1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 #include "ixgbe.h"
5 #include <linux/ptp_classify.h>
6 #include <linux/clocksource.h>
7
8 /*
9 * The 82599 and the X540 do not have true 64bit nanosecond scale
10 * counter registers. Instead, SYSTIME is defined by a fixed point
11 * system which allows the user to define the scale counter increment
12 * value at every level change of the oscillator driving the SYSTIME
13 * value. For both devices the TIMINCA:IV field defines this
14 * increment. On the X540 device, 31 bits are provided. However on the
15 * 82599 only provides 24 bits. The time unit is determined by the
16 * clock frequency of the oscillator in combination with the TIMINCA
17 * register. When these devices link at 10Gb the oscillator has a
18 * period of 6.4ns. In order to convert the scale counter into
19 * nanoseconds the cyclecounter and timecounter structures are
20 * used. The SYSTIME registers need to be converted to ns values by use
21 * of only a right shift (division by power of 2). The following math
22 * determines the largest incvalue that will fit into the available
23 * bits in the TIMINCA register.
24 *
25 * PeriodWidth: Number of bits to store the clock period
26 * MaxWidth: The maximum width value of the TIMINCA register
27 * Period: The clock period for the oscillator
28 * round(): discard the fractional portion of the calculation
29 *
30 * Period * [ 2 ^ ( MaxWidth - PeriodWidth ) ]
31 *
32 * For the X540, MaxWidth is 31 bits, and the base period is 6.4 ns
33 * For the 82599, MaxWidth is 24 bits, and the base period is 6.4 ns
34 *
35 * The period also changes based on the link speed:
36 * At 10Gb link or no link, the period remains the same.
37 * At 1Gb link, the period is multiplied by 10. (64ns)
38 * At 100Mb link, the period is multiplied by 100. (640ns)
39 *
40 * The calculated value allows us to right shift the SYSTIME register
41 * value in order to quickly convert it into a nanosecond clock,
42 * while allowing for the maximum possible adjustment value.
43 *
44 * These diagrams are only for the 10Gb link period
45 *
46 * SYSTIMEH SYSTIMEL
47 * +--------------+ +--------------+
48 * X540 | 32 | | 1 | 3 | 28 |
49 * *--------------+ +--------------+
50 * \________ 36 bits ______/ fract
51 *
52 * +--------------+ +--------------+
53 * 82599 | 32 | | 8 | 3 | 21 |
54 * *--------------+ +--------------+
55 * \________ 43 bits ______/ fract
56 *
57 * The 36 bit X540 SYSTIME overflows every
58 * 2^36 * 10^-9 / 60 = 1.14 minutes or 69 seconds
59 *
60 * The 43 bit 82599 SYSTIME overflows every
61 * 2^43 * 10^-9 / 3600 = 2.4 hours
62 */
63 #define IXGBE_INCVAL_10GB 0x66666666
64 #define IXGBE_INCVAL_1GB 0x40000000
65 #define IXGBE_INCVAL_100 0x50000000
66
67 #define IXGBE_INCVAL_SHIFT_10GB 28
68 #define IXGBE_INCVAL_SHIFT_1GB 24
69 #define IXGBE_INCVAL_SHIFT_100 21
70
71 #define IXGBE_INCVAL_SHIFT_82599 7
72 #define IXGBE_INCPER_SHIFT_82599 24
73
74 #define IXGBE_OVERFLOW_PERIOD (HZ * 30)
75 #define IXGBE_PTP_TX_TIMEOUT (HZ)
76
77 /* We use our own definitions instead of NSEC_PER_SEC because we want to mark
78 * the value as a ULL to force precision when bit shifting.
79 */
80 #define NS_PER_SEC 1000000000ULL
81 #define NS_PER_HALF_SEC 500000000ULL
82
83 /* In contrast, the X550 controller has two registers, SYSTIMEH and SYSTIMEL
84 * which contain measurements of seconds and nanoseconds respectively. This
85 * matches the standard linux representation of time in the kernel. In addition,
86 * the X550 also has a SYSTIMER register which represents residue, or
87 * subnanosecond overflow adjustments. To control clock adjustment, the TIMINCA
88 * register is used, but it is unlike the X540 and 82599 devices. TIMINCA
89 * represents units of 2^-32 nanoseconds, and uses 31 bits for this, with the
90 * high bit representing whether the adjustent is positive or negative. Every
91 * clock cycle, the X550 will add 12.5 ns + TIMINCA which can result in a range
92 * of 12 to 13 nanoseconds adjustment. Unlike the 82599 and X540 devices, the
93 * X550's clock for purposes of SYSTIME generation is constant and not dependent
94 * on the link speed.
95 *
96 * SYSTIMEH SYSTIMEL SYSTIMER
97 * +--------------+ +--------------+ +-------------+
98 * X550 | 32 | | 32 | | 32 |
99 * *--------------+ +--------------+ +-------------+
100 * \____seconds___/ \_nanoseconds_/ \__2^-32 ns__/
101 *
102 * This results in a full 96 bits to represent the clock, with 32 bits for
103 * seconds, 32 bits for nanoseconds (largest value is 0d999999999 or just under
104 * 1 second) and an additional 32 bits to measure sub nanosecond adjustments for
105 * underflow of adjustments.
106 *
107 * The 32 bits of seconds for the X550 overflows every
108 * 2^32 / ( 365.25 * 24 * 60 * 60 ) = ~136 years.
109 *
110 * In order to adjust the clock frequency for the X550, the TIMINCA register is
111 * provided. This register represents a + or minus nearly 0.5 ns adjustment to
112 * the base frequency. It is measured in 2^-32 ns units, with the high bit being
113 * the sign bit. This register enables software to calculate frequency
114 * adjustments and apply them directly to the clock rate.
115 *
116 * The math for converting scaled_ppm into TIMINCA values is fairly
117 * straightforward.
118 *
119 * TIMINCA value = ( Base_Frequency * scaled_ppm ) / 1000000ULL << 16
120 *
121 * To avoid overflow, we simply use mul_u64_u64_div_u64.
122 *
123 * This assumes that scaled_ppm is never high enough to create a value bigger
124 * than TIMINCA's 31 bits can store. This is ensured by the stack, and is
125 * measured in parts per billion. Calculating this value is also simple.
126 * Max ppb = ( Max Adjustment / Base Frequency ) / 1000000000ULL
127 *
128 * For the X550, the Max adjustment is +/- 0.5 ns, and the base frequency is
129 * 12.5 nanoseconds. This means that the Max ppb is 39999999
130 * Note: We subtract one in order to ensure no overflow, because the TIMINCA
131 * register can only hold slightly under 0.5 nanoseconds.
132 *
133 * Because TIMINCA is measured in 2^-32 ns units, we have to convert 12.5 ns
134 * into 2^-32 units, which is
135 *
136 * 12.5 * 2^32 = C80000000
137 *
138 * Some revisions of hardware have a faster base frequency than the registers
139 * were defined for. To fix this, we use a timecounter structure with the
140 * proper mult and shift to convert the cycles into nanoseconds of time.
141 */
142 #define IXGBE_X550_BASE_PERIOD 0xC80000000ULL
143 #define INCVALUE_MASK 0x7FFFFFFF
144 #define ISGN 0x80000000
145
146 /**
147 * ixgbe_ptp_setup_sdp_X540
148 * @adapter: private adapter structure
149 *
150 * this function enables or disables the clock out feature on SDP0 for
151 * the X540 device. It will create a 1 second periodic output that can
152 * be used as the PPS (via an interrupt).
153 *
154 * It calculates when the system time will be on an exact second, and then
155 * aligns the start of the PPS signal to that value.
156 *
157 * This works by using the cycle counter shift and mult values in reverse, and
158 * assumes that the values we're shifting will not overflow.
159 */
ixgbe_ptp_setup_sdp_X540(struct ixgbe_adapter * adapter)160 static void ixgbe_ptp_setup_sdp_X540(struct ixgbe_adapter *adapter)
161 {
162 struct cyclecounter *cc = &adapter->hw_cc;
163 struct ixgbe_hw *hw = &adapter->hw;
164 u32 esdp, tsauxc, clktiml, clktimh, trgttiml, trgttimh, rem;
165 u64 ns = 0, clock_edge = 0, clock_period;
166 unsigned long flags;
167
168 /* disable the pin first */
169 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
170 IXGBE_WRITE_FLUSH(hw);
171
172 if (!(adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED))
173 return;
174
175 esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
176
177 /* enable the SDP0 pin as output, and connected to the
178 * native function for Timesync (ClockOut)
179 */
180 esdp |= IXGBE_ESDP_SDP0_DIR |
181 IXGBE_ESDP_SDP0_NATIVE;
182
183 /* enable the Clock Out feature on SDP0, and allow
184 * interrupts to occur when the pin changes
185 */
186 tsauxc = (IXGBE_TSAUXC_EN_CLK |
187 IXGBE_TSAUXC_SYNCLK |
188 IXGBE_TSAUXC_SDP0_INT);
189
190 /* Determine the clock time period to use. This assumes that the
191 * cycle counter shift is small enough to avoid overflow.
192 */
193 clock_period = div_u64((NS_PER_HALF_SEC << cc->shift), cc->mult);
194 clktiml = (u32)(clock_period);
195 clktimh = (u32)(clock_period >> 32);
196
197 /* Read the current clock time, and save the cycle counter value */
198 spin_lock_irqsave(&adapter->tmreg_lock, flags);
199 ns = timecounter_read(&adapter->hw_tc);
200 clock_edge = adapter->hw_tc.cycle_last;
201 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
202
203 /* Figure out how many seconds to add in order to round up */
204 div_u64_rem(ns, NS_PER_SEC, &rem);
205
206 /* Figure out how many nanoseconds to add to round the clock edge up
207 * to the next full second
208 */
209 rem = (NS_PER_SEC - rem);
210
211 /* Adjust the clock edge to align with the next full second. */
212 clock_edge += div_u64(((u64)rem << cc->shift), cc->mult);
213 trgttiml = (u32)clock_edge;
214 trgttimh = (u32)(clock_edge >> 32);
215
216 IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml);
217 IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh);
218 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
219 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
220
221 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
222 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
223
224 IXGBE_WRITE_FLUSH(hw);
225 }
226
227 /**
228 * ixgbe_ptp_setup_sdp_X550
229 * @adapter: private adapter structure
230 *
231 * Enable or disable a clock output signal on SDP 0 for X550 hardware.
232 *
233 * Use the target time feature to align the output signal on the next full
234 * second.
235 *
236 * This works by using the cycle counter shift and mult values in reverse, and
237 * assumes that the values we're shifting will not overflow.
238 */
ixgbe_ptp_setup_sdp_X550(struct ixgbe_adapter * adapter)239 static void ixgbe_ptp_setup_sdp_X550(struct ixgbe_adapter *adapter)
240 {
241 u32 esdp, tsauxc, freqout, trgttiml, trgttimh, rem, tssdp;
242 struct cyclecounter *cc = &adapter->hw_cc;
243 struct ixgbe_hw *hw = &adapter->hw;
244 u64 ns = 0, clock_edge = 0;
245 struct timespec64 ts;
246 unsigned long flags;
247
248 /* disable the pin first */
249 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
250 IXGBE_WRITE_FLUSH(hw);
251
252 if (!(adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED))
253 return;
254
255 esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
256
257 /* enable the SDP0 pin as output, and connected to the
258 * native function for Timesync (ClockOut)
259 */
260 esdp |= IXGBE_ESDP_SDP0_DIR |
261 IXGBE_ESDP_SDP0_NATIVE;
262
263 /* enable the Clock Out feature on SDP0, and use Target Time 0 to
264 * enable generation of interrupts on the clock change.
265 */
266 #define IXGBE_TSAUXC_DIS_TS_CLEAR 0x40000000
267 tsauxc = (IXGBE_TSAUXC_EN_CLK | IXGBE_TSAUXC_ST0 |
268 IXGBE_TSAUXC_EN_TT0 | IXGBE_TSAUXC_SDP0_INT |
269 IXGBE_TSAUXC_DIS_TS_CLEAR);
270
271 tssdp = (IXGBE_TSSDP_TS_SDP0_EN |
272 IXGBE_TSSDP_TS_SDP0_CLK0);
273
274 /* Determine the clock time period to use. This assumes that the
275 * cycle counter shift is small enough to avoid overflowing a 32bit
276 * value.
277 */
278 freqout = div_u64(NS_PER_HALF_SEC << cc->shift, cc->mult);
279
280 /* Read the current clock time, and save the cycle counter value */
281 spin_lock_irqsave(&adapter->tmreg_lock, flags);
282 ns = timecounter_read(&adapter->hw_tc);
283 clock_edge = adapter->hw_tc.cycle_last;
284 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
285
286 /* Figure out how far past the next second we are */
287 div_u64_rem(ns, NS_PER_SEC, &rem);
288
289 /* Figure out how many nanoseconds to add to round the clock edge up
290 * to the next full second
291 */
292 rem = (NS_PER_SEC - rem);
293
294 /* Adjust the clock edge to align with the next full second. */
295 clock_edge += div_u64(((u64)rem << cc->shift), cc->mult);
296
297 /* X550 hardware stores the time in 32bits of 'billions of cycles' and
298 * 32bits of 'cycles'. There's no guarantee that cycles represents
299 * nanoseconds. However, we can use the math from a timespec64 to
300 * convert into the hardware representation.
301 *
302 * See ixgbe_ptp_read_X550() for more details.
303 */
304 ts = ns_to_timespec64(clock_edge);
305 trgttiml = (u32)ts.tv_nsec;
306 trgttimh = (u32)ts.tv_sec;
307
308 IXGBE_WRITE_REG(hw, IXGBE_FREQOUT0, freqout);
309 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
310 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
311
312 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
313 IXGBE_WRITE_REG(hw, IXGBE_TSSDP, tssdp);
314 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
315
316 IXGBE_WRITE_FLUSH(hw);
317 }
318
319 /**
320 * ixgbe_ptp_read_X550 - read cycle counter value
321 * @cc: cyclecounter structure
322 *
323 * This function reads SYSTIME registers. It is called by the cyclecounter
324 * structure to convert from internal representation into nanoseconds. We need
325 * this for X550 since some skews do not have expected clock frequency and
326 * result of SYSTIME is 32bits of "billions of cycles" and 32 bits of
327 * "cycles", rather than seconds and nanoseconds.
328 */
ixgbe_ptp_read_X550(const struct cyclecounter * cc)329 static u64 ixgbe_ptp_read_X550(const struct cyclecounter *cc)
330 {
331 struct ixgbe_adapter *adapter =
332 container_of(cc, struct ixgbe_adapter, hw_cc);
333 struct ixgbe_hw *hw = &adapter->hw;
334 struct timespec64 ts;
335
336 /* storage is 32 bits of 'billions of cycles' and 32 bits of 'cycles'.
337 * Some revisions of hardware run at a higher frequency and so the
338 * cycles are not guaranteed to be nanoseconds. The timespec64 created
339 * here is used for its math/conversions but does not necessarily
340 * represent nominal time.
341 *
342 * It should be noted that this cyclecounter will overflow at a
343 * non-bitmask field since we have to convert our billions of cycles
344 * into an actual cycles count. This results in some possible weird
345 * situations at high cycle counter stamps. However given that 32 bits
346 * of "seconds" is ~138 years this isn't a problem. Even at the
347 * increased frequency of some revisions, this is still ~103 years.
348 * Since the SYSTIME values start at 0 and we never write them, it is
349 * highly unlikely for the cyclecounter to overflow in practice.
350 */
351 IXGBE_READ_REG(hw, IXGBE_SYSTIMR);
352 ts.tv_nsec = IXGBE_READ_REG(hw, IXGBE_SYSTIML);
353 ts.tv_sec = IXGBE_READ_REG(hw, IXGBE_SYSTIMH);
354
355 return (u64)timespec64_to_ns(&ts);
356 }
357
358 /**
359 * ixgbe_ptp_read_82599 - read raw cycle counter (to be used by time counter)
360 * @cc: the cyclecounter structure
361 *
362 * this function reads the cyclecounter registers and is called by the
363 * cyclecounter structure used to construct a ns counter from the
364 * arbitrary fixed point registers
365 */
ixgbe_ptp_read_82599(const struct cyclecounter * cc)366 static u64 ixgbe_ptp_read_82599(const struct cyclecounter *cc)
367 {
368 struct ixgbe_adapter *adapter =
369 container_of(cc, struct ixgbe_adapter, hw_cc);
370 struct ixgbe_hw *hw = &adapter->hw;
371 u64 stamp = 0;
372
373 stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
374 stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
375
376 return stamp;
377 }
378
379 /**
380 * ixgbe_ptp_convert_to_hwtstamp - convert register value to hw timestamp
381 * @adapter: private adapter structure
382 * @hwtstamp: stack timestamp structure
383 * @timestamp: unsigned 64bit system time value
384 *
385 * We need to convert the adapter's RX/TXSTMP registers into a hwtstamp value
386 * which can be used by the stack's ptp functions.
387 *
388 * The lock is used to protect consistency of the cyclecounter and the SYSTIME
389 * registers. However, it does not need to protect against the Rx or Tx
390 * timestamp registers, as there can't be a new timestamp until the old one is
391 * unlatched by reading.
392 *
393 * In addition to the timestamp in hardware, some controllers need a software
394 * overflow cyclecounter, and this function takes this into account as well.
395 **/
ixgbe_ptp_convert_to_hwtstamp(struct ixgbe_adapter * adapter,struct skb_shared_hwtstamps * hwtstamp,u64 timestamp)396 static void ixgbe_ptp_convert_to_hwtstamp(struct ixgbe_adapter *adapter,
397 struct skb_shared_hwtstamps *hwtstamp,
398 u64 timestamp)
399 {
400 unsigned long flags;
401 struct timespec64 systime;
402 u64 ns;
403
404 memset(hwtstamp, 0, sizeof(*hwtstamp));
405
406 switch (adapter->hw.mac.type) {
407 /* X550 and later hardware supposedly represent time using a seconds
408 * and nanoseconds counter, instead of raw 64bits nanoseconds. We need
409 * to convert the timestamp into cycles before it can be fed to the
410 * cyclecounter. We need an actual cyclecounter because some revisions
411 * of hardware run at a higher frequency and thus the counter does
412 * not represent seconds/nanoseconds. Instead it can be thought of as
413 * cycles and billions of cycles.
414 */
415 case ixgbe_mac_X550:
416 case ixgbe_mac_X550EM_x:
417 case ixgbe_mac_x550em_a:
418 /* Upper 32 bits represent billions of cycles, lower 32 bits
419 * represent cycles. However, we use timespec64_to_ns for the
420 * correct math even though the units haven't been corrected
421 * yet.
422 */
423 systime.tv_sec = timestamp >> 32;
424 systime.tv_nsec = timestamp & 0xFFFFFFFF;
425
426 timestamp = timespec64_to_ns(&systime);
427 break;
428 default:
429 break;
430 }
431
432 spin_lock_irqsave(&adapter->tmreg_lock, flags);
433 ns = timecounter_cyc2time(&adapter->hw_tc, timestamp);
434 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
435
436 hwtstamp->hwtstamp = ns_to_ktime(ns);
437 }
438
439 /**
440 * ixgbe_ptp_adjfine_82599
441 * @ptp: the ptp clock structure
442 * @scaled_ppm: scaled parts per million adjustment from base
443 *
444 * Adjust the frequency of the ptp cycle counter by the
445 * indicated scaled_ppm from the base frequency.
446 *
447 * Scaled parts per million is ppm with a 16-bit binary fractional field.
448 */
ixgbe_ptp_adjfine_82599(struct ptp_clock_info * ptp,long scaled_ppm)449 static int ixgbe_ptp_adjfine_82599(struct ptp_clock_info *ptp, long scaled_ppm)
450 {
451 struct ixgbe_adapter *adapter =
452 container_of(ptp, struct ixgbe_adapter, ptp_caps);
453 struct ixgbe_hw *hw = &adapter->hw;
454 u64 incval, diff;
455 int neg_adj = 0;
456
457 if (scaled_ppm < 0) {
458 neg_adj = 1;
459 scaled_ppm = -scaled_ppm;
460 }
461
462 smp_mb();
463 incval = READ_ONCE(adapter->base_incval);
464
465 diff = mul_u64_u64_div_u64(incval, scaled_ppm,
466 1000000ULL << 16);
467
468 incval = neg_adj ? (incval - diff) : (incval + diff);
469
470 switch (hw->mac.type) {
471 case ixgbe_mac_X540:
472 if (incval > 0xFFFFFFFFULL)
473 e_dev_warn("PTP scaled_ppm adjusted SYSTIME rate overflowed!\n");
474 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, (u32)incval);
475 break;
476 case ixgbe_mac_82599EB:
477 if (incval > 0x00FFFFFFULL)
478 e_dev_warn("PTP scaled_ppm adjusted SYSTIME rate overflowed!\n");
479 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
480 BIT(IXGBE_INCPER_SHIFT_82599) |
481 ((u32)incval & 0x00FFFFFFUL));
482 break;
483 default:
484 break;
485 }
486
487 return 0;
488 }
489
490 /**
491 * ixgbe_ptp_adjfine_X550
492 * @ptp: the ptp clock structure
493 * @scaled_ppm: scaled parts per million adjustment from base
494 *
495 * Adjust the frequency of the SYSTIME registers by the indicated scaled_ppm
496 * from base frequency.
497 *
498 * Scaled parts per million is ppm with a 16-bit binary fractional field.
499 */
ixgbe_ptp_adjfine_X550(struct ptp_clock_info * ptp,long scaled_ppm)500 static int ixgbe_ptp_adjfine_X550(struct ptp_clock_info *ptp, long scaled_ppm)
501 {
502 struct ixgbe_adapter *adapter =
503 container_of(ptp, struct ixgbe_adapter, ptp_caps);
504 struct ixgbe_hw *hw = &adapter->hw;
505 int neg_adj = 0;
506 u64 rate;
507 u32 inca;
508
509 if (scaled_ppm < 0) {
510 neg_adj = 1;
511 scaled_ppm = -scaled_ppm;
512 }
513
514 rate = mul_u64_u64_div_u64(IXGBE_X550_BASE_PERIOD, scaled_ppm,
515 1000000ULL << 16);
516
517 /* warn if rate is too large */
518 if (rate >= INCVALUE_MASK)
519 e_dev_warn("PTP scaled_ppm adjusted SYSTIME rate overflowed!\n");
520
521 inca = rate & INCVALUE_MASK;
522 if (neg_adj)
523 inca |= ISGN;
524
525 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, inca);
526
527 return 0;
528 }
529
530 /**
531 * ixgbe_ptp_adjtime
532 * @ptp: the ptp clock structure
533 * @delta: offset to adjust the cycle counter by
534 *
535 * adjust the timer by resetting the timecounter structure.
536 */
ixgbe_ptp_adjtime(struct ptp_clock_info * ptp,s64 delta)537 static int ixgbe_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
538 {
539 struct ixgbe_adapter *adapter =
540 container_of(ptp, struct ixgbe_adapter, ptp_caps);
541 unsigned long flags;
542
543 spin_lock_irqsave(&adapter->tmreg_lock, flags);
544 timecounter_adjtime(&adapter->hw_tc, delta);
545 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
546
547 if (adapter->ptp_setup_sdp)
548 adapter->ptp_setup_sdp(adapter);
549
550 return 0;
551 }
552
553 /**
554 * ixgbe_ptp_gettimex
555 * @ptp: the ptp clock structure
556 * @ts: timespec to hold the PHC timestamp
557 * @sts: structure to hold the system time before and after reading the PHC
558 *
559 * read the timecounter and return the correct value on ns,
560 * after converting it into a struct timespec.
561 */
ixgbe_ptp_gettimex(struct ptp_clock_info * ptp,struct timespec64 * ts,struct ptp_system_timestamp * sts)562 static int ixgbe_ptp_gettimex(struct ptp_clock_info *ptp,
563 struct timespec64 *ts,
564 struct ptp_system_timestamp *sts)
565 {
566 struct ixgbe_adapter *adapter =
567 container_of(ptp, struct ixgbe_adapter, ptp_caps);
568 struct ixgbe_hw *hw = &adapter->hw;
569 unsigned long flags;
570 u64 ns, stamp;
571
572 spin_lock_irqsave(&adapter->tmreg_lock, flags);
573
574 switch (adapter->hw.mac.type) {
575 case ixgbe_mac_X550:
576 case ixgbe_mac_X550EM_x:
577 case ixgbe_mac_x550em_a:
578 /* Upper 32 bits represent billions of cycles, lower 32 bits
579 * represent cycles. However, we use timespec64_to_ns for the
580 * correct math even though the units haven't been corrected
581 * yet.
582 */
583 ptp_read_system_prets(sts);
584 IXGBE_READ_REG(hw, IXGBE_SYSTIMR);
585 ptp_read_system_postts(sts);
586 ts->tv_nsec = IXGBE_READ_REG(hw, IXGBE_SYSTIML);
587 ts->tv_sec = IXGBE_READ_REG(hw, IXGBE_SYSTIMH);
588 stamp = timespec64_to_ns(ts);
589 break;
590 default:
591 ptp_read_system_prets(sts);
592 stamp = IXGBE_READ_REG(hw, IXGBE_SYSTIML);
593 ptp_read_system_postts(sts);
594 stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
595 break;
596 }
597
598 ns = timecounter_cyc2time(&adapter->hw_tc, stamp);
599
600 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
601
602 *ts = ns_to_timespec64(ns);
603
604 return 0;
605 }
606
607 /**
608 * ixgbe_ptp_settime
609 * @ptp: the ptp clock structure
610 * @ts: the timespec containing the new time for the cycle counter
611 *
612 * reset the timecounter to use a new base value instead of the kernel
613 * wall timer value.
614 */
ixgbe_ptp_settime(struct ptp_clock_info * ptp,const struct timespec64 * ts)615 static int ixgbe_ptp_settime(struct ptp_clock_info *ptp,
616 const struct timespec64 *ts)
617 {
618 struct ixgbe_adapter *adapter =
619 container_of(ptp, struct ixgbe_adapter, ptp_caps);
620 unsigned long flags;
621 u64 ns = timespec64_to_ns(ts);
622
623 /* reset the timecounter */
624 spin_lock_irqsave(&adapter->tmreg_lock, flags);
625 timecounter_init(&adapter->hw_tc, &adapter->hw_cc, ns);
626 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
627
628 if (adapter->ptp_setup_sdp)
629 adapter->ptp_setup_sdp(adapter);
630 return 0;
631 }
632
633 /**
634 * ixgbe_ptp_feature_enable
635 * @ptp: the ptp clock structure
636 * @rq: the requested feature to change
637 * @on: whether to enable or disable the feature
638 *
639 * enable (or disable) ancillary features of the phc subsystem.
640 * our driver only supports the PPS feature on the X540
641 */
ixgbe_ptp_feature_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)642 static int ixgbe_ptp_feature_enable(struct ptp_clock_info *ptp,
643 struct ptp_clock_request *rq, int on)
644 {
645 struct ixgbe_adapter *adapter =
646 container_of(ptp, struct ixgbe_adapter, ptp_caps);
647
648 /**
649 * When PPS is enabled, unmask the interrupt for the ClockOut
650 * feature, so that the interrupt handler can send the PPS
651 * event when the clock SDP triggers. Clear mask when PPS is
652 * disabled
653 */
654 if (rq->type != PTP_CLK_REQ_PPS || !adapter->ptp_setup_sdp)
655 return -ENOTSUPP;
656
657 if (on)
658 adapter->flags2 |= IXGBE_FLAG2_PTP_PPS_ENABLED;
659 else
660 adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
661
662 adapter->ptp_setup_sdp(adapter);
663 return 0;
664 }
665
666 /**
667 * ixgbe_ptp_check_pps_event
668 * @adapter: the private adapter structure
669 *
670 * This function is called by the interrupt routine when checking for
671 * interrupts. It will check and handle a pps event.
672 */
ixgbe_ptp_check_pps_event(struct ixgbe_adapter * adapter)673 void ixgbe_ptp_check_pps_event(struct ixgbe_adapter *adapter)
674 {
675 struct ixgbe_hw *hw = &adapter->hw;
676 struct ptp_clock_event event;
677
678 event.type = PTP_CLOCK_PPS;
679
680 /* this check is necessary in case the interrupt was enabled via some
681 * alternative means (ex. debug_fs). Better to check here than
682 * everywhere that calls this function.
683 */
684 if (!adapter->ptp_clock)
685 return;
686
687 switch (hw->mac.type) {
688 case ixgbe_mac_X540:
689 ptp_clock_event(adapter->ptp_clock, &event);
690 break;
691 default:
692 break;
693 }
694 }
695
696 /**
697 * ixgbe_ptp_overflow_check - watchdog task to detect SYSTIME overflow
698 * @adapter: private adapter struct
699 *
700 * this watchdog task periodically reads the timecounter
701 * in order to prevent missing when the system time registers wrap
702 * around. This needs to be run approximately twice a minute.
703 */
ixgbe_ptp_overflow_check(struct ixgbe_adapter * adapter)704 void ixgbe_ptp_overflow_check(struct ixgbe_adapter *adapter)
705 {
706 bool timeout = time_is_before_jiffies(adapter->last_overflow_check +
707 IXGBE_OVERFLOW_PERIOD);
708 unsigned long flags;
709
710 if (timeout) {
711 /* Update the timecounter */
712 spin_lock_irqsave(&adapter->tmreg_lock, flags);
713 timecounter_read(&adapter->hw_tc);
714 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
715
716 adapter->last_overflow_check = jiffies;
717 }
718 }
719
720 /**
721 * ixgbe_ptp_rx_hang - detect error case when Rx timestamp registers latched
722 * @adapter: private network adapter structure
723 *
724 * this watchdog task is scheduled to detect error case where hardware has
725 * dropped an Rx packet that was timestamped when the ring is full. The
726 * particular error is rare but leaves the device in a state unable to timestamp
727 * any future packets.
728 */
ixgbe_ptp_rx_hang(struct ixgbe_adapter * adapter)729 void ixgbe_ptp_rx_hang(struct ixgbe_adapter *adapter)
730 {
731 struct ixgbe_hw *hw = &adapter->hw;
732 u32 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
733 struct ixgbe_ring *rx_ring;
734 unsigned long rx_event;
735 int n;
736
737 /* if we don't have a valid timestamp in the registers, just update the
738 * timeout counter and exit
739 */
740 if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID)) {
741 adapter->last_rx_ptp_check = jiffies;
742 return;
743 }
744
745 /* determine the most recent watchdog or rx_timestamp event */
746 rx_event = adapter->last_rx_ptp_check;
747 for (n = 0; n < adapter->num_rx_queues; n++) {
748 rx_ring = adapter->rx_ring[n];
749 if (time_after(rx_ring->last_rx_timestamp, rx_event))
750 rx_event = rx_ring->last_rx_timestamp;
751 }
752
753 /* only need to read the high RXSTMP register to clear the lock */
754 if (time_is_before_jiffies(rx_event + 5 * HZ)) {
755 IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
756 adapter->last_rx_ptp_check = jiffies;
757
758 adapter->rx_hwtstamp_cleared++;
759 e_warn(drv, "clearing RX Timestamp hang\n");
760 }
761 }
762
763 /**
764 * ixgbe_ptp_clear_tx_timestamp - utility function to clear Tx timestamp state
765 * @adapter: the private adapter structure
766 *
767 * This function should be called whenever the state related to a Tx timestamp
768 * needs to be cleared. This helps ensure that all related bits are reset for
769 * the next Tx timestamp event.
770 */
ixgbe_ptp_clear_tx_timestamp(struct ixgbe_adapter * adapter)771 static void ixgbe_ptp_clear_tx_timestamp(struct ixgbe_adapter *adapter)
772 {
773 struct ixgbe_hw *hw = &adapter->hw;
774
775 IXGBE_READ_REG(hw, IXGBE_TXSTMPH);
776 if (adapter->ptp_tx_skb) {
777 dev_kfree_skb_any(adapter->ptp_tx_skb);
778 adapter->ptp_tx_skb = NULL;
779 }
780 clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
781 }
782
783 /**
784 * ixgbe_ptp_tx_hang - detect error case where Tx timestamp never finishes
785 * @adapter: private network adapter structure
786 */
ixgbe_ptp_tx_hang(struct ixgbe_adapter * adapter)787 void ixgbe_ptp_tx_hang(struct ixgbe_adapter *adapter)
788 {
789 bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
790 IXGBE_PTP_TX_TIMEOUT);
791
792 if (!adapter->ptp_tx_skb)
793 return;
794
795 if (!test_bit(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state))
796 return;
797
798 /* If we haven't received a timestamp within the timeout, it is
799 * reasonable to assume that it will never occur, so we can unlock the
800 * timestamp bit when this occurs.
801 */
802 if (timeout) {
803 cancel_work_sync(&adapter->ptp_tx_work);
804 ixgbe_ptp_clear_tx_timestamp(adapter);
805 adapter->tx_hwtstamp_timeouts++;
806 e_warn(drv, "clearing Tx timestamp hang\n");
807 }
808 }
809
810 /**
811 * ixgbe_ptp_tx_hwtstamp - utility function which checks for TX time stamp
812 * @adapter: the private adapter struct
813 *
814 * if the timestamp is valid, we convert it into the timecounter ns
815 * value, then store that result into the shhwtstamps structure which
816 * is passed up the network stack
817 */
ixgbe_ptp_tx_hwtstamp(struct ixgbe_adapter * adapter)818 static void ixgbe_ptp_tx_hwtstamp(struct ixgbe_adapter *adapter)
819 {
820 struct sk_buff *skb = adapter->ptp_tx_skb;
821 struct ixgbe_hw *hw = &adapter->hw;
822 struct skb_shared_hwtstamps shhwtstamps;
823 u64 regval = 0;
824
825 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPL);
826 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPH) << 32;
827 ixgbe_ptp_convert_to_hwtstamp(adapter, &shhwtstamps, regval);
828
829 /* Handle cleanup of the ptp_tx_skb ourselves, and unlock the state
830 * bit prior to notifying the stack via skb_tstamp_tx(). This prevents
831 * well behaved applications from attempting to timestamp again prior
832 * to the lock bit being clear.
833 */
834 adapter->ptp_tx_skb = NULL;
835 clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
836
837 /* Notify the stack and then free the skb after we've unlocked */
838 skb_tstamp_tx(skb, &shhwtstamps);
839 dev_kfree_skb_any(skb);
840 }
841
842 /**
843 * ixgbe_ptp_tx_hwtstamp_work
844 * @work: pointer to the work struct
845 *
846 * This work item polls TSYNCTXCTL valid bit to determine when a Tx hardware
847 * timestamp has been taken for the current skb. It is necessary, because the
848 * descriptor's "done" bit does not correlate with the timestamp event.
849 */
ixgbe_ptp_tx_hwtstamp_work(struct work_struct * work)850 static void ixgbe_ptp_tx_hwtstamp_work(struct work_struct *work)
851 {
852 struct ixgbe_adapter *adapter = container_of(work, struct ixgbe_adapter,
853 ptp_tx_work);
854 struct ixgbe_hw *hw = &adapter->hw;
855 bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
856 IXGBE_PTP_TX_TIMEOUT);
857 u32 tsynctxctl;
858
859 /* we have to have a valid skb to poll for a timestamp */
860 if (!adapter->ptp_tx_skb) {
861 ixgbe_ptp_clear_tx_timestamp(adapter);
862 return;
863 }
864
865 /* stop polling once we have a valid timestamp */
866 tsynctxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
867 if (tsynctxctl & IXGBE_TSYNCTXCTL_VALID) {
868 ixgbe_ptp_tx_hwtstamp(adapter);
869 return;
870 }
871
872 if (timeout) {
873 ixgbe_ptp_clear_tx_timestamp(adapter);
874 adapter->tx_hwtstamp_timeouts++;
875 e_warn(drv, "clearing Tx Timestamp hang\n");
876 } else {
877 /* reschedule to keep checking if it's not available yet */
878 schedule_work(&adapter->ptp_tx_work);
879 }
880 }
881
882 /**
883 * ixgbe_ptp_rx_pktstamp - utility function to get RX time stamp from buffer
884 * @q_vector: structure containing interrupt and ring information
885 * @skb: the packet
886 *
887 * This function will be called by the Rx routine of the timestamp for this
888 * packet is stored in the buffer. The value is stored in little endian format
889 * starting at the end of the packet data.
890 */
ixgbe_ptp_rx_pktstamp(struct ixgbe_q_vector * q_vector,struct sk_buff * skb)891 void ixgbe_ptp_rx_pktstamp(struct ixgbe_q_vector *q_vector,
892 struct sk_buff *skb)
893 {
894 __le64 regval;
895
896 /* copy the bits out of the skb, and then trim the skb length */
897 skb_copy_bits(skb, skb->len - IXGBE_TS_HDR_LEN, ®val,
898 IXGBE_TS_HDR_LEN);
899 __pskb_trim(skb, skb->len - IXGBE_TS_HDR_LEN);
900
901 /* The timestamp is recorded in little endian format, and is stored at
902 * the end of the packet.
903 *
904 * DWORD: N N + 1 N + 2
905 * Field: End of Packet SYSTIMH SYSTIML
906 */
907 ixgbe_ptp_convert_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
908 le64_to_cpu(regval));
909 }
910
911 /**
912 * ixgbe_ptp_rx_rgtstamp - utility function which checks for RX time stamp
913 * @q_vector: structure containing interrupt and ring information
914 * @skb: particular skb to send timestamp with
915 *
916 * if the timestamp is valid, we convert it into the timecounter ns
917 * value, then store that result into the shhwtstamps structure which
918 * is passed up the network stack
919 */
ixgbe_ptp_rx_rgtstamp(struct ixgbe_q_vector * q_vector,struct sk_buff * skb)920 void ixgbe_ptp_rx_rgtstamp(struct ixgbe_q_vector *q_vector,
921 struct sk_buff *skb)
922 {
923 struct ixgbe_adapter *adapter;
924 struct ixgbe_hw *hw;
925 u64 regval = 0;
926 u32 tsyncrxctl;
927
928 /* we cannot process timestamps on a ring without a q_vector */
929 if (!q_vector || !q_vector->adapter)
930 return;
931
932 adapter = q_vector->adapter;
933 hw = &adapter->hw;
934
935 /* Read the tsyncrxctl register afterwards in order to prevent taking an
936 * I/O hit on every packet.
937 */
938
939 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
940 if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID))
941 return;
942
943 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPL);
944 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPH) << 32;
945
946 ixgbe_ptp_convert_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
947 }
948
949 /**
950 * ixgbe_ptp_get_ts_config - get current hardware timestamping configuration
951 * @adapter: pointer to adapter structure
952 * @ifr: ioctl data
953 *
954 * This function returns the current timestamping settings. Rather than
955 * attempt to deconstruct registers to fill in the values, simply keep a copy
956 * of the old settings around, and return a copy when requested.
957 */
ixgbe_ptp_get_ts_config(struct ixgbe_adapter * adapter,struct ifreq * ifr)958 int ixgbe_ptp_get_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
959 {
960 struct hwtstamp_config *config = &adapter->tstamp_config;
961
962 return copy_to_user(ifr->ifr_data, config,
963 sizeof(*config)) ? -EFAULT : 0;
964 }
965
966 /**
967 * ixgbe_ptp_set_timestamp_mode - setup the hardware for the requested mode
968 * @adapter: the private ixgbe adapter structure
969 * @config: the hwtstamp configuration requested
970 *
971 * Outgoing time stamping can be enabled and disabled. Play nice and
972 * disable it when requested, although it shouldn't cause any overhead
973 * when no packet needs it. At most one packet in the queue may be
974 * marked for time stamping, otherwise it would be impossible to tell
975 * for sure to which packet the hardware time stamp belongs.
976 *
977 * Incoming time stamping has to be configured via the hardware
978 * filters. Not all combinations are supported, in particular event
979 * type has to be specified. Matching the kind of event packet is
980 * not supported, with the exception of "all V2 events regardless of
981 * level 2 or 4".
982 *
983 * Since hardware always timestamps Path delay packets when timestamping V2
984 * packets, regardless of the type specified in the register, only use V2
985 * Event mode. This more accurately tells the user what the hardware is going
986 * to do anyways.
987 *
988 * Note: this may modify the hwtstamp configuration towards a more general
989 * mode, if required to support the specifically requested mode.
990 */
ixgbe_ptp_set_timestamp_mode(struct ixgbe_adapter * adapter,struct hwtstamp_config * config)991 static int ixgbe_ptp_set_timestamp_mode(struct ixgbe_adapter *adapter,
992 struct hwtstamp_config *config)
993 {
994 struct ixgbe_hw *hw = &adapter->hw;
995 u32 tsync_tx_ctl = IXGBE_TSYNCTXCTL_ENABLED;
996 u32 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED;
997 u32 tsync_rx_mtrl = PTP_EV_PORT << 16;
998 bool is_l2 = false;
999 u32 regval;
1000
1001 switch (config->tx_type) {
1002 case HWTSTAMP_TX_OFF:
1003 tsync_tx_ctl = 0;
1004 break;
1005 case HWTSTAMP_TX_ON:
1006 break;
1007 default:
1008 return -ERANGE;
1009 }
1010
1011 switch (config->rx_filter) {
1012 case HWTSTAMP_FILTER_NONE:
1013 tsync_rx_ctl = 0;
1014 tsync_rx_mtrl = 0;
1015 adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1016 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1017 break;
1018 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1019 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
1020 tsync_rx_mtrl |= IXGBE_RXMTRL_V1_SYNC_MSG;
1021 adapter->flags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1022 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1023 break;
1024 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1025 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
1026 tsync_rx_mtrl |= IXGBE_RXMTRL_V1_DELAY_REQ_MSG;
1027 adapter->flags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1028 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1029 break;
1030 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1031 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1032 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1033 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1034 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1035 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1036 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1037 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1038 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1039 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_EVENT_V2;
1040 is_l2 = true;
1041 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1042 adapter->flags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1043 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1044 break;
1045 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1046 case HWTSTAMP_FILTER_NTP_ALL:
1047 case HWTSTAMP_FILTER_ALL:
1048 /* The X550 controller is capable of timestamping all packets,
1049 * which allows it to accept any filter.
1050 */
1051 if (hw->mac.type >= ixgbe_mac_X550) {
1052 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_ALL;
1053 config->rx_filter = HWTSTAMP_FILTER_ALL;
1054 adapter->flags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED;
1055 break;
1056 }
1057 fallthrough;
1058 default:
1059 /*
1060 * register RXMTRL must be set in order to do V1 packets,
1061 * therefore it is not possible to time stamp both V1 Sync and
1062 * Delay_Req messages and hardware does not support
1063 * timestamping all packets => return error
1064 */
1065 adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1066 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1067 config->rx_filter = HWTSTAMP_FILTER_NONE;
1068 return -ERANGE;
1069 }
1070
1071 if (hw->mac.type == ixgbe_mac_82598EB) {
1072 adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1073 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1074 if (tsync_rx_ctl | tsync_tx_ctl)
1075 return -ERANGE;
1076 return 0;
1077 }
1078
1079 /* Per-packet timestamping only works if the filter is set to all
1080 * packets. Since this is desired, always timestamp all packets as long
1081 * as any Rx filter was configured.
1082 */
1083 switch (hw->mac.type) {
1084 case ixgbe_mac_X550:
1085 case ixgbe_mac_X550EM_x:
1086 case ixgbe_mac_x550em_a:
1087 /* enable timestamping all packets only if at least some
1088 * packets were requested. Otherwise, play nice and disable
1089 * timestamping
1090 */
1091 if (config->rx_filter == HWTSTAMP_FILTER_NONE)
1092 break;
1093
1094 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED |
1095 IXGBE_TSYNCRXCTL_TYPE_ALL |
1096 IXGBE_TSYNCRXCTL_TSIP_UT_EN;
1097 config->rx_filter = HWTSTAMP_FILTER_ALL;
1098 adapter->flags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED;
1099 adapter->flags &= ~IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER;
1100 is_l2 = true;
1101 break;
1102 default:
1103 break;
1104 }
1105
1106 /* define ethertype filter for timestamping L2 packets */
1107 if (is_l2)
1108 IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588),
1109 (IXGBE_ETQF_FILTER_EN | /* enable filter */
1110 IXGBE_ETQF_1588 | /* enable timestamping */
1111 ETH_P_1588)); /* 1588 eth protocol type */
1112 else
1113 IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588), 0);
1114
1115 /* enable/disable TX */
1116 regval = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
1117 regval &= ~IXGBE_TSYNCTXCTL_ENABLED;
1118 regval |= tsync_tx_ctl;
1119 IXGBE_WRITE_REG(hw, IXGBE_TSYNCTXCTL, regval);
1120
1121 /* enable/disable RX */
1122 regval = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
1123 regval &= ~(IXGBE_TSYNCRXCTL_ENABLED | IXGBE_TSYNCRXCTL_TYPE_MASK);
1124 regval |= tsync_rx_ctl;
1125 IXGBE_WRITE_REG(hw, IXGBE_TSYNCRXCTL, regval);
1126
1127 /* define which PTP packets are time stamped */
1128 IXGBE_WRITE_REG(hw, IXGBE_RXMTRL, tsync_rx_mtrl);
1129
1130 IXGBE_WRITE_FLUSH(hw);
1131
1132 /* clear TX/RX time stamp registers, just to be sure */
1133 ixgbe_ptp_clear_tx_timestamp(adapter);
1134 IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
1135
1136 return 0;
1137 }
1138
1139 /**
1140 * ixgbe_ptp_set_ts_config - user entry point for timestamp mode
1141 * @adapter: pointer to adapter struct
1142 * @ifr: ioctl data
1143 *
1144 * Set hardware to requested mode. If unsupported, return an error with no
1145 * changes. Otherwise, store the mode for future reference.
1146 */
ixgbe_ptp_set_ts_config(struct ixgbe_adapter * adapter,struct ifreq * ifr)1147 int ixgbe_ptp_set_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
1148 {
1149 struct hwtstamp_config config;
1150 int err;
1151
1152 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1153 return -EFAULT;
1154
1155 err = ixgbe_ptp_set_timestamp_mode(adapter, &config);
1156 if (err)
1157 return err;
1158
1159 /* save these settings for future reference */
1160 memcpy(&adapter->tstamp_config, &config,
1161 sizeof(adapter->tstamp_config));
1162
1163 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1164 -EFAULT : 0;
1165 }
1166
ixgbe_ptp_link_speed_adjust(struct ixgbe_adapter * adapter,u32 * shift,u32 * incval)1167 static void ixgbe_ptp_link_speed_adjust(struct ixgbe_adapter *adapter,
1168 u32 *shift, u32 *incval)
1169 {
1170 /**
1171 * Scale the NIC cycle counter by a large factor so that
1172 * relatively small corrections to the frequency can be added
1173 * or subtracted. The drawbacks of a large factor include
1174 * (a) the clock register overflows more quickly, (b) the cycle
1175 * counter structure must be able to convert the systime value
1176 * to nanoseconds using only a multiplier and a right-shift,
1177 * and (c) the value must fit within the timinca register space
1178 * => math based on internal DMA clock rate and available bits
1179 *
1180 * Note that when there is no link, internal DMA clock is same as when
1181 * link speed is 10Gb. Set the registers correctly even when link is
1182 * down to preserve the clock setting
1183 */
1184 switch (adapter->link_speed) {
1185 case IXGBE_LINK_SPEED_100_FULL:
1186 *shift = IXGBE_INCVAL_SHIFT_100;
1187 *incval = IXGBE_INCVAL_100;
1188 break;
1189 case IXGBE_LINK_SPEED_1GB_FULL:
1190 *shift = IXGBE_INCVAL_SHIFT_1GB;
1191 *incval = IXGBE_INCVAL_1GB;
1192 break;
1193 case IXGBE_LINK_SPEED_10GB_FULL:
1194 default:
1195 *shift = IXGBE_INCVAL_SHIFT_10GB;
1196 *incval = IXGBE_INCVAL_10GB;
1197 break;
1198 }
1199 }
1200
1201 /**
1202 * ixgbe_ptp_start_cyclecounter - create the cycle counter from hw
1203 * @adapter: pointer to the adapter structure
1204 *
1205 * This function should be called to set the proper values for the TIMINCA
1206 * register and tell the cyclecounter structure what the tick rate of SYSTIME
1207 * is. It does not directly modify SYSTIME registers or the timecounter
1208 * structure. It should be called whenever a new TIMINCA value is necessary,
1209 * such as during initialization or when the link speed changes.
1210 */
ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter * adapter)1211 void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter)
1212 {
1213 struct ixgbe_hw *hw = &adapter->hw;
1214 struct cyclecounter cc;
1215 unsigned long flags;
1216 u32 incval = 0;
1217 u32 fuse0 = 0;
1218
1219 /* For some of the boards below this mask is technically incorrect.
1220 * The timestamp mask overflows at approximately 61bits. However the
1221 * particular hardware does not overflow on an even bitmask value.
1222 * Instead, it overflows due to conversion of upper 32bits billions of
1223 * cycles. Timecounters are not really intended for this purpose so
1224 * they do not properly function if the overflow point isn't 2^N-1.
1225 * However, the actual SYSTIME values in question take ~138 years to
1226 * overflow. In practice this means they won't actually overflow. A
1227 * proper fix to this problem would require modification of the
1228 * timecounter delta calculations.
1229 */
1230 cc.mask = CLOCKSOURCE_MASK(64);
1231 cc.mult = 1;
1232 cc.shift = 0;
1233
1234 switch (hw->mac.type) {
1235 case ixgbe_mac_X550EM_x:
1236 /* SYSTIME assumes X550EM_x board frequency is 300Mhz, and is
1237 * designed to represent seconds and nanoseconds when this is
1238 * the case. However, some revisions of hardware have a 400Mhz
1239 * clock and we have to compensate for this frequency
1240 * variation using corrected mult and shift values.
1241 */
1242 fuse0 = IXGBE_READ_REG(hw, IXGBE_FUSES0_GROUP(0));
1243 if (!(fuse0 & IXGBE_FUSES0_300MHZ)) {
1244 cc.mult = 3;
1245 cc.shift = 2;
1246 }
1247 fallthrough;
1248 case ixgbe_mac_x550em_a:
1249 case ixgbe_mac_X550:
1250 cc.read = ixgbe_ptp_read_X550;
1251 break;
1252 case ixgbe_mac_X540:
1253 cc.read = ixgbe_ptp_read_82599;
1254
1255 ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval);
1256 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
1257 break;
1258 case ixgbe_mac_82599EB:
1259 cc.read = ixgbe_ptp_read_82599;
1260
1261 ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval);
1262 incval >>= IXGBE_INCVAL_SHIFT_82599;
1263 cc.shift -= IXGBE_INCVAL_SHIFT_82599;
1264 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
1265 BIT(IXGBE_INCPER_SHIFT_82599) | incval);
1266 break;
1267 default:
1268 /* other devices aren't supported */
1269 return;
1270 }
1271
1272 /* update the base incval used to calculate frequency adjustment */
1273 WRITE_ONCE(adapter->base_incval, incval);
1274 smp_mb();
1275
1276 /* need lock to prevent incorrect read while modifying cyclecounter */
1277 spin_lock_irqsave(&adapter->tmreg_lock, flags);
1278 memcpy(&adapter->hw_cc, &cc, sizeof(adapter->hw_cc));
1279 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1280 }
1281
1282 /**
1283 * ixgbe_ptp_init_systime - Initialize SYSTIME registers
1284 * @adapter: the ixgbe private board structure
1285 *
1286 * Initialize and start the SYSTIME registers.
1287 */
ixgbe_ptp_init_systime(struct ixgbe_adapter * adapter)1288 static void ixgbe_ptp_init_systime(struct ixgbe_adapter *adapter)
1289 {
1290 struct ixgbe_hw *hw = &adapter->hw;
1291 u32 tsauxc;
1292
1293 switch (hw->mac.type) {
1294 case ixgbe_mac_X550EM_x:
1295 case ixgbe_mac_x550em_a:
1296 case ixgbe_mac_X550:
1297 tsauxc = IXGBE_READ_REG(hw, IXGBE_TSAUXC);
1298
1299 /* Reset SYSTIME registers to 0 */
1300 IXGBE_WRITE_REG(hw, IXGBE_SYSTIMR, 0);
1301 IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0);
1302 IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0);
1303
1304 /* Reset interrupt settings */
1305 IXGBE_WRITE_REG(hw, IXGBE_TSIM, IXGBE_TSIM_TXTS);
1306 IXGBE_WRITE_REG(hw, IXGBE_EIMS, IXGBE_EIMS_TIMESYNC);
1307
1308 /* Activate the SYSTIME counter */
1309 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC,
1310 tsauxc & ~IXGBE_TSAUXC_DISABLE_SYSTIME);
1311 break;
1312 case ixgbe_mac_X540:
1313 case ixgbe_mac_82599EB:
1314 /* Reset SYSTIME registers to 0 */
1315 IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0);
1316 IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0);
1317 break;
1318 default:
1319 /* Other devices aren't supported */
1320 return;
1321 };
1322
1323 IXGBE_WRITE_FLUSH(hw);
1324 }
1325
1326 /**
1327 * ixgbe_ptp_reset
1328 * @adapter: the ixgbe private board structure
1329 *
1330 * When the MAC resets, all the hardware bits for timesync are reset. This
1331 * function is used to re-enable the device for PTP based on current settings.
1332 * We do lose the current clock time, so just reset the cyclecounter to the
1333 * system real clock time.
1334 *
1335 * This function will maintain hwtstamp_config settings, and resets the SDP
1336 * output if it was enabled.
1337 */
ixgbe_ptp_reset(struct ixgbe_adapter * adapter)1338 void ixgbe_ptp_reset(struct ixgbe_adapter *adapter)
1339 {
1340 struct ixgbe_hw *hw = &adapter->hw;
1341 unsigned long flags;
1342
1343 /* reset the hardware timestamping mode */
1344 ixgbe_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1345
1346 /* 82598 does not support PTP */
1347 if (hw->mac.type == ixgbe_mac_82598EB)
1348 return;
1349
1350 ixgbe_ptp_start_cyclecounter(adapter);
1351
1352 ixgbe_ptp_init_systime(adapter);
1353
1354 spin_lock_irqsave(&adapter->tmreg_lock, flags);
1355 timecounter_init(&adapter->hw_tc, &adapter->hw_cc,
1356 ktime_to_ns(ktime_get_real()));
1357 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1358
1359 adapter->last_overflow_check = jiffies;
1360
1361 /* Now that the shift has been calculated and the systime
1362 * registers reset, (re-)enable the Clock out feature
1363 */
1364 if (adapter->ptp_setup_sdp)
1365 adapter->ptp_setup_sdp(adapter);
1366 }
1367
1368 /**
1369 * ixgbe_ptp_create_clock
1370 * @adapter: the ixgbe private adapter structure
1371 *
1372 * This function performs setup of the user entry point function table and
1373 * initializes the PTP clock device, which is used to access the clock-like
1374 * features of the PTP core. It will be called by ixgbe_ptp_init, and may
1375 * reuse a previously initialized clock (such as during a suspend/resume
1376 * cycle).
1377 */
ixgbe_ptp_create_clock(struct ixgbe_adapter * adapter)1378 static long ixgbe_ptp_create_clock(struct ixgbe_adapter *adapter)
1379 {
1380 struct net_device *netdev = adapter->netdev;
1381 long err;
1382
1383 /* do nothing if we already have a clock device */
1384 if (!IS_ERR_OR_NULL(adapter->ptp_clock))
1385 return 0;
1386
1387 switch (adapter->hw.mac.type) {
1388 case ixgbe_mac_X540:
1389 snprintf(adapter->ptp_caps.name,
1390 sizeof(adapter->ptp_caps.name),
1391 "%s", netdev->name);
1392 adapter->ptp_caps.owner = THIS_MODULE;
1393 adapter->ptp_caps.max_adj = 250000000;
1394 adapter->ptp_caps.n_alarm = 0;
1395 adapter->ptp_caps.n_ext_ts = 0;
1396 adapter->ptp_caps.n_per_out = 0;
1397 adapter->ptp_caps.pps = 1;
1398 adapter->ptp_caps.adjfine = ixgbe_ptp_adjfine_82599;
1399 adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
1400 adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex;
1401 adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
1402 adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
1403 adapter->ptp_setup_sdp = ixgbe_ptp_setup_sdp_X540;
1404 break;
1405 case ixgbe_mac_82599EB:
1406 snprintf(adapter->ptp_caps.name,
1407 sizeof(adapter->ptp_caps.name),
1408 "%s", netdev->name);
1409 adapter->ptp_caps.owner = THIS_MODULE;
1410 adapter->ptp_caps.max_adj = 250000000;
1411 adapter->ptp_caps.n_alarm = 0;
1412 adapter->ptp_caps.n_ext_ts = 0;
1413 adapter->ptp_caps.n_per_out = 0;
1414 adapter->ptp_caps.pps = 0;
1415 adapter->ptp_caps.adjfine = ixgbe_ptp_adjfine_82599;
1416 adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
1417 adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex;
1418 adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
1419 adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
1420 break;
1421 case ixgbe_mac_X550:
1422 case ixgbe_mac_X550EM_x:
1423 case ixgbe_mac_x550em_a:
1424 snprintf(adapter->ptp_caps.name, 16, "%s", netdev->name);
1425 adapter->ptp_caps.owner = THIS_MODULE;
1426 adapter->ptp_caps.max_adj = 30000000;
1427 adapter->ptp_caps.n_alarm = 0;
1428 adapter->ptp_caps.n_ext_ts = 0;
1429 adapter->ptp_caps.n_per_out = 0;
1430 adapter->ptp_caps.pps = 1;
1431 adapter->ptp_caps.adjfine = ixgbe_ptp_adjfine_X550;
1432 adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
1433 adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex;
1434 adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
1435 adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
1436 adapter->ptp_setup_sdp = ixgbe_ptp_setup_sdp_X550;
1437 break;
1438 default:
1439 adapter->ptp_clock = NULL;
1440 adapter->ptp_setup_sdp = NULL;
1441 return -EOPNOTSUPP;
1442 }
1443
1444 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1445 &adapter->pdev->dev);
1446 if (IS_ERR(adapter->ptp_clock)) {
1447 err = PTR_ERR(adapter->ptp_clock);
1448 adapter->ptp_clock = NULL;
1449 e_dev_err("ptp_clock_register failed\n");
1450 return err;
1451 } else if (adapter->ptp_clock)
1452 e_dev_info("registered PHC device on %s\n", netdev->name);
1453
1454 /* set default timestamp mode to disabled here. We do this in
1455 * create_clock instead of init, because we don't want to override the
1456 * previous settings during a resume cycle.
1457 */
1458 adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1459 adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1460
1461 return 0;
1462 }
1463
1464 /**
1465 * ixgbe_ptp_init
1466 * @adapter: the ixgbe private adapter structure
1467 *
1468 * This function performs the required steps for enabling PTP
1469 * support. If PTP support has already been loaded it simply calls the
1470 * cyclecounter init routine and exits.
1471 */
ixgbe_ptp_init(struct ixgbe_adapter * adapter)1472 void ixgbe_ptp_init(struct ixgbe_adapter *adapter)
1473 {
1474 /* initialize the spin lock first since we can't control when a user
1475 * will call the entry functions once we have initialized the clock
1476 * device
1477 */
1478 spin_lock_init(&adapter->tmreg_lock);
1479
1480 /* obtain a PTP device, or re-use an existing device */
1481 if (ixgbe_ptp_create_clock(adapter))
1482 return;
1483
1484 /* we have a clock so we can initialize work now */
1485 INIT_WORK(&adapter->ptp_tx_work, ixgbe_ptp_tx_hwtstamp_work);
1486
1487 /* reset the PTP related hardware bits */
1488 ixgbe_ptp_reset(adapter);
1489
1490 /* enter the IXGBE_PTP_RUNNING state */
1491 set_bit(__IXGBE_PTP_RUNNING, &adapter->state);
1492
1493 return;
1494 }
1495
1496 /**
1497 * ixgbe_ptp_suspend - stop PTP work items
1498 * @adapter: pointer to adapter struct
1499 *
1500 * this function suspends PTP activity, and prevents more PTP work from being
1501 * generated, but does not destroy the PTP clock device.
1502 */
ixgbe_ptp_suspend(struct ixgbe_adapter * adapter)1503 void ixgbe_ptp_suspend(struct ixgbe_adapter *adapter)
1504 {
1505 /* Leave the IXGBE_PTP_RUNNING state. */
1506 if (!test_and_clear_bit(__IXGBE_PTP_RUNNING, &adapter->state))
1507 return;
1508
1509 adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
1510 if (adapter->ptp_setup_sdp)
1511 adapter->ptp_setup_sdp(adapter);
1512
1513 /* ensure that we cancel any pending PTP Tx work item in progress */
1514 cancel_work_sync(&adapter->ptp_tx_work);
1515 ixgbe_ptp_clear_tx_timestamp(adapter);
1516 }
1517
1518 /**
1519 * ixgbe_ptp_stop - close the PTP device
1520 * @adapter: pointer to adapter struct
1521 *
1522 * completely destroy the PTP device, should only be called when the device is
1523 * being fully closed.
1524 */
ixgbe_ptp_stop(struct ixgbe_adapter * adapter)1525 void ixgbe_ptp_stop(struct ixgbe_adapter *adapter)
1526 {
1527 /* first, suspend PTP activity */
1528 ixgbe_ptp_suspend(adapter);
1529
1530 /* disable the PTP clock device */
1531 if (adapter->ptp_clock) {
1532 ptp_clock_unregister(adapter->ptp_clock);
1533 adapter->ptp_clock = NULL;
1534 e_dev_info("removed PHC on %s\n",
1535 adapter->netdev->name);
1536 }
1537 }
1538