1 /*******************************************************************************
2
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2011 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/sched.h>
31 #include <linux/netdevice.h>
32
33 #include "ixgbe.h"
34 #include "ixgbe_common.h"
35 #include "ixgbe_phy.h"
36
37 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
38 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
39 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
40 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
41 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
42 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
43 u16 count);
44 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
45 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
46 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
48
49 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
50 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw);
51 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw);
52 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw);
53 static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw);
54 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
55 u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm);
56 static s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num);
57
58 /**
59 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
60 * @hw: pointer to hardware structure
61 *
62 * Starts the hardware by filling the bus info structure and media type, clears
63 * all on chip counters, initializes receive address registers, multicast
64 * table, VLAN filter table, calls routine to set up link and flow control
65 * settings, and leaves transmit and receive units disabled and uninitialized
66 **/
ixgbe_start_hw_generic(struct ixgbe_hw * hw)67 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
68 {
69 u32 ctrl_ext;
70
71 /* Set the media type */
72 hw->phy.media_type = hw->mac.ops.get_media_type(hw);
73
74 /* Identify the PHY */
75 hw->phy.ops.identify(hw);
76
77 /* Clear the VLAN filter table */
78 hw->mac.ops.clear_vfta(hw);
79
80 /* Clear statistics registers */
81 hw->mac.ops.clear_hw_cntrs(hw);
82
83 /* Set No Snoop Disable */
84 ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
85 ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
86 IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
87 IXGBE_WRITE_FLUSH(hw);
88
89 /* Setup flow control */
90 ixgbe_setup_fc(hw, 0);
91
92 /* Clear adapter stopped flag */
93 hw->adapter_stopped = false;
94
95 return 0;
96 }
97
98 /**
99 * ixgbe_init_hw_generic - Generic hardware initialization
100 * @hw: pointer to hardware structure
101 *
102 * Initialize the hardware by resetting the hardware, filling the bus info
103 * structure and media type, clears all on chip counters, initializes receive
104 * address registers, multicast table, VLAN filter table, calls routine to set
105 * up link and flow control settings, and leaves transmit and receive units
106 * disabled and uninitialized
107 **/
ixgbe_init_hw_generic(struct ixgbe_hw * hw)108 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
109 {
110 s32 status;
111
112 /* Reset the hardware */
113 status = hw->mac.ops.reset_hw(hw);
114
115 if (status == 0) {
116 /* Start the HW */
117 status = hw->mac.ops.start_hw(hw);
118 }
119
120 return status;
121 }
122
123 /**
124 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
125 * @hw: pointer to hardware structure
126 *
127 * Clears all hardware statistics counters by reading them from the hardware
128 * Statistics counters are clear on read.
129 **/
ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw * hw)130 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
131 {
132 u16 i = 0;
133
134 IXGBE_READ_REG(hw, IXGBE_CRCERRS);
135 IXGBE_READ_REG(hw, IXGBE_ILLERRC);
136 IXGBE_READ_REG(hw, IXGBE_ERRBC);
137 IXGBE_READ_REG(hw, IXGBE_MSPDC);
138 for (i = 0; i < 8; i++)
139 IXGBE_READ_REG(hw, IXGBE_MPC(i));
140
141 IXGBE_READ_REG(hw, IXGBE_MLFC);
142 IXGBE_READ_REG(hw, IXGBE_MRFC);
143 IXGBE_READ_REG(hw, IXGBE_RLEC);
144 IXGBE_READ_REG(hw, IXGBE_LXONTXC);
145 IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
146 if (hw->mac.type >= ixgbe_mac_82599EB) {
147 IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
148 IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
149 } else {
150 IXGBE_READ_REG(hw, IXGBE_LXONRXC);
151 IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
152 }
153
154 for (i = 0; i < 8; i++) {
155 IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
156 IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
157 if (hw->mac.type >= ixgbe_mac_82599EB) {
158 IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
159 IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
160 } else {
161 IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
162 IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
163 }
164 }
165 if (hw->mac.type >= ixgbe_mac_82599EB)
166 for (i = 0; i < 8; i++)
167 IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
168 IXGBE_READ_REG(hw, IXGBE_PRC64);
169 IXGBE_READ_REG(hw, IXGBE_PRC127);
170 IXGBE_READ_REG(hw, IXGBE_PRC255);
171 IXGBE_READ_REG(hw, IXGBE_PRC511);
172 IXGBE_READ_REG(hw, IXGBE_PRC1023);
173 IXGBE_READ_REG(hw, IXGBE_PRC1522);
174 IXGBE_READ_REG(hw, IXGBE_GPRC);
175 IXGBE_READ_REG(hw, IXGBE_BPRC);
176 IXGBE_READ_REG(hw, IXGBE_MPRC);
177 IXGBE_READ_REG(hw, IXGBE_GPTC);
178 IXGBE_READ_REG(hw, IXGBE_GORCL);
179 IXGBE_READ_REG(hw, IXGBE_GORCH);
180 IXGBE_READ_REG(hw, IXGBE_GOTCL);
181 IXGBE_READ_REG(hw, IXGBE_GOTCH);
182 for (i = 0; i < 8; i++)
183 IXGBE_READ_REG(hw, IXGBE_RNBC(i));
184 IXGBE_READ_REG(hw, IXGBE_RUC);
185 IXGBE_READ_REG(hw, IXGBE_RFC);
186 IXGBE_READ_REG(hw, IXGBE_ROC);
187 IXGBE_READ_REG(hw, IXGBE_RJC);
188 IXGBE_READ_REG(hw, IXGBE_MNGPRC);
189 IXGBE_READ_REG(hw, IXGBE_MNGPDC);
190 IXGBE_READ_REG(hw, IXGBE_MNGPTC);
191 IXGBE_READ_REG(hw, IXGBE_TORL);
192 IXGBE_READ_REG(hw, IXGBE_TORH);
193 IXGBE_READ_REG(hw, IXGBE_TPR);
194 IXGBE_READ_REG(hw, IXGBE_TPT);
195 IXGBE_READ_REG(hw, IXGBE_PTC64);
196 IXGBE_READ_REG(hw, IXGBE_PTC127);
197 IXGBE_READ_REG(hw, IXGBE_PTC255);
198 IXGBE_READ_REG(hw, IXGBE_PTC511);
199 IXGBE_READ_REG(hw, IXGBE_PTC1023);
200 IXGBE_READ_REG(hw, IXGBE_PTC1522);
201 IXGBE_READ_REG(hw, IXGBE_MPTC);
202 IXGBE_READ_REG(hw, IXGBE_BPTC);
203 for (i = 0; i < 16; i++) {
204 IXGBE_READ_REG(hw, IXGBE_QPRC(i));
205 IXGBE_READ_REG(hw, IXGBE_QPTC(i));
206 if (hw->mac.type >= ixgbe_mac_82599EB) {
207 IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
208 IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
209 IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
210 IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
211 IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
212 } else {
213 IXGBE_READ_REG(hw, IXGBE_QBRC(i));
214 IXGBE_READ_REG(hw, IXGBE_QBTC(i));
215 }
216 }
217
218 if (hw->mac.type == ixgbe_mac_X540) {
219 if (hw->phy.id == 0)
220 hw->phy.ops.identify(hw);
221 hw->phy.ops.read_reg(hw, 0x3, IXGBE_PCRC8ECL, &i);
222 hw->phy.ops.read_reg(hw, 0x3, IXGBE_PCRC8ECH, &i);
223 hw->phy.ops.read_reg(hw, 0x3, IXGBE_LDPCECL, &i);
224 hw->phy.ops.read_reg(hw, 0x3, IXGBE_LDPCECH, &i);
225 }
226
227 return 0;
228 }
229
230 /**
231 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
232 * @hw: pointer to hardware structure
233 * @pba_num: stores the part number string from the EEPROM
234 * @pba_num_size: part number string buffer length
235 *
236 * Reads the part number string from the EEPROM.
237 **/
ixgbe_read_pba_string_generic(struct ixgbe_hw * hw,u8 * pba_num,u32 pba_num_size)238 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
239 u32 pba_num_size)
240 {
241 s32 ret_val;
242 u16 data;
243 u16 pba_ptr;
244 u16 offset;
245 u16 length;
246
247 if (pba_num == NULL) {
248 hw_dbg(hw, "PBA string buffer was null\n");
249 return IXGBE_ERR_INVALID_ARGUMENT;
250 }
251
252 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
253 if (ret_val) {
254 hw_dbg(hw, "NVM Read Error\n");
255 return ret_val;
256 }
257
258 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
259 if (ret_val) {
260 hw_dbg(hw, "NVM Read Error\n");
261 return ret_val;
262 }
263
264 /*
265 * if data is not ptr guard the PBA must be in legacy format which
266 * means pba_ptr is actually our second data word for the PBA number
267 * and we can decode it into an ascii string
268 */
269 if (data != IXGBE_PBANUM_PTR_GUARD) {
270 hw_dbg(hw, "NVM PBA number is not stored as string\n");
271
272 /* we will need 11 characters to store the PBA */
273 if (pba_num_size < 11) {
274 hw_dbg(hw, "PBA string buffer too small\n");
275 return IXGBE_ERR_NO_SPACE;
276 }
277
278 /* extract hex string from data and pba_ptr */
279 pba_num[0] = (data >> 12) & 0xF;
280 pba_num[1] = (data >> 8) & 0xF;
281 pba_num[2] = (data >> 4) & 0xF;
282 pba_num[3] = data & 0xF;
283 pba_num[4] = (pba_ptr >> 12) & 0xF;
284 pba_num[5] = (pba_ptr >> 8) & 0xF;
285 pba_num[6] = '-';
286 pba_num[7] = 0;
287 pba_num[8] = (pba_ptr >> 4) & 0xF;
288 pba_num[9] = pba_ptr & 0xF;
289
290 /* put a null character on the end of our string */
291 pba_num[10] = '\0';
292
293 /* switch all the data but the '-' to hex char */
294 for (offset = 0; offset < 10; offset++) {
295 if (pba_num[offset] < 0xA)
296 pba_num[offset] += '0';
297 else if (pba_num[offset] < 0x10)
298 pba_num[offset] += 'A' - 0xA;
299 }
300
301 return 0;
302 }
303
304 ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
305 if (ret_val) {
306 hw_dbg(hw, "NVM Read Error\n");
307 return ret_val;
308 }
309
310 if (length == 0xFFFF || length == 0) {
311 hw_dbg(hw, "NVM PBA number section invalid length\n");
312 return IXGBE_ERR_PBA_SECTION;
313 }
314
315 /* check if pba_num buffer is big enough */
316 if (pba_num_size < (((u32)length * 2) - 1)) {
317 hw_dbg(hw, "PBA string buffer too small\n");
318 return IXGBE_ERR_NO_SPACE;
319 }
320
321 /* trim pba length from start of string */
322 pba_ptr++;
323 length--;
324
325 for (offset = 0; offset < length; offset++) {
326 ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
327 if (ret_val) {
328 hw_dbg(hw, "NVM Read Error\n");
329 return ret_val;
330 }
331 pba_num[offset * 2] = (u8)(data >> 8);
332 pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
333 }
334 pba_num[offset * 2] = '\0';
335
336 return 0;
337 }
338
339 /**
340 * ixgbe_get_mac_addr_generic - Generic get MAC address
341 * @hw: pointer to hardware structure
342 * @mac_addr: Adapter MAC address
343 *
344 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
345 * A reset of the adapter must be performed prior to calling this function
346 * in order for the MAC address to have been loaded from the EEPROM into RAR0
347 **/
ixgbe_get_mac_addr_generic(struct ixgbe_hw * hw,u8 * mac_addr)348 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
349 {
350 u32 rar_high;
351 u32 rar_low;
352 u16 i;
353
354 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
355 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
356
357 for (i = 0; i < 4; i++)
358 mac_addr[i] = (u8)(rar_low >> (i*8));
359
360 for (i = 0; i < 2; i++)
361 mac_addr[i+4] = (u8)(rar_high >> (i*8));
362
363 return 0;
364 }
365
366 /**
367 * ixgbe_get_bus_info_generic - Generic set PCI bus info
368 * @hw: pointer to hardware structure
369 *
370 * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
371 **/
ixgbe_get_bus_info_generic(struct ixgbe_hw * hw)372 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
373 {
374 struct ixgbe_adapter *adapter = hw->back;
375 struct ixgbe_mac_info *mac = &hw->mac;
376 u16 link_status;
377
378 hw->bus.type = ixgbe_bus_type_pci_express;
379
380 /* Get the negotiated link width and speed from PCI config space */
381 pci_read_config_word(adapter->pdev, IXGBE_PCI_LINK_STATUS,
382 &link_status);
383
384 switch (link_status & IXGBE_PCI_LINK_WIDTH) {
385 case IXGBE_PCI_LINK_WIDTH_1:
386 hw->bus.width = ixgbe_bus_width_pcie_x1;
387 break;
388 case IXGBE_PCI_LINK_WIDTH_2:
389 hw->bus.width = ixgbe_bus_width_pcie_x2;
390 break;
391 case IXGBE_PCI_LINK_WIDTH_4:
392 hw->bus.width = ixgbe_bus_width_pcie_x4;
393 break;
394 case IXGBE_PCI_LINK_WIDTH_8:
395 hw->bus.width = ixgbe_bus_width_pcie_x8;
396 break;
397 default:
398 hw->bus.width = ixgbe_bus_width_unknown;
399 break;
400 }
401
402 switch (link_status & IXGBE_PCI_LINK_SPEED) {
403 case IXGBE_PCI_LINK_SPEED_2500:
404 hw->bus.speed = ixgbe_bus_speed_2500;
405 break;
406 case IXGBE_PCI_LINK_SPEED_5000:
407 hw->bus.speed = ixgbe_bus_speed_5000;
408 break;
409 default:
410 hw->bus.speed = ixgbe_bus_speed_unknown;
411 break;
412 }
413
414 mac->ops.set_lan_id(hw);
415
416 return 0;
417 }
418
419 /**
420 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
421 * @hw: pointer to the HW structure
422 *
423 * Determines the LAN function id by reading memory-mapped registers
424 * and swaps the port value if requested.
425 **/
ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw * hw)426 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
427 {
428 struct ixgbe_bus_info *bus = &hw->bus;
429 u32 reg;
430
431 reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
432 bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
433 bus->lan_id = bus->func;
434
435 /* check for a port swap */
436 reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
437 if (reg & IXGBE_FACTPS_LFS)
438 bus->func ^= 0x1;
439 }
440
441 /**
442 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
443 * @hw: pointer to hardware structure
444 *
445 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
446 * disables transmit and receive units. The adapter_stopped flag is used by
447 * the shared code and drivers to determine if the adapter is in a stopped
448 * state and should not touch the hardware.
449 **/
ixgbe_stop_adapter_generic(struct ixgbe_hw * hw)450 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
451 {
452 u32 number_of_queues;
453 u32 reg_val;
454 u16 i;
455
456 /*
457 * Set the adapter_stopped flag so other driver functions stop touching
458 * the hardware
459 */
460 hw->adapter_stopped = true;
461
462 /* Disable the receive unit */
463 reg_val = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
464 reg_val &= ~(IXGBE_RXCTRL_RXEN);
465 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, reg_val);
466 IXGBE_WRITE_FLUSH(hw);
467 msleep(2);
468
469 /* Clear interrupt mask to stop from interrupts being generated */
470 IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
471
472 /* Clear any pending interrupts */
473 IXGBE_READ_REG(hw, IXGBE_EICR);
474
475 /* Disable the transmit unit. Each queue must be disabled. */
476 number_of_queues = hw->mac.max_tx_queues;
477 for (i = 0; i < number_of_queues; i++) {
478 reg_val = IXGBE_READ_REG(hw, IXGBE_TXDCTL(i));
479 if (reg_val & IXGBE_TXDCTL_ENABLE) {
480 reg_val &= ~IXGBE_TXDCTL_ENABLE;
481 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), reg_val);
482 }
483 }
484
485 /*
486 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
487 * access and verify no pending requests
488 */
489 ixgbe_disable_pcie_master(hw);
490
491 return 0;
492 }
493
494 /**
495 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
496 * @hw: pointer to hardware structure
497 * @index: led number to turn on
498 **/
ixgbe_led_on_generic(struct ixgbe_hw * hw,u32 index)499 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
500 {
501 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
502
503 /* To turn on the LED, set mode to ON. */
504 led_reg &= ~IXGBE_LED_MODE_MASK(index);
505 led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
506 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
507 IXGBE_WRITE_FLUSH(hw);
508
509 return 0;
510 }
511
512 /**
513 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
514 * @hw: pointer to hardware structure
515 * @index: led number to turn off
516 **/
ixgbe_led_off_generic(struct ixgbe_hw * hw,u32 index)517 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
518 {
519 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
520
521 /* To turn off the LED, set mode to OFF. */
522 led_reg &= ~IXGBE_LED_MODE_MASK(index);
523 led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
524 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
525 IXGBE_WRITE_FLUSH(hw);
526
527 return 0;
528 }
529
530 /**
531 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
532 * @hw: pointer to hardware structure
533 *
534 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
535 * ixgbe_hw struct in order to set up EEPROM access.
536 **/
ixgbe_init_eeprom_params_generic(struct ixgbe_hw * hw)537 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
538 {
539 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
540 u32 eec;
541 u16 eeprom_size;
542
543 if (eeprom->type == ixgbe_eeprom_uninitialized) {
544 eeprom->type = ixgbe_eeprom_none;
545 /* Set default semaphore delay to 10ms which is a well
546 * tested value */
547 eeprom->semaphore_delay = 10;
548
549 /*
550 * Check for EEPROM present first.
551 * If not present leave as none
552 */
553 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
554 if (eec & IXGBE_EEC_PRES) {
555 eeprom->type = ixgbe_eeprom_spi;
556
557 /*
558 * SPI EEPROM is assumed here. This code would need to
559 * change if a future EEPROM is not SPI.
560 */
561 eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
562 IXGBE_EEC_SIZE_SHIFT);
563 eeprom->word_size = 1 << (eeprom_size +
564 IXGBE_EEPROM_WORD_SIZE_SHIFT);
565 }
566
567 if (eec & IXGBE_EEC_ADDR_SIZE)
568 eeprom->address_bits = 16;
569 else
570 eeprom->address_bits = 8;
571 hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
572 "%d\n", eeprom->type, eeprom->word_size,
573 eeprom->address_bits);
574 }
575
576 return 0;
577 }
578
579 /**
580 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
581 * @hw: pointer to hardware structure
582 * @offset: offset within the EEPROM to be written to
583 * @data: 16 bit word to be written to the EEPROM
584 *
585 * If ixgbe_eeprom_update_checksum is not called after this function, the
586 * EEPROM will most likely contain an invalid checksum.
587 **/
ixgbe_write_eeprom_generic(struct ixgbe_hw * hw,u16 offset,u16 data)588 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
589 {
590 s32 status;
591 u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
592
593 hw->eeprom.ops.init_params(hw);
594
595 if (offset >= hw->eeprom.word_size) {
596 status = IXGBE_ERR_EEPROM;
597 goto out;
598 }
599
600 /* Prepare the EEPROM for writing */
601 status = ixgbe_acquire_eeprom(hw);
602
603 if (status == 0) {
604 if (ixgbe_ready_eeprom(hw) != 0) {
605 ixgbe_release_eeprom(hw);
606 status = IXGBE_ERR_EEPROM;
607 }
608 }
609
610 if (status == 0) {
611 ixgbe_standby_eeprom(hw);
612
613 /* Send the WRITE ENABLE command (8 bit opcode ) */
614 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_WREN_OPCODE_SPI,
615 IXGBE_EEPROM_OPCODE_BITS);
616
617 ixgbe_standby_eeprom(hw);
618
619 /*
620 * Some SPI eeproms use the 8th address bit embedded in the
621 * opcode
622 */
623 if ((hw->eeprom.address_bits == 8) && (offset >= 128))
624 write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
625
626 /* Send the Write command (8-bit opcode + addr) */
627 ixgbe_shift_out_eeprom_bits(hw, write_opcode,
628 IXGBE_EEPROM_OPCODE_BITS);
629 ixgbe_shift_out_eeprom_bits(hw, (u16)(offset*2),
630 hw->eeprom.address_bits);
631
632 /* Send the data */
633 data = (data >> 8) | (data << 8);
634 ixgbe_shift_out_eeprom_bits(hw, data, 16);
635 ixgbe_standby_eeprom(hw);
636
637 /* Done with writing - release the EEPROM */
638 ixgbe_release_eeprom(hw);
639 }
640
641 out:
642 return status;
643 }
644
645 /**
646 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
647 * @hw: pointer to hardware structure
648 * @offset: offset within the EEPROM to be read
649 * @data: read 16 bit value from EEPROM
650 *
651 * Reads 16 bit value from EEPROM through bit-bang method
652 **/
ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw * hw,u16 offset,u16 * data)653 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
654 u16 *data)
655 {
656 s32 status;
657 u16 word_in;
658 u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
659
660 hw->eeprom.ops.init_params(hw);
661
662 if (offset >= hw->eeprom.word_size) {
663 status = IXGBE_ERR_EEPROM;
664 goto out;
665 }
666
667 /* Prepare the EEPROM for reading */
668 status = ixgbe_acquire_eeprom(hw);
669
670 if (status == 0) {
671 if (ixgbe_ready_eeprom(hw) != 0) {
672 ixgbe_release_eeprom(hw);
673 status = IXGBE_ERR_EEPROM;
674 }
675 }
676
677 if (status == 0) {
678 ixgbe_standby_eeprom(hw);
679
680 /*
681 * Some SPI eeproms use the 8th address bit embedded in the
682 * opcode
683 */
684 if ((hw->eeprom.address_bits == 8) && (offset >= 128))
685 read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
686
687 /* Send the READ command (opcode + addr) */
688 ixgbe_shift_out_eeprom_bits(hw, read_opcode,
689 IXGBE_EEPROM_OPCODE_BITS);
690 ixgbe_shift_out_eeprom_bits(hw, (u16)(offset*2),
691 hw->eeprom.address_bits);
692
693 /* Read the data. */
694 word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
695 *data = (word_in >> 8) | (word_in << 8);
696
697 /* End this read operation */
698 ixgbe_release_eeprom(hw);
699 }
700
701 out:
702 return status;
703 }
704
705 /**
706 * ixgbe_read_eerd_generic - Read EEPROM word using EERD
707 * @hw: pointer to hardware structure
708 * @offset: offset of word in the EEPROM to read
709 * @data: word read from the EEPROM
710 *
711 * Reads a 16 bit word from the EEPROM using the EERD register.
712 **/
ixgbe_read_eerd_generic(struct ixgbe_hw * hw,u16 offset,u16 * data)713 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
714 {
715 u32 eerd;
716 s32 status;
717
718 hw->eeprom.ops.init_params(hw);
719
720 if (offset >= hw->eeprom.word_size) {
721 status = IXGBE_ERR_EEPROM;
722 goto out;
723 }
724
725 eerd = (offset << IXGBE_EEPROM_RW_ADDR_SHIFT) +
726 IXGBE_EEPROM_RW_REG_START;
727
728 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
729 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
730
731 if (status == 0)
732 *data = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
733 IXGBE_EEPROM_RW_REG_DATA);
734 else
735 hw_dbg(hw, "Eeprom read timed out\n");
736
737 out:
738 return status;
739 }
740
741 /**
742 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
743 * @hw: pointer to hardware structure
744 * @ee_reg: EEPROM flag for polling
745 *
746 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
747 * read or write is done respectively.
748 **/
ixgbe_poll_eerd_eewr_done(struct ixgbe_hw * hw,u32 ee_reg)749 s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
750 {
751 u32 i;
752 u32 reg;
753 s32 status = IXGBE_ERR_EEPROM;
754
755 for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
756 if (ee_reg == IXGBE_NVM_POLL_READ)
757 reg = IXGBE_READ_REG(hw, IXGBE_EERD);
758 else
759 reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
760
761 if (reg & IXGBE_EEPROM_RW_REG_DONE) {
762 status = 0;
763 break;
764 }
765 udelay(5);
766 }
767 return status;
768 }
769
770 /**
771 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
772 * @hw: pointer to hardware structure
773 *
774 * Prepares EEPROM for access using bit-bang method. This function should
775 * be called before issuing a command to the EEPROM.
776 **/
ixgbe_acquire_eeprom(struct ixgbe_hw * hw)777 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
778 {
779 s32 status = 0;
780 u32 eec;
781 u32 i;
782
783 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
784 status = IXGBE_ERR_SWFW_SYNC;
785
786 if (status == 0) {
787 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
788
789 /* Request EEPROM Access */
790 eec |= IXGBE_EEC_REQ;
791 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
792
793 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
794 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
795 if (eec & IXGBE_EEC_GNT)
796 break;
797 udelay(5);
798 }
799
800 /* Release if grant not acquired */
801 if (!(eec & IXGBE_EEC_GNT)) {
802 eec &= ~IXGBE_EEC_REQ;
803 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
804 hw_dbg(hw, "Could not acquire EEPROM grant\n");
805
806 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
807 status = IXGBE_ERR_EEPROM;
808 }
809
810 /* Setup EEPROM for Read/Write */
811 if (status == 0) {
812 /* Clear CS and SK */
813 eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
814 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
815 IXGBE_WRITE_FLUSH(hw);
816 udelay(1);
817 }
818 }
819 return status;
820 }
821
822 /**
823 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
824 * @hw: pointer to hardware structure
825 *
826 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
827 **/
ixgbe_get_eeprom_semaphore(struct ixgbe_hw * hw)828 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
829 {
830 s32 status = IXGBE_ERR_EEPROM;
831 u32 timeout = 2000;
832 u32 i;
833 u32 swsm;
834
835 /* Get SMBI software semaphore between device drivers first */
836 for (i = 0; i < timeout; i++) {
837 /*
838 * If the SMBI bit is 0 when we read it, then the bit will be
839 * set and we have the semaphore
840 */
841 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
842 if (!(swsm & IXGBE_SWSM_SMBI)) {
843 status = 0;
844 break;
845 }
846 udelay(50);
847 }
848
849 /* Now get the semaphore between SW/FW through the SWESMBI bit */
850 if (status == 0) {
851 for (i = 0; i < timeout; i++) {
852 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
853
854 /* Set the SW EEPROM semaphore bit to request access */
855 swsm |= IXGBE_SWSM_SWESMBI;
856 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
857
858 /*
859 * If we set the bit successfully then we got the
860 * semaphore.
861 */
862 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
863 if (swsm & IXGBE_SWSM_SWESMBI)
864 break;
865
866 udelay(50);
867 }
868
869 /*
870 * Release semaphores and return error if SW EEPROM semaphore
871 * was not granted because we don't have access to the EEPROM
872 */
873 if (i >= timeout) {
874 hw_dbg(hw, "SWESMBI Software EEPROM semaphore "
875 "not granted.\n");
876 ixgbe_release_eeprom_semaphore(hw);
877 status = IXGBE_ERR_EEPROM;
878 }
879 } else {
880 hw_dbg(hw, "Software semaphore SMBI between device drivers "
881 "not granted.\n");
882 }
883
884 return status;
885 }
886
887 /**
888 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
889 * @hw: pointer to hardware structure
890 *
891 * This function clears hardware semaphore bits.
892 **/
ixgbe_release_eeprom_semaphore(struct ixgbe_hw * hw)893 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
894 {
895 u32 swsm;
896
897 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
898
899 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
900 swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
901 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
902 IXGBE_WRITE_FLUSH(hw);
903 }
904
905 /**
906 * ixgbe_ready_eeprom - Polls for EEPROM ready
907 * @hw: pointer to hardware structure
908 **/
ixgbe_ready_eeprom(struct ixgbe_hw * hw)909 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
910 {
911 s32 status = 0;
912 u16 i;
913 u8 spi_stat_reg;
914
915 /*
916 * Read "Status Register" repeatedly until the LSB is cleared. The
917 * EEPROM will signal that the command has been completed by clearing
918 * bit 0 of the internal status register. If it's not cleared within
919 * 5 milliseconds, then error out.
920 */
921 for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
922 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
923 IXGBE_EEPROM_OPCODE_BITS);
924 spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
925 if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
926 break;
927
928 udelay(5);
929 ixgbe_standby_eeprom(hw);
930 };
931
932 /*
933 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
934 * devices (and only 0-5mSec on 5V devices)
935 */
936 if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
937 hw_dbg(hw, "SPI EEPROM Status error\n");
938 status = IXGBE_ERR_EEPROM;
939 }
940
941 return status;
942 }
943
944 /**
945 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
946 * @hw: pointer to hardware structure
947 **/
ixgbe_standby_eeprom(struct ixgbe_hw * hw)948 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
949 {
950 u32 eec;
951
952 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
953
954 /* Toggle CS to flush commands */
955 eec |= IXGBE_EEC_CS;
956 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
957 IXGBE_WRITE_FLUSH(hw);
958 udelay(1);
959 eec &= ~IXGBE_EEC_CS;
960 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
961 IXGBE_WRITE_FLUSH(hw);
962 udelay(1);
963 }
964
965 /**
966 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
967 * @hw: pointer to hardware structure
968 * @data: data to send to the EEPROM
969 * @count: number of bits to shift out
970 **/
ixgbe_shift_out_eeprom_bits(struct ixgbe_hw * hw,u16 data,u16 count)971 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
972 u16 count)
973 {
974 u32 eec;
975 u32 mask;
976 u32 i;
977
978 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
979
980 /*
981 * Mask is used to shift "count" bits of "data" out to the EEPROM
982 * one bit at a time. Determine the starting bit based on count
983 */
984 mask = 0x01 << (count - 1);
985
986 for (i = 0; i < count; i++) {
987 /*
988 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
989 * "1", and then raising and then lowering the clock (the SK
990 * bit controls the clock input to the EEPROM). A "0" is
991 * shifted out to the EEPROM by setting "DI" to "0" and then
992 * raising and then lowering the clock.
993 */
994 if (data & mask)
995 eec |= IXGBE_EEC_DI;
996 else
997 eec &= ~IXGBE_EEC_DI;
998
999 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1000 IXGBE_WRITE_FLUSH(hw);
1001
1002 udelay(1);
1003
1004 ixgbe_raise_eeprom_clk(hw, &eec);
1005 ixgbe_lower_eeprom_clk(hw, &eec);
1006
1007 /*
1008 * Shift mask to signify next bit of data to shift in to the
1009 * EEPROM
1010 */
1011 mask = mask >> 1;
1012 };
1013
1014 /* We leave the "DI" bit set to "0" when we leave this routine. */
1015 eec &= ~IXGBE_EEC_DI;
1016 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1017 IXGBE_WRITE_FLUSH(hw);
1018 }
1019
1020 /**
1021 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1022 * @hw: pointer to hardware structure
1023 **/
ixgbe_shift_in_eeprom_bits(struct ixgbe_hw * hw,u16 count)1024 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1025 {
1026 u32 eec;
1027 u32 i;
1028 u16 data = 0;
1029
1030 /*
1031 * In order to read a register from the EEPROM, we need to shift
1032 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1033 * the clock input to the EEPROM (setting the SK bit), and then reading
1034 * the value of the "DO" bit. During this "shifting in" process the
1035 * "DI" bit should always be clear.
1036 */
1037 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1038
1039 eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1040
1041 for (i = 0; i < count; i++) {
1042 data = data << 1;
1043 ixgbe_raise_eeprom_clk(hw, &eec);
1044
1045 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1046
1047 eec &= ~(IXGBE_EEC_DI);
1048 if (eec & IXGBE_EEC_DO)
1049 data |= 1;
1050
1051 ixgbe_lower_eeprom_clk(hw, &eec);
1052 }
1053
1054 return data;
1055 }
1056
1057 /**
1058 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1059 * @hw: pointer to hardware structure
1060 * @eec: EEC register's current value
1061 **/
ixgbe_raise_eeprom_clk(struct ixgbe_hw * hw,u32 * eec)1062 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1063 {
1064 /*
1065 * Raise the clock input to the EEPROM
1066 * (setting the SK bit), then delay
1067 */
1068 *eec = *eec | IXGBE_EEC_SK;
1069 IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1070 IXGBE_WRITE_FLUSH(hw);
1071 udelay(1);
1072 }
1073
1074 /**
1075 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1076 * @hw: pointer to hardware structure
1077 * @eecd: EECD's current value
1078 **/
ixgbe_lower_eeprom_clk(struct ixgbe_hw * hw,u32 * eec)1079 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1080 {
1081 /*
1082 * Lower the clock input to the EEPROM (clearing the SK bit), then
1083 * delay
1084 */
1085 *eec = *eec & ~IXGBE_EEC_SK;
1086 IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1087 IXGBE_WRITE_FLUSH(hw);
1088 udelay(1);
1089 }
1090
1091 /**
1092 * ixgbe_release_eeprom - Release EEPROM, release semaphores
1093 * @hw: pointer to hardware structure
1094 **/
ixgbe_release_eeprom(struct ixgbe_hw * hw)1095 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1096 {
1097 u32 eec;
1098
1099 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1100
1101 eec |= IXGBE_EEC_CS; /* Pull CS high */
1102 eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1103
1104 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1105 IXGBE_WRITE_FLUSH(hw);
1106
1107 udelay(1);
1108
1109 /* Stop requesting EEPROM access */
1110 eec &= ~IXGBE_EEC_REQ;
1111 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1112
1113 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1114
1115 /* Delay before attempt to obtain semaphore again to allow FW access */
1116 msleep(hw->eeprom.semaphore_delay);
1117 }
1118
1119 /**
1120 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1121 * @hw: pointer to hardware structure
1122 **/
ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw * hw)1123 u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1124 {
1125 u16 i;
1126 u16 j;
1127 u16 checksum = 0;
1128 u16 length = 0;
1129 u16 pointer = 0;
1130 u16 word = 0;
1131
1132 /* Include 0x0-0x3F in the checksum */
1133 for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1134 if (hw->eeprom.ops.read(hw, i, &word) != 0) {
1135 hw_dbg(hw, "EEPROM read failed\n");
1136 break;
1137 }
1138 checksum += word;
1139 }
1140
1141 /* Include all data from pointers except for the fw pointer */
1142 for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1143 hw->eeprom.ops.read(hw, i, &pointer);
1144
1145 /* Make sure the pointer seems valid */
1146 if (pointer != 0xFFFF && pointer != 0) {
1147 hw->eeprom.ops.read(hw, pointer, &length);
1148
1149 if (length != 0xFFFF && length != 0) {
1150 for (j = pointer+1; j <= pointer+length; j++) {
1151 hw->eeprom.ops.read(hw, j, &word);
1152 checksum += word;
1153 }
1154 }
1155 }
1156 }
1157
1158 checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1159
1160 return checksum;
1161 }
1162
1163 /**
1164 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1165 * @hw: pointer to hardware structure
1166 * @checksum_val: calculated checksum
1167 *
1168 * Performs checksum calculation and validates the EEPROM checksum. If the
1169 * caller does not need checksum_val, the value can be NULL.
1170 **/
ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw * hw,u16 * checksum_val)1171 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1172 u16 *checksum_val)
1173 {
1174 s32 status;
1175 u16 checksum;
1176 u16 read_checksum = 0;
1177
1178 /*
1179 * Read the first word from the EEPROM. If this times out or fails, do
1180 * not continue or we could be in for a very long wait while every
1181 * EEPROM read fails
1182 */
1183 status = hw->eeprom.ops.read(hw, 0, &checksum);
1184
1185 if (status == 0) {
1186 checksum = hw->eeprom.ops.calc_checksum(hw);
1187
1188 hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1189
1190 /*
1191 * Verify read checksum from EEPROM is the same as
1192 * calculated checksum
1193 */
1194 if (read_checksum != checksum)
1195 status = IXGBE_ERR_EEPROM_CHECKSUM;
1196
1197 /* If the user cares, return the calculated checksum */
1198 if (checksum_val)
1199 *checksum_val = checksum;
1200 } else {
1201 hw_dbg(hw, "EEPROM read failed\n");
1202 }
1203
1204 return status;
1205 }
1206
1207 /**
1208 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1209 * @hw: pointer to hardware structure
1210 **/
ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw * hw)1211 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1212 {
1213 s32 status;
1214 u16 checksum;
1215
1216 /*
1217 * Read the first word from the EEPROM. If this times out or fails, do
1218 * not continue or we could be in for a very long wait while every
1219 * EEPROM read fails
1220 */
1221 status = hw->eeprom.ops.read(hw, 0, &checksum);
1222
1223 if (status == 0) {
1224 checksum = hw->eeprom.ops.calc_checksum(hw);
1225 status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1226 checksum);
1227 } else {
1228 hw_dbg(hw, "EEPROM read failed\n");
1229 }
1230
1231 return status;
1232 }
1233
1234 /**
1235 * ixgbe_validate_mac_addr - Validate MAC address
1236 * @mac_addr: pointer to MAC address.
1237 *
1238 * Tests a MAC address to ensure it is a valid Individual Address
1239 **/
ixgbe_validate_mac_addr(u8 * mac_addr)1240 s32 ixgbe_validate_mac_addr(u8 *mac_addr)
1241 {
1242 s32 status = 0;
1243
1244 /* Make sure it is not a multicast address */
1245 if (IXGBE_IS_MULTICAST(mac_addr))
1246 status = IXGBE_ERR_INVALID_MAC_ADDR;
1247 /* Not a broadcast address */
1248 else if (IXGBE_IS_BROADCAST(mac_addr))
1249 status = IXGBE_ERR_INVALID_MAC_ADDR;
1250 /* Reject the zero address */
1251 else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
1252 mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0)
1253 status = IXGBE_ERR_INVALID_MAC_ADDR;
1254
1255 return status;
1256 }
1257
1258 /**
1259 * ixgbe_set_rar_generic - Set Rx address register
1260 * @hw: pointer to hardware structure
1261 * @index: Receive address register to write
1262 * @addr: Address to put into receive address register
1263 * @vmdq: VMDq "set" or "pool" index
1264 * @enable_addr: set flag that address is active
1265 *
1266 * Puts an ethernet address into a receive address register.
1267 **/
ixgbe_set_rar_generic(struct ixgbe_hw * hw,u32 index,u8 * addr,u32 vmdq,u32 enable_addr)1268 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1269 u32 enable_addr)
1270 {
1271 u32 rar_low, rar_high;
1272 u32 rar_entries = hw->mac.num_rar_entries;
1273
1274 /* Make sure we are using a valid rar index range */
1275 if (index >= rar_entries) {
1276 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1277 return IXGBE_ERR_INVALID_ARGUMENT;
1278 }
1279
1280 /* setup VMDq pool selection before this RAR gets enabled */
1281 hw->mac.ops.set_vmdq(hw, index, vmdq);
1282
1283 /*
1284 * HW expects these in little endian so we reverse the byte
1285 * order from network order (big endian) to little endian
1286 */
1287 rar_low = ((u32)addr[0] |
1288 ((u32)addr[1] << 8) |
1289 ((u32)addr[2] << 16) |
1290 ((u32)addr[3] << 24));
1291 /*
1292 * Some parts put the VMDq setting in the extra RAH bits,
1293 * so save everything except the lower 16 bits that hold part
1294 * of the address and the address valid bit.
1295 */
1296 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1297 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1298 rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1299
1300 if (enable_addr != 0)
1301 rar_high |= IXGBE_RAH_AV;
1302
1303 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1304 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1305
1306 return 0;
1307 }
1308
1309 /**
1310 * ixgbe_clear_rar_generic - Remove Rx address register
1311 * @hw: pointer to hardware structure
1312 * @index: Receive address register to write
1313 *
1314 * Clears an ethernet address from a receive address register.
1315 **/
ixgbe_clear_rar_generic(struct ixgbe_hw * hw,u32 index)1316 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1317 {
1318 u32 rar_high;
1319 u32 rar_entries = hw->mac.num_rar_entries;
1320
1321 /* Make sure we are using a valid rar index range */
1322 if (index >= rar_entries) {
1323 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1324 return IXGBE_ERR_INVALID_ARGUMENT;
1325 }
1326
1327 /*
1328 * Some parts put the VMDq setting in the extra RAH bits,
1329 * so save everything except the lower 16 bits that hold part
1330 * of the address and the address valid bit.
1331 */
1332 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1333 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1334
1335 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1336 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1337
1338 /* clear VMDq pool/queue selection for this RAR */
1339 hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1340
1341 return 0;
1342 }
1343
1344 /**
1345 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1346 * @hw: pointer to hardware structure
1347 *
1348 * Places the MAC address in receive address register 0 and clears the rest
1349 * of the receive address registers. Clears the multicast table. Assumes
1350 * the receiver is in reset when the routine is called.
1351 **/
ixgbe_init_rx_addrs_generic(struct ixgbe_hw * hw)1352 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1353 {
1354 u32 i;
1355 u32 rar_entries = hw->mac.num_rar_entries;
1356
1357 /*
1358 * If the current mac address is valid, assume it is a software override
1359 * to the permanent address.
1360 * Otherwise, use the permanent address from the eeprom.
1361 */
1362 if (ixgbe_validate_mac_addr(hw->mac.addr) ==
1363 IXGBE_ERR_INVALID_MAC_ADDR) {
1364 /* Get the MAC address from the RAR0 for later reference */
1365 hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1366
1367 hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1368 } else {
1369 /* Setup the receive address. */
1370 hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1371 hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1372
1373 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1374
1375 /* clear VMDq pool/queue selection for RAR 0 */
1376 hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1377 }
1378 hw->addr_ctrl.overflow_promisc = 0;
1379
1380 hw->addr_ctrl.rar_used_count = 1;
1381
1382 /* Zero out the other receive addresses. */
1383 hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1384 for (i = 1; i < rar_entries; i++) {
1385 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1386 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1387 }
1388
1389 /* Clear the MTA */
1390 hw->addr_ctrl.mta_in_use = 0;
1391 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1392
1393 hw_dbg(hw, " Clearing MTA\n");
1394 for (i = 0; i < hw->mac.mcft_size; i++)
1395 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1396
1397 if (hw->mac.ops.init_uta_tables)
1398 hw->mac.ops.init_uta_tables(hw);
1399
1400 return 0;
1401 }
1402
1403 /**
1404 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
1405 * @hw: pointer to hardware structure
1406 * @mc_addr: the multicast address
1407 *
1408 * Extracts the 12 bits, from a multicast address, to determine which
1409 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
1410 * incoming rx multicast addresses, to determine the bit-vector to check in
1411 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1412 * by the MO field of the MCSTCTRL. The MO field is set during initialization
1413 * to mc_filter_type.
1414 **/
ixgbe_mta_vector(struct ixgbe_hw * hw,u8 * mc_addr)1415 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1416 {
1417 u32 vector = 0;
1418
1419 switch (hw->mac.mc_filter_type) {
1420 case 0: /* use bits [47:36] of the address */
1421 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1422 break;
1423 case 1: /* use bits [46:35] of the address */
1424 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1425 break;
1426 case 2: /* use bits [45:34] of the address */
1427 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1428 break;
1429 case 3: /* use bits [43:32] of the address */
1430 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1431 break;
1432 default: /* Invalid mc_filter_type */
1433 hw_dbg(hw, "MC filter type param set incorrectly\n");
1434 break;
1435 }
1436
1437 /* vector can only be 12-bits or boundary will be exceeded */
1438 vector &= 0xFFF;
1439 return vector;
1440 }
1441
1442 /**
1443 * ixgbe_set_mta - Set bit-vector in multicast table
1444 * @hw: pointer to hardware structure
1445 * @hash_value: Multicast address hash value
1446 *
1447 * Sets the bit-vector in the multicast table.
1448 **/
ixgbe_set_mta(struct ixgbe_hw * hw,u8 * mc_addr)1449 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1450 {
1451 u32 vector;
1452 u32 vector_bit;
1453 u32 vector_reg;
1454
1455 hw->addr_ctrl.mta_in_use++;
1456
1457 vector = ixgbe_mta_vector(hw, mc_addr);
1458 hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
1459
1460 /*
1461 * The MTA is a register array of 128 32-bit registers. It is treated
1462 * like an array of 4096 bits. We want to set bit
1463 * BitArray[vector_value]. So we figure out what register the bit is
1464 * in, read it, OR in the new bit, then write back the new value. The
1465 * register is determined by the upper 7 bits of the vector value and
1466 * the bit within that register are determined by the lower 5 bits of
1467 * the value.
1468 */
1469 vector_reg = (vector >> 5) & 0x7F;
1470 vector_bit = vector & 0x1F;
1471 hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
1472 }
1473
1474 /**
1475 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
1476 * @hw: pointer to hardware structure
1477 * @netdev: pointer to net device structure
1478 *
1479 * The given list replaces any existing list. Clears the MC addrs from receive
1480 * address registers and the multicast table. Uses unused receive address
1481 * registers for the first multicast addresses, and hashes the rest into the
1482 * multicast table.
1483 **/
ixgbe_update_mc_addr_list_generic(struct ixgbe_hw * hw,struct net_device * netdev)1484 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
1485 struct net_device *netdev)
1486 {
1487 struct netdev_hw_addr *ha;
1488 u32 i;
1489
1490 /*
1491 * Set the new number of MC addresses that we are being requested to
1492 * use.
1493 */
1494 hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
1495 hw->addr_ctrl.mta_in_use = 0;
1496
1497 /* Clear mta_shadow */
1498 hw_dbg(hw, " Clearing MTA\n");
1499 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
1500
1501 /* Update mta shadow */
1502 netdev_for_each_mc_addr(ha, netdev) {
1503 hw_dbg(hw, " Adding the multicast addresses:\n");
1504 ixgbe_set_mta(hw, ha->addr);
1505 }
1506
1507 /* Enable mta */
1508 for (i = 0; i < hw->mac.mcft_size; i++)
1509 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
1510 hw->mac.mta_shadow[i]);
1511
1512 if (hw->addr_ctrl.mta_in_use > 0)
1513 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
1514 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
1515
1516 hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
1517 return 0;
1518 }
1519
1520 /**
1521 * ixgbe_enable_mc_generic - Enable multicast address in RAR
1522 * @hw: pointer to hardware structure
1523 *
1524 * Enables multicast address in RAR and the use of the multicast hash table.
1525 **/
ixgbe_enable_mc_generic(struct ixgbe_hw * hw)1526 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
1527 {
1528 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
1529
1530 if (a->mta_in_use > 0)
1531 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
1532 hw->mac.mc_filter_type);
1533
1534 return 0;
1535 }
1536
1537 /**
1538 * ixgbe_disable_mc_generic - Disable multicast address in RAR
1539 * @hw: pointer to hardware structure
1540 *
1541 * Disables multicast address in RAR and the use of the multicast hash table.
1542 **/
ixgbe_disable_mc_generic(struct ixgbe_hw * hw)1543 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
1544 {
1545 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
1546
1547 if (a->mta_in_use > 0)
1548 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1549
1550 return 0;
1551 }
1552
1553 /**
1554 * ixgbe_fc_enable_generic - Enable flow control
1555 * @hw: pointer to hardware structure
1556 * @packetbuf_num: packet buffer number (0-7)
1557 *
1558 * Enable flow control according to the current settings.
1559 **/
ixgbe_fc_enable_generic(struct ixgbe_hw * hw,s32 packetbuf_num)1560 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw, s32 packetbuf_num)
1561 {
1562 s32 ret_val = 0;
1563 u32 mflcn_reg, fccfg_reg;
1564 u32 reg;
1565 u32 rx_pba_size;
1566 u32 fcrtl, fcrth;
1567
1568 #ifdef CONFIG_DCB
1569 if (hw->fc.requested_mode == ixgbe_fc_pfc)
1570 goto out;
1571
1572 #endif /* CONFIG_DCB */
1573 /* Negotiate the fc mode to use */
1574 ret_val = ixgbe_fc_autoneg(hw);
1575 if (ret_val == IXGBE_ERR_FLOW_CONTROL)
1576 goto out;
1577
1578 /* Disable any previous flow control settings */
1579 mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
1580 mflcn_reg &= ~(IXGBE_MFLCN_RFCE | IXGBE_MFLCN_RPFCE);
1581
1582 fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
1583 fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
1584
1585 /*
1586 * The possible values of fc.current_mode are:
1587 * 0: Flow control is completely disabled
1588 * 1: Rx flow control is enabled (we can receive pause frames,
1589 * but not send pause frames).
1590 * 2: Tx flow control is enabled (we can send pause frames but
1591 * we do not support receiving pause frames).
1592 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1593 #ifdef CONFIG_DCB
1594 * 4: Priority Flow Control is enabled.
1595 #endif
1596 * other: Invalid.
1597 */
1598 switch (hw->fc.current_mode) {
1599 case ixgbe_fc_none:
1600 /*
1601 * Flow control is disabled by software override or autoneg.
1602 * The code below will actually disable it in the HW.
1603 */
1604 break;
1605 case ixgbe_fc_rx_pause:
1606 /*
1607 * Rx Flow control is enabled and Tx Flow control is
1608 * disabled by software override. Since there really
1609 * isn't a way to advertise that we are capable of RX
1610 * Pause ONLY, we will advertise that we support both
1611 * symmetric and asymmetric Rx PAUSE. Later, we will
1612 * disable the adapter's ability to send PAUSE frames.
1613 */
1614 mflcn_reg |= IXGBE_MFLCN_RFCE;
1615 break;
1616 case ixgbe_fc_tx_pause:
1617 /*
1618 * Tx Flow control is enabled, and Rx Flow control is
1619 * disabled by software override.
1620 */
1621 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
1622 break;
1623 case ixgbe_fc_full:
1624 /* Flow control (both Rx and Tx) is enabled by SW override. */
1625 mflcn_reg |= IXGBE_MFLCN_RFCE;
1626 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
1627 break;
1628 #ifdef CONFIG_DCB
1629 case ixgbe_fc_pfc:
1630 goto out;
1631 break;
1632 #endif /* CONFIG_DCB */
1633 default:
1634 hw_dbg(hw, "Flow control param set incorrectly\n");
1635 ret_val = IXGBE_ERR_CONFIG;
1636 goto out;
1637 break;
1638 }
1639
1640 /* Set 802.3x based flow control settings. */
1641 mflcn_reg |= IXGBE_MFLCN_DPF;
1642 IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
1643 IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
1644
1645 rx_pba_size = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(packetbuf_num));
1646 rx_pba_size >>= IXGBE_RXPBSIZE_SHIFT;
1647
1648 fcrth = (rx_pba_size - hw->fc.high_water) << 10;
1649 fcrtl = (rx_pba_size - hw->fc.low_water) << 10;
1650
1651 if (hw->fc.current_mode & ixgbe_fc_tx_pause) {
1652 fcrth |= IXGBE_FCRTH_FCEN;
1653 if (hw->fc.send_xon)
1654 fcrtl |= IXGBE_FCRTL_XONE;
1655 }
1656
1657 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(packetbuf_num), fcrth);
1658 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(packetbuf_num), fcrtl);
1659
1660 /* Configure pause time (2 TCs per register) */
1661 reg = IXGBE_READ_REG(hw, IXGBE_FCTTV(packetbuf_num / 2));
1662 if ((packetbuf_num & 1) == 0)
1663 reg = (reg & 0xFFFF0000) | hw->fc.pause_time;
1664 else
1665 reg = (reg & 0x0000FFFF) | (hw->fc.pause_time << 16);
1666 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(packetbuf_num / 2), reg);
1667
1668 IXGBE_WRITE_REG(hw, IXGBE_FCRTV, (hw->fc.pause_time >> 1));
1669
1670 out:
1671 return ret_val;
1672 }
1673
1674 /**
1675 * ixgbe_fc_autoneg - Configure flow control
1676 * @hw: pointer to hardware structure
1677 *
1678 * Compares our advertised flow control capabilities to those advertised by
1679 * our link partner, and determines the proper flow control mode to use.
1680 **/
ixgbe_fc_autoneg(struct ixgbe_hw * hw)1681 s32 ixgbe_fc_autoneg(struct ixgbe_hw *hw)
1682 {
1683 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
1684 ixgbe_link_speed speed;
1685 bool link_up;
1686
1687 if (hw->fc.disable_fc_autoneg)
1688 goto out;
1689
1690 /*
1691 * AN should have completed when the cable was plugged in.
1692 * Look for reasons to bail out. Bail out if:
1693 * - FC autoneg is disabled, or if
1694 * - link is not up.
1695 *
1696 * Since we're being called from an LSC, link is already known to be up.
1697 * So use link_up_wait_to_complete=false.
1698 */
1699 hw->mac.ops.check_link(hw, &speed, &link_up, false);
1700 if (!link_up) {
1701 ret_val = IXGBE_ERR_FLOW_CONTROL;
1702 goto out;
1703 }
1704
1705 switch (hw->phy.media_type) {
1706 /* Autoneg flow control on fiber adapters */
1707 case ixgbe_media_type_fiber:
1708 if (speed == IXGBE_LINK_SPEED_1GB_FULL)
1709 ret_val = ixgbe_fc_autoneg_fiber(hw);
1710 break;
1711
1712 /* Autoneg flow control on backplane adapters */
1713 case ixgbe_media_type_backplane:
1714 ret_val = ixgbe_fc_autoneg_backplane(hw);
1715 break;
1716
1717 /* Autoneg flow control on copper adapters */
1718 case ixgbe_media_type_copper:
1719 if (ixgbe_device_supports_autoneg_fc(hw) == 0)
1720 ret_val = ixgbe_fc_autoneg_copper(hw);
1721 break;
1722
1723 default:
1724 break;
1725 }
1726
1727 out:
1728 if (ret_val == 0) {
1729 hw->fc.fc_was_autonegged = true;
1730 } else {
1731 hw->fc.fc_was_autonegged = false;
1732 hw->fc.current_mode = hw->fc.requested_mode;
1733 }
1734 return ret_val;
1735 }
1736
1737 /**
1738 * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
1739 * @hw: pointer to hardware structure
1740 *
1741 * Enable flow control according on 1 gig fiber.
1742 **/
ixgbe_fc_autoneg_fiber(struct ixgbe_hw * hw)1743 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
1744 {
1745 u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
1746 s32 ret_val;
1747
1748 /*
1749 * On multispeed fiber at 1g, bail out if
1750 * - link is up but AN did not complete, or if
1751 * - link is up and AN completed but timed out
1752 */
1753
1754 linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
1755 if (((linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
1756 ((linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
1757 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
1758 goto out;
1759 }
1760
1761 pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
1762 pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
1763
1764 ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
1765 pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
1766 IXGBE_PCS1GANA_ASM_PAUSE,
1767 IXGBE_PCS1GANA_SYM_PAUSE,
1768 IXGBE_PCS1GANA_ASM_PAUSE);
1769
1770 out:
1771 return ret_val;
1772 }
1773
1774 /**
1775 * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
1776 * @hw: pointer to hardware structure
1777 *
1778 * Enable flow control according to IEEE clause 37.
1779 **/
ixgbe_fc_autoneg_backplane(struct ixgbe_hw * hw)1780 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
1781 {
1782 u32 links2, anlp1_reg, autoc_reg, links;
1783 s32 ret_val;
1784
1785 /*
1786 * On backplane, bail out if
1787 * - backplane autoneg was not completed, or if
1788 * - we are 82599 and link partner is not AN enabled
1789 */
1790 links = IXGBE_READ_REG(hw, IXGBE_LINKS);
1791 if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
1792 hw->fc.fc_was_autonegged = false;
1793 hw->fc.current_mode = hw->fc.requested_mode;
1794 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
1795 goto out;
1796 }
1797
1798 if (hw->mac.type == ixgbe_mac_82599EB) {
1799 links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
1800 if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
1801 hw->fc.fc_was_autonegged = false;
1802 hw->fc.current_mode = hw->fc.requested_mode;
1803 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
1804 goto out;
1805 }
1806 }
1807 /*
1808 * Read the 10g AN autoc and LP ability registers and resolve
1809 * local flow control settings accordingly
1810 */
1811 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
1812 anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
1813
1814 ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
1815 anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
1816 IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
1817
1818 out:
1819 return ret_val;
1820 }
1821
1822 /**
1823 * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
1824 * @hw: pointer to hardware structure
1825 *
1826 * Enable flow control according to IEEE clause 37.
1827 **/
ixgbe_fc_autoneg_copper(struct ixgbe_hw * hw)1828 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
1829 {
1830 u16 technology_ability_reg = 0;
1831 u16 lp_technology_ability_reg = 0;
1832
1833 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
1834 MDIO_MMD_AN,
1835 &technology_ability_reg);
1836 hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
1837 MDIO_MMD_AN,
1838 &lp_technology_ability_reg);
1839
1840 return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
1841 (u32)lp_technology_ability_reg,
1842 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
1843 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
1844 }
1845
1846 /**
1847 * ixgbe_negotiate_fc - Negotiate flow control
1848 * @hw: pointer to hardware structure
1849 * @adv_reg: flow control advertised settings
1850 * @lp_reg: link partner's flow control settings
1851 * @adv_sym: symmetric pause bit in advertisement
1852 * @adv_asm: asymmetric pause bit in advertisement
1853 * @lp_sym: symmetric pause bit in link partner advertisement
1854 * @lp_asm: asymmetric pause bit in link partner advertisement
1855 *
1856 * Find the intersection between advertised settings and link partner's
1857 * advertised settings
1858 **/
ixgbe_negotiate_fc(struct ixgbe_hw * hw,u32 adv_reg,u32 lp_reg,u32 adv_sym,u32 adv_asm,u32 lp_sym,u32 lp_asm)1859 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
1860 u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
1861 {
1862 if ((!(adv_reg)) || (!(lp_reg)))
1863 return IXGBE_ERR_FC_NOT_NEGOTIATED;
1864
1865 if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
1866 /*
1867 * Now we need to check if the user selected Rx ONLY
1868 * of pause frames. In this case, we had to advertise
1869 * FULL flow control because we could not advertise RX
1870 * ONLY. Hence, we must now check to see if we need to
1871 * turn OFF the TRANSMISSION of PAUSE frames.
1872 */
1873 if (hw->fc.requested_mode == ixgbe_fc_full) {
1874 hw->fc.current_mode = ixgbe_fc_full;
1875 hw_dbg(hw, "Flow Control = FULL.\n");
1876 } else {
1877 hw->fc.current_mode = ixgbe_fc_rx_pause;
1878 hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
1879 }
1880 } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
1881 (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
1882 hw->fc.current_mode = ixgbe_fc_tx_pause;
1883 hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
1884 } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
1885 !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
1886 hw->fc.current_mode = ixgbe_fc_rx_pause;
1887 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
1888 } else {
1889 hw->fc.current_mode = ixgbe_fc_none;
1890 hw_dbg(hw, "Flow Control = NONE.\n");
1891 }
1892 return 0;
1893 }
1894
1895 /**
1896 * ixgbe_setup_fc - Set up flow control
1897 * @hw: pointer to hardware structure
1898 *
1899 * Called at init time to set up flow control.
1900 **/
ixgbe_setup_fc(struct ixgbe_hw * hw,s32 packetbuf_num)1901 static s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num)
1902 {
1903 s32 ret_val = 0;
1904 u32 reg = 0, reg_bp = 0;
1905 u16 reg_cu = 0;
1906
1907 #ifdef CONFIG_DCB
1908 if (hw->fc.requested_mode == ixgbe_fc_pfc) {
1909 hw->fc.current_mode = hw->fc.requested_mode;
1910 goto out;
1911 }
1912
1913 #endif /* CONFIG_DCB */
1914 /* Validate the packetbuf configuration */
1915 if (packetbuf_num < 0 || packetbuf_num > 7) {
1916 hw_dbg(hw, "Invalid packet buffer number [%d], expected range "
1917 "is 0-7\n", packetbuf_num);
1918 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
1919 goto out;
1920 }
1921
1922 /*
1923 * Validate the water mark configuration. Zero water marks are invalid
1924 * because it causes the controller to just blast out fc packets.
1925 */
1926 if (!hw->fc.low_water || !hw->fc.high_water || !hw->fc.pause_time) {
1927 hw_dbg(hw, "Invalid water mark configuration\n");
1928 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
1929 goto out;
1930 }
1931
1932 /*
1933 * Validate the requested mode. Strict IEEE mode does not allow
1934 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
1935 */
1936 if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
1937 hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict "
1938 "IEEE mode\n");
1939 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
1940 goto out;
1941 }
1942
1943 /*
1944 * 10gig parts do not have a word in the EEPROM to determine the
1945 * default flow control setting, so we explicitly set it to full.
1946 */
1947 if (hw->fc.requested_mode == ixgbe_fc_default)
1948 hw->fc.requested_mode = ixgbe_fc_full;
1949
1950 /*
1951 * Set up the 1G and 10G flow control advertisement registers so the
1952 * HW will be able to do fc autoneg once the cable is plugged in. If
1953 * we link at 10G, the 1G advertisement is harmless and vice versa.
1954 */
1955
1956 switch (hw->phy.media_type) {
1957 case ixgbe_media_type_fiber:
1958 case ixgbe_media_type_backplane:
1959 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
1960 reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC);
1961 break;
1962
1963 case ixgbe_media_type_copper:
1964 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
1965 MDIO_MMD_AN, ®_cu);
1966 break;
1967
1968 default:
1969 ;
1970 }
1971
1972 /*
1973 * The possible values of fc.requested_mode are:
1974 * 0: Flow control is completely disabled
1975 * 1: Rx flow control is enabled (we can receive pause frames,
1976 * but not send pause frames).
1977 * 2: Tx flow control is enabled (we can send pause frames but
1978 * we do not support receiving pause frames).
1979 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1980 #ifdef CONFIG_DCB
1981 * 4: Priority Flow Control is enabled.
1982 #endif
1983 * other: Invalid.
1984 */
1985 switch (hw->fc.requested_mode) {
1986 case ixgbe_fc_none:
1987 /* Flow control completely disabled by software override. */
1988 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
1989 if (hw->phy.media_type == ixgbe_media_type_backplane)
1990 reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
1991 IXGBE_AUTOC_ASM_PAUSE);
1992 else if (hw->phy.media_type == ixgbe_media_type_copper)
1993 reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
1994 break;
1995 case ixgbe_fc_rx_pause:
1996 /*
1997 * Rx Flow control is enabled and Tx Flow control is
1998 * disabled by software override. Since there really
1999 * isn't a way to advertise that we are capable of RX
2000 * Pause ONLY, we will advertise that we support both
2001 * symmetric and asymmetric Rx PAUSE. Later, we will
2002 * disable the adapter's ability to send PAUSE frames.
2003 */
2004 reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
2005 if (hw->phy.media_type == ixgbe_media_type_backplane)
2006 reg_bp |= (IXGBE_AUTOC_SYM_PAUSE |
2007 IXGBE_AUTOC_ASM_PAUSE);
2008 else if (hw->phy.media_type == ixgbe_media_type_copper)
2009 reg_cu |= (IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
2010 break;
2011 case ixgbe_fc_tx_pause:
2012 /*
2013 * Tx Flow control is enabled, and Rx Flow control is
2014 * disabled by software override.
2015 */
2016 reg |= (IXGBE_PCS1GANA_ASM_PAUSE);
2017 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE);
2018 if (hw->phy.media_type == ixgbe_media_type_backplane) {
2019 reg_bp |= (IXGBE_AUTOC_ASM_PAUSE);
2020 reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE);
2021 } else if (hw->phy.media_type == ixgbe_media_type_copper) {
2022 reg_cu |= (IXGBE_TAF_ASM_PAUSE);
2023 reg_cu &= ~(IXGBE_TAF_SYM_PAUSE);
2024 }
2025 break;
2026 case ixgbe_fc_full:
2027 /* Flow control (both Rx and Tx) is enabled by SW override. */
2028 reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
2029 if (hw->phy.media_type == ixgbe_media_type_backplane)
2030 reg_bp |= (IXGBE_AUTOC_SYM_PAUSE |
2031 IXGBE_AUTOC_ASM_PAUSE);
2032 else if (hw->phy.media_type == ixgbe_media_type_copper)
2033 reg_cu |= (IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
2034 break;
2035 #ifdef CONFIG_DCB
2036 case ixgbe_fc_pfc:
2037 goto out;
2038 break;
2039 #endif /* CONFIG_DCB */
2040 default:
2041 hw_dbg(hw, "Flow control param set incorrectly\n");
2042 ret_val = IXGBE_ERR_CONFIG;
2043 goto out;
2044 break;
2045 }
2046
2047 if (hw->mac.type != ixgbe_mac_X540) {
2048 /*
2049 * Enable auto-negotiation between the MAC & PHY;
2050 * the MAC will advertise clause 37 flow control.
2051 */
2052 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
2053 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
2054
2055 /* Disable AN timeout */
2056 if (hw->fc.strict_ieee)
2057 reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
2058
2059 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
2060 hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
2061 }
2062
2063 /*
2064 * AUTOC restart handles negotiation of 1G and 10G on backplane
2065 * and copper. There is no need to set the PCS1GCTL register.
2066 *
2067 */
2068 if (hw->phy.media_type == ixgbe_media_type_backplane) {
2069 reg_bp |= IXGBE_AUTOC_AN_RESTART;
2070 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp);
2071 } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
2072 (ixgbe_device_supports_autoneg_fc(hw) == 0)) {
2073 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
2074 MDIO_MMD_AN, reg_cu);
2075 }
2076
2077 hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
2078 out:
2079 return ret_val;
2080 }
2081
2082 /**
2083 * ixgbe_disable_pcie_master - Disable PCI-express master access
2084 * @hw: pointer to hardware structure
2085 *
2086 * Disables PCI-Express master access and verifies there are no pending
2087 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2088 * bit hasn't caused the master requests to be disabled, else 0
2089 * is returned signifying master requests disabled.
2090 **/
ixgbe_disable_pcie_master(struct ixgbe_hw * hw)2091 s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2092 {
2093 struct ixgbe_adapter *adapter = hw->back;
2094 u32 i;
2095 u32 reg_val;
2096 u32 number_of_queues;
2097 s32 status = 0;
2098 u16 dev_status = 0;
2099
2100 /* Just jump out if bus mastering is already disabled */
2101 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2102 goto out;
2103
2104 /* Disable the receive unit by stopping each queue */
2105 number_of_queues = hw->mac.max_rx_queues;
2106 for (i = 0; i < number_of_queues; i++) {
2107 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
2108 if (reg_val & IXGBE_RXDCTL_ENABLE) {
2109 reg_val &= ~IXGBE_RXDCTL_ENABLE;
2110 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
2111 }
2112 }
2113
2114 reg_val = IXGBE_READ_REG(hw, IXGBE_CTRL);
2115 reg_val |= IXGBE_CTRL_GIO_DIS;
2116 IXGBE_WRITE_REG(hw, IXGBE_CTRL, reg_val);
2117
2118 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2119 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2120 goto check_device_status;
2121 udelay(100);
2122 }
2123
2124 hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2125 status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
2126
2127 /*
2128 * Before proceeding, make sure that the PCIe block does not have
2129 * transactions pending.
2130 */
2131 check_device_status:
2132 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2133 pci_read_config_word(adapter->pdev, IXGBE_PCI_DEVICE_STATUS,
2134 &dev_status);
2135 if (!(dev_status & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2136 break;
2137 udelay(100);
2138 }
2139
2140 if (i == IXGBE_PCI_MASTER_DISABLE_TIMEOUT)
2141 hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2142 else
2143 goto out;
2144
2145 /*
2146 * Two consecutive resets are required via CTRL.RST per datasheet
2147 * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
2148 * of this need. The first reset prevents new master requests from
2149 * being issued by our device. We then must wait 1usec for any
2150 * remaining completions from the PCIe bus to trickle in, and then reset
2151 * again to clear out any effects they may have had on our device.
2152 */
2153 hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2154
2155 out:
2156 return status;
2157 }
2158
2159
2160 /**
2161 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2162 * @hw: pointer to hardware structure
2163 * @mask: Mask to specify which semaphore to acquire
2164 *
2165 * Acquires the SWFW semaphore through the GSSR register for the specified
2166 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2167 **/
ixgbe_acquire_swfw_sync(struct ixgbe_hw * hw,u16 mask)2168 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2169 {
2170 u32 gssr;
2171 u32 swmask = mask;
2172 u32 fwmask = mask << 5;
2173 s32 timeout = 200;
2174
2175 while (timeout) {
2176 /*
2177 * SW EEPROM semaphore bit is used for access to all
2178 * SW_FW_SYNC/GSSR bits (not just EEPROM)
2179 */
2180 if (ixgbe_get_eeprom_semaphore(hw))
2181 return IXGBE_ERR_SWFW_SYNC;
2182
2183 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2184 if (!(gssr & (fwmask | swmask)))
2185 break;
2186
2187 /*
2188 * Firmware currently using resource (fwmask) or other software
2189 * thread currently using resource (swmask)
2190 */
2191 ixgbe_release_eeprom_semaphore(hw);
2192 msleep(5);
2193 timeout--;
2194 }
2195
2196 if (!timeout) {
2197 hw_dbg(hw, "Driver can't access resource, SW_FW_SYNC timeout.\n");
2198 return IXGBE_ERR_SWFW_SYNC;
2199 }
2200
2201 gssr |= swmask;
2202 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2203
2204 ixgbe_release_eeprom_semaphore(hw);
2205 return 0;
2206 }
2207
2208 /**
2209 * ixgbe_release_swfw_sync - Release SWFW semaphore
2210 * @hw: pointer to hardware structure
2211 * @mask: Mask to specify which semaphore to release
2212 *
2213 * Releases the SWFW semaphore through the GSSR register for the specified
2214 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2215 **/
ixgbe_release_swfw_sync(struct ixgbe_hw * hw,u16 mask)2216 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2217 {
2218 u32 gssr;
2219 u32 swmask = mask;
2220
2221 ixgbe_get_eeprom_semaphore(hw);
2222
2223 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2224 gssr &= ~swmask;
2225 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2226
2227 ixgbe_release_eeprom_semaphore(hw);
2228 }
2229
2230 /**
2231 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2232 * @hw: pointer to hardware structure
2233 * @regval: register value to write to RXCTRL
2234 *
2235 * Enables the Rx DMA unit
2236 **/
ixgbe_enable_rx_dma_generic(struct ixgbe_hw * hw,u32 regval)2237 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2238 {
2239 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2240
2241 return 0;
2242 }
2243
2244 /**
2245 * ixgbe_blink_led_start_generic - Blink LED based on index.
2246 * @hw: pointer to hardware structure
2247 * @index: led number to blink
2248 **/
ixgbe_blink_led_start_generic(struct ixgbe_hw * hw,u32 index)2249 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2250 {
2251 ixgbe_link_speed speed = 0;
2252 bool link_up = 0;
2253 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2254 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2255
2256 /*
2257 * Link must be up to auto-blink the LEDs;
2258 * Force it if link is down.
2259 */
2260 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2261
2262 if (!link_up) {
2263 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2264 autoc_reg |= IXGBE_AUTOC_FLU;
2265 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2266 msleep(10);
2267 }
2268
2269 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2270 led_reg |= IXGBE_LED_BLINK(index);
2271 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2272 IXGBE_WRITE_FLUSH(hw);
2273
2274 return 0;
2275 }
2276
2277 /**
2278 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2279 * @hw: pointer to hardware structure
2280 * @index: led number to stop blinking
2281 **/
ixgbe_blink_led_stop_generic(struct ixgbe_hw * hw,u32 index)2282 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2283 {
2284 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2285 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2286
2287 autoc_reg &= ~IXGBE_AUTOC_FLU;
2288 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2289 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2290
2291 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2292 led_reg &= ~IXGBE_LED_BLINK(index);
2293 led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2294 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2295 IXGBE_WRITE_FLUSH(hw);
2296
2297 return 0;
2298 }
2299
2300 /**
2301 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2302 * @hw: pointer to hardware structure
2303 * @san_mac_offset: SAN MAC address offset
2304 *
2305 * This function will read the EEPROM location for the SAN MAC address
2306 * pointer, and returns the value at that location. This is used in both
2307 * get and set mac_addr routines.
2308 **/
ixgbe_get_san_mac_addr_offset(struct ixgbe_hw * hw,u16 * san_mac_offset)2309 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2310 u16 *san_mac_offset)
2311 {
2312 /*
2313 * First read the EEPROM pointer to see if the MAC addresses are
2314 * available.
2315 */
2316 hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);
2317
2318 return 0;
2319 }
2320
2321 /**
2322 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2323 * @hw: pointer to hardware structure
2324 * @san_mac_addr: SAN MAC address
2325 *
2326 * Reads the SAN MAC address from the EEPROM, if it's available. This is
2327 * per-port, so set_lan_id() must be called before reading the addresses.
2328 * set_lan_id() is called by identify_sfp(), but this cannot be relied
2329 * upon for non-SFP connections, so we must call it here.
2330 **/
ixgbe_get_san_mac_addr_generic(struct ixgbe_hw * hw,u8 * san_mac_addr)2331 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2332 {
2333 u16 san_mac_data, san_mac_offset;
2334 u8 i;
2335
2336 /*
2337 * First read the EEPROM pointer to see if the MAC addresses are
2338 * available. If they're not, no point in calling set_lan_id() here.
2339 */
2340 ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2341
2342 if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
2343 /*
2344 * No addresses available in this EEPROM. It's not an
2345 * error though, so just wipe the local address and return.
2346 */
2347 for (i = 0; i < 6; i++)
2348 san_mac_addr[i] = 0xFF;
2349
2350 goto san_mac_addr_out;
2351 }
2352
2353 /* make sure we know which port we need to program */
2354 hw->mac.ops.set_lan_id(hw);
2355 /* apply the port offset to the address offset */
2356 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2357 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2358 for (i = 0; i < 3; i++) {
2359 hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
2360 san_mac_addr[i * 2] = (u8)(san_mac_data);
2361 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2362 san_mac_offset++;
2363 }
2364
2365 san_mac_addr_out:
2366 return 0;
2367 }
2368
2369 /**
2370 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2371 * @hw: pointer to hardware structure
2372 *
2373 * Read PCIe configuration space, and get the MSI-X vector count from
2374 * the capabilities table.
2375 **/
ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw * hw)2376 u32 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2377 {
2378 struct ixgbe_adapter *adapter = hw->back;
2379 u16 msix_count;
2380 pci_read_config_word(adapter->pdev, IXGBE_PCIE_MSIX_82599_CAPS,
2381 &msix_count);
2382 msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2383
2384 /* MSI-X count is zero-based in HW, so increment to give proper value */
2385 msix_count++;
2386
2387 return msix_count;
2388 }
2389
2390 /**
2391 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2392 * @hw: pointer to hardware struct
2393 * @rar: receive address register index to disassociate
2394 * @vmdq: VMDq pool index to remove from the rar
2395 **/
ixgbe_clear_vmdq_generic(struct ixgbe_hw * hw,u32 rar,u32 vmdq)2396 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2397 {
2398 u32 mpsar_lo, mpsar_hi;
2399 u32 rar_entries = hw->mac.num_rar_entries;
2400
2401 /* Make sure we are using a valid rar index range */
2402 if (rar >= rar_entries) {
2403 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2404 return IXGBE_ERR_INVALID_ARGUMENT;
2405 }
2406
2407 mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2408 mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2409
2410 if (!mpsar_lo && !mpsar_hi)
2411 goto done;
2412
2413 if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2414 if (mpsar_lo) {
2415 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2416 mpsar_lo = 0;
2417 }
2418 if (mpsar_hi) {
2419 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2420 mpsar_hi = 0;
2421 }
2422 } else if (vmdq < 32) {
2423 mpsar_lo &= ~(1 << vmdq);
2424 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2425 } else {
2426 mpsar_hi &= ~(1 << (vmdq - 32));
2427 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2428 }
2429
2430 /* was that the last pool using this rar? */
2431 if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
2432 hw->mac.ops.clear_rar(hw, rar);
2433 done:
2434 return 0;
2435 }
2436
2437 /**
2438 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2439 * @hw: pointer to hardware struct
2440 * @rar: receive address register index to associate with a VMDq index
2441 * @vmdq: VMDq pool index
2442 **/
ixgbe_set_vmdq_generic(struct ixgbe_hw * hw,u32 rar,u32 vmdq)2443 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2444 {
2445 u32 mpsar;
2446 u32 rar_entries = hw->mac.num_rar_entries;
2447
2448 /* Make sure we are using a valid rar index range */
2449 if (rar >= rar_entries) {
2450 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2451 return IXGBE_ERR_INVALID_ARGUMENT;
2452 }
2453
2454 if (vmdq < 32) {
2455 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2456 mpsar |= 1 << vmdq;
2457 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2458 } else {
2459 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2460 mpsar |= 1 << (vmdq - 32);
2461 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2462 }
2463 return 0;
2464 }
2465
2466 /**
2467 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
2468 * @hw: pointer to hardware structure
2469 **/
ixgbe_init_uta_tables_generic(struct ixgbe_hw * hw)2470 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
2471 {
2472 int i;
2473
2474 for (i = 0; i < 128; i++)
2475 IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
2476
2477 return 0;
2478 }
2479
2480 /**
2481 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
2482 * @hw: pointer to hardware structure
2483 * @vlan: VLAN id to write to VLAN filter
2484 *
2485 * return the VLVF index where this VLAN id should be placed
2486 *
2487 **/
ixgbe_find_vlvf_slot(struct ixgbe_hw * hw,u32 vlan)2488 static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
2489 {
2490 u32 bits = 0;
2491 u32 first_empty_slot = 0;
2492 s32 regindex;
2493
2494 /* short cut the special case */
2495 if (vlan == 0)
2496 return 0;
2497
2498 /*
2499 * Search for the vlan id in the VLVF entries. Save off the first empty
2500 * slot found along the way
2501 */
2502 for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
2503 bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
2504 if (!bits && !(first_empty_slot))
2505 first_empty_slot = regindex;
2506 else if ((bits & 0x0FFF) == vlan)
2507 break;
2508 }
2509
2510 /*
2511 * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
2512 * in the VLVF. Else use the first empty VLVF register for this
2513 * vlan id.
2514 */
2515 if (regindex >= IXGBE_VLVF_ENTRIES) {
2516 if (first_empty_slot)
2517 regindex = first_empty_slot;
2518 else {
2519 hw_dbg(hw, "No space in VLVF.\n");
2520 regindex = IXGBE_ERR_NO_SPACE;
2521 }
2522 }
2523
2524 return regindex;
2525 }
2526
2527 /**
2528 * ixgbe_set_vfta_generic - Set VLAN filter table
2529 * @hw: pointer to hardware structure
2530 * @vlan: VLAN id to write to VLAN filter
2531 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
2532 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
2533 *
2534 * Turn on/off specified VLAN in the VLAN filter table.
2535 **/
ixgbe_set_vfta_generic(struct ixgbe_hw * hw,u32 vlan,u32 vind,bool vlan_on)2536 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
2537 bool vlan_on)
2538 {
2539 s32 regindex;
2540 u32 bitindex;
2541 u32 vfta;
2542 u32 bits;
2543 u32 vt;
2544 u32 targetbit;
2545 bool vfta_changed = false;
2546
2547 if (vlan > 4095)
2548 return IXGBE_ERR_PARAM;
2549
2550 /*
2551 * this is a 2 part operation - first the VFTA, then the
2552 * VLVF and VLVFB if VT Mode is set
2553 * We don't write the VFTA until we know the VLVF part succeeded.
2554 */
2555
2556 /* Part 1
2557 * The VFTA is a bitstring made up of 128 32-bit registers
2558 * that enable the particular VLAN id, much like the MTA:
2559 * bits[11-5]: which register
2560 * bits[4-0]: which bit in the register
2561 */
2562 regindex = (vlan >> 5) & 0x7F;
2563 bitindex = vlan & 0x1F;
2564 targetbit = (1 << bitindex);
2565 vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
2566
2567 if (vlan_on) {
2568 if (!(vfta & targetbit)) {
2569 vfta |= targetbit;
2570 vfta_changed = true;
2571 }
2572 } else {
2573 if ((vfta & targetbit)) {
2574 vfta &= ~targetbit;
2575 vfta_changed = true;
2576 }
2577 }
2578
2579 /* Part 2
2580 * If VT Mode is set
2581 * Either vlan_on
2582 * make sure the vlan is in VLVF
2583 * set the vind bit in the matching VLVFB
2584 * Or !vlan_on
2585 * clear the pool bit and possibly the vind
2586 */
2587 vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
2588 if (vt & IXGBE_VT_CTL_VT_ENABLE) {
2589 s32 vlvf_index;
2590
2591 vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
2592 if (vlvf_index < 0)
2593 return vlvf_index;
2594
2595 if (vlan_on) {
2596 /* set the pool bit */
2597 if (vind < 32) {
2598 bits = IXGBE_READ_REG(hw,
2599 IXGBE_VLVFB(vlvf_index*2));
2600 bits |= (1 << vind);
2601 IXGBE_WRITE_REG(hw,
2602 IXGBE_VLVFB(vlvf_index*2),
2603 bits);
2604 } else {
2605 bits = IXGBE_READ_REG(hw,
2606 IXGBE_VLVFB((vlvf_index*2)+1));
2607 bits |= (1 << (vind-32));
2608 IXGBE_WRITE_REG(hw,
2609 IXGBE_VLVFB((vlvf_index*2)+1),
2610 bits);
2611 }
2612 } else {
2613 /* clear the pool bit */
2614 if (vind < 32) {
2615 bits = IXGBE_READ_REG(hw,
2616 IXGBE_VLVFB(vlvf_index*2));
2617 bits &= ~(1 << vind);
2618 IXGBE_WRITE_REG(hw,
2619 IXGBE_VLVFB(vlvf_index*2),
2620 bits);
2621 bits |= IXGBE_READ_REG(hw,
2622 IXGBE_VLVFB((vlvf_index*2)+1));
2623 } else {
2624 bits = IXGBE_READ_REG(hw,
2625 IXGBE_VLVFB((vlvf_index*2)+1));
2626 bits &= ~(1 << (vind-32));
2627 IXGBE_WRITE_REG(hw,
2628 IXGBE_VLVFB((vlvf_index*2)+1),
2629 bits);
2630 bits |= IXGBE_READ_REG(hw,
2631 IXGBE_VLVFB(vlvf_index*2));
2632 }
2633 }
2634
2635 /*
2636 * If there are still bits set in the VLVFB registers
2637 * for the VLAN ID indicated we need to see if the
2638 * caller is requesting that we clear the VFTA entry bit.
2639 * If the caller has requested that we clear the VFTA
2640 * entry bit but there are still pools/VFs using this VLAN
2641 * ID entry then ignore the request. We're not worried
2642 * about the case where we're turning the VFTA VLAN ID
2643 * entry bit on, only when requested to turn it off as
2644 * there may be multiple pools and/or VFs using the
2645 * VLAN ID entry. In that case we cannot clear the
2646 * VFTA bit until all pools/VFs using that VLAN ID have also
2647 * been cleared. This will be indicated by "bits" being
2648 * zero.
2649 */
2650 if (bits) {
2651 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
2652 (IXGBE_VLVF_VIEN | vlan));
2653 if (!vlan_on) {
2654 /* someone wants to clear the vfta entry
2655 * but some pools/VFs are still using it.
2656 * Ignore it. */
2657 vfta_changed = false;
2658 }
2659 }
2660 else
2661 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
2662 }
2663
2664 if (vfta_changed)
2665 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
2666
2667 return 0;
2668 }
2669
2670 /**
2671 * ixgbe_clear_vfta_generic - Clear VLAN filter table
2672 * @hw: pointer to hardware structure
2673 *
2674 * Clears the VLAN filer table, and the VMDq index associated with the filter
2675 **/
ixgbe_clear_vfta_generic(struct ixgbe_hw * hw)2676 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
2677 {
2678 u32 offset;
2679
2680 for (offset = 0; offset < hw->mac.vft_size; offset++)
2681 IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
2682
2683 for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
2684 IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
2685 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
2686 IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
2687 }
2688
2689 return 0;
2690 }
2691
2692 /**
2693 * ixgbe_check_mac_link_generic - Determine link and speed status
2694 * @hw: pointer to hardware structure
2695 * @speed: pointer to link speed
2696 * @link_up: true when link is up
2697 * @link_up_wait_to_complete: bool used to wait for link up or not
2698 *
2699 * Reads the links register to determine if link is up and the current speed
2700 **/
ixgbe_check_mac_link_generic(struct ixgbe_hw * hw,ixgbe_link_speed * speed,bool * link_up,bool link_up_wait_to_complete)2701 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
2702 bool *link_up, bool link_up_wait_to_complete)
2703 {
2704 u32 links_reg, links_orig;
2705 u32 i;
2706
2707 /* clear the old state */
2708 links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
2709
2710 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
2711
2712 if (links_orig != links_reg) {
2713 hw_dbg(hw, "LINKS changed from %08X to %08X\n",
2714 links_orig, links_reg);
2715 }
2716
2717 if (link_up_wait_to_complete) {
2718 for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
2719 if (links_reg & IXGBE_LINKS_UP) {
2720 *link_up = true;
2721 break;
2722 } else {
2723 *link_up = false;
2724 }
2725 msleep(100);
2726 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
2727 }
2728 } else {
2729 if (links_reg & IXGBE_LINKS_UP)
2730 *link_up = true;
2731 else
2732 *link_up = false;
2733 }
2734
2735 if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
2736 IXGBE_LINKS_SPEED_10G_82599)
2737 *speed = IXGBE_LINK_SPEED_10GB_FULL;
2738 else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
2739 IXGBE_LINKS_SPEED_1G_82599)
2740 *speed = IXGBE_LINK_SPEED_1GB_FULL;
2741 else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
2742 IXGBE_LINKS_SPEED_100_82599)
2743 *speed = IXGBE_LINK_SPEED_100_FULL;
2744 else
2745 *speed = IXGBE_LINK_SPEED_UNKNOWN;
2746
2747 /* if link is down, zero out the current_mode */
2748 if (*link_up == false) {
2749 hw->fc.current_mode = ixgbe_fc_none;
2750 hw->fc.fc_was_autonegged = false;
2751 }
2752
2753 return 0;
2754 }
2755
2756 /**
2757 * ixgbe_get_wwn_prefix_generic Get alternative WWNN/WWPN prefix from
2758 * the EEPROM
2759 * @hw: pointer to hardware structure
2760 * @wwnn_prefix: the alternative WWNN prefix
2761 * @wwpn_prefix: the alternative WWPN prefix
2762 *
2763 * This function will read the EEPROM from the alternative SAN MAC address
2764 * block to check the support for the alternative WWNN/WWPN prefix support.
2765 **/
ixgbe_get_wwn_prefix_generic(struct ixgbe_hw * hw,u16 * wwnn_prefix,u16 * wwpn_prefix)2766 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
2767 u16 *wwpn_prefix)
2768 {
2769 u16 offset, caps;
2770 u16 alt_san_mac_blk_offset;
2771
2772 /* clear output first */
2773 *wwnn_prefix = 0xFFFF;
2774 *wwpn_prefix = 0xFFFF;
2775
2776 /* check if alternative SAN MAC is supported */
2777 hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
2778 &alt_san_mac_blk_offset);
2779
2780 if ((alt_san_mac_blk_offset == 0) ||
2781 (alt_san_mac_blk_offset == 0xFFFF))
2782 goto wwn_prefix_out;
2783
2784 /* check capability in alternative san mac address block */
2785 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
2786 hw->eeprom.ops.read(hw, offset, &caps);
2787 if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
2788 goto wwn_prefix_out;
2789
2790 /* get the corresponding prefix for WWNN/WWPN */
2791 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
2792 hw->eeprom.ops.read(hw, offset, wwnn_prefix);
2793
2794 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
2795 hw->eeprom.ops.read(hw, offset, wwpn_prefix);
2796
2797 wwn_prefix_out:
2798 return 0;
2799 }
2800
2801 /**
2802 * ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
2803 * control
2804 * @hw: pointer to hardware structure
2805 *
2806 * There are several phys that do not support autoneg flow control. This
2807 * function check the device id to see if the associated phy supports
2808 * autoneg flow control.
2809 **/
ixgbe_device_supports_autoneg_fc(struct ixgbe_hw * hw)2810 static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
2811 {
2812
2813 switch (hw->device_id) {
2814 case IXGBE_DEV_ID_X540T:
2815 return 0;
2816 case IXGBE_DEV_ID_82599_T3_LOM:
2817 return 0;
2818 default:
2819 return IXGBE_ERR_FC_NOT_SUPPORTED;
2820 }
2821 }
2822
2823 /**
2824 * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
2825 * @hw: pointer to hardware structure
2826 * @enable: enable or disable switch for anti-spoofing
2827 * @pf: Physical Function pool - do not enable anti-spoofing for the PF
2828 *
2829 **/
ixgbe_set_mac_anti_spoofing(struct ixgbe_hw * hw,bool enable,int pf)2830 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
2831 {
2832 int j;
2833 int pf_target_reg = pf >> 3;
2834 int pf_target_shift = pf % 8;
2835 u32 pfvfspoof = 0;
2836
2837 if (hw->mac.type == ixgbe_mac_82598EB)
2838 return;
2839
2840 if (enable)
2841 pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
2842
2843 /*
2844 * PFVFSPOOF register array is size 8 with 8 bits assigned to
2845 * MAC anti-spoof enables in each register array element.
2846 */
2847 for (j = 0; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
2848 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
2849
2850 /* If not enabling anti-spoofing then done */
2851 if (!enable)
2852 return;
2853
2854 /*
2855 * The PF should be allowed to spoof so that it can support
2856 * emulation mode NICs. Reset the bit assigned to the PF
2857 */
2858 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg));
2859 pfvfspoof ^= (1 << pf_target_shift);
2860 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg), pfvfspoof);
2861 }
2862
2863 /**
2864 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
2865 * @hw: pointer to hardware structure
2866 * @enable: enable or disable switch for VLAN anti-spoofing
2867 * @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
2868 *
2869 **/
ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw * hw,bool enable,int vf)2870 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
2871 {
2872 int vf_target_reg = vf >> 3;
2873 int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
2874 u32 pfvfspoof;
2875
2876 if (hw->mac.type == ixgbe_mac_82598EB)
2877 return;
2878
2879 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
2880 if (enable)
2881 pfvfspoof |= (1 << vf_target_shift);
2882 else
2883 pfvfspoof &= ~(1 << vf_target_shift);
2884 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
2885 }
2886