1 /*******************************************************************************
2
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2012 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/sched.h>
31
32 #include "ixgbe_common.h"
33 #include "ixgbe_phy.h"
34
35 static void ixgbe_i2c_start(struct ixgbe_hw *hw);
36 static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
37 static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
38 static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
39 static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
40 static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
41 static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
42 static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
43 static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
44 static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
45 static bool ixgbe_get_i2c_data(u32 *i2cctl);
46 static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw);
47 static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id);
48 static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw);
49
50 /**
51 * ixgbe_identify_phy_generic - Get physical layer module
52 * @hw: pointer to hardware structure
53 *
54 * Determines the physical layer module found on the current adapter.
55 **/
ixgbe_identify_phy_generic(struct ixgbe_hw * hw)56 s32 ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
57 {
58 s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
59 u32 phy_addr;
60 u16 ext_ability = 0;
61
62 if (hw->phy.type == ixgbe_phy_unknown) {
63 for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
64 hw->phy.mdio.prtad = phy_addr;
65 if (mdio45_probe(&hw->phy.mdio, phy_addr) == 0) {
66 ixgbe_get_phy_id(hw);
67 hw->phy.type =
68 ixgbe_get_phy_type_from_id(hw->phy.id);
69
70 if (hw->phy.type == ixgbe_phy_unknown) {
71 hw->phy.ops.read_reg(hw,
72 MDIO_PMA_EXTABLE,
73 MDIO_MMD_PMAPMD,
74 &ext_ability);
75 if (ext_ability &
76 (MDIO_PMA_EXTABLE_10GBT |
77 MDIO_PMA_EXTABLE_1000BT))
78 hw->phy.type =
79 ixgbe_phy_cu_unknown;
80 else
81 hw->phy.type =
82 ixgbe_phy_generic;
83 }
84
85 status = 0;
86 break;
87 }
88 }
89 /* clear value if nothing found */
90 if (status != 0)
91 hw->phy.mdio.prtad = 0;
92 } else {
93 status = 0;
94 }
95
96 return status;
97 }
98
99 /**
100 * ixgbe_get_phy_id - Get the phy type
101 * @hw: pointer to hardware structure
102 *
103 **/
ixgbe_get_phy_id(struct ixgbe_hw * hw)104 static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw)
105 {
106 u32 status;
107 u16 phy_id_high = 0;
108 u16 phy_id_low = 0;
109
110 status = hw->phy.ops.read_reg(hw, MDIO_DEVID1, MDIO_MMD_PMAPMD,
111 &phy_id_high);
112
113 if (status == 0) {
114 hw->phy.id = (u32)(phy_id_high << 16);
115 status = hw->phy.ops.read_reg(hw, MDIO_DEVID2, MDIO_MMD_PMAPMD,
116 &phy_id_low);
117 hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
118 hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
119 }
120 return status;
121 }
122
123 /**
124 * ixgbe_get_phy_type_from_id - Get the phy type
125 * @hw: pointer to hardware structure
126 *
127 **/
ixgbe_get_phy_type_from_id(u32 phy_id)128 static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
129 {
130 enum ixgbe_phy_type phy_type;
131
132 switch (phy_id) {
133 case TN1010_PHY_ID:
134 phy_type = ixgbe_phy_tn;
135 break;
136 case X540_PHY_ID:
137 phy_type = ixgbe_phy_aq;
138 break;
139 case QT2022_PHY_ID:
140 phy_type = ixgbe_phy_qt;
141 break;
142 case ATH_PHY_ID:
143 phy_type = ixgbe_phy_nl;
144 break;
145 default:
146 phy_type = ixgbe_phy_unknown;
147 break;
148 }
149
150 return phy_type;
151 }
152
153 /**
154 * ixgbe_reset_phy_generic - Performs a PHY reset
155 * @hw: pointer to hardware structure
156 **/
ixgbe_reset_phy_generic(struct ixgbe_hw * hw)157 s32 ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
158 {
159 u32 i;
160 u16 ctrl = 0;
161 s32 status = 0;
162
163 if (hw->phy.type == ixgbe_phy_unknown)
164 status = ixgbe_identify_phy_generic(hw);
165
166 if (status != 0 || hw->phy.type == ixgbe_phy_none)
167 goto out;
168
169 /* Don't reset PHY if it's shut down due to overtemp. */
170 if (!hw->phy.reset_if_overtemp &&
171 (IXGBE_ERR_OVERTEMP == hw->phy.ops.check_overtemp(hw)))
172 goto out;
173
174 /*
175 * Perform soft PHY reset to the PHY_XS.
176 * This will cause a soft reset to the PHY
177 */
178 hw->phy.ops.write_reg(hw, MDIO_CTRL1,
179 MDIO_MMD_PHYXS,
180 MDIO_CTRL1_RESET);
181
182 /*
183 * Poll for reset bit to self-clear indicating reset is complete.
184 * Some PHYs could take up to 3 seconds to complete and need about
185 * 1.7 usec delay after the reset is complete.
186 */
187 for (i = 0; i < 30; i++) {
188 msleep(100);
189 hw->phy.ops.read_reg(hw, MDIO_CTRL1,
190 MDIO_MMD_PHYXS, &ctrl);
191 if (!(ctrl & MDIO_CTRL1_RESET)) {
192 udelay(2);
193 break;
194 }
195 }
196
197 if (ctrl & MDIO_CTRL1_RESET) {
198 status = IXGBE_ERR_RESET_FAILED;
199 hw_dbg(hw, "PHY reset polling failed to complete.\n");
200 }
201
202 out:
203 return status;
204 }
205
206 /**
207 * ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
208 * @hw: pointer to hardware structure
209 * @reg_addr: 32 bit address of PHY register to read
210 * @phy_data: Pointer to read data from PHY register
211 **/
ixgbe_read_phy_reg_generic(struct ixgbe_hw * hw,u32 reg_addr,u32 device_type,u16 * phy_data)212 s32 ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
213 u32 device_type, u16 *phy_data)
214 {
215 u32 command;
216 u32 i;
217 u32 data;
218 s32 status = 0;
219 u16 gssr;
220
221 if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
222 gssr = IXGBE_GSSR_PHY1_SM;
223 else
224 gssr = IXGBE_GSSR_PHY0_SM;
225
226 if (hw->mac.ops.acquire_swfw_sync(hw, gssr) != 0)
227 status = IXGBE_ERR_SWFW_SYNC;
228
229 if (status == 0) {
230 /* Setup and write the address cycle command */
231 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
232 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
233 (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
234 (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
235
236 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
237
238 /*
239 * Check every 10 usec to see if the address cycle completed.
240 * The MDI Command bit will clear when the operation is
241 * complete
242 */
243 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
244 udelay(10);
245
246 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
247
248 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
249 break;
250 }
251
252 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
253 hw_dbg(hw, "PHY address command did not complete.\n");
254 status = IXGBE_ERR_PHY;
255 }
256
257 if (status == 0) {
258 /*
259 * Address cycle complete, setup and write the read
260 * command
261 */
262 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
263 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
264 (hw->phy.mdio.prtad <<
265 IXGBE_MSCA_PHY_ADDR_SHIFT) |
266 (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
267
268 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
269
270 /*
271 * Check every 10 usec to see if the address cycle
272 * completed. The MDI Command bit will clear when the
273 * operation is complete
274 */
275 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
276 udelay(10);
277
278 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
279
280 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
281 break;
282 }
283
284 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
285 hw_dbg(hw, "PHY read command didn't complete\n");
286 status = IXGBE_ERR_PHY;
287 } else {
288 /*
289 * Read operation is complete. Get the data
290 * from MSRWD
291 */
292 data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
293 data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
294 *phy_data = (u16)(data);
295 }
296 }
297
298 hw->mac.ops.release_swfw_sync(hw, gssr);
299 }
300
301 return status;
302 }
303
304 /**
305 * ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
306 * @hw: pointer to hardware structure
307 * @reg_addr: 32 bit PHY register to write
308 * @device_type: 5 bit device type
309 * @phy_data: Data to write to the PHY register
310 **/
ixgbe_write_phy_reg_generic(struct ixgbe_hw * hw,u32 reg_addr,u32 device_type,u16 phy_data)311 s32 ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
312 u32 device_type, u16 phy_data)
313 {
314 u32 command;
315 u32 i;
316 s32 status = 0;
317 u16 gssr;
318
319 if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
320 gssr = IXGBE_GSSR_PHY1_SM;
321 else
322 gssr = IXGBE_GSSR_PHY0_SM;
323
324 if (hw->mac.ops.acquire_swfw_sync(hw, gssr) != 0)
325 status = IXGBE_ERR_SWFW_SYNC;
326
327 if (status == 0) {
328 /* Put the data in the MDI single read and write data register*/
329 IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
330
331 /* Setup and write the address cycle command */
332 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
333 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
334 (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
335 (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
336
337 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
338
339 /*
340 * Check every 10 usec to see if the address cycle completed.
341 * The MDI Command bit will clear when the operation is
342 * complete
343 */
344 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
345 udelay(10);
346
347 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
348
349 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
350 break;
351 }
352
353 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
354 hw_dbg(hw, "PHY address cmd didn't complete\n");
355 status = IXGBE_ERR_PHY;
356 }
357
358 if (status == 0) {
359 /*
360 * Address cycle complete, setup and write the write
361 * command
362 */
363 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
364 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
365 (hw->phy.mdio.prtad <<
366 IXGBE_MSCA_PHY_ADDR_SHIFT) |
367 (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
368
369 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
370
371 /*
372 * Check every 10 usec to see if the address cycle
373 * completed. The MDI Command bit will clear when the
374 * operation is complete
375 */
376 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
377 udelay(10);
378
379 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
380
381 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
382 break;
383 }
384
385 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
386 hw_dbg(hw, "PHY address cmd didn't complete\n");
387 status = IXGBE_ERR_PHY;
388 }
389 }
390
391 hw->mac.ops.release_swfw_sync(hw, gssr);
392 }
393
394 return status;
395 }
396
397 /**
398 * ixgbe_setup_phy_link_generic - Set and restart autoneg
399 * @hw: pointer to hardware structure
400 *
401 * Restart autonegotiation and PHY and waits for completion.
402 **/
ixgbe_setup_phy_link_generic(struct ixgbe_hw * hw)403 s32 ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
404 {
405 s32 status = 0;
406 u32 time_out;
407 u32 max_time_out = 10;
408 u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
409 bool autoneg = false;
410 ixgbe_link_speed speed;
411
412 ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
413
414 if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
415 /* Set or unset auto-negotiation 10G advertisement */
416 hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL,
417 MDIO_MMD_AN,
418 &autoneg_reg);
419
420 autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
421 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL)
422 autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
423
424 hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL,
425 MDIO_MMD_AN,
426 autoneg_reg);
427 }
428
429 if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
430 /* Set or unset auto-negotiation 1G advertisement */
431 hw->phy.ops.read_reg(hw,
432 IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
433 MDIO_MMD_AN,
434 &autoneg_reg);
435
436 autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE;
437 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL)
438 autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE;
439
440 hw->phy.ops.write_reg(hw,
441 IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
442 MDIO_MMD_AN,
443 autoneg_reg);
444 }
445
446 if (speed & IXGBE_LINK_SPEED_100_FULL) {
447 /* Set or unset auto-negotiation 100M advertisement */
448 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
449 MDIO_MMD_AN,
450 &autoneg_reg);
451
452 autoneg_reg &= ~(ADVERTISE_100FULL |
453 ADVERTISE_100HALF);
454 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL)
455 autoneg_reg |= ADVERTISE_100FULL;
456
457 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
458 MDIO_MMD_AN,
459 autoneg_reg);
460 }
461
462 /* Restart PHY autonegotiation and wait for completion */
463 hw->phy.ops.read_reg(hw, MDIO_CTRL1,
464 MDIO_MMD_AN, &autoneg_reg);
465
466 autoneg_reg |= MDIO_AN_CTRL1_RESTART;
467
468 hw->phy.ops.write_reg(hw, MDIO_CTRL1,
469 MDIO_MMD_AN, autoneg_reg);
470
471 /* Wait for autonegotiation to finish */
472 for (time_out = 0; time_out < max_time_out; time_out++) {
473 udelay(10);
474 /* Restart PHY autonegotiation and wait for completion */
475 status = hw->phy.ops.read_reg(hw, MDIO_STAT1,
476 MDIO_MMD_AN,
477 &autoneg_reg);
478
479 autoneg_reg &= MDIO_AN_STAT1_COMPLETE;
480 if (autoneg_reg == MDIO_AN_STAT1_COMPLETE) {
481 break;
482 }
483 }
484
485 if (time_out == max_time_out) {
486 status = IXGBE_ERR_LINK_SETUP;
487 hw_dbg(hw, "ixgbe_setup_phy_link_generic: time out");
488 }
489
490 return status;
491 }
492
493 /**
494 * ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
495 * @hw: pointer to hardware structure
496 * @speed: new link speed
497 * @autoneg: true if autonegotiation enabled
498 **/
ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw * hw,ixgbe_link_speed speed,bool autoneg,bool autoneg_wait_to_complete)499 s32 ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
500 ixgbe_link_speed speed,
501 bool autoneg,
502 bool autoneg_wait_to_complete)
503 {
504
505 /*
506 * Clear autoneg_advertised and set new values based on input link
507 * speed.
508 */
509 hw->phy.autoneg_advertised = 0;
510
511 if (speed & IXGBE_LINK_SPEED_10GB_FULL)
512 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
513
514 if (speed & IXGBE_LINK_SPEED_1GB_FULL)
515 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
516
517 if (speed & IXGBE_LINK_SPEED_100_FULL)
518 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_100_FULL;
519
520 /* Setup link based on the new speed settings */
521 hw->phy.ops.setup_link(hw);
522
523 return 0;
524 }
525
526 /**
527 * ixgbe_get_copper_link_capabilities_generic - Determines link capabilities
528 * @hw: pointer to hardware structure
529 * @speed: pointer to link speed
530 * @autoneg: boolean auto-negotiation value
531 *
532 * Determines the link capabilities by reading the AUTOC register.
533 */
ixgbe_get_copper_link_capabilities_generic(struct ixgbe_hw * hw,ixgbe_link_speed * speed,bool * autoneg)534 s32 ixgbe_get_copper_link_capabilities_generic(struct ixgbe_hw *hw,
535 ixgbe_link_speed *speed,
536 bool *autoneg)
537 {
538 s32 status = IXGBE_ERR_LINK_SETUP;
539 u16 speed_ability;
540
541 *speed = 0;
542 *autoneg = true;
543
544 status = hw->phy.ops.read_reg(hw, MDIO_SPEED, MDIO_MMD_PMAPMD,
545 &speed_ability);
546
547 if (status == 0) {
548 if (speed_ability & MDIO_SPEED_10G)
549 *speed |= IXGBE_LINK_SPEED_10GB_FULL;
550 if (speed_ability & MDIO_PMA_SPEED_1000)
551 *speed |= IXGBE_LINK_SPEED_1GB_FULL;
552 if (speed_ability & MDIO_PMA_SPEED_100)
553 *speed |= IXGBE_LINK_SPEED_100_FULL;
554 }
555
556 return status;
557 }
558
559 /**
560 * ixgbe_check_phy_link_tnx - Determine link and speed status
561 * @hw: pointer to hardware structure
562 *
563 * Reads the VS1 register to determine if link is up and the current speed for
564 * the PHY.
565 **/
ixgbe_check_phy_link_tnx(struct ixgbe_hw * hw,ixgbe_link_speed * speed,bool * link_up)566 s32 ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
567 bool *link_up)
568 {
569 s32 status = 0;
570 u32 time_out;
571 u32 max_time_out = 10;
572 u16 phy_link = 0;
573 u16 phy_speed = 0;
574 u16 phy_data = 0;
575
576 /* Initialize speed and link to default case */
577 *link_up = false;
578 *speed = IXGBE_LINK_SPEED_10GB_FULL;
579
580 /*
581 * Check current speed and link status of the PHY register.
582 * This is a vendor specific register and may have to
583 * be changed for other copper PHYs.
584 */
585 for (time_out = 0; time_out < max_time_out; time_out++) {
586 udelay(10);
587 status = hw->phy.ops.read_reg(hw,
588 MDIO_STAT1,
589 MDIO_MMD_VEND1,
590 &phy_data);
591 phy_link = phy_data &
592 IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
593 phy_speed = phy_data &
594 IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
595 if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
596 *link_up = true;
597 if (phy_speed ==
598 IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
599 *speed = IXGBE_LINK_SPEED_1GB_FULL;
600 break;
601 }
602 }
603
604 return status;
605 }
606
607 /**
608 * ixgbe_setup_phy_link_tnx - Set and restart autoneg
609 * @hw: pointer to hardware structure
610 *
611 * Restart autonegotiation and PHY and waits for completion.
612 **/
ixgbe_setup_phy_link_tnx(struct ixgbe_hw * hw)613 s32 ixgbe_setup_phy_link_tnx(struct ixgbe_hw *hw)
614 {
615 s32 status = 0;
616 u32 time_out;
617 u32 max_time_out = 10;
618 u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
619 bool autoneg = false;
620 ixgbe_link_speed speed;
621
622 ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
623
624 if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
625 /* Set or unset auto-negotiation 10G advertisement */
626 hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL,
627 MDIO_MMD_AN,
628 &autoneg_reg);
629
630 autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
631 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL)
632 autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
633
634 hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL,
635 MDIO_MMD_AN,
636 autoneg_reg);
637 }
638
639 if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
640 /* Set or unset auto-negotiation 1G advertisement */
641 hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
642 MDIO_MMD_AN,
643 &autoneg_reg);
644
645 autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
646 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL)
647 autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
648
649 hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
650 MDIO_MMD_AN,
651 autoneg_reg);
652 }
653
654 if (speed & IXGBE_LINK_SPEED_100_FULL) {
655 /* Set or unset auto-negotiation 100M advertisement */
656 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
657 MDIO_MMD_AN,
658 &autoneg_reg);
659
660 autoneg_reg &= ~(ADVERTISE_100FULL |
661 ADVERTISE_100HALF);
662 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL)
663 autoneg_reg |= ADVERTISE_100FULL;
664
665 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
666 MDIO_MMD_AN,
667 autoneg_reg);
668 }
669
670 /* Restart PHY autonegotiation and wait for completion */
671 hw->phy.ops.read_reg(hw, MDIO_CTRL1,
672 MDIO_MMD_AN, &autoneg_reg);
673
674 autoneg_reg |= MDIO_AN_CTRL1_RESTART;
675
676 hw->phy.ops.write_reg(hw, MDIO_CTRL1,
677 MDIO_MMD_AN, autoneg_reg);
678
679 /* Wait for autonegotiation to finish */
680 for (time_out = 0; time_out < max_time_out; time_out++) {
681 udelay(10);
682 /* Restart PHY autonegotiation and wait for completion */
683 status = hw->phy.ops.read_reg(hw, MDIO_STAT1,
684 MDIO_MMD_AN,
685 &autoneg_reg);
686
687 autoneg_reg &= MDIO_AN_STAT1_COMPLETE;
688 if (autoneg_reg == MDIO_AN_STAT1_COMPLETE)
689 break;
690 }
691
692 if (time_out == max_time_out) {
693 status = IXGBE_ERR_LINK_SETUP;
694 hw_dbg(hw, "ixgbe_setup_phy_link_tnx: time out");
695 }
696
697 return status;
698 }
699
700 /**
701 * ixgbe_get_phy_firmware_version_tnx - Gets the PHY Firmware Version
702 * @hw: pointer to hardware structure
703 * @firmware_version: pointer to the PHY Firmware Version
704 **/
ixgbe_get_phy_firmware_version_tnx(struct ixgbe_hw * hw,u16 * firmware_version)705 s32 ixgbe_get_phy_firmware_version_tnx(struct ixgbe_hw *hw,
706 u16 *firmware_version)
707 {
708 s32 status = 0;
709
710 status = hw->phy.ops.read_reg(hw, TNX_FW_REV,
711 MDIO_MMD_VEND1,
712 firmware_version);
713
714 return status;
715 }
716
717 /**
718 * ixgbe_get_phy_firmware_version_generic - Gets the PHY Firmware Version
719 * @hw: pointer to hardware structure
720 * @firmware_version: pointer to the PHY Firmware Version
721 **/
ixgbe_get_phy_firmware_version_generic(struct ixgbe_hw * hw,u16 * firmware_version)722 s32 ixgbe_get_phy_firmware_version_generic(struct ixgbe_hw *hw,
723 u16 *firmware_version)
724 {
725 s32 status = 0;
726
727 status = hw->phy.ops.read_reg(hw, AQ_FW_REV,
728 MDIO_MMD_VEND1,
729 firmware_version);
730
731 return status;
732 }
733
734 /**
735 * ixgbe_reset_phy_nl - Performs a PHY reset
736 * @hw: pointer to hardware structure
737 **/
ixgbe_reset_phy_nl(struct ixgbe_hw * hw)738 s32 ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
739 {
740 u16 phy_offset, control, eword, edata, block_crc;
741 bool end_data = false;
742 u16 list_offset, data_offset;
743 u16 phy_data = 0;
744 s32 ret_val = 0;
745 u32 i;
746
747 hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &phy_data);
748
749 /* reset the PHY and poll for completion */
750 hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
751 (phy_data | MDIO_CTRL1_RESET));
752
753 for (i = 0; i < 100; i++) {
754 hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
755 &phy_data);
756 if ((phy_data & MDIO_CTRL1_RESET) == 0)
757 break;
758 usleep_range(10000, 20000);
759 }
760
761 if ((phy_data & MDIO_CTRL1_RESET) != 0) {
762 hw_dbg(hw, "PHY reset did not complete.\n");
763 ret_val = IXGBE_ERR_PHY;
764 goto out;
765 }
766
767 /* Get init offsets */
768 ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
769 &data_offset);
770 if (ret_val != 0)
771 goto out;
772
773 ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
774 data_offset++;
775 while (!end_data) {
776 /*
777 * Read control word from PHY init contents offset
778 */
779 ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
780 control = (eword & IXGBE_CONTROL_MASK_NL) >>
781 IXGBE_CONTROL_SHIFT_NL;
782 edata = eword & IXGBE_DATA_MASK_NL;
783 switch (control) {
784 case IXGBE_DELAY_NL:
785 data_offset++;
786 hw_dbg(hw, "DELAY: %d MS\n", edata);
787 usleep_range(edata * 1000, edata * 2000);
788 break;
789 case IXGBE_DATA_NL:
790 hw_dbg(hw, "DATA:\n");
791 data_offset++;
792 hw->eeprom.ops.read(hw, data_offset++,
793 &phy_offset);
794 for (i = 0; i < edata; i++) {
795 hw->eeprom.ops.read(hw, data_offset, &eword);
796 hw->phy.ops.write_reg(hw, phy_offset,
797 MDIO_MMD_PMAPMD, eword);
798 hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword,
799 phy_offset);
800 data_offset++;
801 phy_offset++;
802 }
803 break;
804 case IXGBE_CONTROL_NL:
805 data_offset++;
806 hw_dbg(hw, "CONTROL:\n");
807 if (edata == IXGBE_CONTROL_EOL_NL) {
808 hw_dbg(hw, "EOL\n");
809 end_data = true;
810 } else if (edata == IXGBE_CONTROL_SOL_NL) {
811 hw_dbg(hw, "SOL\n");
812 } else {
813 hw_dbg(hw, "Bad control value\n");
814 ret_val = IXGBE_ERR_PHY;
815 goto out;
816 }
817 break;
818 default:
819 hw_dbg(hw, "Bad control type\n");
820 ret_val = IXGBE_ERR_PHY;
821 goto out;
822 }
823 }
824
825 out:
826 return ret_val;
827 }
828
829 /**
830 * ixgbe_identify_sfp_module_generic - Identifies SFP modules
831 * @hw: pointer to hardware structure
832 *
833 * Searches for and identifies the SFP module and assigns appropriate PHY type.
834 **/
ixgbe_identify_sfp_module_generic(struct ixgbe_hw * hw)835 s32 ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
836 {
837 struct ixgbe_adapter *adapter = hw->back;
838 s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
839 u32 vendor_oui = 0;
840 enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
841 u8 identifier = 0;
842 u8 comp_codes_1g = 0;
843 u8 comp_codes_10g = 0;
844 u8 oui_bytes[3] = {0, 0, 0};
845 u8 cable_tech = 0;
846 u8 cable_spec = 0;
847 u16 enforce_sfp = 0;
848
849 if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) {
850 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
851 status = IXGBE_ERR_SFP_NOT_PRESENT;
852 goto out;
853 }
854
855 status = hw->phy.ops.read_i2c_eeprom(hw,
856 IXGBE_SFF_IDENTIFIER,
857 &identifier);
858
859 if (status == IXGBE_ERR_SWFW_SYNC ||
860 status == IXGBE_ERR_I2C ||
861 status == IXGBE_ERR_SFP_NOT_PRESENT)
862 goto err_read_i2c_eeprom;
863
864 /* LAN ID is needed for sfp_type determination */
865 hw->mac.ops.set_lan_id(hw);
866
867 if (identifier != IXGBE_SFF_IDENTIFIER_SFP) {
868 hw->phy.type = ixgbe_phy_sfp_unsupported;
869 status = IXGBE_ERR_SFP_NOT_SUPPORTED;
870 } else {
871 status = hw->phy.ops.read_i2c_eeprom(hw,
872 IXGBE_SFF_1GBE_COMP_CODES,
873 &comp_codes_1g);
874
875 if (status == IXGBE_ERR_SWFW_SYNC ||
876 status == IXGBE_ERR_I2C ||
877 status == IXGBE_ERR_SFP_NOT_PRESENT)
878 goto err_read_i2c_eeprom;
879
880 status = hw->phy.ops.read_i2c_eeprom(hw,
881 IXGBE_SFF_10GBE_COMP_CODES,
882 &comp_codes_10g);
883
884 if (status == IXGBE_ERR_SWFW_SYNC ||
885 status == IXGBE_ERR_I2C ||
886 status == IXGBE_ERR_SFP_NOT_PRESENT)
887 goto err_read_i2c_eeprom;
888 status = hw->phy.ops.read_i2c_eeprom(hw,
889 IXGBE_SFF_CABLE_TECHNOLOGY,
890 &cable_tech);
891
892 if (status == IXGBE_ERR_SWFW_SYNC ||
893 status == IXGBE_ERR_I2C ||
894 status == IXGBE_ERR_SFP_NOT_PRESENT)
895 goto err_read_i2c_eeprom;
896
897 /* ID Module
898 * =========
899 * 0 SFP_DA_CU
900 * 1 SFP_SR
901 * 2 SFP_LR
902 * 3 SFP_DA_CORE0 - 82599-specific
903 * 4 SFP_DA_CORE1 - 82599-specific
904 * 5 SFP_SR/LR_CORE0 - 82599-specific
905 * 6 SFP_SR/LR_CORE1 - 82599-specific
906 * 7 SFP_act_lmt_DA_CORE0 - 82599-specific
907 * 8 SFP_act_lmt_DA_CORE1 - 82599-specific
908 * 9 SFP_1g_cu_CORE0 - 82599-specific
909 * 10 SFP_1g_cu_CORE1 - 82599-specific
910 */
911 if (hw->mac.type == ixgbe_mac_82598EB) {
912 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
913 hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
914 else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
915 hw->phy.sfp_type = ixgbe_sfp_type_sr;
916 else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
917 hw->phy.sfp_type = ixgbe_sfp_type_lr;
918 else
919 hw->phy.sfp_type = ixgbe_sfp_type_unknown;
920 } else if (hw->mac.type == ixgbe_mac_82599EB) {
921 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) {
922 if (hw->bus.lan_id == 0)
923 hw->phy.sfp_type =
924 ixgbe_sfp_type_da_cu_core0;
925 else
926 hw->phy.sfp_type =
927 ixgbe_sfp_type_da_cu_core1;
928 } else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) {
929 hw->phy.ops.read_i2c_eeprom(
930 hw, IXGBE_SFF_CABLE_SPEC_COMP,
931 &cable_spec);
932 if (cable_spec &
933 IXGBE_SFF_DA_SPEC_ACTIVE_LIMITING) {
934 if (hw->bus.lan_id == 0)
935 hw->phy.sfp_type =
936 ixgbe_sfp_type_da_act_lmt_core0;
937 else
938 hw->phy.sfp_type =
939 ixgbe_sfp_type_da_act_lmt_core1;
940 } else {
941 hw->phy.sfp_type =
942 ixgbe_sfp_type_unknown;
943 }
944 } else if (comp_codes_10g &
945 (IXGBE_SFF_10GBASESR_CAPABLE |
946 IXGBE_SFF_10GBASELR_CAPABLE)) {
947 if (hw->bus.lan_id == 0)
948 hw->phy.sfp_type =
949 ixgbe_sfp_type_srlr_core0;
950 else
951 hw->phy.sfp_type =
952 ixgbe_sfp_type_srlr_core1;
953 } else if (comp_codes_1g & IXGBE_SFF_1GBASET_CAPABLE) {
954 if (hw->bus.lan_id == 0)
955 hw->phy.sfp_type =
956 ixgbe_sfp_type_1g_cu_core0;
957 else
958 hw->phy.sfp_type =
959 ixgbe_sfp_type_1g_cu_core1;
960 } else {
961 hw->phy.sfp_type = ixgbe_sfp_type_unknown;
962 }
963 }
964
965 if (hw->phy.sfp_type != stored_sfp_type)
966 hw->phy.sfp_setup_needed = true;
967
968 /* Determine if the SFP+ PHY is dual speed or not. */
969 hw->phy.multispeed_fiber = false;
970 if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
971 (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
972 ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
973 (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
974 hw->phy.multispeed_fiber = true;
975
976 /* Determine PHY vendor */
977 if (hw->phy.type != ixgbe_phy_nl) {
978 hw->phy.id = identifier;
979 status = hw->phy.ops.read_i2c_eeprom(hw,
980 IXGBE_SFF_VENDOR_OUI_BYTE0,
981 &oui_bytes[0]);
982
983 if (status == IXGBE_ERR_SWFW_SYNC ||
984 status == IXGBE_ERR_I2C ||
985 status == IXGBE_ERR_SFP_NOT_PRESENT)
986 goto err_read_i2c_eeprom;
987
988 status = hw->phy.ops.read_i2c_eeprom(hw,
989 IXGBE_SFF_VENDOR_OUI_BYTE1,
990 &oui_bytes[1]);
991
992 if (status == IXGBE_ERR_SWFW_SYNC ||
993 status == IXGBE_ERR_I2C ||
994 status == IXGBE_ERR_SFP_NOT_PRESENT)
995 goto err_read_i2c_eeprom;
996
997 status = hw->phy.ops.read_i2c_eeprom(hw,
998 IXGBE_SFF_VENDOR_OUI_BYTE2,
999 &oui_bytes[2]);
1000
1001 if (status == IXGBE_ERR_SWFW_SYNC ||
1002 status == IXGBE_ERR_I2C ||
1003 status == IXGBE_ERR_SFP_NOT_PRESENT)
1004 goto err_read_i2c_eeprom;
1005
1006 vendor_oui =
1007 ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1008 (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1009 (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1010
1011 switch (vendor_oui) {
1012 case IXGBE_SFF_VENDOR_OUI_TYCO:
1013 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1014 hw->phy.type =
1015 ixgbe_phy_sfp_passive_tyco;
1016 break;
1017 case IXGBE_SFF_VENDOR_OUI_FTL:
1018 if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1019 hw->phy.type = ixgbe_phy_sfp_ftl_active;
1020 else
1021 hw->phy.type = ixgbe_phy_sfp_ftl;
1022 break;
1023 case IXGBE_SFF_VENDOR_OUI_AVAGO:
1024 hw->phy.type = ixgbe_phy_sfp_avago;
1025 break;
1026 case IXGBE_SFF_VENDOR_OUI_INTEL:
1027 hw->phy.type = ixgbe_phy_sfp_intel;
1028 break;
1029 default:
1030 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1031 hw->phy.type =
1032 ixgbe_phy_sfp_passive_unknown;
1033 else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1034 hw->phy.type =
1035 ixgbe_phy_sfp_active_unknown;
1036 else
1037 hw->phy.type = ixgbe_phy_sfp_unknown;
1038 break;
1039 }
1040 }
1041
1042 /* Allow any DA cable vendor */
1043 if (cable_tech & (IXGBE_SFF_DA_PASSIVE_CABLE |
1044 IXGBE_SFF_DA_ACTIVE_CABLE)) {
1045 status = 0;
1046 goto out;
1047 }
1048
1049 /* Verify supported 1G SFP modules */
1050 if (comp_codes_10g == 0 &&
1051 !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1052 hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0)) {
1053 hw->phy.type = ixgbe_phy_sfp_unsupported;
1054 status = IXGBE_ERR_SFP_NOT_SUPPORTED;
1055 goto out;
1056 }
1057
1058 /* Anything else 82598-based is supported */
1059 if (hw->mac.type == ixgbe_mac_82598EB) {
1060 status = 0;
1061 goto out;
1062 }
1063
1064 hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1065 if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP) &&
1066 !((hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0) ||
1067 (hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1))) {
1068 /* Make sure we're a supported PHY type */
1069 if (hw->phy.type == ixgbe_phy_sfp_intel) {
1070 status = 0;
1071 } else {
1072 if (hw->allow_unsupported_sfp) {
1073 e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics. Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter. Intel Corporation is not responsible for any harm caused by using untested modules.");
1074 status = 0;
1075 } else {
1076 hw_dbg(hw,
1077 "SFP+ module not supported\n");
1078 hw->phy.type =
1079 ixgbe_phy_sfp_unsupported;
1080 status = IXGBE_ERR_SFP_NOT_SUPPORTED;
1081 }
1082 }
1083 } else {
1084 status = 0;
1085 }
1086 }
1087
1088 out:
1089 return status;
1090
1091 err_read_i2c_eeprom:
1092 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1093 if (hw->phy.type != ixgbe_phy_nl) {
1094 hw->phy.id = 0;
1095 hw->phy.type = ixgbe_phy_unknown;
1096 }
1097 return IXGBE_ERR_SFP_NOT_PRESENT;
1098 }
1099
1100 /**
1101 * ixgbe_get_sfp_init_sequence_offsets - Provides offset of PHY init sequence
1102 * @hw: pointer to hardware structure
1103 * @list_offset: offset to the SFP ID list
1104 * @data_offset: offset to the SFP data block
1105 *
1106 * Checks the MAC's EEPROM to see if it supports a given SFP+ module type, if
1107 * so it returns the offsets to the phy init sequence block.
1108 **/
ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw * hw,u16 * list_offset,u16 * data_offset)1109 s32 ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
1110 u16 *list_offset,
1111 u16 *data_offset)
1112 {
1113 u16 sfp_id;
1114 u16 sfp_type = hw->phy.sfp_type;
1115
1116 if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
1117 return IXGBE_ERR_SFP_NOT_SUPPORTED;
1118
1119 if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
1120 return IXGBE_ERR_SFP_NOT_PRESENT;
1121
1122 if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
1123 (hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
1124 return IXGBE_ERR_SFP_NOT_SUPPORTED;
1125
1126 /*
1127 * Limiting active cables and 1G Phys must be initialized as
1128 * SR modules
1129 */
1130 if (sfp_type == ixgbe_sfp_type_da_act_lmt_core0 ||
1131 sfp_type == ixgbe_sfp_type_1g_cu_core0)
1132 sfp_type = ixgbe_sfp_type_srlr_core0;
1133 else if (sfp_type == ixgbe_sfp_type_da_act_lmt_core1 ||
1134 sfp_type == ixgbe_sfp_type_1g_cu_core1)
1135 sfp_type = ixgbe_sfp_type_srlr_core1;
1136
1137 /* Read offset to PHY init contents */
1138 hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset);
1139
1140 if ((!*list_offset) || (*list_offset == 0xFFFF))
1141 return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT;
1142
1143 /* Shift offset to first ID word */
1144 (*list_offset)++;
1145
1146 /*
1147 * Find the matching SFP ID in the EEPROM
1148 * and program the init sequence
1149 */
1150 hw->eeprom.ops.read(hw, *list_offset, &sfp_id);
1151
1152 while (sfp_id != IXGBE_PHY_INIT_END_NL) {
1153 if (sfp_id == sfp_type) {
1154 (*list_offset)++;
1155 hw->eeprom.ops.read(hw, *list_offset, data_offset);
1156 if ((!*data_offset) || (*data_offset == 0xFFFF)) {
1157 hw_dbg(hw, "SFP+ module not supported\n");
1158 return IXGBE_ERR_SFP_NOT_SUPPORTED;
1159 } else {
1160 break;
1161 }
1162 } else {
1163 (*list_offset) += 2;
1164 if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
1165 return IXGBE_ERR_PHY;
1166 }
1167 }
1168
1169 if (sfp_id == IXGBE_PHY_INIT_END_NL) {
1170 hw_dbg(hw, "No matching SFP+ module found\n");
1171 return IXGBE_ERR_SFP_NOT_SUPPORTED;
1172 }
1173
1174 return 0;
1175 }
1176
1177 /**
1178 * ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
1179 * @hw: pointer to hardware structure
1180 * @byte_offset: EEPROM byte offset to read
1181 * @eeprom_data: value read
1182 *
1183 * Performs byte read operation to SFP module's EEPROM over I2C interface.
1184 **/
ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw * hw,u8 byte_offset,u8 * eeprom_data)1185 s32 ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
1186 u8 *eeprom_data)
1187 {
1188 return hw->phy.ops.read_i2c_byte(hw, byte_offset,
1189 IXGBE_I2C_EEPROM_DEV_ADDR,
1190 eeprom_data);
1191 }
1192
1193 /**
1194 * ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
1195 * @hw: pointer to hardware structure
1196 * @byte_offset: EEPROM byte offset to write
1197 * @eeprom_data: value to write
1198 *
1199 * Performs byte write operation to SFP module's EEPROM over I2C interface.
1200 **/
ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw * hw,u8 byte_offset,u8 eeprom_data)1201 s32 ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
1202 u8 eeprom_data)
1203 {
1204 return hw->phy.ops.write_i2c_byte(hw, byte_offset,
1205 IXGBE_I2C_EEPROM_DEV_ADDR,
1206 eeprom_data);
1207 }
1208
1209 /**
1210 * ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
1211 * @hw: pointer to hardware structure
1212 * @byte_offset: byte offset to read
1213 * @data: value read
1214 *
1215 * Performs byte read operation to SFP module's EEPROM over I2C interface at
1216 * a specified device address.
1217 **/
ixgbe_read_i2c_byte_generic(struct ixgbe_hw * hw,u8 byte_offset,u8 dev_addr,u8 * data)1218 s32 ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
1219 u8 dev_addr, u8 *data)
1220 {
1221 s32 status = 0;
1222 u32 max_retry = 10;
1223 u32 retry = 0;
1224 u16 swfw_mask = 0;
1225 bool nack = true;
1226 *data = 0;
1227
1228 if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
1229 swfw_mask = IXGBE_GSSR_PHY1_SM;
1230 else
1231 swfw_mask = IXGBE_GSSR_PHY0_SM;
1232
1233 do {
1234 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != 0) {
1235 status = IXGBE_ERR_SWFW_SYNC;
1236 goto read_byte_out;
1237 }
1238
1239 ixgbe_i2c_start(hw);
1240
1241 /* Device Address and write indication */
1242 status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
1243 if (status != 0)
1244 goto fail;
1245
1246 status = ixgbe_get_i2c_ack(hw);
1247 if (status != 0)
1248 goto fail;
1249
1250 status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
1251 if (status != 0)
1252 goto fail;
1253
1254 status = ixgbe_get_i2c_ack(hw);
1255 if (status != 0)
1256 goto fail;
1257
1258 ixgbe_i2c_start(hw);
1259
1260 /* Device Address and read indication */
1261 status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
1262 if (status != 0)
1263 goto fail;
1264
1265 status = ixgbe_get_i2c_ack(hw);
1266 if (status != 0)
1267 goto fail;
1268
1269 status = ixgbe_clock_in_i2c_byte(hw, data);
1270 if (status != 0)
1271 goto fail;
1272
1273 status = ixgbe_clock_out_i2c_bit(hw, nack);
1274 if (status != 0)
1275 goto fail;
1276
1277 ixgbe_i2c_stop(hw);
1278 break;
1279
1280 fail:
1281 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
1282 msleep(100);
1283 ixgbe_i2c_bus_clear(hw);
1284 retry++;
1285 if (retry < max_retry)
1286 hw_dbg(hw, "I2C byte read error - Retrying.\n");
1287 else
1288 hw_dbg(hw, "I2C byte read error.\n");
1289
1290 } while (retry < max_retry);
1291
1292 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
1293
1294 read_byte_out:
1295 return status;
1296 }
1297
1298 /**
1299 * ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
1300 * @hw: pointer to hardware structure
1301 * @byte_offset: byte offset to write
1302 * @data: value to write
1303 *
1304 * Performs byte write operation to SFP module's EEPROM over I2C interface at
1305 * a specified device address.
1306 **/
ixgbe_write_i2c_byte_generic(struct ixgbe_hw * hw,u8 byte_offset,u8 dev_addr,u8 data)1307 s32 ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
1308 u8 dev_addr, u8 data)
1309 {
1310 s32 status = 0;
1311 u32 max_retry = 1;
1312 u32 retry = 0;
1313 u16 swfw_mask = 0;
1314
1315 if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
1316 swfw_mask = IXGBE_GSSR_PHY1_SM;
1317 else
1318 swfw_mask = IXGBE_GSSR_PHY0_SM;
1319
1320 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != 0) {
1321 status = IXGBE_ERR_SWFW_SYNC;
1322 goto write_byte_out;
1323 }
1324
1325 do {
1326 ixgbe_i2c_start(hw);
1327
1328 status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
1329 if (status != 0)
1330 goto fail;
1331
1332 status = ixgbe_get_i2c_ack(hw);
1333 if (status != 0)
1334 goto fail;
1335
1336 status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
1337 if (status != 0)
1338 goto fail;
1339
1340 status = ixgbe_get_i2c_ack(hw);
1341 if (status != 0)
1342 goto fail;
1343
1344 status = ixgbe_clock_out_i2c_byte(hw, data);
1345 if (status != 0)
1346 goto fail;
1347
1348 status = ixgbe_get_i2c_ack(hw);
1349 if (status != 0)
1350 goto fail;
1351
1352 ixgbe_i2c_stop(hw);
1353 break;
1354
1355 fail:
1356 ixgbe_i2c_bus_clear(hw);
1357 retry++;
1358 if (retry < max_retry)
1359 hw_dbg(hw, "I2C byte write error - Retrying.\n");
1360 else
1361 hw_dbg(hw, "I2C byte write error.\n");
1362 } while (retry < max_retry);
1363
1364 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
1365
1366 write_byte_out:
1367 return status;
1368 }
1369
1370 /**
1371 * ixgbe_i2c_start - Sets I2C start condition
1372 * @hw: pointer to hardware structure
1373 *
1374 * Sets I2C start condition (High -> Low on SDA while SCL is High)
1375 **/
ixgbe_i2c_start(struct ixgbe_hw * hw)1376 static void ixgbe_i2c_start(struct ixgbe_hw *hw)
1377 {
1378 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1379
1380 /* Start condition must begin with data and clock high */
1381 ixgbe_set_i2c_data(hw, &i2cctl, 1);
1382 ixgbe_raise_i2c_clk(hw, &i2cctl);
1383
1384 /* Setup time for start condition (4.7us) */
1385 udelay(IXGBE_I2C_T_SU_STA);
1386
1387 ixgbe_set_i2c_data(hw, &i2cctl, 0);
1388
1389 /* Hold time for start condition (4us) */
1390 udelay(IXGBE_I2C_T_HD_STA);
1391
1392 ixgbe_lower_i2c_clk(hw, &i2cctl);
1393
1394 /* Minimum low period of clock is 4.7 us */
1395 udelay(IXGBE_I2C_T_LOW);
1396
1397 }
1398
1399 /**
1400 * ixgbe_i2c_stop - Sets I2C stop condition
1401 * @hw: pointer to hardware structure
1402 *
1403 * Sets I2C stop condition (Low -> High on SDA while SCL is High)
1404 **/
ixgbe_i2c_stop(struct ixgbe_hw * hw)1405 static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
1406 {
1407 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1408
1409 /* Stop condition must begin with data low and clock high */
1410 ixgbe_set_i2c_data(hw, &i2cctl, 0);
1411 ixgbe_raise_i2c_clk(hw, &i2cctl);
1412
1413 /* Setup time for stop condition (4us) */
1414 udelay(IXGBE_I2C_T_SU_STO);
1415
1416 ixgbe_set_i2c_data(hw, &i2cctl, 1);
1417
1418 /* bus free time between stop and start (4.7us)*/
1419 udelay(IXGBE_I2C_T_BUF);
1420 }
1421
1422 /**
1423 * ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
1424 * @hw: pointer to hardware structure
1425 * @data: data byte to clock in
1426 *
1427 * Clocks in one byte data via I2C data/clock
1428 **/
ixgbe_clock_in_i2c_byte(struct ixgbe_hw * hw,u8 * data)1429 static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
1430 {
1431 s32 i;
1432 bool bit = false;
1433
1434 for (i = 7; i >= 0; i--) {
1435 ixgbe_clock_in_i2c_bit(hw, &bit);
1436 *data |= bit << i;
1437 }
1438
1439 return 0;
1440 }
1441
1442 /**
1443 * ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
1444 * @hw: pointer to hardware structure
1445 * @data: data byte clocked out
1446 *
1447 * Clocks out one byte data via I2C data/clock
1448 **/
ixgbe_clock_out_i2c_byte(struct ixgbe_hw * hw,u8 data)1449 static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
1450 {
1451 s32 status = 0;
1452 s32 i;
1453 u32 i2cctl;
1454 bool bit = false;
1455
1456 for (i = 7; i >= 0; i--) {
1457 bit = (data >> i) & 0x1;
1458 status = ixgbe_clock_out_i2c_bit(hw, bit);
1459
1460 if (status != 0)
1461 break;
1462 }
1463
1464 /* Release SDA line (set high) */
1465 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1466 i2cctl |= IXGBE_I2C_DATA_OUT;
1467 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, i2cctl);
1468 IXGBE_WRITE_FLUSH(hw);
1469
1470 return status;
1471 }
1472
1473 /**
1474 * ixgbe_get_i2c_ack - Polls for I2C ACK
1475 * @hw: pointer to hardware structure
1476 *
1477 * Clocks in/out one bit via I2C data/clock
1478 **/
ixgbe_get_i2c_ack(struct ixgbe_hw * hw)1479 static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
1480 {
1481 s32 status = 0;
1482 u32 i = 0;
1483 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1484 u32 timeout = 10;
1485 bool ack = true;
1486
1487 ixgbe_raise_i2c_clk(hw, &i2cctl);
1488
1489
1490 /* Minimum high period of clock is 4us */
1491 udelay(IXGBE_I2C_T_HIGH);
1492
1493 /* Poll for ACK. Note that ACK in I2C spec is
1494 * transition from 1 to 0 */
1495 for (i = 0; i < timeout; i++) {
1496 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1497 ack = ixgbe_get_i2c_data(&i2cctl);
1498
1499 udelay(1);
1500 if (ack == 0)
1501 break;
1502 }
1503
1504 if (ack == 1) {
1505 hw_dbg(hw, "I2C ack was not received.\n");
1506 status = IXGBE_ERR_I2C;
1507 }
1508
1509 ixgbe_lower_i2c_clk(hw, &i2cctl);
1510
1511 /* Minimum low period of clock is 4.7 us */
1512 udelay(IXGBE_I2C_T_LOW);
1513
1514 return status;
1515 }
1516
1517 /**
1518 * ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
1519 * @hw: pointer to hardware structure
1520 * @data: read data value
1521 *
1522 * Clocks in one bit via I2C data/clock
1523 **/
ixgbe_clock_in_i2c_bit(struct ixgbe_hw * hw,bool * data)1524 static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
1525 {
1526 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1527
1528 ixgbe_raise_i2c_clk(hw, &i2cctl);
1529
1530 /* Minimum high period of clock is 4us */
1531 udelay(IXGBE_I2C_T_HIGH);
1532
1533 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1534 *data = ixgbe_get_i2c_data(&i2cctl);
1535
1536 ixgbe_lower_i2c_clk(hw, &i2cctl);
1537
1538 /* Minimum low period of clock is 4.7 us */
1539 udelay(IXGBE_I2C_T_LOW);
1540
1541 return 0;
1542 }
1543
1544 /**
1545 * ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
1546 * @hw: pointer to hardware structure
1547 * @data: data value to write
1548 *
1549 * Clocks out one bit via I2C data/clock
1550 **/
ixgbe_clock_out_i2c_bit(struct ixgbe_hw * hw,bool data)1551 static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
1552 {
1553 s32 status;
1554 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1555
1556 status = ixgbe_set_i2c_data(hw, &i2cctl, data);
1557 if (status == 0) {
1558 ixgbe_raise_i2c_clk(hw, &i2cctl);
1559
1560 /* Minimum high period of clock is 4us */
1561 udelay(IXGBE_I2C_T_HIGH);
1562
1563 ixgbe_lower_i2c_clk(hw, &i2cctl);
1564
1565 /* Minimum low period of clock is 4.7 us.
1566 * This also takes care of the data hold time.
1567 */
1568 udelay(IXGBE_I2C_T_LOW);
1569 } else {
1570 status = IXGBE_ERR_I2C;
1571 hw_dbg(hw, "I2C data was not set to %X\n", data);
1572 }
1573
1574 return status;
1575 }
1576 /**
1577 * ixgbe_raise_i2c_clk - Raises the I2C SCL clock
1578 * @hw: pointer to hardware structure
1579 * @i2cctl: Current value of I2CCTL register
1580 *
1581 * Raises the I2C clock line '0'->'1'
1582 **/
ixgbe_raise_i2c_clk(struct ixgbe_hw * hw,u32 * i2cctl)1583 static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
1584 {
1585 *i2cctl |= IXGBE_I2C_CLK_OUT;
1586
1587 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1588 IXGBE_WRITE_FLUSH(hw);
1589
1590 /* SCL rise time (1000ns) */
1591 udelay(IXGBE_I2C_T_RISE);
1592 }
1593
1594 /**
1595 * ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
1596 * @hw: pointer to hardware structure
1597 * @i2cctl: Current value of I2CCTL register
1598 *
1599 * Lowers the I2C clock line '1'->'0'
1600 **/
ixgbe_lower_i2c_clk(struct ixgbe_hw * hw,u32 * i2cctl)1601 static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
1602 {
1603
1604 *i2cctl &= ~IXGBE_I2C_CLK_OUT;
1605
1606 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1607 IXGBE_WRITE_FLUSH(hw);
1608
1609 /* SCL fall time (300ns) */
1610 udelay(IXGBE_I2C_T_FALL);
1611 }
1612
1613 /**
1614 * ixgbe_set_i2c_data - Sets the I2C data bit
1615 * @hw: pointer to hardware structure
1616 * @i2cctl: Current value of I2CCTL register
1617 * @data: I2C data value (0 or 1) to set
1618 *
1619 * Sets the I2C data bit
1620 **/
ixgbe_set_i2c_data(struct ixgbe_hw * hw,u32 * i2cctl,bool data)1621 static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
1622 {
1623 s32 status = 0;
1624
1625 if (data)
1626 *i2cctl |= IXGBE_I2C_DATA_OUT;
1627 else
1628 *i2cctl &= ~IXGBE_I2C_DATA_OUT;
1629
1630 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1631 IXGBE_WRITE_FLUSH(hw);
1632
1633 /* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
1634 udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
1635
1636 /* Verify data was set correctly */
1637 *i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1638 if (data != ixgbe_get_i2c_data(i2cctl)) {
1639 status = IXGBE_ERR_I2C;
1640 hw_dbg(hw, "Error - I2C data was not set to %X.\n", data);
1641 }
1642
1643 return status;
1644 }
1645
1646 /**
1647 * ixgbe_get_i2c_data - Reads the I2C SDA data bit
1648 * @hw: pointer to hardware structure
1649 * @i2cctl: Current value of I2CCTL register
1650 *
1651 * Returns the I2C data bit value
1652 **/
ixgbe_get_i2c_data(u32 * i2cctl)1653 static bool ixgbe_get_i2c_data(u32 *i2cctl)
1654 {
1655 bool data;
1656
1657 if (*i2cctl & IXGBE_I2C_DATA_IN)
1658 data = true;
1659 else
1660 data = false;
1661
1662 return data;
1663 }
1664
1665 /**
1666 * ixgbe_i2c_bus_clear - Clears the I2C bus
1667 * @hw: pointer to hardware structure
1668 *
1669 * Clears the I2C bus by sending nine clock pulses.
1670 * Used when data line is stuck low.
1671 **/
ixgbe_i2c_bus_clear(struct ixgbe_hw * hw)1672 static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
1673 {
1674 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1675 u32 i;
1676
1677 ixgbe_i2c_start(hw);
1678
1679 ixgbe_set_i2c_data(hw, &i2cctl, 1);
1680
1681 for (i = 0; i < 9; i++) {
1682 ixgbe_raise_i2c_clk(hw, &i2cctl);
1683
1684 /* Min high period of clock is 4us */
1685 udelay(IXGBE_I2C_T_HIGH);
1686
1687 ixgbe_lower_i2c_clk(hw, &i2cctl);
1688
1689 /* Min low period of clock is 4.7us*/
1690 udelay(IXGBE_I2C_T_LOW);
1691 }
1692
1693 ixgbe_i2c_start(hw);
1694
1695 /* Put the i2c bus back to default state */
1696 ixgbe_i2c_stop(hw);
1697 }
1698
1699 /**
1700 * ixgbe_tn_check_overtemp - Checks if an overtemp occurred.
1701 * @hw: pointer to hardware structure
1702 *
1703 * Checks if the LASI temp alarm status was triggered due to overtemp
1704 **/
ixgbe_tn_check_overtemp(struct ixgbe_hw * hw)1705 s32 ixgbe_tn_check_overtemp(struct ixgbe_hw *hw)
1706 {
1707 s32 status = 0;
1708 u16 phy_data = 0;
1709
1710 if (hw->device_id != IXGBE_DEV_ID_82599_T3_LOM)
1711 goto out;
1712
1713 /* Check that the LASI temp alarm status was triggered */
1714 hw->phy.ops.read_reg(hw, IXGBE_TN_LASI_STATUS_REG,
1715 MDIO_MMD_PMAPMD, &phy_data);
1716
1717 if (!(phy_data & IXGBE_TN_LASI_STATUS_TEMP_ALARM))
1718 goto out;
1719
1720 status = IXGBE_ERR_OVERTEMP;
1721 out:
1722 return status;
1723 }
1724