status = 0;
641 	u16 i, count;
642 
643 	hw->eeprom.ops.init_params(hw);
644 
645 	if (words == 0) {
646 		status = IXGBE_ERR_INVALID_ARGUMENT;
647 		goto out;
648 	}
649 
650 	if (offset + words > hw->eeprom.word_size) {
651 		status = IXGBE_ERR_EEPROM;
652 		goto out;
653 	}
654 
655 	/*
656 	 * The EEPROM page size cannot be queried from the chip. We do lazy
657 	 * initialization. It is worth to do that when we write large buffer.
658 	 */
659 	if ((hw->eeprom.word_page_size == 0) &&
660 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
661 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
662 
663 	/*
664 	 * We cannot hold synchronization semaphores for too long
665 	 * to avoid other entity starvation. However it is more efficient
666 	 * to read in bursts than synchronizing access for each word.
667 	 */
668 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
669 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
670 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
671 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
672 							    count, &data[i]);
673 
674 		if (status != 0)
675 			break;
676 	}
677 
678 out:
679 	return status;
680 }
681 
682 /**
683  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
684  *  @hw: pointer to hardware structure
685  *  @offset: offset within the EEPROM to be written to
686  *  @words: number of word(s)
687  *  @data: 16 bit word(s) to be written to the EEPROM
688  *
689  *  If ixgbe_eeprom_update_checksum is not called after this function, the
690  *  EEPROM will most likely contain an invalid checksum.
691  **/
ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw * hw,u16 offset,u16 words,u16 * data)692 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
693 					      u16 words, u16 *data)
694 {
695 	s32 status;
696 	u16 word;
697 	u16 page_size;
698 	u16 i;
699 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
700 
701 	/* Prepare the EEPROM for writing  */
702 	status = ixgbe_acquire_eeprom(hw);
703 
704 	if (status == 0) {
705 		if (ixgbe_ready_eeprom(hw) != 0) {
706 			ixgbe_release_eeprom(hw);
707 			status = IXGBE_ERR_EEPROM;
708 		}
709 	}
710 
711 	if (status == 0) {
712 		for (i = 0; i < words; i++) {
713 			ixgbe_standby_eeprom(hw);
714 
715 			/*  Send the WRITE ENABLE command (8 bit opcode )  */
716 			ixgbe_shift_out_eeprom_bits(hw,
717 						  IXGBE_EEPROM_WREN_OPCODE_SPI,
718 						  IXGBE_EEPROM_OPCODE_BITS);
719 
720 			ixgbe_standby_eeprom(hw);
721 
722 			/*
723 			 * Some SPI eeproms use the 8th address bit embedded
724 			 * in the opcode
725 			 */
726 			if ((hw->eeprom.address_bits == 8) &&
727 			    ((offset + i) >= 128))
728 				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
729 
730 			/* Send the Write command (8-bit opcode + addr) */
731 			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
732 						    IXGBE_EEPROM_OPCODE_BITS);
733 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
734 						    hw->eeprom.address_bits);
735 
736 			page_size = hw->eeprom.word_page_size;
737 
738 			/* Send the data in burst via SPI*/
739 			do {
740 				word = data[i];
741 				word = (word >> 8) | (word << 8);
742 				ixgbe_shift_out_eeprom_bits(hw, word, 16);
743 
744 				if (page_size == 0)
745 					break;
746 
747 				/* do not wrap around page */
748 				if (((offset + i) & (page_size - 1)) ==
749 				    (page_size - 1))
750 					break;
751 			} while (++i < words);
752 
753 			ixgbe_standby_eeprom(hw);
754 			usleep_range(10000, 20000);
755 		}
756 		/* Done with writing - release the EEPROM */
757 		ixgbe_release_eeprom(hw);
758 	}
759 
760 	return status;
761 }
762 
763 /**
764  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
765  *  @hw: pointer to hardware structure
766  *  @offset: offset within the EEPROM to be written to
767  *  @data: 16 bit word to be written to the EEPROM
768  *
769  *  If ixgbe_eeprom_update_checksum is not called after this function, the
770  *  EEPROM will most likely contain an invalid checksum.
771  **/
ixgbe_write_eeprom_generic(struct ixgbe_hw * hw,u16 offset,u16 data)772 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
773 {
774 	s32 status;
775 
776 	hw->eeprom.ops.init_params(hw);
777 
778 	if (offset >= hw->eeprom.word_size) {
779 		status = IXGBE_ERR_EEPROM;
780 		goto out;
781 	}
782 
783 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
784 
785 out:
786 	return status;
787 }
788 
789 /**
790  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
791  *  @hw: pointer to hardware structure
792  *  @offset: offset within the EEPROM to be read
793  *  @words: number of word(s)
794  *  @data: read 16 bit words(s) from EEPROM
795  *
796  *  Reads 16 bit word(s) from EEPROM through bit-bang method
797  **/
ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw * hw,u16 offset,u16 words,u16 * data)798 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
799 					      u16 words, u16 *data)
800 {
801 	s32 status = 0;
802 	u16 i, count;
803 
804 	hw->eeprom.ops.init_params(hw);
805 
806 	if (words == 0) {
807 		status = IXGBE_ERR_INVALID_ARGUMENT;
808 		goto out;
809 	}
810 
811 	if (offset + words > hw->eeprom.word_size) {
812 		status = IXGBE_ERR_EEPROM;
813 		goto out;
814 	}
815 
816 	/*
817 	 * We cannot hold synchronization semaphores for too long
818 	 * to avoid other entity starvation. However it is more efficient
819 	 * to read in bursts than synchronizing access for each word.
820 	 */
821 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
822 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
823 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
824 
825 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
826 							   count, &data[i]);
827 
828 		if (status != 0)
829 			break;
830 	}
831 
832 out:
833 	return status;
834 }
835 
836 /**
837  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
838  *  @hw: pointer to hardware structure
839  *  @offset: offset within the EEPROM to be read
840  *  @words: number of word(s)
841  *  @data: read 16 bit word(s) from EEPROM
842  *
843  *  Reads 16 bit word(s) from EEPROM through bit-bang method
844  **/
ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw * hw,u16 offset,u16 words,u16 * data)845 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
846 					     u16 words, u16 *data)
847 {
848 	s32 status;
849 	u16 word_in;
850 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
851 	u16 i;
852 
853 	/* Prepare the EEPROM for reading  */
854 	status = ixgbe_acquire_eeprom(hw);
855 
856 	if (status == 0) {
857 		if (ixgbe_ready_eeprom(hw) != 0) {
858 			ixgbe_release_eeprom(hw);
859 			status = IXGBE_ERR_EEPROM;
860 		}
861 	}
862 
863 	if (status == 0) {
864 		for (i = 0; i < words; i++) {
865 			ixgbe_standby_eeprom(hw);
866 			/*
867 			 * Some SPI eeproms use the 8th address bit embedded
868 			 * in the opcode
869 			 */
870 			if ((hw->eeprom.address_bits == 8) &&
871 			    ((offset + i) >= 128))
872 				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
873 
874 			/* Send the READ command (opcode + addr) */
875 			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
876 						    IXGBE_EEPROM_OPCODE_BITS);
877 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
878 						    hw->eeprom.address_bits);
879 
880 			/* Read the data. */
881 			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
882 			data[i] = (word_in >> 8) | (word_in << 8);
883 		}
884 
885 		/* End this read operation */
886 		ixgbe_release_eeprom(hw);
887 	}
888 
889 	return status;
890 }
891 
892 /**
893  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
894  *  @hw: pointer to hardware structure
895  *  @offset: offset within the EEPROM to be read
896  *  @data: read 16 bit value from EEPROM
897  *
898  *  Reads 16 bit value from EEPROM through bit-bang method
899  **/
ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw * hw,u16 offset,u16 * data)900 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
901 				       u16 *data)
902 {
903 	s32 status;
904 
905 	hw->eeprom.ops.init_params(hw);
906 
907 	if (offset >= hw->eeprom.word_size) {
908 		status = IXGBE_ERR_EEPROM;
909 		goto out;
910 	}
911 
912 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
913 
914 out:
915 	return status;
916 }
917 
918 /**
919  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
920  *  @hw: pointer to hardware structure
921  *  @offset: offset of word in the EEPROM to read
922  *  @words: number of word(s)
923  *  @data: 16 bit word(s) from the EEPROM
924  *
925  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
926  **/
ixgbe_read_eerd_buffer_generic(struct ixgbe_hw * hw,u16 offset,u16 words,u16 * data)927 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
928 				   u16 words, u16 *data)
929 {
930 	u32 eerd;
931 	s32 status = 0;
932 	u32 i;
933 
934 	hw->eeprom.ops.init_params(hw);
935 
936 	if (words == 0) {
937 		status = IXGBE_ERR_INVALID_ARGUMENT;
938 		goto out;
939 	}
940 
941 	if (offset >= hw->eeprom.word_size) {
942 		status = IXGBE_ERR_EEPROM;
943 		goto out;
944 	}
945 
946 	for (i = 0; i < words; i++) {
947 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) +
948 		       IXGBE_EEPROM_RW_REG_START;
949 
950 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
951 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
952 
953 		if (status == 0) {
954 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
955 				   IXGBE_EEPROM_RW_REG_DATA);
956 		} else {
957 			hw_dbg(hw, "Eeprom read timed out\n");
958 			goto out;
959 		}
960 	}
961 out:
962 	return status;
963 }
964 
965 /**
966  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
967  *  @hw: pointer to hardware structure
968  *  @offset: offset within the EEPROM to be used as a scratch pad
969  *
970  *  Discover EEPROM page size by writing marching data at given offset.
971  *  This function is called only when we are writing a new large buffer
972  *  at given offset so the data would be overwritten anyway.
973  **/
ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw * hw,u16 offset)974 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
975 						 u16 offset)
976 {
977 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
978 	s32 status = 0;
979 	u16 i;
980 
981 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
982 		data[i] = i;
983 
984 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
985 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
986 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
987 	hw->eeprom.word_page_size = 0;
988 	if (status != 0)
989 		goto out;
990 
991 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
992 	if (status != 0)
993 		goto out;
994 
995 	/*
996 	 * When writing in burst more than the actual page size
997 	 * EEPROM address wraps around current page.
998 	 */
999 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1000 
1001 	hw_dbg(hw, "Detected EEPROM page size = %d words.",
1002 	       hw->eeprom.word_page_size);
1003 out:
1004 	return status;
1005 }
1006 
1007 /**
1008  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1009  *  @hw: pointer to hardware structure
1010  *  @offset: offset of  word in the EEPROM to read
1011  *  @data: word read from the EEPROM
1012  *
1013  *  Reads a 16 bit word from the EEPROM using the EERD register.
1014  **/
ixgbe_read_eerd_generic(struct ixgbe_hw * hw,u16 offset,u16 * data)1015 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1016 {
1017 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1018 }
1019 
1020 /**
1021  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1022  *  @hw: pointer to hardware structure
1023  *  @offset: offset of  word in the EEPROM to write
1024  *  @words: number of words
1025  *  @data: word(s) write to the EEPROM
1026  *
1027  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1028  **/
ixgbe_write_eewr_buffer_generic(struct ixgbe_hw * hw,u16 offset,u16 words,u16 * data)1029 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1030 				    u16 words, u16 *data)
1031 {
1032 	u32 eewr;
1033 	s32 status = 0;
1034 	u16 i;
1035 
1036 	hw->eeprom.ops.init_params(hw);
1037 
1038 	if (words == 0) {
1039 		status = IXGBE_ERR_INVALID_ARGUMENT;
1040 		goto out;
1041 	}
1042 
1043 	if (offset >= hw->eeprom.word_size) {
1044 		status = IXGBE_ERR_EEPROM;
1045 		goto out;
1046 	}
1047 
1048 	for (i = 0; i < words; i++) {
1049 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1050 		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1051 		       IXGBE_EEPROM_RW_REG_START;
1052 
1053 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1054 		if (status != 0) {
1055 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1056 			goto out;
1057 		}
1058 
1059 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1060 
1061 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1062 		if (status != 0) {
1063 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1064 			goto out;
1065 		}
1066 	}
1067 
1068 out:
1069 	return status;
1070 }
1071 
1072 /**
1073  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1074  *  @hw: pointer to hardware structure
1075  *  @offset: offset of  word in the EEPROM to write
1076  *  @data: word write to the EEPROM
1077  *
1078  *  Write a 16 bit word to the EEPROM using the EEWR register.
1079  **/
ixgbe_write_eewr_generic(struct ixgbe_hw * hw,u16 offset,u16 data)1080 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1081 {
1082 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1083 }
1084 
1085 /**
1086  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1087  *  @hw: pointer to hardware structure
1088  *  @ee_reg: EEPROM flag for polling
1089  *
1090  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1091  *  read or write is done respectively.
1092  **/
ixgbe_poll_eerd_eewr_done(struct ixgbe_hw * hw,u32 ee_reg)1093 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1094 {
1095 	u32 i;
1096 	u32 reg;
1097 	s32 status = IXGBE_ERR_EEPROM;
1098 
1099 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1100 		if (ee_reg == IXGBE_NVM_POLL_READ)
1101 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1102 		else
1103 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1104 
1105 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1106 			status = 0;
1107 			break;
1108 		}
1109 		udelay(5);
1110 	}
1111 	return status;
1112 }
1113 
1114 /**
1115  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1116  *  @hw: pointer to hardware structure
1117  *
1118  *  Prepares EEPROM for access using bit-bang method. This function should
1119  *  be called before issuing a command to the EEPROM.
1120  **/
ixgbe_acquire_eeprom(struct ixgbe_hw * hw)1121 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1122 {
1123 	s32 status = 0;
1124 	u32 eec;
1125 	u32 i;
1126 
1127 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1128 		status = IXGBE_ERR_SWFW_SYNC;
1129 
1130 	if (status == 0) {
1131 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1132 
1133 		/* Request EEPROM Access */
1134 		eec |= IXGBE_EEC_REQ;
1135 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1136 
1137 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1138 			eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1139 			if (eec & IXGBE_EEC_GNT)
1140 				break;
1141 			udelay(5);
1142 		}
1143 
1144 		/* Release if grant not acquired */
1145 		if (!(eec & IXGBE_EEC_GNT)) {
1146 			eec &= ~IXGBE_EEC_REQ;
1147 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1148 			hw_dbg(hw, "Could not acquire EEPROM grant\n");
1149 
1150 			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1151 			status = IXGBE_ERR_EEPROM;
1152 		}
1153 
1154 		/* Setup EEPROM for Read/Write */
1155 		if (status == 0) {
1156 			/* Clear CS and SK */
1157 			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1158 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1159 			IXGBE_WRITE_FLUSH(hw);
1160 			udelay(1);
1161 		}
1162 	}
1163 	return status;
1164 }
1165 
1166 /**
1167  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1168  *  @hw: pointer to hardware structure
1169  *
1170  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1171  **/
ixgbe_get_eeprom_semaphore(struct ixgbe_hw * hw)1172 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1173 {
1174 	s32 status = IXGBE_ERR_EEPROM;
1175 	u32 timeout = 2000;
1176 	u32 i;
1177 	u32 swsm;
1178 
1179 	/* Get SMBI software semaphore between device drivers first */
1180 	for (i = 0; i < timeout; i++) {
1181 		/*
1182 		 * If the SMBI bit is 0 when we read it, then the bit will be
1183 		 * set and we have the semaphore
1184 		 */
1185 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1186 		if (!(swsm & IXGBE_SWSM_SMBI)) {
1187 			status = 0;
1188 			break;
1189 		}
1190 		udelay(50);
1191 	}
1192 
1193 	if (i == timeout) {
1194 		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore "
1195 		       "not granted.\n");
1196 		/*
1197 		 * this release is particularly important because our attempts
1198 		 * above to get the semaphore may have succeeded, and if there
1199 		 * was a timeout, we should unconditionally clear the semaphore
1200 		 * bits to free the driver to make progress
1201 		 */
1202 		ixgbe_release_eeprom_semaphore(hw);
1203 
1204 		udelay(50);
1205 		/*
1206 		 * one last try
1207 		 * If the SMBI bit is 0 when we read it, then the bit will be
1208 		 * set and we have the semaphore
1209 		 */
1210 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1211 		if (!(swsm & IXGBE_SWSM_SMBI))
1212 			status = 0;
1213 	}
1214 
1215 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1216 	if (status == 0) {
1217 		for (i = 0; i < timeout; i++) {
1218 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1219 
1220 			/* Set the SW EEPROM semaphore bit to request access */
1221 			swsm |= IXGBE_SWSM_SWESMBI;
1222 			IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1223 
1224 			/*
1225 			 * If we set the bit successfully then we got the
1226 			 * semaphore.
1227 			 */
1228 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1229 			if (swsm & IXGBE_SWSM_SWESMBI)
1230 				break;
1231 
1232 			udelay(50);
1233 		}
1234 
1235 		/*
1236 		 * Release semaphores and return error if SW EEPROM semaphore
1237 		 * was not granted because we don't have access to the EEPROM
1238 		 */
1239 		if (i >= timeout) {
1240 			hw_dbg(hw, "SWESMBI Software EEPROM semaphore "
1241 			       "not granted.\n");
1242 			ixgbe_release_eeprom_semaphore(hw);
1243 			status = IXGBE_ERR_EEPROM;
1244 		}
1245 	} else {
1246 		hw_dbg(hw, "Software semaphore SMBI between device drivers "
1247 		       "not granted.\n");
1248 	}
1249 
1250 	return status;
1251 }
1252 
1253 /**
1254  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1255  *  @hw: pointer to hardware structure
1256  *
1257  *  This function clears hardware semaphore bits.
1258  **/
ixgbe_release_eeprom_semaphore(struct ixgbe_hw * hw)1259 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1260 {
1261 	u32 swsm;
1262 
1263 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1264 
1265 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1266 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1267 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1268 	IXGBE_WRITE_FLUSH(hw);
1269 }
1270 
1271 /**
1272  *  ixgbe_ready_eeprom - Polls for EEPROM ready
1273  *  @hw: pointer to hardware structure
1274  **/
ixgbe_ready_eeprom(struct ixgbe_hw * hw)1275 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1276 {
1277 	s32 status = 0;
1278 	u16 i;
1279 	u8 spi_stat_reg;
1280 
1281 	/*
1282 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1283 	 * EEPROM will signal that the command has been completed by clearing
1284 	 * bit 0 of the internal status register.  If it's not cleared within
1285 	 * 5 milliseconds, then error out.
1286 	 */
1287 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1288 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1289 		                            IXGBE_EEPROM_OPCODE_BITS);
1290 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1291 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1292 			break;
1293 
1294 		udelay(5);
1295 		ixgbe_standby_eeprom(hw);
1296 	}
1297 
1298 	/*
1299 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1300 	 * devices (and only 0-5mSec on 5V devices)
1301 	 */
1302 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1303 		hw_dbg(hw, "SPI EEPROM Status error\n");
1304 		status = IXGBE_ERR_EEPROM;
1305 	}
1306 
1307 	return status;
1308 }
1309 
1310 /**
1311  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1312  *  @hw: pointer to hardware structure
1313  **/
ixgbe_standby_eeprom(struct ixgbe_hw * hw)1314 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1315 {
1316 	u32 eec;
1317 
1318 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1319 
1320 	/* Toggle CS to flush commands */
1321 	eec |= IXGBE_EEC_CS;
1322 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1323 	IXGBE_WRITE_FLUSH(hw);
1324 	udelay(1);
1325 	eec &= ~IXGBE_EEC_CS;
1326 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1327 	IXGBE_WRITE_FLUSH(hw);
1328 	udelay(1);
1329 }
1330 
1331 /**
1332  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1333  *  @hw: pointer to hardware structure
1334  *  @data: data to send to the EEPROM
1335  *  @count: number of bits to shift out
1336  **/
ixgbe_shift_out_eeprom_bits(struct ixgbe_hw * hw,u16 data,u16 count)1337 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1338                                         u16 count)
1339 {
1340 	u32 eec;
1341 	u32 mask;
1342 	u32 i;
1343 
1344 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1345 
1346 	/*
1347 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1348 	 * one bit at a time.  Determine the starting bit based on count
1349 	 */
1350 	mask = 0x01 << (count - 1);
1351 
1352 	for (i = 0; i < count; i++) {
1353 		/*
1354 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1355 		 * "1", and then raising and then lowering the clock (the SK
1356 		 * bit controls the clock input to the EEPROM).  A "0" is
1357 		 * shifted out to the EEPROM by setting "DI" to "0" and then
1358 		 * raising and then lowering the clock.
1359 		 */
1360 		if (data & mask)
1361 			eec |= IXGBE_EEC_DI;
1362 		else
1363 			eec &= ~IXGBE_EEC_DI;
1364 
1365 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1366 		IXGBE_WRITE_FLUSH(hw);
1367 
1368 		udelay(1);
1369 
1370 		ixgbe_raise_eeprom_clk(hw, &eec);
1371 		ixgbe_lower_eeprom_clk(hw, &eec);
1372 
1373 		/*
1374 		 * Shift mask to signify next bit of data to shift in to the
1375 		 * EEPROM
1376 		 */
1377 		mask = mask >> 1;
1378 	}
1379 
1380 	/* We leave the "DI" bit set to "0" when we leave this routine. */
1381 	eec &= ~IXGBE_EEC_DI;
1382 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1383 	IXGBE_WRITE_FLUSH(hw);
1384 }
1385 
1386 /**
1387  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1388  *  @hw: pointer to hardware structure
1389  **/
ixgbe_shift_in_eeprom_bits(struct ixgbe_hw * hw,u16 count)1390 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1391 {
1392 	u32 eec;
1393 	u32 i;
1394 	u16 data = 0;
1395 
1396 	/*
1397 	 * In order to read a register from the EEPROM, we need to shift
1398 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1399 	 * the clock input to the EEPROM (setting the SK bit), and then reading
1400 	 * the value of the "DO" bit.  During this "shifting in" process the
1401 	 * "DI" bit should always be clear.
1402 	 */
1403 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1404 
1405 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1406 
1407 	for (i = 0; i < count; i++) {
1408 		data = data << 1;
1409 		ixgbe_raise_eeprom_clk(hw, &eec);
1410 
1411 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1412 
1413 		eec &= ~(IXGBE_EEC_DI);
1414 		if (eec & IXGBE_EEC_DO)
1415 			data |= 1;
1416 
1417 		ixgbe_lower_eeprom_clk(hw, &eec);
1418 	}
1419 
1420 	return data;
1421 }
1422 
1423 /**
1424  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1425  *  @hw: pointer to hardware structure
1426  *  @eec: EEC register's current value
1427  **/
ixgbe_raise_eeprom_clk(struct ixgbe_hw * hw,u32 * eec)1428 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1429 {
1430 	/*
1431 	 * Raise the clock input to the EEPROM
1432 	 * (setting the SK bit), then delay
1433 	 */
1434 	*eec = *eec | IXGBE_EEC_SK;
1435 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1436 	IXGBE_WRITE_FLUSH(hw);
1437 	udelay(1);
1438 }
1439 
1440 /**
1441  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1442  *  @hw: pointer to hardware structure
1443  *  @eecd: EECD's current value
1444  **/
ixgbe_lower_eeprom_clk(struct ixgbe_hw * hw,u32 * eec)1445 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1446 {
1447 	/*
1448 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1449 	 * delay
1450 	 */
1451 	*eec = *eec & ~IXGBE_EEC_SK;
1452 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1453 	IXGBE_WRITE_FLUSH(hw);
1454 	udelay(1);
1455 }
1456 
1457 /**
1458  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1459  *  @hw: pointer to hardware structure
1460  **/
ixgbe_release_eeprom(struct ixgbe_hw * hw)1461 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1462 {
1463 	u32 eec;
1464 
1465 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1466 
1467 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1468 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1469 
1470 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1471 	IXGBE_WRITE_FLUSH(hw);
1472 
1473 	udelay(1);
1474 
1475 	/* Stop requesting EEPROM access */
1476 	eec &= ~IXGBE_EEC_REQ;
1477 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1478 
1479 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1480 
1481 	/*
1482 	 * Delay before attempt to obtain semaphore again to allow FW
1483 	 * access. semaphore_delay is in ms we need us for usleep_range
1484 	 */
1485 	usleep_range(hw->eeprom.semaphore_delay * 1000,
1486 		     hw->eeprom.semaphore_delay * 2000);
1487 }
1488 
1489 /**
1490  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1491  *  @hw: pointer to hardware structure
1492  **/
ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw * hw)1493 u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1494 {
1495 	u16 i;
1496 	u16 j;
1497 	u16 checksum = 0;
1498 	u16 length = 0;
1499 	u16 pointer = 0;
1500 	u16 word = 0;
1501 
1502 	/* Include 0x0-0x3F in the checksum */
1503 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1504 		if (hw->eeprom.ops.read(hw, i, &word) != 0) {
1505 			hw_dbg(hw, "EEPROM read failed\n");
1506 			break;
1507 		}
1508 		checksum += word;
1509 	}
1510 
1511 	/* Include all data from pointers except for the fw pointer */
1512 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1513 		hw->eeprom.ops.read(hw, i, &pointer);
1514 
1515 		/* Make sure the pointer seems valid */
1516 		if (pointer != 0xFFFF && pointer != 0) {
1517 			hw->eeprom.ops.read(hw, pointer, &length);
1518 
1519 			if (length != 0xFFFF && length != 0) {
1520 				for (j = pointer+1; j <= pointer+length; j++) {
1521 					hw->eeprom.ops.read(hw, j, &word);
1522 					checksum += word;
1523 				}
1524 			}
1525 		}
1526 	}
1527 
1528 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1529 
1530 	return checksum;
1531 }
1532 
1533 /**
1534  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1535  *  @hw: pointer to hardware structure
1536  *  @checksum_val: calculated checksum
1537  *
1538  *  Performs checksum calculation and validates the EEPROM checksum.  If the
1539  *  caller does not need checksum_val, the value can be NULL.
1540  **/
ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw * hw,u16 * checksum_val)1541 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1542                                            u16 *checksum_val)
1543 {
1544 	s32 status;
1545 	u16 checksum;
1546 	u16 read_checksum = 0;
1547 
1548 	/*
1549 	 * Read the first word from the EEPROM. If this times out or fails, do
1550 	 * not continue or we could be in for a very long wait while every
1551 	 * EEPROM read fails
1552 	 */
1553 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1554 
1555 	if (status == 0) {
1556 		checksum = hw->eeprom.ops.calc_checksum(hw);
1557 
1558 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1559 
1560 		/*
1561 		 * Verify read checksum from EEPROM is the same as
1562 		 * calculated checksum
1563 		 */
1564 		if (read_checksum != checksum)
1565 			status = IXGBE_ERR_EEPROM_CHECKSUM;
1566 
1567 		/* If the user cares, return the calculated checksum */
1568 		if (checksum_val)
1569 			*checksum_val = checksum;
1570 	} else {
1571 		hw_dbg(hw, "EEPROM read failed\n");
1572 	}
1573 
1574 	return status;
1575 }
1576 
1577 /**
1578  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1579  *  @hw: pointer to hardware structure
1580  **/
ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw * hw)1581 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1582 {
1583 	s32 status;
1584 	u16 checksum;
1585 
1586 	/*
1587 	 * Read the first word from the EEPROM. If this times out or fails, do
1588 	 * not continue or we could be in for a very long wait while every
1589 	 * EEPROM read fails
1590 	 */
1591 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1592 
1593 	if (status == 0) {
1594 		checksum = hw->eeprom.ops.calc_checksum(hw);
1595 		status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1596 					      checksum);
1597 	} else {
1598 		hw_dbg(hw, "EEPROM read failed\n");
1599 	}
1600 
1601 	return status;
1602 }
1603 
1604 /**
1605  *  ixgbe_validate_mac_addr - Validate MAC address
1606  *  @mac_addr: pointer to MAC address.
1607  *
1608  *  Tests a MAC address to ensure it is a valid Individual Address
1609  **/
ixgbe_validate_mac_addr(u8 * mac_addr)1610 s32 ixgbe_validate_mac_addr(u8 *mac_addr)
1611 {
1612 	s32 status = 0;
1613 
1614 	/* Make sure it is not a multicast address */
1615 	if (IXGBE_IS_MULTICAST(mac_addr))
1616 		status = IXGBE_ERR_INVALID_MAC_ADDR;
1617 	/* Not a broadcast address */
1618 	else if (IXGBE_IS_BROADCAST(mac_addr))
1619 		status = IXGBE_ERR_INVALID_MAC_ADDR;
1620 	/* Reject the zero address */
1621 	else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
1622 	         mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0)
1623 		status = IXGBE_ERR_INVALID_MAC_ADDR;
1624 
1625 	return status;
1626 }
1627 
1628 /**
1629  *  ixgbe_set_rar_generic - Set Rx address register
1630  *  @hw: pointer to hardware structure
1631  *  @index: Receive address register to write
1632  *  @addr: Address to put into receive address register
1633  *  @vmdq: VMDq "set" or "pool" index
1634  *  @enable_addr: set flag that address is active
1635  *
1636  *  Puts an ethernet address into a receive address register.
1637  **/
ixgbe_set_rar_generic(struct ixgbe_hw * hw,u32 index,u8 * addr,u32 vmdq,u32 enable_addr)1638 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1639                           u32 enable_addr)
1640 {
1641 	u32 rar_low, rar_high;
1642 	u32 rar_entries = hw->mac.num_rar_entries;
1643 
1644 	/* Make sure we are using a valid rar index range */
1645 	if (index >= rar_entries) {
1646 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1647 		return IXGBE_ERR_INVALID_ARGUMENT;
1648 	}
1649 
1650 	/* setup VMDq pool selection before this RAR gets enabled */
1651 	hw->mac.ops.set_vmdq(hw, index, vmdq);
1652 
1653 	/*
1654 	 * HW expects these in little endian so we reverse the byte
1655 	 * order from network order (big endian) to little endian
1656 	 */
1657 	rar_low = ((u32)addr[0] |
1658 		   ((u32)addr[1] << 8) |
1659 		   ((u32)addr[2] << 16) |
1660 		   ((u32)addr[3] << 24));
1661 	/*
1662 	 * Some parts put the VMDq setting in the extra RAH bits,
1663 	 * so save everything except the lower 16 bits that hold part
1664 	 * of the address and the address valid bit.
1665 	 */
1666 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1667 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1668 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1669 
1670 	if (enable_addr != 0)
1671 		rar_high |= IXGBE_RAH_AV;
1672 
1673 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1674 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1675 
1676 	return 0;
1677 }
1678 
1679 /**
1680  *  ixgbe_clear_rar_generic - Remove Rx address register
1681  *  @hw: pointer to hardware structure
1682  *  @index: Receive address register to write
1683  *
1684  *  Clears an ethernet address from a receive address register.
1685  **/
ixgbe_clear_rar_generic(struct ixgbe_hw * hw,u32 index)1686 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1687 {
1688 	u32 rar_high;
1689 	u32 rar_entries = hw->mac.num_rar_entries;
1690 
1691 	/* Make sure we are using a valid rar index range */
1692 	if (index >= rar_entries) {
1693 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1694 		return IXGBE_ERR_INVALID_ARGUMENT;
1695 	}
1696 
1697 	/*
1698 	 * Some parts put the VMDq setting in the extra RAH bits,
1699 	 * so save everything except the lower 16 bits that hold part
1700 	 * of the address and the address valid bit.
1701 	 */
1702 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1703 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1704 
1705 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1706 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1707 
1708 	/* clear VMDq pool/queue selection for this RAR */
1709 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1710 
1711 	return 0;
1712 }
1713 
1714 /**
1715  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1716  *  @hw: pointer to hardware structure
1717  *
1718  *  Places the MAC address in receive address register 0 and clears the rest
1719  *  of the receive address registers. Clears the multicast table. Assumes
1720  *  the receiver is in reset when the routine is called.
1721  **/
ixgbe_init_rx_addrs_generic(struct ixgbe_hw * hw)1722 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1723 {
1724 	u32 i;
1725 	u32 rar_entries = hw->mac.num_rar_entries;
1726 
1727 	/*
1728 	 * If the current mac address is valid, assume it is a software override
1729 	 * to the permanent address.
1730 	 * Otherwise, use the permanent address from the eeprom.
1731 	 */
1732 	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
1733 	    IXGBE_ERR_INVALID_MAC_ADDR) {
1734 		/* Get the MAC address from the RAR0 for later reference */
1735 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1736 
1737 		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1738 	} else {
1739 		/* Setup the receive address. */
1740 		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1741 		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1742 
1743 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1744 
1745 		/*  clear VMDq pool/queue selection for RAR 0 */
1746 		hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1747 	}
1748 	hw->addr_ctrl.overflow_promisc = 0;
1749 
1750 	hw->addr_ctrl.rar_used_count = 1;
1751 
1752 	/* Zero out the other receive addresses. */
1753 	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1754 	for (i = 1; i < rar_entries; i++) {
1755 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1756 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1757 	}
1758 
1759 	/* Clear the MTA */
1760 	hw->addr_ctrl.mta_in_use = 0;
1761 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1762 
1763 	hw_dbg(hw, " Clearing MTA\n");
1764 	for (i = 0; i < hw->mac.mcft_size; i++)
1765 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1766 
1767 	if (hw->mac.ops.init_uta_tables)
1768 		hw->mac.ops.init_uta_tables(hw);
1769 
1770 	return 0;
1771 }
1772 
1773 /**
1774  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1775  *  @hw: pointer to hardware structure
1776  *  @mc_addr: the multicast address
1777  *
1778  *  Extracts the 12 bits, from a multicast address, to determine which
1779  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1780  *  incoming rx multicast addresses, to determine the bit-vector to check in
1781  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1782  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1783  *  to mc_filter_type.
1784  **/
ixgbe_mta_vector(struct ixgbe_hw * hw,u8 * mc_addr)1785 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1786 {
1787 	u32 vector = 0;
1788 
1789 	switch (hw->mac.mc_filter_type) {
1790 	case 0:   /* use bits [47:36] of the address */
1791 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1792 		break;
1793 	case 1:   /* use bits [46:35] of the address */
1794 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1795 		break;
1796 	case 2:   /* use bits [45:34] of the address */
1797 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1798 		break;
1799 	case 3:   /* use bits [43:32] of the address */
1800 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1801 		break;
1802 	default:  /* Invalid mc_filter_type */
1803 		hw_dbg(hw, "MC filter type param set incorrectly\n");
1804 		break;
1805 	}
1806 
1807 	/* vector can only be 12-bits or boundary will be exceeded */
1808 	vector &= 0xFFF;
1809 	return vector;
1810 }
1811 
1812 /**
1813  *  ixgbe_set_mta - Set bit-vector in multicast table
1814  *  @hw: pointer to hardware structure
1815  *  @hash_value: Multicast address hash value
1816  *
1817  *  Sets the bit-vector in the multicast table.
1818  **/
ixgbe_set_mta(struct ixgbe_hw * hw,u8 * mc_addr)1819 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1820 {
1821 	u32 vector;
1822 	u32 vector_bit;
1823 	u32 vector_reg;
1824 
1825 	hw->addr_ctrl.mta_in_use++;
1826 
1827 	vector = ixgbe_mta_vector(hw, mc_addr);
1828 	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
1829 
1830 	/*
1831 	 * The MTA is a register array of 128 32-bit registers. It is treated
1832 	 * like an array of 4096 bits.  We want to set bit
1833 	 * BitArray[vector_value]. So we figure out what register the bit is
1834 	 * in, read it, OR in the new bit, then write back the new value.  The
1835 	 * register is determined by the upper 7 bits of the vector value and
1836 	 * the bit within that register are determined by the lower 5 bits of
1837 	 * the value.
1838 	 */
1839 	vector_reg = (vector >> 5) & 0x7F;
1840 	vector_bit = vector & 0x1F;
1841 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
1842 }
1843 
1844 /**
1845  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
1846  *  @hw: pointer to hardware structure
1847  *  @netdev: pointer to net device structure
1848  *
1849  *  The given list replaces any existing list. Clears the MC addrs from receive
1850  *  address registers and the multicast table. Uses unused receive address
1851  *  registers for the first multicast addresses, and hashes the rest into the
1852  *  multicast table.
1853  **/
ixgbe_update_mc_addr_list_generic(struct ixgbe_hw * hw,struct net_device * netdev)1854 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
1855 				      struct net_device *netdev)
1856 {
1857 	struct netdev_hw_addr *ha;
1858 	u32 i;
1859 
1860 	/*
1861 	 * Set the new number of MC addresses that we are being requested to
1862 	 * use.
1863 	 */
1864 	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
1865 	hw->addr_ctrl.mta_in_use = 0;
1866 
1867 	/* Clear mta_shadow */
1868 	hw_dbg(hw, " Clearing MTA\n");
1869 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
1870 
1871 	/* Update mta shadow */
1872 	netdev_for_each_mc_addr(ha, netdev) {
1873 		hw_dbg(hw, " Adding the multicast addresses:\n");
1874 		ixgbe_set_mta(hw, ha->addr);
1875 	}
1876 
1877 	/* Enable mta */
1878 	for (i = 0; i < hw->mac.mcft_size; i++)
1879 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
1880 				      hw->mac.mta_shadow[i]);
1881 
1882 	if (hw->addr_ctrl.mta_in_use > 0)
1883 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
1884 		                IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
1885 
1886 	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
1887 	return 0;
1888 }
1889 
1890 /**
1891  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
1892  *  @hw: pointer to hardware structure
1893  *
1894  *  Enables multicast address in RAR and the use of the multicast hash table.
1895  **/
ixgbe_enable_mc_generic(struct ixgbe_hw * hw)1896 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
1897 {
1898 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
1899 
1900 	if (a->mta_in_use > 0)
1901 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
1902 		                hw->mac.mc_filter_type);
1903 
1904 	return 0;
1905 }
1906 
1907 /**
1908  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
1909  *  @hw: pointer to hardware structure
1910  *
1911  *  Disables multicast address in RAR and the use of the multicast hash table.
1912  **/
ixgbe_disable_mc_generic(struct ixgbe_hw * hw)1913 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
1914 {
1915 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
1916 
1917 	if (a->mta_in_use > 0)
1918 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1919 
1920 	return 0;
1921 }
1922 
1923 /**
1924  *  ixgbe_fc_enable_generic - Enable flow control
1925  *  @hw: pointer to hardware structure
1926  *  @packetbuf_num: packet buffer number (0-7)
1927  *
1928  *  Enable flow control according to the current settings.
1929  **/
ixgbe_fc_enable_generic(struct ixgbe_hw * hw,s32 packetbuf_num)1930 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw, s32 packetbuf_num)
1931 {
1932 	s32 ret_val = 0;
1933 	u32 mflcn_reg, fccfg_reg;
1934 	u32 reg;
1935 	u32 fcrtl, fcrth;
1936 
1937 #ifdef CONFIG_DCB
1938 	if (hw->fc.requested_mode == ixgbe_fc_pfc)
1939 		goto out;
1940 
1941 #endif /* CONFIG_DCB */
1942 	/* Negotiate the fc mode to use */
1943 	ret_val = ixgbe_fc_autoneg(hw);
1944 	if (ret_val == IXGBE_ERR_FLOW_CONTROL)
1945 		goto out;
1946 
1947 	/* Disable any previous flow control settings */
1948 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
1949 	mflcn_reg &= ~(IXGBE_MFLCN_RFCE | IXGBE_MFLCN_RPFCE);
1950 
1951 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
1952 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
1953 
1954 	/*
1955 	 * The possible values of fc.current_mode are:
1956 	 * 0: Flow control is completely disabled
1957 	 * 1: Rx flow control is enabled (we can receive pause frames,
1958 	 *    but not send pause frames).
1959 	 * 2: Tx flow control is enabled (we can send pause frames but
1960 	 *    we do not support receiving pause frames).
1961 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1962 #ifdef CONFIG_DCB
1963 	 * 4: Priority Flow Control is enabled.
1964 #endif
1965 	 * other: Invalid.
1966 	 */
1967 	switch (hw->fc.current_mode) {
1968 	case ixgbe_fc_none:
1969 		/*
1970 		 * Flow control is disabled by software override or autoneg.
1971 		 * The code below will actually disable it in the HW.
1972 		 */
1973 		break;
1974 	case ixgbe_fc_rx_pause:
1975 		/*
1976 		 * Rx Flow control is enabled and Tx Flow control is
1977 		 * disabled by software override. Since there really
1978 		 * isn't a way to advertise that we are capable of RX
1979 		 * Pause ONLY, we will advertise that we support both
1980 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
1981 		 * disable the adapter's ability to send PAUSE frames.
1982 		 */
1983 		mflcn_reg |= IXGBE_MFLCN_RFCE;
1984 		break;
1985 	case ixgbe_fc_tx_pause:
1986 		/*
1987 		 * Tx Flow control is enabled, and Rx Flow control is
1988 		 * disabled by software override.
1989 		 */
1990 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
1991 		break;
1992 	case ixgbe_fc_full:
1993 		/* Flow control (both Rx and Tx) is enabled by SW override. */
1994 		mflcn_reg |= IXGBE_MFLCN_RFCE;
1995 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
1996 		break;
1997 #ifdef CONFIG_DCB
1998 	case ixgbe_fc_pfc:
1999 		goto out;
2000 		break;
2001 #endif /* CONFIG_DCB */
2002 	default:
2003 		hw_dbg(hw, "Flow control param set incorrectly\n");
2004 		ret_val = IXGBE_ERR_CONFIG;
2005 		goto out;
2006 		break;
2007 	}
2008 
2009 	/* Set 802.3x based flow control settings. */
2010 	mflcn_reg |= IXGBE_MFLCN_DPF;
2011 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2012 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2013 
2014 	fcrtl = hw->fc.low_water << 10;
2015 
2016 	if (hw->fc.current_mode & ixgbe_fc_tx_pause) {
2017 		fcrth = hw->fc.high_water[packetbuf_num] << 10;
2018 		fcrth |= IXGBE_FCRTH_FCEN;
2019 		if (hw->fc.send_xon)
2020 			fcrtl |= IXGBE_FCRTL_XONE;
2021 	} else {
2022 		/*
2023 		 * If Tx flow control is disabled, set our high water mark
2024 		 * to Rx FIFO size minus 32 in order prevent Tx switch
2025 		 * loopback from stalling on DMA.
2026 		 */
2027 		fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(packetbuf_num)) - 32;
2028 	}
2029 
2030 	IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(packetbuf_num), fcrth);
2031 	IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(packetbuf_num), fcrtl);
2032 
2033 	/* Configure pause time (2 TCs per register) */
2034 	reg = IXGBE_READ_REG(hw, IXGBE_FCTTV(packetbuf_num / 2));
2035 	if ((packetbuf_num & 1) == 0)
2036 		reg = (reg & 0xFFFF0000) | hw->fc.pause_time;
2037 	else
2038 		reg = (reg & 0x0000FFFF) | (hw->fc.pause_time << 16);
2039 	IXGBE_WRITE_REG(hw, IXGBE_FCTTV(packetbuf_num / 2), reg);
2040 
2041 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, (hw->fc.pause_time >> 1));
2042 
2043 out:
2044 	return ret_val;
2045 }
2046 
2047 /**
2048  *  ixgbe_fc_autoneg - Configure flow control
2049  *  @hw: pointer to hardware structure
2050  *
2051  *  Compares our advertised flow control capabilities to those advertised by
2052  *  our link partner, and determines the proper flow control mode to use.
2053  **/
ixgbe_fc_autoneg(struct ixgbe_hw * hw)2054 s32 ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2055 {
2056 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2057 	ixgbe_link_speed speed;
2058 	bool link_up;
2059 
2060 	if (hw->fc.disable_fc_autoneg)
2061 		goto out;
2062 
2063 	/*
2064 	 * AN should have completed when the cable was plugged in.
2065 	 * Look for reasons to bail out.  Bail out if:
2066 	 * - FC autoneg is disabled, or if
2067 	 * - link is not up.
2068 	 *
2069 	 * Since we're being called from an LSC, link is already known to be up.
2070 	 * So use link_up_wait_to_complete=false.
2071 	 */
2072 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2073 	if (!link_up) {
2074 		ret_val = IXGBE_ERR_FLOW_CONTROL;
2075 		goto out;
2076 	}
2077 
2078 	switch (hw->phy.media_type) {
2079 	/* Autoneg flow control on fiber adapters */
2080 	case ixgbe_media_type_fiber:
2081 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2082 			ret_val = ixgbe_fc_autoneg_fiber(hw);
2083 		break;
2084 
2085 	/* Autoneg flow control on backplane adapters */
2086 	case ixgbe_media_type_backplane:
2087 		ret_val = ixgbe_fc_autoneg_backplane(hw);
2088 		break;
2089 
2090 	/* Autoneg flow control on copper adapters */
2091 	case ixgbe_media_type_copper:
2092 		if (ixgbe_device_supports_autoneg_fc(hw) == 0)
2093 			ret_val = ixgbe_fc_autoneg_copper(hw);
2094 		break;
2095 
2096 	default:
2097 		break;
2098 	}
2099 
2100 out:
2101 	if (ret_val == 0) {
2102 		hw->fc.fc_was_autonegged = true;
2103 	} else {
2104 		hw->fc.fc_was_autonegged = false;
2105 		hw->fc.current_mode = hw->fc.requested_mode;
2106 	}
2107 	return ret_val;
2108 }
2109 
2110 /**
2111  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2112  *  @hw: pointer to hardware structure
2113  *
2114  *  Enable flow control according on 1 gig fiber.
2115  **/
ixgbe_fc_autoneg_fiber(struct ixgbe_hw * hw)2116 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2117 {
2118 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2119 	s32 ret_val;
2120 
2121 	/*
2122 	 * On multispeed fiber at 1g, bail out if
2123 	 * - link is up but AN did not complete, or if
2124 	 * - link is up and AN completed but timed out
2125 	 */
2126 
2127 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2128 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2129 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
2130 		ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2131 		goto out;
2132 	}
2133 
2134 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2135 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2136 
2137 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2138 			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2139 			       IXGBE_PCS1GANA_ASM_PAUSE,
2140 			       IXGBE_PCS1GANA_SYM_PAUSE,
2141 			       IXGBE_PCS1GANA_ASM_PAUSE);
2142 
2143 out:
2144 	return ret_val;
2145 }
2146 
2147 /**
2148  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2149  *  @hw: pointer to hardware structure
2150  *
2151  *  Enable flow control according to IEEE clause 37.
2152  **/
ixgbe_fc_autoneg_backplane(struct ixgbe_hw * hw)2153 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2154 {
2155 	u32 links2, anlp1_reg, autoc_reg, links;
2156 	s32 ret_val;
2157 
2158 	/*
2159 	 * On backplane, bail out if
2160 	 * - backplane autoneg was not completed, or if
2161 	 * - we are 82599 and link partner is not AN enabled
2162 	 */
2163 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2164 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
2165 		hw->fc.fc_was_autonegged = false;
2166 		hw->fc.current_mode = hw->fc.requested_mode;
2167 		ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2168 		goto out;
2169 	}
2170 
2171 	if (hw->mac.type == ixgbe_mac_82599EB) {
2172 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2173 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
2174 			hw->fc.fc_was_autonegged = false;
2175 			hw->fc.current_mode = hw->fc.requested_mode;
2176 			ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2177 			goto out;
2178 		}
2179 	}
2180 	/*
2181 	 * Read the 10g AN autoc and LP ability registers and resolve
2182 	 * local flow control settings accordingly
2183 	 */
2184 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2185 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2186 
2187 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2188 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2189 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2190 
2191 out:
2192 	return ret_val;
2193 }
2194 
2195 /**
2196  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2197  *  @hw: pointer to hardware structure
2198  *
2199  *  Enable flow control according to IEEE clause 37.
2200  **/
ixgbe_fc_autoneg_copper(struct ixgbe_hw * hw)2201 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2202 {
2203 	u16 technology_ability_reg = 0;
2204 	u16 lp_technology_ability_reg = 0;
2205 
2206 	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2207 			     MDIO_MMD_AN,
2208 			     &technology_ability_reg);
2209 	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2210 			     MDIO_MMD_AN,
2211 			     &lp_technology_ability_reg);
2212 
2213 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2214 				  (u32)lp_technology_ability_reg,
2215 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2216 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2217 }
2218 
2219 /**
2220  *  ixgbe_negotiate_fc - Negotiate flow control
2221  *  @hw: pointer to hardware structure
2222  *  @adv_reg: flow control advertised settings
2223  *  @lp_reg: link partner's flow control settings
2224  *  @adv_sym: symmetric pause bit in advertisement
2225  *  @adv_asm: asymmetric pause bit in advertisement
2226  *  @lp_sym: symmetric pause bit in link partner advertisement
2227  *  @lp_asm: asymmetric pause bit in link partner advertisement
2228  *
2229  *  Find the intersection between advertised settings and link partner's
2230  *  advertised settings
2231  **/
ixgbe_negotiate_fc(struct ixgbe_hw * hw,u32 adv_reg,u32 lp_reg,u32 adv_sym,u32 adv_asm,u32 lp_sym,u32 lp_asm)2232 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2233 			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2234 {
2235 	if ((!(adv_reg)) ||  (!(lp_reg)))
2236 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2237 
2238 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2239 		/*
2240 		 * Now we need to check if the user selected Rx ONLY
2241 		 * of pause frames.  In this case, we had to advertise
2242 		 * FULL flow control because we could not advertise RX
2243 		 * ONLY. Hence, we must now check to see if we need to
2244 		 * turn OFF the TRANSMISSION of PAUSE frames.
2245 		 */
2246 		if (hw->fc.requested_mode == ixgbe_fc_full) {
2247 			hw->fc.current_mode = ixgbe_fc_full;
2248 			hw_dbg(hw, "Flow Control = FULL.\n");
2249 		} else {
2250 			hw->fc.current_mode = ixgbe_fc_rx_pause;
2251 			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2252 		}
2253 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2254 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2255 		hw->fc.current_mode = ixgbe_fc_tx_pause;
2256 		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2257 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2258 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2259 		hw->fc.current_mode = ixgbe_fc_rx_pause;
2260 		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2261 	} else {
2262 		hw->fc.current_mode = ixgbe_fc_none;
2263 		hw_dbg(hw, "Flow Control = NONE.\n");
2264 	}
2265 	return 0;
2266 }
2267 
2268 /**
2269  *  ixgbe_setup_fc - Set up flow control
2270  *  @hw: pointer to hardware structure
2271  *
2272  *  Called at init time to set up flow control.
2273  **/
ixgbe_setup_fc(struct ixgbe_hw * hw,s32 packetbuf_num)2274 static s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num)
2275 {
2276 	s32 ret_val = 0;
2277 	u32 reg = 0, reg_bp = 0;
2278 	u16 reg_cu = 0;
2279 
2280 #ifdef CONFIG_DCB
2281 	if (hw->fc.requested_mode == ixgbe_fc_pfc) {
2282 		hw->fc.current_mode = hw->fc.requested_mode;
2283 		goto out;
2284 	}
2285 
2286 #endif /* CONFIG_DCB */
2287 	/* Validate the packetbuf configuration */
2288 	if (packetbuf_num < 0 || packetbuf_num > 7) {
2289 		hw_dbg(hw, "Invalid packet buffer number [%d], expected range "
2290 		       "is 0-7\n", packetbuf_num);
2291 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2292 		goto out;
2293 	}
2294 
2295 	/*
2296 	 * Validate the water mark configuration.  Zero water marks are invalid
2297 	 * because it causes the controller to just blast out fc packets.
2298 	 */
2299 	if (!hw->fc.low_water ||
2300 	    !hw->fc.high_water[packetbuf_num] ||
2301 	    !hw->fc.pause_time) {
2302 		hw_dbg(hw, "Invalid water mark configuration\n");
2303 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2304 		goto out;
2305 	}
2306 
2307 	/*
2308 	 * Validate the requested mode.  Strict IEEE mode does not allow
2309 	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
2310 	 */
2311 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
2312 		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict "
2313 		       "IEEE mode\n");
2314 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2315 		goto out;
2316 	}
2317 
2318 	/*
2319 	 * 10gig parts do not have a word in the EEPROM to determine the
2320 	 * default flow control setting, so we explicitly set it to full.
2321 	 */
2322 	if (hw->fc.requested_mode == ixgbe_fc_default)
2323 		hw->fc.requested_mode = ixgbe_fc_full;
2324 
2325 	/*
2326 	 * Set up the 1G and 10G flow control advertisement registers so the
2327 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
2328 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
2329 	 */
2330 
2331 	switch (hw->phy.media_type) {
2332 	case ixgbe_media_type_fiber:
2333 	case ixgbe_media_type_backplane:
2334 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2335 		reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2336 		break;
2337 
2338 	case ixgbe_media_type_copper:
2339 		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2340 					MDIO_MMD_AN, &reg_cu);
2341 		break;
2342 
2343 	default:
2344 		;
2345 	}
2346 
2347 	/*
2348 	 * The possible values of fc.requested_mode are:
2349 	 * 0: Flow control is completely disabled
2350 	 * 1: Rx flow control is enabled (we can receive pause frames,
2351 	 *    but not send pause frames).
2352 	 * 2: Tx flow control is enabled (we can send pause frames but
2353 	 *    we do not support receiving pause frames).
2354 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2355 #ifdef CONFIG_DCB
2356 	 * 4: Priority Flow Control is enabled.
2357 #endif
2358 	 * other: Invalid.
2359 	 */
2360 	switch (hw->fc.requested_mode) {
2361 	case ixgbe_fc_none:
2362 		/* Flow control completely disabled by software override. */
2363 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
2364 		if (hw->phy.media_type == ixgbe_media_type_backplane)
2365 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
2366 				    IXGBE_AUTOC_ASM_PAUSE);
2367 		else if (hw->phy.media_type == ixgbe_media_type_copper)
2368 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
2369 		break;
2370 	case ixgbe_fc_rx_pause:
2371 		/*
2372 		 * Rx Flow control is enabled and Tx Flow control is
2373 		 * disabled by software override. Since there really
2374 		 * isn't a way to advertise that we are capable of RX
2375 		 * Pause ONLY, we will advertise that we support both
2376 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2377 		 * disable the adapter's ability to send PAUSE frames.
2378 		 */
2379 		reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
2380 		if (hw->phy.media_type == ixgbe_media_type_backplane)
2381 			reg_bp |= (IXGBE_AUTOC_SYM_PAUSE |
2382 				   IXGBE_AUTOC_ASM_PAUSE);
2383 		else if (hw->phy.media_type == ixgbe_media_type_copper)
2384 			reg_cu |= (IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
2385 		break;
2386 	case ixgbe_fc_tx_pause:
2387 		/*
2388 		 * Tx Flow control is enabled, and Rx Flow control is
2389 		 * disabled by software override.
2390 		 */
2391 		reg |= (IXGBE_PCS1GANA_ASM_PAUSE);
2392 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE);
2393 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
2394 			reg_bp |= (IXGBE_AUTOC_ASM_PAUSE);
2395 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE);
2396 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
2397 			reg_cu |= (IXGBE_TAF_ASM_PAUSE);
2398 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE);
2399 		}
2400 		break;
2401 	case ixgbe_fc_full:
2402 		/* Flow control (both Rx and Tx) is enabled by SW override. */
2403 		reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
2404 		if (hw->phy.media_type == ixgbe_media_type_backplane)
2405 			reg_bp |= (IXGBE_AUTOC_SYM_PAUSE |
2406 				   IXGBE_AUTOC_ASM_PAUSE);
2407 		else if (hw->phy.media_type == ixgbe_media_type_copper)
2408 			reg_cu |= (IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
2409 		break;
2410 #ifdef CONFIG_DCB
2411 	case ixgbe_fc_pfc:
2412 		goto out;
2413 		break;
2414 #endif /* CONFIG_DCB */
2415 	default:
2416 		hw_dbg(hw, "Flow control param set incorrectly\n");
2417 		ret_val = IXGBE_ERR_CONFIG;
2418 		goto out;
2419 		break;
2420 	}
2421 
2422 	if (hw->mac.type != ixgbe_mac_X540) {
2423 		/*
2424 		 * Enable auto-negotiation between the MAC & PHY;
2425 		 * the MAC will advertise clause 37 flow control.
2426 		 */
2427 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
2428 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
2429 
2430 		/* Disable AN timeout */
2431 		if (hw->fc.strict_ieee)
2432 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
2433 
2434 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
2435 		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
2436 	}
2437 
2438 	/*
2439 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
2440 	 * and copper. There is no need to set the PCS1GCTL register.
2441 	 *
2442 	 */
2443 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
2444 		reg_bp |= IXGBE_AUTOC_AN_RESTART;
2445 		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp);
2446 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
2447 		    (ixgbe_device_supports_autoneg_fc(hw) == 0)) {
2448 		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
2449 				      MDIO_MMD_AN, reg_cu);
2450 	}
2451 
2452 	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
2453 out:
2454 	return ret_val;
2455 }
2456 
2457 /**
2458  *  ixgbe_disable_pcie_master - Disable PCI-express master access
2459  *  @hw: pointer to hardware structure
2460  *
2461  *  Disables PCI-Express master access and verifies there are no pending
2462  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2463  *  bit hasn't caused the master requests to be disabled, else 0
2464  *  is returned signifying master requests disabled.
2465  **/
ixgbe_disable_pcie_master(struct ixgbe_hw * hw)2466 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2467 {
2468 	struct ixgbe_adapter *adapter = hw->back;
2469 	s32 status = 0;
2470 	u32 i;
2471 	u16 value;
2472 
2473 	/* Always set this bit to ensure any future transactions are blocked */
2474 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2475 
2476 	/* Exit if master requests are blocked */
2477 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2478 		goto out;
2479 
2480 	/* Poll for master request bit to clear */
2481 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2482 		udelay(100);
2483 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2484 			goto out;
2485 	}
2486 
2487 	/*
2488 	 * Two consecutive resets are required via CTRL.RST per datasheet
2489 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2490 	 * of this need.  The first reset prevents new master requests from
2491 	 * being issued by our device.  We then must wait 1usec or more for any
2492 	 * remaining completions from the PCIe bus to trickle in, and then reset
2493 	 * again to clear out any effects they may have had on our device.
2494 	 */
2495 	hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2496 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2497 
2498 	/*
2499 	 * Before proceeding, make sure that the PCIe block does not have
2500 	 * transactions pending.
2501 	 */
2502 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2503 		udelay(100);
2504 		pci_read_config_word(adapter->pdev, IXGBE_PCI_DEVICE_STATUS,
2505 							 &value);
2506 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2507 			goto out;
2508 	}
2509 
2510 	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2511 	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
2512 
2513 out:
2514 	return status;
2515 }
2516 
2517 /**
2518  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2519  *  @hw: pointer to hardware structure
2520  *  @mask: Mask to specify which semaphore to acquire
2521  *
2522  *  Acquires the SWFW semaphore through the GSSR register for the specified
2523  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2524  **/
ixgbe_acquire_swfw_sync(struct ixgbe_hw * hw,u16 mask)2525 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2526 {
2527 	u32 gssr;
2528 	u32 swmask = mask;
2529 	u32 fwmask = mask << 5;
2530 	s32 timeout = 200;
2531 
2532 	while (timeout) {
2533 		/*
2534 		 * SW EEPROM semaphore bit is used for access to all
2535 		 * SW_FW_SYNC/GSSR bits (not just EEPROM)
2536 		 */
2537 		if (ixgbe_get_eeprom_semaphore(hw))
2538 			return IXGBE_ERR_SWFW_SYNC;
2539 
2540 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2541 		if (!(gssr & (fwmask | swmask)))
2542 			break;
2543 
2544 		/*
2545 		 * Firmware currently using resource (fwmask) or other software
2546 		 * thread currently using resource (swmask)
2547 		 */
2548 		ixgbe_release_eeprom_semaphore(hw);
2549 		usleep_range(5000, 10000);
2550 		timeout--;
2551 	}
2552 
2553 	if (!timeout) {
2554 		hw_dbg(hw, "Driver can't access resource, SW_FW_SYNC timeout.\n");
2555 		return IXGBE_ERR_SWFW_SYNC;
2556 	}
2557 
2558 	gssr |= swmask;
2559 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2560 
2561 	ixgbe_release_eeprom_semaphore(hw);
2562 	return 0;
2563 }
2564 
2565 /**
2566  *  ixgbe_release_swfw_sync - Release SWFW semaphore
2567  *  @hw: pointer to hardware structure
2568  *  @mask: Mask to specify which semaphore to release
2569  *
2570  *  Releases the SWFW semaphore through the GSSR register for the specified
2571  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2572  **/
ixgbe_release_swfw_sync(struct ixgbe_hw * hw,u16 mask)2573 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2574 {
2575 	u32 gssr;
2576 	u32 swmask = mask;
2577 
2578 	ixgbe_get_eeprom_semaphore(hw);
2579 
2580 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2581 	gssr &= ~swmask;
2582 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2583 
2584 	ixgbe_release_eeprom_semaphore(hw);
2585 }
2586 
2587 /**
2588  *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2589  *  @hw: pointer to hardware structure
2590  *
2591  *  Stops the receive data path and waits for the HW to internally
2592  *  empty the Rx security block.
2593  **/
ixgbe_disable_rx_buff_generic(struct ixgbe_hw * hw)2594 s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2595 {
2596 #define IXGBE_MAX_SECRX_POLL 40
2597 	int i;
2598 	int secrxreg;
2599 
2600 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2601 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2602 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2603 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2604 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2605 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2606 			break;
2607 		else
2608 			/* Use interrupt-safe sleep just in case */
2609 			udelay(10);
2610 	}
2611 
2612 	/* For informational purposes only */
2613 	if (i >= IXGBE_MAX_SECRX_POLL)
2614 		hw_dbg(hw, "Rx unit being enabled before security "
2615 		       "path fully disabled.  Continuing with init.\n");
2616 
2617 	return 0;
2618 
2619 }
2620 
2621 /**
2622  *  ixgbe_enable_rx_buff - Enables the receive data path
2623  *  @hw: pointer to hardware structure
2624  *
2625  *  Enables the receive data path
2626  **/
ixgbe_enable_rx_buff_generic(struct ixgbe_hw * hw)2627 s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2628 {
2629 	int secrxreg;
2630 
2631 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2632 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2633 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2634 	IXGBE_WRITE_FLUSH(hw);
2635 
2636 	return 0;
2637 }
2638 
2639 /**
2640  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2641  *  @hw: pointer to hardware structure
2642  *  @regval: register value to write to RXCTRL
2643  *
2644  *  Enables the Rx DMA unit
2645  **/
ixgbe_enable_rx_dma_generic(struct ixgbe_hw * hw,u32 regval)2646 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2647 {
2648 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2649 
2650 	return 0;
2651 }
2652 
2653 /**
2654  *  ixgbe_blink_led_start_generic - Blink LED based on index.
2655  *  @hw: pointer to hardware structure
2656  *  @index: led number to blink
2657  **/
ixgbe_blink_led_start_generic(struct ixgbe_hw * hw,u32 index)2658 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2659 {
2660 	ixgbe_link_speed speed = 0;
2661 	bool link_up = false;
2662 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2663 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2664 
2665 	/*
2666 	 * Link must be up to auto-blink the LEDs;
2667 	 * Force it if link is down.
2668 	 */
2669 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2670 
2671 	if (!link_up) {
2672 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2673 		autoc_reg |= IXGBE_AUTOC_FLU;
2674 		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2675 		IXGBE_WRITE_FLUSH(hw);
2676 		usleep_range(10000, 20000);
2677 	}
2678 
2679 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2680 	led_reg |= IXGBE_LED_BLINK(index);
2681 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2682 	IXGBE_WRITE_FLUSH(hw);
2683 
2684 	return 0;
2685 }
2686 
2687 /**
2688  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2689  *  @hw: pointer to hardware structure
2690  *  @index: led number to stop blinking
2691  **/
ixgbe_blink_led_stop_generic(struct ixgbe_hw * hw,u32 index)2692 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2693 {
2694 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2695 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2696 
2697 	autoc_reg &= ~IXGBE_AUTOC_FLU;
2698 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2699 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2700 
2701 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2702 	led_reg &= ~IXGBE_LED_BLINK(index);
2703 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2704 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2705 	IXGBE_WRITE_FLUSH(hw);
2706 
2707 	return 0;
2708 }
2709 
2710 /**
2711  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2712  *  @hw: pointer to hardware structure
2713  *  @san_mac_offset: SAN MAC address offset
2714  *
2715  *  This function will read the EEPROM location for the SAN MAC address
2716  *  pointer, and returns the value at that location.  This is used in both
2717  *  get and set mac_addr routines.
2718  **/
ixgbe_get_san_mac_addr_offset(struct ixgbe_hw * hw,u16 * san_mac_offset)2719 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2720                                         u16 *san_mac_offset)
2721 {
2722 	/*
2723 	 * First read the EEPROM pointer to see if the MAC addresses are
2724 	 * available.
2725 	 */
2726 	hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);
2727 
2728 	return 0;
2729 }
2730 
2731 /**
2732  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2733  *  @hw: pointer to hardware structure
2734  *  @san_mac_addr: SAN MAC address
2735  *
2736  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2737  *  per-port, so set_lan_id() must be called before reading the addresses.
2738  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2739  *  upon for non-SFP connections, so we must call it here.
2740  **/
ixgbe_get_san_mac_addr_generic(struct ixgbe_hw * hw,u8 * san_mac_addr)2741 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2742 {
2743 	u16 san_mac_data, san_mac_offset;
2744 	u8 i;
2745 
2746 	/*
2747 	 * First read the EEPROM pointer to see if the MAC addresses are
2748 	 * available.  If they're not, no point in calling set_lan_id() here.
2749 	 */
2750 	ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2751 
2752 	if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
2753 		/*
2754 		 * No addresses available in this EEPROM.  It's not an
2755 		 * error though, so just wipe the local address and return.
2756 		 */
2757 		for (i = 0; i < 6; i++)
2758 			san_mac_addr[i] = 0xFF;
2759 
2760 		goto san_mac_addr_out;
2761 	}
2762 
2763 	/* make sure we know which port we need to program */
2764 	hw->mac.ops.set_lan_id(hw);
2765 	/* apply the port offset to the address offset */
2766 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2767 	                 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2768 	for (i = 0; i < 3; i++) {
2769 		hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
2770 		san_mac_addr[i * 2] = (u8)(san_mac_data);
2771 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2772 		san_mac_offset++;
2773 	}
2774 
2775 san_mac_addr_out:
2776 	return 0;
2777 }
2778 
2779 /**
2780  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2781  *  @hw: pointer to hardware structure
2782  *
2783  *  Read PCIe configuration space, and get the MSI-X vector count from
2784  *  the capabilities table.
2785  **/
ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw * hw)2786 u32 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2787 {
2788 	struct ixgbe_adapter *adapter = hw->back;
2789 	u16 msix_count;
2790 	pci_read_config_word(adapter->pdev, IXGBE_PCIE_MSIX_82599_CAPS,
2791 	                     &msix_count);
2792 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2793 
2794 	/* MSI-X count is zero-based in HW, so increment to give proper value */
2795 	msix_count++;
2796 
2797 	return msix_count;
2798 }
2799 
2800 /**
2801  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2802  *  @hw: pointer to hardware struct
2803  *  @rar: receive address register index to disassociate
2804  *  @vmdq: VMDq pool index to remove from the rar
2805  **/
ixgbe_clear_vmdq_generic(struct ixgbe_hw * hw,u32 rar,u32 vmdq)2806 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2807 {
2808 	u32 mpsar_lo, mpsar_hi;
2809 	u32 rar_entries = hw->mac.num_rar_entries;
2810 
2811 	/* Make sure we are using a valid rar index range */
2812 	if (rar >= rar_entries) {
2813 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2814 		return IXGBE_ERR_INVALID_ARGUMENT;
2815 	}
2816 
2817 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2818 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2819 
2820 	if (!mpsar_lo && !mpsar_hi)
2821 		goto done;
2822 
2823 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2824 		if (mpsar_lo) {
2825 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2826 			mpsar_lo = 0;
2827 		}
2828 		if (mpsar_hi) {
2829 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2830 			mpsar_hi = 0;
2831 		}
2832 	} else if (vmdq < 32) {
2833 		mpsar_lo &= ~(1 << vmdq);
2834 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2835 	} else {
2836 		mpsar_hi &= ~(1 << (vmdq - 32));
2837 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2838 	}
2839 
2840 	/* was that the last pool using this rar? */
2841 	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
2842 		hw->mac.ops.clear_rar(hw, rar);
2843 done:
2844 	return 0;
2845 }
2846 
2847 /**
2848  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2849  *  @hw: pointer to hardware struct
2850  *  @rar: receive address register index to associate with a VMDq index
2851  *  @vmdq: VMDq pool index
2852  **/
ixgbe_set_vmdq_generic(struct ixgbe_hw * hw,u32 rar,u32 vmdq)2853 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2854 {
2855 	u32 mpsar;
2856 	u32 rar_entries = hw->mac.num_rar_entries;
2857 
2858 	/* Make sure we are using a valid rar index range */
2859 	if (rar >= rar_entries) {
2860 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2861 		return IXGBE_ERR_INVALID_ARGUMENT;
2862 	}
2863 
2864 	if (vmdq < 32) {
2865 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2866 		mpsar |= 1 << vmdq;
2867 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2868 	} else {
2869 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2870 		mpsar |= 1 << (vmdq - 32);
2871 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2872 	}
2873 	return 0;
2874 }
2875 
2876 /**
2877  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
2878  *  @hw: pointer to hardware structure
2879  **/
ixgbe_init_uta_tables_generic(struct ixgbe_hw * hw)2880 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
2881 {
2882 	int i;
2883 
2884 	for (i = 0; i < 128; i++)
2885 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
2886 
2887 	return 0;
2888 }
2889 
2890 /**
2891  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
2892  *  @hw: pointer to hardware structure
2893  *  @vlan: VLAN id to write to VLAN filter
2894  *
2895  *  return the VLVF index where this VLAN id should be placed
2896  *
2897  **/
ixgbe_find_vlvf_slot(struct ixgbe_hw * hw,u32 vlan)2898 static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
2899 {
2900 	u32 bits = 0;
2901 	u32 first_empty_slot = 0;
2902 	s32 regindex;
2903 
2904 	/* short cut the special case */
2905 	if (vlan == 0)
2906 		return 0;
2907 
2908 	/*
2909 	  * Search for the vlan id in the VLVF entries. Save off the first empty
2910 	  * slot found along the way
2911 	  */
2912 	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
2913 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
2914 		if (!bits && !(first_empty_slot))
2915 			first_empty_slot = regindex;
2916 		else if ((bits & 0x0FFF) == vlan)
2917 			break;
2918 	}
2919 
2920 	/*
2921 	  * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
2922 	  * in the VLVF. Else use the first empty VLVF register for this
2923 	  * vlan id.
2924 	  */
2925 	if (regindex >= IXGBE_VLVF_ENTRIES) {
2926 		if (first_empty_slot)
2927 			regindex = first_empty_slot;
2928 		else {
2929 			hw_dbg(hw, "No space in VLVF.\n");
2930 			regindex = IXGBE_ERR_NO_SPACE;
2931 		}
2932 	}
2933 
2934 	return regindex;
2935 }
2936 
2937 /**
2938  *  ixgbe_set_vfta_generic - Set VLAN filter table
2939  *  @hw: pointer to hardware structure
2940  *  @vlan: VLAN id to write to VLAN filter
2941  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
2942  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
2943  *
2944  *  Turn on/off specified VLAN in the VLAN filter table.
2945  **/
ixgbe_set_vfta_generic(struct ixgbe_hw * hw,u32 vlan,u32 vind,bool vlan_on)2946 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
2947                            bool vlan_on)
2948 {
2949 	s32 regindex;
2950 	u32 bitindex;
2951 	u32 vfta;
2952 	u32 bits;
2953 	u32 vt;
2954 	u32 targetbit;
2955 	bool vfta_changed = false;
2956 
2957 	if (vlan > 4095)
2958 		return IXGBE_ERR_PARAM;
2959 
2960 	/*
2961 	 * this is a 2 part operation - first the VFTA, then the
2962 	 * VLVF and VLVFB if VT Mode is set
2963 	 * We don't write the VFTA until we know the VLVF part succeeded.
2964 	 */
2965 
2966 	/* Part 1
2967 	 * The VFTA is a bitstring made up of 128 32-bit registers
2968 	 * that enable the particular VLAN id, much like the MTA:
2969 	 *    bits[11-5]: which register
2970 	 *    bits[4-0]:  which bit in the register
2971 	 */
2972 	regindex = (vlan >> 5) & 0x7F;
2973 	bitindex = vlan & 0x1F;
2974 	targetbit = (1 << bitindex);
2975 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
2976 
2977 	if (vlan_on) {
2978 		if (!(vfta & targetbit)) {
2979 			vfta |= targetbit;
2980 			vfta_changed = true;
2981 		}
2982 	} else {
2983 		if ((vfta & targetbit)) {
2984 			vfta &= ~targetbit;
2985 			vfta_changed = true;
2986 		}
2987 	}
2988 
2989 	/* Part 2
2990 	 * If VT Mode is set
2991 	 *   Either vlan_on
2992 	 *     make sure the vlan is in VLVF
2993 	 *     set the vind bit in the matching VLVFB
2994 	 *   Or !vlan_on
2995 	 *     clear the pool bit and possibly the vind
2996 	 */
2997 	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
2998 	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
2999 		s32 vlvf_index;
3000 
3001 		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3002 		if (vlvf_index < 0)
3003 			return vlvf_index;
3004 
3005 		if (vlan_on) {
3006 			/* set the pool bit */
3007 			if (vind < 32) {
3008 				bits = IXGBE_READ_REG(hw,
3009 						IXGBE_VLVFB(vlvf_index*2));
3010 				bits |= (1 << vind);
3011 				IXGBE_WRITE_REG(hw,
3012 						IXGBE_VLVFB(vlvf_index*2),
3013 						bits);
3014 			} else {
3015 				bits = IXGBE_READ_REG(hw,
3016 						IXGBE_VLVFB((vlvf_index*2)+1));
3017 				bits |= (1 << (vind-32));
3018 				IXGBE_WRITE_REG(hw,
3019 						IXGBE_VLVFB((vlvf_index*2)+1),
3020 						bits);
3021 			}
3022 		} else {
3023 			/* clear the pool bit */
3024 			if (vind < 32) {
3025 				bits = IXGBE_READ_REG(hw,
3026 						IXGBE_VLVFB(vlvf_index*2));
3027 				bits &= ~(1 << vind);
3028 				IXGBE_WRITE_REG(hw,
3029 						IXGBE_VLVFB(vlvf_index*2),
3030 						bits);
3031 				bits |= IXGBE_READ_REG(hw,
3032 						IXGBE_VLVFB((vlvf_index*2)+1));
3033 			} else {
3034 				bits = IXGBE_READ_REG(hw,
3035 						IXGBE_VLVFB((vlvf_index*2)+1));
3036 				bits &= ~(1 << (vind-32));
3037 				IXGBE_WRITE_REG(hw,
3038 						IXGBE_VLVFB((vlvf_index*2)+1),
3039 						bits);
3040 				bits |= IXGBE_READ_REG(hw,
3041 						IXGBE_VLVFB(vlvf_index*2));
3042 			}
3043 		}
3044 
3045 		/*
3046 		 * If there are still bits set in the VLVFB registers
3047 		 * for the VLAN ID indicated we need to see if the
3048 		 * caller is requesting that we clear the VFTA entry bit.
3049 		 * If the caller has requested that we clear the VFTA
3050 		 * entry bit but there are still pools/VFs using this VLAN
3051 		 * ID entry then ignore the request.  We're not worried
3052 		 * about the case where we're turning the VFTA VLAN ID
3053 		 * entry bit on, only when requested to turn it off as
3054 		 * there may be multiple pools and/or VFs using the
3055 		 * VLAN ID entry.  In that case we cannot clear the
3056 		 * VFTA bit until all pools/VFs using that VLAN ID have also
3057 		 * been cleared.  This will be indicated by "bits" being
3058 		 * zero.
3059 		 */
3060 		if (bits) {
3061 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
3062 					(IXGBE_VLVF_VIEN | vlan));
3063 			if (!vlan_on) {
3064 				/* someone wants to clear the vfta entry
3065 				 * but some pools/VFs are still using it.
3066 				 * Ignore it. */
3067 				vfta_changed = false;
3068 			}
3069 		}
3070 		else
3071 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3072 	}
3073 
3074 	if (vfta_changed)
3075 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3076 
3077 	return 0;
3078 }
3079 
3080 /**
3081  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3082  *  @hw: pointer to hardware structure
3083  *
3084  *  Clears the VLAN filer table, and the VMDq index associated with the filter
3085  **/
ixgbe_clear_vfta_generic(struct ixgbe_hw * hw)3086 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3087 {
3088 	u32 offset;
3089 
3090 	for (offset = 0; offset < hw->mac.vft_size; offset++)
3091 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3092 
3093 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3094 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3095 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
3096 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
3097 	}
3098 
3099 	return 0;
3100 }
3101 
3102 /**
3103  *  ixgbe_check_mac_link_generic - Determine link and speed status
3104  *  @hw: pointer to hardware structure
3105  *  @speed: pointer to link speed
3106  *  @link_up: true when link is up
3107  *  @link_up_wait_to_complete: bool used to wait for link up or not
3108  *
3109  *  Reads the links register to determine if link is up and the current speed
3110  **/
ixgbe_check_mac_link_generic(struct ixgbe_hw * hw,ixgbe_link_speed * speed,bool * link_up,bool link_up_wait_to_complete)3111 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3112 				 bool *link_up, bool link_up_wait_to_complete)
3113 {
3114 	u32 links_reg, links_orig;
3115 	u32 i;
3116 
3117 	/* clear the old state */
3118 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3119 
3120 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3121 
3122 	if (links_orig != links_reg) {
3123 		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3124 		       links_orig, links_reg);
3125 	}
3126 
3127 	if (link_up_wait_to_complete) {
3128 		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3129 			if (links_reg & IXGBE_LINKS_UP) {
3130 				*link_up = true;
3131 				break;
3132 			} else {
3133 				*link_up = false;
3134 			}
3135 			msleep(100);
3136 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3137 		}
3138 	} else {
3139 		if (links_reg & IXGBE_LINKS_UP)
3140 			*link_up = true;
3141 		else
3142 			*link_up = false;
3143 	}
3144 
3145 	if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3146 	    IXGBE_LINKS_SPEED_10G_82599)
3147 		*speed = IXGBE_LINK_SPEED_10GB_FULL;
3148 	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3149 		 IXGBE_LINKS_SPEED_1G_82599)
3150 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3151 	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3152 		 IXGBE_LINKS_SPEED_100_82599)
3153 		*speed = IXGBE_LINK_SPEED_100_FULL;
3154 	else
3155 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3156 
3157 	return 0;
3158 }
3159 
3160 /**
3161  *  ixgbe_get_wwn_prefix_generic Get alternative WWNN/WWPN prefix from
3162  *  the EEPROM
3163  *  @hw: pointer to hardware structure
3164  *  @wwnn_prefix: the alternative WWNN prefix
3165  *  @wwpn_prefix: the alternative WWPN prefix
3166  *
3167  *  This function will read the EEPROM from the alternative SAN MAC address
3168  *  block to check the support for the alternative WWNN/WWPN prefix support.
3169  **/
ixgbe_get_wwn_prefix_generic(struct ixgbe_hw * hw,u16 * wwnn_prefix,u16 * wwpn_prefix)3170 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3171                                         u16 *wwpn_prefix)
3172 {
3173 	u16 offset, caps;
3174 	u16 alt_san_mac_blk_offset;
3175 
3176 	/* clear output first */
3177 	*wwnn_prefix = 0xFFFF;
3178 	*wwpn_prefix = 0xFFFF;
3179 
3180 	/* check if alternative SAN MAC is supported */
3181 	hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
3182 	                    &alt_san_mac_blk_offset);
3183 
3184 	if ((alt_san_mac_blk_offset == 0) ||
3185 	    (alt_san_mac_blk_offset == 0xFFFF))
3186 		goto wwn_prefix_out;
3187 
3188 	/* check capability in alternative san mac address block */
3189 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3190 	hw->eeprom.ops.read(hw, offset, &caps);
3191 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3192 		goto wwn_prefix_out;
3193 
3194 	/* get the corresponding prefix for WWNN/WWPN */
3195 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3196 	hw->eeprom.ops.read(hw, offset, wwnn_prefix);
3197 
3198 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3199 	hw->eeprom.ops.read(hw, offset, wwpn_prefix);
3200 
3201 wwn_prefix_out:
3202 	return 0;
3203 }
3204 
3205 /**
3206  *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
3207  *  control
3208  *  @hw: pointer to hardware structure
3209  *
3210  *  There are several phys that do not support autoneg flow control. This
3211  *  function check the device id to see if the associated phy supports
3212  *  autoneg flow control.
3213  **/
ixgbe_device_supports_autoneg_fc(struct ixgbe_hw * hw)3214 static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
3215 {
3216 
3217 	switch (hw->device_id) {
3218 	case IXGBE_DEV_ID_X540T:
3219 	case IXGBE_DEV_ID_X540T1:
3220 		return 0;
3221 	case IXGBE_DEV_ID_82599_T3_LOM:
3222 		return 0;
3223 	default:
3224 		return IXGBE_ERR_FC_NOT_SUPPORTED;
3225 	}
3226 }
3227 
3228 /**
3229  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3230  *  @hw: pointer to hardware structure
3231  *  @enable: enable or disable switch for anti-spoofing
3232  *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
3233  *
3234  **/
ixgbe_set_mac_anti_spoofing(struct ixgbe_hw * hw,bool enable,int pf)3235 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
3236 {
3237 	int j;
3238 	int pf_target_reg = pf >> 3;
3239 	int pf_target_shift = pf % 8;
3240 	u32 pfvfspoof = 0;
3241 
3242 	if (hw->mac.type == ixgbe_mac_82598EB)
3243 		return;
3244 
3245 	if (enable)
3246 		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
3247 
3248 	/*
3249 	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
3250 	 * MAC anti-spoof enables in each register array element.
3251 	 */
3252 	for (j = 0; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
3253 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3254 
3255 	/* If not enabling anti-spoofing then done */
3256 	if (!enable)
3257 		return;
3258 
3259 	/*
3260 	 * The PF should be allowed to spoof so that it can support
3261 	 * emulation mode NICs.  Reset the bit assigned to the PF
3262 	 */
3263 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg));
3264 	pfvfspoof ^= (1 << pf_target_shift);
3265 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg), pfvfspoof);
3266 }
3267 
3268 /**
3269  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3270  *  @hw: pointer to hardware structure
3271  *  @enable: enable or disable switch for VLAN anti-spoofing
3272  *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3273  *
3274  **/
ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw * hw,bool enable,int vf)3275 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3276 {
3277 	int vf_target_reg = vf >> 3;
3278 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3279 	u32 pfvfspoof;
3280 
3281 	if (hw->mac.type == ixgbe_mac_82598EB)
3282 		return;
3283 
3284 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3285 	if (enable)
3286 		pfvfspoof |= (1 << vf_target_shift);
3287 	else
3288 		pfvfspoof &= ~(1 << vf_target_shift);
3289 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3290 }
3291 
3292 /**
3293  *  ixgbe_get_device_caps_generic - Get additional device capabilities
3294  *  @hw: pointer to hardware structure
3295  *  @device_caps: the EEPROM word with the extra device capabilities
3296  *
3297  *  This function will read the EEPROM location for the device capabilities,
3298  *  and return the word through device_caps.
3299  **/
ixgbe_get_device_caps_generic(struct ixgbe_hw * hw,u16 * device_caps)3300 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3301 {
3302 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3303 
3304 	return 0;
3305 }
3306 
3307 /**
3308  * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3309  * @hw: pointer to hardware structure
3310  * @num_pb: number of packet buffers to allocate
3311  * @headroom: reserve n KB of headroom
3312  * @strategy: packet buffer allocation strategy
3313  **/
ixgbe_set_rxpba_generic(struct ixgbe_hw * hw,int num_pb,u32 headroom,int strategy)3314 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3315 			     int num_pb,
3316 			     u32 headroom,
3317 			     int strategy)
3318 {
3319 	u32 pbsize = hw->mac.rx_pb_size;
3320 	int i = 0;
3321 	u32 rxpktsize, txpktsize, txpbthresh;
3322 
3323 	/* Reserve headroom */
3324 	pbsize -= headroom;
3325 
3326 	if (!num_pb)
3327 		num_pb = 1;
3328 
3329 	/* Divide remaining packet buffer space amongst the number
3330 	 * of packet buffers requested using supplied strategy.
3331 	 */
3332 	switch (strategy) {
3333 	case (PBA_STRATEGY_WEIGHTED):
3334 		/* pba_80_48 strategy weight first half of packet buffer with
3335 		 * 5/8 of the packet buffer space.
3336 		 */
3337 		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3338 		pbsize -= rxpktsize * (num_pb / 2);
3339 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3340 		for (; i < (num_pb / 2); i++)
3341 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3342 		/* Fall through to configure remaining packet buffers */
3343 	case (PBA_STRATEGY_EQUAL):
3344 		/* Divide the remaining Rx packet buffer evenly among the TCs */
3345 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3346 		for (; i < num_pb; i++)
3347 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3348 		break;
3349 	default:
3350 		break;
3351 	}
3352 
3353 	/*
3354 	 * Setup Tx packet buffer and threshold equally for all TCs
3355 	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3356 	 * 10 since the largest packet we support is just over 9K.
3357 	 */
3358 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3359 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3360 	for (i = 0; i < num_pb; i++) {
3361 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3362 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3363 	}
3364 
3365 	/* Clear unused TCs, if any, to zero buffer size*/
3366 	for (; i < IXGBE_MAX_PB; i++) {
3367 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3368 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3369 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3370 	}
3371 }
3372 
3373 /**
3374  *  ixgbe_calculate_checksum - Calculate checksum for buffer
3375  *  @buffer: pointer to EEPROM
3376  *  @length: size of EEPROM to calculate a checksum for
3377  *  Calculates the checksum for some buffer on a specified length.  The
3378  *  checksum calculated is returned.
3379  **/
ixgbe_calculate_checksum(u8 * buffer,u32 length)3380 static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3381 {
3382 	u32 i;
3383 	u8 sum = 0;
3384 
3385 	if (!buffer)
3386 		return 0;
3387 
3388 	for (i = 0; i < length; i++)
3389 		sum += buffer[i];
3390 
3391 	return (u8) (0 - sum);
3392 }
3393 
3394 /**
3395  *  ixgbe_host_interface_command - Issue command to manageability block
3396  *  @hw: pointer to the HW structure
3397  *  @buffer: contains the command to write and where the return status will
3398  *           be placed
3399  *  @length: length of buffer, must be multiple of 4 bytes
3400  *
3401  *  Communicates with the manageability block.  On success return 0
3402  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3403  **/
ixgbe_host_interface_command(struct ixgbe_hw * hw,u32 * buffer,u32 length)3404 static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
3405 					u32 length)
3406 {
3407 	u32 hicr, i, bi;
3408 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3409 	u8 buf_len, dword_len;
3410 
3411 	s32 ret_val = 0;
3412 
3413 	if (length == 0 || length & 0x3 ||
3414 	    length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3415 		hw_dbg(hw, "Buffer length failure.\n");
3416 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3417 		goto out;
3418 	}
3419 
3420 	/* Check that the host interface is enabled. */
3421 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3422 	if ((hicr & IXGBE_HICR_EN) == 0) {
3423 		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3424 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3425 		goto out;
3426 	}
3427 
3428 	/* Calculate length in DWORDs */
3429 	dword_len = length >> 2;
3430 
3431 	/*
3432 	 * The device driver writes the relevant command block
3433 	 * into the ram area.
3434 	 */
3435 	for (i = 0; i < dword_len; i++)
3436 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3437 				      i, cpu_to_le32(buffer[i]));
3438 
3439 	/* Setting this bit tells the ARC that a new command is pending. */
3440 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3441 
3442 	for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
3443 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3444 		if (!(hicr & IXGBE_HICR_C))
3445 			break;
3446 		usleep_range(1000, 2000);
3447 	}
3448 
3449 	/* Check command successful completion. */
3450 	if (i == IXGBE_HI_COMMAND_TIMEOUT ||
3451 	    (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
3452 		hw_dbg(hw, "Command has failed with no status valid.\n");
3453 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3454 		goto out;
3455 	}
3456 
3457 	/* Calculate length in DWORDs */
3458 	dword_len = hdr_size >> 2;
3459 
3460 	/* first pull in the header so we know the buffer length */
3461 	for (bi = 0; bi < dword_len; bi++) {
3462 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3463 		le32_to_cpus(&buffer[bi]);
3464 	}
3465 
3466 	/* If there is any thing in data position pull it in */
3467 	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
3468 	if (buf_len == 0)
3469 		goto out;
3470 
3471 	if (length < (buf_len + hdr_size)) {
3472 		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3473 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3474 		goto out;
3475 	}
3476 
3477 	/* Calculate length in DWORDs, add 3 for odd lengths */
3478 	dword_len = (buf_len + 3) >> 2;
3479 
3480 	/* Pull in the rest of the buffer (bi is where we left off)*/
3481 	for (; bi <= dword_len; bi++) {
3482 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3483 		le32_to_cpus(&buffer[bi]);
3484 	}
3485 
3486 out:
3487 	return ret_val;
3488 }
3489 
3490 /**
3491  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3492  *  @hw: pointer to the HW structure
3493  *  @maj: driver version major number
3494  *  @min: driver version minor number
3495  *  @build: driver version build number
3496  *  @sub: driver version sub build number
3497  *
3498  *  Sends driver version number to firmware through the manageability
3499  *  block.  On success return 0
3500  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3501  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3502  **/
ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw * hw,u8 maj,u8 min,u8 build,u8 sub)3503 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3504 				 u8 build, u8 sub)
3505 {
3506 	struct ixgbe_hic_drv_info fw_cmd;
3507 	int i;
3508 	s32 ret_val = 0;
3509 
3510 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM) != 0) {
3511 		ret_val = IXGBE_ERR_SWFW_SYNC;
3512 		goto out;
3513 	}
3514 
3515 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3516 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3517 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3518 	fw_cmd.port_num = (u8)hw->bus.func;
3519 	fw_cmd.ver_maj = maj;
3520 	fw_cmd.ver_min = min;
3521 	fw_cmd.ver_build = build;
3522 	fw_cmd.ver_sub = sub;
3523 	fw_cmd.hdr.checksum = 0;
3524 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3525 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3526 	fw_cmd.pad = 0;
3527 	fw_cmd.pad2 = 0;
3528 
3529 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3530 		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
3531 						       sizeof(fw_cmd));
3532 		if (ret_val != 0)
3533 			continue;
3534 
3535 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3536 		    FW_CEM_RESP_STATUS_SUCCESS)
3537 			ret_val = 0;
3538 		else
3539 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3540 
3541 		break;
3542 	}
3543 
3544 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3545 out:
3546 	return ret_val;
3547 }
3548 
3549 /**
3550  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3551  * @hw: pointer to the hardware structure
3552  *
3553  * The 82599 and x540 MACs can experience issues if TX work is still pending
3554  * when a reset occurs.  This function prevents this by flushing the PCIe
3555  * buffers on the system.
3556  **/
ixgbe_clear_tx_pending(struct ixgbe_hw * hw)3557 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3558 {
3559 	u32 gcr_ext, hlreg0;
3560 
3561 	/*
3562 	 * If double reset is not requested then all transactions should
3563 	 * already be clear and as such there is no work to do
3564 	 */
3565 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3566 		return;
3567 
3568 	/*
3569 	 * Set loopback enable to prevent any transmits from being sent
3570 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
3571 	 * has already been cleared.
3572 	 */
3573 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3574 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3575 
3576 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
3577 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3578 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3579 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3580 
3581 	/* Flush all writes and allow 20usec for all transactions to clear */
3582 	IXGBE_WRITE_FLUSH(hw);
3583 	udelay(20);
3584 
3585 	/* restore previous register values */
3586 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3587 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3588 }
3589