1 /*******************************************************************************
2 
3   Intel 10 Gigabit PCI Express Linux driver
4   Copyright(c) 1999 - 2011 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/sched.h>
31 #include <linux/netdevice.h>
32 
33 #include "ixgbe.h"
34 #include "ixgbe_common.h"
35 #include "ixgbe_phy.h"
36 
37 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
38 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
39 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
40 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
41 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
42 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
43                                         u16 count);
44 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
45 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
46 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
48 
49 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
50 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw);
51 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw);
52 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw);
53 static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw);
54 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
55 			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm);
56 static s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num);
57 
58 /**
59  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
60  *  @hw: pointer to hardware structure
61  *
62  *  Starts the hardware by filling the bus info structure and media type, clears
63  *  all on chip counters, initializes receive address registers, multicast
64  *  table, VLAN filter table, calls routine to set up link and flow control
65  *  settings, and leaves transmit and receive units disabled and uninitialized
66  **/
ixgbe_start_hw_generic(struct ixgbe_hw * hw)67 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
68 {
69 	u32 ctrl_ext;
70 
71 	/* Set the media type */
72 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
73 
74 	/* Identify the PHY */
75 	hw->phy.ops.identify(hw);
76 
77 	/* Clear the VLAN filter table */
78 	hw->mac.ops.clear_vfta(hw);
79 
80 	/* Clear statistics registers */
81 	hw->mac.ops.clear_hw_cntrs(hw);
82 
83 	/* Set No Snoop Disable */
84 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
85 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
86 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
87 	IXGBE_WRITE_FLUSH(hw);
88 
89 	/* Setup flow control */
90 	ixgbe_setup_fc(hw, 0);
91 
92 	/* Clear adapter stopped flag */
93 	hw->adapter_stopped = false;
94 
95 	return 0;
96 }
97 
98 /**
99  *  ixgbe_init_hw_generic - Generic hardware initialization
100  *  @hw: pointer to hardware structure
101  *
102  *  Initialize the hardware by resetting the hardware, filling the bus info
103  *  structure and media type, clears all on chip counters, initializes receive
104  *  address registers, multicast table, VLAN filter table, calls routine to set
105  *  up link and flow control settings, and leaves transmit and receive units
106  *  disabled and uninitialized
107  **/
ixgbe_init_hw_generic(struct ixgbe_hw * hw)108 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
109 {
110 	s32 status;
111 
112 	/* Reset the hardware */
113 	status = hw->mac.ops.reset_hw(hw);
114 
115 	if (status == 0) {
116 		/* Start the HW */
117 		status = hw->mac.ops.start_hw(hw);
118 	}
119 
120 	return status;
121 }
122 
123 /**
124  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
125  *  @hw: pointer to hardware structure
126  *
127  *  Clears all hardware statistics counters by reading them from the hardware
128  *  Statistics counters are clear on read.
129  **/
ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw * hw)130 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
131 {
132 	u16 i = 0;
133 
134 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
135 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
136 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
137 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
138 	for (i = 0; i < 8; i++)
139 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
140 
141 	IXGBE_READ_REG(hw, IXGBE_MLFC);
142 	IXGBE_READ_REG(hw, IXGBE_MRFC);
143 	IXGBE_READ_REG(hw, IXGBE_RLEC);
144 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
145 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
146 	if (hw->mac.type >= ixgbe_mac_82599EB) {
147 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
148 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
149 	} else {
150 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
151 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
152 	}
153 
154 	for (i = 0; i < 8; i++) {
155 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
156 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
157 		if (hw->mac.type >= ixgbe_mac_82599EB) {
158 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
159 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
160 		} else {
161 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
162 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
163 		}
164 	}
165 	if (hw->mac.type >= ixgbe_mac_82599EB)
166 		for (i = 0; i < 8; i++)
167 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
168 	IXGBE_READ_REG(hw, IXGBE_PRC64);
169 	IXGBE_READ_REG(hw, IXGBE_PRC127);
170 	IXGBE_READ_REG(hw, IXGBE_PRC255);
171 	IXGBE_READ_REG(hw, IXGBE_PRC511);
172 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
173 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
174 	IXGBE_READ_REG(hw, IXGBE_GPRC);
175 	IXGBE_READ_REG(hw, IXGBE_BPRC);
176 	IXGBE_READ_REG(hw, IXGBE_MPRC);
177 	IXGBE_READ_REG(hw, IXGBE_GPTC);
178 	IXGBE_READ_REG(hw, IXGBE_GORCL);
179 	IXGBE_READ_REG(hw, IXGBE_GORCH);
180 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
181 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
182 	for (i = 0; i < 8; i++)
183 		IXGBE_READ_REG(hw, IXGBE_RNBC(i));
184 	IXGBE_READ_REG(hw, IXGBE_RUC);
185 	IXGBE_READ_REG(hw, IXGBE_RFC);
186 	IXGBE_READ_REG(hw, IXGBE_ROC);
187 	IXGBE_READ_REG(hw, IXGBE_RJC);
188 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
189 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
190 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
191 	IXGBE_READ_REG(hw, IXGBE_TORL);
192 	IXGBE_READ_REG(hw, IXGBE_TORH);
193 	IXGBE_READ_REG(hw, IXGBE_TPR);
194 	IXGBE_READ_REG(hw, IXGBE_TPT);
195 	IXGBE_READ_REG(hw, IXGBE_PTC64);
196 	IXGBE_READ_REG(hw, IXGBE_PTC127);
197 	IXGBE_READ_REG(hw, IXGBE_PTC255);
198 	IXGBE_READ_REG(hw, IXGBE_PTC511);
199 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
200 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
201 	IXGBE_READ_REG(hw, IXGBE_MPTC);
202 	IXGBE_READ_REG(hw, IXGBE_BPTC);
203 	for (i = 0; i < 16; i++) {
204 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
205 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
206 		if (hw->mac.type >= ixgbe_mac_82599EB) {
207 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
208 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
209 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
210 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
211 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
212 		} else {
213 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
214 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
215 		}
216 	}
217 
218 	if (hw->mac.type == ixgbe_mac_X540) {
219 		if (hw->phy.id == 0)
220 			hw->phy.ops.identify(hw);
221 		hw->phy.ops.read_reg(hw, 0x3, IXGBE_PCRC8ECL, &i);
222 		hw->phy.ops.read_reg(hw, 0x3, IXGBE_PCRC8ECH, &i);
223 		hw->phy.ops.read_reg(hw, 0x3, IXGBE_LDPCECL, &i);
224 		hw->phy.ops.read_reg(hw, 0x3, IXGBE_LDPCECH, &i);
225 	}
226 
227 	return 0;
228 }
229 
230 /**
231  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
232  *  @hw: pointer to hardware structure
233  *  @pba_num: stores the part number string from the EEPROM
234  *  @pba_num_size: part number string buffer length
235  *
236  *  Reads the part number string from the EEPROM.
237  **/
ixgbe_read_pba_string_generic(struct ixgbe_hw * hw,u8 * pba_num,u32 pba_num_size)238 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
239                                   u32 pba_num_size)
240 {
241 	s32 ret_val;
242 	u16 data;
243 	u16 pba_ptr;
244 	u16 offset;
245 	u16 length;
246 
247 	if (pba_num == NULL) {
248 		hw_dbg(hw, "PBA string buffer was null\n");
249 		return IXGBE_ERR_INVALID_ARGUMENT;
250 	}
251 
252 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
253 	if (ret_val) {
254 		hw_dbg(hw, "NVM Read Error\n");
255 		return ret_val;
256 	}
257 
258 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
259 	if (ret_val) {
260 		hw_dbg(hw, "NVM Read Error\n");
261 		return ret_val;
262 	}
263 
264 	/*
265 	 * if data is not ptr guard the PBA must be in legacy format which
266 	 * means pba_ptr is actually our second data word for the PBA number
267 	 * and we can decode it into an ascii string
268 	 */
269 	if (data != IXGBE_PBANUM_PTR_GUARD) {
270 		hw_dbg(hw, "NVM PBA number is not stored as string\n");
271 
272 		/* we will need 11 characters to store the PBA */
273 		if (pba_num_size < 11) {
274 			hw_dbg(hw, "PBA string buffer too small\n");
275 			return IXGBE_ERR_NO_SPACE;
276 		}
277 
278 		/* extract hex string from data and pba_ptr */
279 		pba_num[0] = (data >> 12) & 0xF;
280 		pba_num[1] = (data >> 8) & 0xF;
281 		pba_num[2] = (data >> 4) & 0xF;
282 		pba_num[3] = data & 0xF;
283 		pba_num[4] = (pba_ptr >> 12) & 0xF;
284 		pba_num[5] = (pba_ptr >> 8) & 0xF;
285 		pba_num[6] = '-';
286 		pba_num[7] = 0;
287 		pba_num[8] = (pba_ptr >> 4) & 0xF;
288 		pba_num[9] = pba_ptr & 0xF;
289 
290 		/* put a null character on the end of our string */
291 		pba_num[10] = '\0';
292 
293 		/* switch all the data but the '-' to hex char */
294 		for (offset = 0; offset < 10; offset++) {
295 			if (pba_num[offset] < 0xA)
296 				pba_num[offset] += '0';
297 			else if (pba_num[offset] < 0x10)
298 				pba_num[offset] += 'A' - 0xA;
299 		}
300 
301 		return 0;
302 	}
303 
304 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
305 	if (ret_val) {
306 		hw_dbg(hw, "NVM Read Error\n");
307 		return ret_val;
308 	}
309 
310 	if (length == 0xFFFF || length == 0) {
311 		hw_dbg(hw, "NVM PBA number section invalid length\n");
312 		return IXGBE_ERR_PBA_SECTION;
313 	}
314 
315 	/* check if pba_num buffer is big enough */
316 	if (pba_num_size  < (((u32)length * 2) - 1)) {
317 		hw_dbg(hw, "PBA string buffer too small\n");
318 		return IXGBE_ERR_NO_SPACE;
319 	}
320 
321 	/* trim pba length from start of string */
322 	pba_ptr++;
323 	length--;
324 
325 	for (offset = 0; offset < length; offset++) {
326 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
327 		if (ret_val) {
328 			hw_dbg(hw, "NVM Read Error\n");
329 			return ret_val;
330 		}
331 		pba_num[offset * 2] = (u8)(data >> 8);
332 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
333 	}
334 	pba_num[offset * 2] = '\0';
335 
336 	return 0;
337 }
338 
339 /**
340  *  ixgbe_get_mac_addr_generic - Generic get MAC address
341  *  @hw: pointer to hardware structure
342  *  @mac_addr: Adapter MAC address
343  *
344  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
345  *  A reset of the adapter must be performed prior to calling this function
346  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
347  **/
ixgbe_get_mac_addr_generic(struct ixgbe_hw * hw,u8 * mac_addr)348 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
349 {
350 	u32 rar_high;
351 	u32 rar_low;
352 	u16 i;
353 
354 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
355 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
356 
357 	for (i = 0; i < 4; i++)
358 		mac_addr[i] = (u8)(rar_low >> (i*8));
359 
360 	for (i = 0; i < 2; i++)
361 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
362 
363 	return 0;
364 }
365 
366 /**
367  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
368  *  @hw: pointer to hardware structure
369  *
370  *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
371  **/
ixgbe_get_bus_info_generic(struct ixgbe_hw * hw)372 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
373 {
374 	struct ixgbe_adapter *adapter = hw->back;
375 	struct ixgbe_mac_info *mac = &hw->mac;
376 	u16 link_status;
377 
378 	hw->bus.type = ixgbe_bus_type_pci_express;
379 
380 	/* Get the negotiated link width and speed from PCI config space */
381 	pci_read_config_word(adapter->pdev, IXGBE_PCI_LINK_STATUS,
382 	                     &link_status);
383 
384 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
385 	case IXGBE_PCI_LINK_WIDTH_1:
386 		hw->bus.width = ixgbe_bus_width_pcie_x1;
387 		break;
388 	case IXGBE_PCI_LINK_WIDTH_2:
389 		hw->bus.width = ixgbe_bus_width_pcie_x2;
390 		break;
391 	case IXGBE_PCI_LINK_WIDTH_4:
392 		hw->bus.width = ixgbe_bus_width_pcie_x4;
393 		break;
394 	case IXGBE_PCI_LINK_WIDTH_8:
395 		hw->bus.width = ixgbe_bus_width_pcie_x8;
396 		break;
397 	default:
398 		hw->bus.width = ixgbe_bus_width_unknown;
399 		break;
400 	}
401 
402 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
403 	case IXGBE_PCI_LINK_SPEED_2500:
404 		hw->bus.speed = ixgbe_bus_speed_2500;
405 		break;
406 	case IXGBE_PCI_LINK_SPEED_5000:
407 		hw->bus.speed = ixgbe_bus_speed_5000;
408 		break;
409 	default:
410 		hw->bus.speed = ixgbe_bus_speed_unknown;
411 		break;
412 	}
413 
414 	mac->ops.set_lan_id(hw);
415 
416 	return 0;
417 }
418 
419 /**
420  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
421  *  @hw: pointer to the HW structure
422  *
423  *  Determines the LAN function id by reading memory-mapped registers
424  *  and swaps the port value if requested.
425  **/
ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw * hw)426 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
427 {
428 	struct ixgbe_bus_info *bus = &hw->bus;
429 	u32 reg;
430 
431 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
432 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
433 	bus->lan_id = bus->func;
434 
435 	/* check for a port swap */
436 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
437 	if (reg & IXGBE_FACTPS_LFS)
438 		bus->func ^= 0x1;
439 }
440 
441 /**
442  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
443  *  @hw: pointer to hardware structure
444  *
445  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
446  *  disables transmit and receive units. The adapter_stopped flag is used by
447  *  the shared code and drivers to determine if the adapter is in a stopped
448  *  state and should not touch the hardware.
449  **/
ixgbe_stop_adapter_generic(struct ixgbe_hw * hw)450 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
451 {
452 	u32 number_of_queues;
453 	u32 reg_val;
454 	u16 i;
455 
456 	/*
457 	 * Set the adapter_stopped flag so other driver functions stop touching
458 	 * the hardware
459 	 */
460 	hw->adapter_stopped = true;
461 
462 	/* Disable the receive unit */
463 	reg_val = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
464 	reg_val &= ~(IXGBE_RXCTRL_RXEN);
465 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, reg_val);
466 	IXGBE_WRITE_FLUSH(hw);
467 	msleep(2);
468 
469 	/* Clear interrupt mask to stop from interrupts being generated */
470 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
471 
472 	/* Clear any pending interrupts */
473 	IXGBE_READ_REG(hw, IXGBE_EICR);
474 
475 	/* Disable the transmit unit.  Each queue must be disabled. */
476 	number_of_queues = hw->mac.max_tx_queues;
477 	for (i = 0; i < number_of_queues; i++) {
478 		reg_val = IXGBE_READ_REG(hw, IXGBE_TXDCTL(i));
479 		if (reg_val & IXGBE_TXDCTL_ENABLE) {
480 			reg_val &= ~IXGBE_TXDCTL_ENABLE;
481 			IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), reg_val);
482 		}
483 	}
484 
485 	/*
486 	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
487 	 * access and verify no pending requests
488 	 */
489 	ixgbe_disable_pcie_master(hw);
490 
491 	return 0;
492 }
493 
494 /**
495  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
496  *  @hw: pointer to hardware structure
497  *  @index: led number to turn on
498  **/
ixgbe_led_on_generic(struct ixgbe_hw * hw,u32 index)499 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
500 {
501 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
502 
503 	/* To turn on the LED, set mode to ON. */
504 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
505 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
506 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
507 	IXGBE_WRITE_FLUSH(hw);
508 
509 	return 0;
510 }
511 
512 /**
513  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
514  *  @hw: pointer to hardware structure
515  *  @index: led number to turn off
516  **/
ixgbe_led_off_generic(struct ixgbe_hw * hw,u32 index)517 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
518 {
519 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
520 
521 	/* To turn off the LED, set mode to OFF. */
522 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
523 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
524 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
525 	IXGBE_WRITE_FLUSH(hw);
526 
527 	return 0;
528 }
529 
530 /**
531  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
532  *  @hw: pointer to hardware structure
533  *
534  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
535  *  ixgbe_hw struct in order to set up EEPROM access.
536  **/
ixgbe_init_eeprom_params_generic(struct ixgbe_hw * hw)537 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
538 {
539 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
540 	u32 eec;
541 	u16 eeprom_size;
542 
543 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
544 		eeprom->type = ixgbe_eeprom_none;
545 		/* Set default semaphore delay to 10ms which is a well
546 		 * tested value */
547 		eeprom->semaphore_delay = 10;
548 
549 		/*
550 		 * Check for EEPROM present first.
551 		 * If not present leave as none
552 		 */
553 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
554 		if (eec & IXGBE_EEC_PRES) {
555 			eeprom->type = ixgbe_eeprom_spi;
556 
557 			/*
558 			 * SPI EEPROM is assumed here.  This code would need to
559 			 * change if a future EEPROM is not SPI.
560 			 */
561 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
562 					    IXGBE_EEC_SIZE_SHIFT);
563 			eeprom->word_size = 1 << (eeprom_size +
564 						  IXGBE_EEPROM_WORD_SIZE_SHIFT);
565 		}
566 
567 		if (eec & IXGBE_EEC_ADDR_SIZE)
568 			eeprom->address_bits = 16;
569 		else
570 			eeprom->address_bits = 8;
571 		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
572 			  "%d\n", eeprom->type, eeprom->word_size,
573 			  eeprom->address_bits);
574 	}
575 
576 	return 0;
577 }
578 
579 /**
580  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
581  *  @hw: pointer to hardware structure
582  *  @offset: offset within the EEPROM to be written to
583  *  @data: 16 bit word to be written to the EEPROM
584  *
585  *  If ixgbe_eeprom_update_checksum is not called after this function, the
586  *  EEPROM will most likely contain an invalid checksum.
587  **/
ixgbe_write_eeprom_generic(struct ixgbe_hw * hw,u16 offset,u16 data)588 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
589 {
590 	s32 status;
591 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
592 
593 	hw->eeprom.ops.init_params(hw);
594 
595 	if (offset >= hw->eeprom.word_size) {
596 		status = IXGBE_ERR_EEPROM;
597 		goto out;
598 	}
599 
600 	/* Prepare the EEPROM for writing  */
601 	status = ixgbe_acquire_eeprom(hw);
602 
603 	if (status == 0) {
604 		if (ixgbe_ready_eeprom(hw) != 0) {
605 			ixgbe_release_eeprom(hw);
606 			status = IXGBE_ERR_EEPROM;
607 		}
608 	}
609 
610 	if (status == 0) {
611 		ixgbe_standby_eeprom(hw);
612 
613 		/*  Send the WRITE ENABLE command (8 bit opcode )  */
614 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_WREN_OPCODE_SPI,
615 		                            IXGBE_EEPROM_OPCODE_BITS);
616 
617 		ixgbe_standby_eeprom(hw);
618 
619 		/*
620 		 * Some SPI eeproms use the 8th address bit embedded in the
621 		 * opcode
622 		 */
623 		if ((hw->eeprom.address_bits == 8) && (offset >= 128))
624 			write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
625 
626 		/* Send the Write command (8-bit opcode + addr) */
627 		ixgbe_shift_out_eeprom_bits(hw, write_opcode,
628 		                            IXGBE_EEPROM_OPCODE_BITS);
629 		ixgbe_shift_out_eeprom_bits(hw, (u16)(offset*2),
630 		                            hw->eeprom.address_bits);
631 
632 		/* Send the data */
633 		data = (data >> 8) | (data << 8);
634 		ixgbe_shift_out_eeprom_bits(hw, data, 16);
635 		ixgbe_standby_eeprom(hw);
636 
637 		/* Done with writing - release the EEPROM */
638 		ixgbe_release_eeprom(hw);
639 	}
640 
641 out:
642 	return status;
643 }
644 
645 /**
646  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
647  *  @hw: pointer to hardware structure
648  *  @offset: offset within the EEPROM to be read
649  *  @data: read 16 bit value from EEPROM
650  *
651  *  Reads 16 bit value from EEPROM through bit-bang method
652  **/
ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw * hw,u16 offset,u16 * data)653 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
654                                        u16 *data)
655 {
656 	s32 status;
657 	u16 word_in;
658 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
659 
660 	hw->eeprom.ops.init_params(hw);
661 
662 	if (offset >= hw->eeprom.word_size) {
663 		status = IXGBE_ERR_EEPROM;
664 		goto out;
665 	}
666 
667 	/* Prepare the EEPROM for reading  */
668 	status = ixgbe_acquire_eeprom(hw);
669 
670 	if (status == 0) {
671 		if (ixgbe_ready_eeprom(hw) != 0) {
672 			ixgbe_release_eeprom(hw);
673 			status = IXGBE_ERR_EEPROM;
674 		}
675 	}
676 
677 	if (status == 0) {
678 		ixgbe_standby_eeprom(hw);
679 
680 		/*
681 		 * Some SPI eeproms use the 8th address bit embedded in the
682 		 * opcode
683 		 */
684 		if ((hw->eeprom.address_bits == 8) && (offset >= 128))
685 			read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
686 
687 		/* Send the READ command (opcode + addr) */
688 		ixgbe_shift_out_eeprom_bits(hw, read_opcode,
689 		                            IXGBE_EEPROM_OPCODE_BITS);
690 		ixgbe_shift_out_eeprom_bits(hw, (u16)(offset*2),
691 		                            hw->eeprom.address_bits);
692 
693 		/* Read the data. */
694 		word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
695 		*data = (word_in >> 8) | (word_in << 8);
696 
697 		/* End this read operation */
698 		ixgbe_release_eeprom(hw);
699 	}
700 
701 out:
702 	return status;
703 }
704 
705 /**
706  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
707  *  @hw: pointer to hardware structure
708  *  @offset: offset of  word in the EEPROM to read
709  *  @data: word read from the EEPROM
710  *
711  *  Reads a 16 bit word from the EEPROM using the EERD register.
712  **/
ixgbe_read_eerd_generic(struct ixgbe_hw * hw,u16 offset,u16 * data)713 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
714 {
715 	u32 eerd;
716 	s32 status;
717 
718 	hw->eeprom.ops.init_params(hw);
719 
720 	if (offset >= hw->eeprom.word_size) {
721 		status = IXGBE_ERR_EEPROM;
722 		goto out;
723 	}
724 
725 	eerd = (offset << IXGBE_EEPROM_RW_ADDR_SHIFT) +
726 	       IXGBE_EEPROM_RW_REG_START;
727 
728 	IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
729 	status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
730 
731 	if (status == 0)
732 		*data = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
733 		         IXGBE_EEPROM_RW_REG_DATA);
734 	else
735 		hw_dbg(hw, "Eeprom read timed out\n");
736 
737 out:
738 	return status;
739 }
740 
741 /**
742  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
743  *  @hw: pointer to hardware structure
744  *  @ee_reg: EEPROM flag for polling
745  *
746  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
747  *  read or write is done respectively.
748  **/
ixgbe_poll_eerd_eewr_done(struct ixgbe_hw * hw,u32 ee_reg)749 s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
750 {
751 	u32 i;
752 	u32 reg;
753 	s32 status = IXGBE_ERR_EEPROM;
754 
755 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
756 		if (ee_reg == IXGBE_NVM_POLL_READ)
757 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
758 		else
759 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
760 
761 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
762 			status = 0;
763 			break;
764 		}
765 		udelay(5);
766 	}
767 	return status;
768 }
769 
770 /**
771  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
772  *  @hw: pointer to hardware structure
773  *
774  *  Prepares EEPROM for access using bit-bang method. This function should
775  *  be called before issuing a command to the EEPROM.
776  **/
ixgbe_acquire_eeprom(struct ixgbe_hw * hw)777 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
778 {
779 	s32 status = 0;
780 	u32 eec;
781 	u32 i;
782 
783 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
784 		status = IXGBE_ERR_SWFW_SYNC;
785 
786 	if (status == 0) {
787 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
788 
789 		/* Request EEPROM Access */
790 		eec |= IXGBE_EEC_REQ;
791 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
792 
793 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
794 			eec = IXGBE_READ_REG(hw, IXGBE_EEC);
795 			if (eec & IXGBE_EEC_GNT)
796 				break;
797 			udelay(5);
798 		}
799 
800 		/* Release if grant not acquired */
801 		if (!(eec & IXGBE_EEC_GNT)) {
802 			eec &= ~IXGBE_EEC_REQ;
803 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
804 			hw_dbg(hw, "Could not acquire EEPROM grant\n");
805 
806 			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
807 			status = IXGBE_ERR_EEPROM;
808 		}
809 
810 		/* Setup EEPROM for Read/Write */
811 		if (status == 0) {
812 			/* Clear CS and SK */
813 			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
814 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
815 			IXGBE_WRITE_FLUSH(hw);
816 			udelay(1);
817 		}
818 	}
819 	return status;
820 }
821 
822 /**
823  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
824  *  @hw: pointer to hardware structure
825  *
826  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
827  **/
ixgbe_get_eeprom_semaphore(struct ixgbe_hw * hw)828 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
829 {
830 	s32 status = IXGBE_ERR_EEPROM;
831 	u32 timeout = 2000;
832 	u32 i;
833 	u32 swsm;
834 
835 	/* Get SMBI software semaphore between device drivers first */
836 	for (i = 0; i < timeout; i++) {
837 		/*
838 		 * If the SMBI bit is 0 when we read it, then the bit will be
839 		 * set and we have the semaphore
840 		 */
841 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
842 		if (!(swsm & IXGBE_SWSM_SMBI)) {
843 			status = 0;
844 			break;
845 		}
846 		udelay(50);
847 	}
848 
849 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
850 	if (status == 0) {
851 		for (i = 0; i < timeout; i++) {
852 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
853 
854 			/* Set the SW EEPROM semaphore bit to request access */
855 			swsm |= IXGBE_SWSM_SWESMBI;
856 			IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
857 
858 			/*
859 			 * If we set the bit successfully then we got the
860 			 * semaphore.
861 			 */
862 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
863 			if (swsm & IXGBE_SWSM_SWESMBI)
864 				break;
865 
866 			udelay(50);
867 		}
868 
869 		/*
870 		 * Release semaphores and return error if SW EEPROM semaphore
871 		 * was not granted because we don't have access to the EEPROM
872 		 */
873 		if (i >= timeout) {
874 			hw_dbg(hw, "SWESMBI Software EEPROM semaphore "
875 			       "not granted.\n");
876 			ixgbe_release_eeprom_semaphore(hw);
877 			status = IXGBE_ERR_EEPROM;
878 		}
879 	} else {
880 		hw_dbg(hw, "Software semaphore SMBI between device drivers "
881 		       "not granted.\n");
882 	}
883 
884 	return status;
885 }
886 
887 /**
888  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
889  *  @hw: pointer to hardware structure
890  *
891  *  This function clears hardware semaphore bits.
892  **/
ixgbe_release_eeprom_semaphore(struct ixgbe_hw * hw)893 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
894 {
895 	u32 swsm;
896 
897 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
898 
899 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
900 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
901 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
902 	IXGBE_WRITE_FLUSH(hw);
903 }
904 
905 /**
906  *  ixgbe_ready_eeprom - Polls for EEPROM ready
907  *  @hw: pointer to hardware structure
908  **/
ixgbe_ready_eeprom(struct ixgbe_hw * hw)909 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
910 {
911 	s32 status = 0;
912 	u16 i;
913 	u8 spi_stat_reg;
914 
915 	/*
916 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
917 	 * EEPROM will signal that the command has been completed by clearing
918 	 * bit 0 of the internal status register.  If it's not cleared within
919 	 * 5 milliseconds, then error out.
920 	 */
921 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
922 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
923 		                            IXGBE_EEPROM_OPCODE_BITS);
924 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
925 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
926 			break;
927 
928 		udelay(5);
929 		ixgbe_standby_eeprom(hw);
930 	};
931 
932 	/*
933 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
934 	 * devices (and only 0-5mSec on 5V devices)
935 	 */
936 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
937 		hw_dbg(hw, "SPI EEPROM Status error\n");
938 		status = IXGBE_ERR_EEPROM;
939 	}
940 
941 	return status;
942 }
943 
944 /**
945  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
946  *  @hw: pointer to hardware structure
947  **/
ixgbe_standby_eeprom(struct ixgbe_hw * hw)948 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
949 {
950 	u32 eec;
951 
952 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
953 
954 	/* Toggle CS to flush commands */
955 	eec |= IXGBE_EEC_CS;
956 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
957 	IXGBE_WRITE_FLUSH(hw);
958 	udelay(1);
959 	eec &= ~IXGBE_EEC_CS;
960 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
961 	IXGBE_WRITE_FLUSH(hw);
962 	udelay(1);
963 }
964 
965 /**
966  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
967  *  @hw: pointer to hardware structure
968  *  @data: data to send to the EEPROM
969  *  @count: number of bits to shift out
970  **/
ixgbe_shift_out_eeprom_bits(struct ixgbe_hw * hw,u16 data,u16 count)971 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
972                                         u16 count)
973 {
974 	u32 eec;
975 	u32 mask;
976 	u32 i;
977 
978 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
979 
980 	/*
981 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
982 	 * one bit at a time.  Determine the starting bit based on count
983 	 */
984 	mask = 0x01 << (count - 1);
985 
986 	for (i = 0; i < count; i++) {
987 		/*
988 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
989 		 * "1", and then raising and then lowering the clock (the SK
990 		 * bit controls the clock input to the EEPROM).  A "0" is
991 		 * shifted out to the EEPROM by setting "DI" to "0" and then
992 		 * raising and then lowering the clock.
993 		 */
994 		if (data & mask)
995 			eec |= IXGBE_EEC_DI;
996 		else
997 			eec &= ~IXGBE_EEC_DI;
998 
999 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1000 		IXGBE_WRITE_FLUSH(hw);
1001 
1002 		udelay(1);
1003 
1004 		ixgbe_raise_eeprom_clk(hw, &eec);
1005 		ixgbe_lower_eeprom_clk(hw, &eec);
1006 
1007 		/*
1008 		 * Shift mask to signify next bit of data to shift in to the
1009 		 * EEPROM
1010 		 */
1011 		mask = mask >> 1;
1012 	};
1013 
1014 	/* We leave the "DI" bit set to "0" when we leave this routine. */
1015 	eec &= ~IXGBE_EEC_DI;
1016 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1017 	IXGBE_WRITE_FLUSH(hw);
1018 }
1019 
1020 /**
1021  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1022  *  @hw: pointer to hardware structure
1023  **/
ixgbe_shift_in_eeprom_bits(struct ixgbe_hw * hw,u16 count)1024 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1025 {
1026 	u32 eec;
1027 	u32 i;
1028 	u16 data = 0;
1029 
1030 	/*
1031 	 * In order to read a register from the EEPROM, we need to shift
1032 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1033 	 * the clock input to the EEPROM (setting the SK bit), and then reading
1034 	 * the value of the "DO" bit.  During this "shifting in" process the
1035 	 * "DI" bit should always be clear.
1036 	 */
1037 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1038 
1039 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1040 
1041 	for (i = 0; i < count; i++) {
1042 		data = data << 1;
1043 		ixgbe_raise_eeprom_clk(hw, &eec);
1044 
1045 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1046 
1047 		eec &= ~(IXGBE_EEC_DI);
1048 		if (eec & IXGBE_EEC_DO)
1049 			data |= 1;
1050 
1051 		ixgbe_lower_eeprom_clk(hw, &eec);
1052 	}
1053 
1054 	return data;
1055 }
1056 
1057 /**
1058  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1059  *  @hw: pointer to hardware structure
1060  *  @eec: EEC register's current value
1061  **/
ixgbe_raise_eeprom_clk(struct ixgbe_hw * hw,u32 * eec)1062 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1063 {
1064 	/*
1065 	 * Raise the clock input to the EEPROM
1066 	 * (setting the SK bit), then delay
1067 	 */
1068 	*eec = *eec | IXGBE_EEC_SK;
1069 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1070 	IXGBE_WRITE_FLUSH(hw);
1071 	udelay(1);
1072 }
1073 
1074 /**
1075  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1076  *  @hw: pointer to hardware structure
1077  *  @eecd: EECD's current value
1078  **/
ixgbe_lower_eeprom_clk(struct ixgbe_hw * hw,u32 * eec)1079 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1080 {
1081 	/*
1082 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1083 	 * delay
1084 	 */
1085 	*eec = *eec & ~IXGBE_EEC_SK;
1086 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1087 	IXGBE_WRITE_FLUSH(hw);
1088 	udelay(1);
1089 }
1090 
1091 /**
1092  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1093  *  @hw: pointer to hardware structure
1094  **/
ixgbe_release_eeprom(struct ixgbe_hw * hw)1095 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1096 {
1097 	u32 eec;
1098 
1099 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1100 
1101 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1102 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1103 
1104 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1105 	IXGBE_WRITE_FLUSH(hw);
1106 
1107 	udelay(1);
1108 
1109 	/* Stop requesting EEPROM access */
1110 	eec &= ~IXGBE_EEC_REQ;
1111 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1112 
1113 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1114 
1115 	/* Delay before attempt to obtain semaphore again to allow FW access */
1116 	msleep(hw->eeprom.semaphore_delay);
1117 }
1118 
1119 /**
1120  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1121  *  @hw: pointer to hardware structure
1122  **/
ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw * hw)1123 u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1124 {
1125 	u16 i;
1126 	u16 j;
1127 	u16 checksum = 0;
1128 	u16 length = 0;
1129 	u16 pointer = 0;
1130 	u16 word = 0;
1131 
1132 	/* Include 0x0-0x3F in the checksum */
1133 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1134 		if (hw->eeprom.ops.read(hw, i, &word) != 0) {
1135 			hw_dbg(hw, "EEPROM read failed\n");
1136 			break;
1137 		}
1138 		checksum += word;
1139 	}
1140 
1141 	/* Include all data from pointers except for the fw pointer */
1142 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1143 		hw->eeprom.ops.read(hw, i, &pointer);
1144 
1145 		/* Make sure the pointer seems valid */
1146 		if (pointer != 0xFFFF && pointer != 0) {
1147 			hw->eeprom.ops.read(hw, pointer, &length);
1148 
1149 			if (length != 0xFFFF && length != 0) {
1150 				for (j = pointer+1; j <= pointer+length; j++) {
1151 					hw->eeprom.ops.read(hw, j, &word);
1152 					checksum += word;
1153 				}
1154 			}
1155 		}
1156 	}
1157 
1158 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1159 
1160 	return checksum;
1161 }
1162 
1163 /**
1164  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1165  *  @hw: pointer to hardware structure
1166  *  @checksum_val: calculated checksum
1167  *
1168  *  Performs checksum calculation and validates the EEPROM checksum.  If the
1169  *  caller does not need checksum_val, the value can be NULL.
1170  **/
ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw * hw,u16 * checksum_val)1171 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1172                                            u16 *checksum_val)
1173 {
1174 	s32 status;
1175 	u16 checksum;
1176 	u16 read_checksum = 0;
1177 
1178 	/*
1179 	 * Read the first word from the EEPROM. If this times out or fails, do
1180 	 * not continue or we could be in for a very long wait while every
1181 	 * EEPROM read fails
1182 	 */
1183 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1184 
1185 	if (status == 0) {
1186 		checksum = hw->eeprom.ops.calc_checksum(hw);
1187 
1188 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1189 
1190 		/*
1191 		 * Verify read checksum from EEPROM is the same as
1192 		 * calculated checksum
1193 		 */
1194 		if (read_checksum != checksum)
1195 			status = IXGBE_ERR_EEPROM_CHECKSUM;
1196 
1197 		/* If the user cares, return the calculated checksum */
1198 		if (checksum_val)
1199 			*checksum_val = checksum;
1200 	} else {
1201 		hw_dbg(hw, "EEPROM read failed\n");
1202 	}
1203 
1204 	return status;
1205 }
1206 
1207 /**
1208  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1209  *  @hw: pointer to hardware structure
1210  **/
ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw * hw)1211 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1212 {
1213 	s32 status;
1214 	u16 checksum;
1215 
1216 	/*
1217 	 * Read the first word from the EEPROM. If this times out or fails, do
1218 	 * not continue or we could be in for a very long wait while every
1219 	 * EEPROM read fails
1220 	 */
1221 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1222 
1223 	if (status == 0) {
1224 		checksum = hw->eeprom.ops.calc_checksum(hw);
1225 		status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1226 					      checksum);
1227 	} else {
1228 		hw_dbg(hw, "EEPROM read failed\n");
1229 	}
1230 
1231 	return status;
1232 }
1233 
1234 /**
1235  *  ixgbe_validate_mac_addr - Validate MAC address
1236  *  @mac_addr: pointer to MAC address.
1237  *
1238  *  Tests a MAC address to ensure it is a valid Individual Address
1239  **/
ixgbe_validate_mac_addr(u8 * mac_addr)1240 s32 ixgbe_validate_mac_addr(u8 *mac_addr)
1241 {
1242 	s32 status = 0;
1243 
1244 	/* Make sure it is not a multicast address */
1245 	if (IXGBE_IS_MULTICAST(mac_addr))
1246 		status = IXGBE_ERR_INVALID_MAC_ADDR;
1247 	/* Not a broadcast address */
1248 	else if (IXGBE_IS_BROADCAST(mac_addr))
1249 		status = IXGBE_ERR_INVALID_MAC_ADDR;
1250 	/* Reject the zero address */
1251 	else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
1252 	         mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0)
1253 		status = IXGBE_ERR_INVALID_MAC_ADDR;
1254 
1255 	return status;
1256 }
1257 
1258 /**
1259  *  ixgbe_set_rar_generic - Set Rx address register
1260  *  @hw: pointer to hardware structure
1261  *  @index: Receive address register to write
1262  *  @addr: Address to put into receive address register
1263  *  @vmdq: VMDq "set" or "pool" index
1264  *  @enable_addr: set flag that address is active
1265  *
1266  *  Puts an ethernet address into a receive address register.
1267  **/
ixgbe_set_rar_generic(struct ixgbe_hw * hw,u32 index,u8 * addr,u32 vmdq,u32 enable_addr)1268 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1269                           u32 enable_addr)
1270 {
1271 	u32 rar_low, rar_high;
1272 	u32 rar_entries = hw->mac.num_rar_entries;
1273 
1274 	/* Make sure we are using a valid rar index range */
1275 	if (index >= rar_entries) {
1276 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1277 		return IXGBE_ERR_INVALID_ARGUMENT;
1278 	}
1279 
1280 	/* setup VMDq pool selection before this RAR gets enabled */
1281 	hw->mac.ops.set_vmdq(hw, index, vmdq);
1282 
1283 	/*
1284 	 * HW expects these in little endian so we reverse the byte
1285 	 * order from network order (big endian) to little endian
1286 	 */
1287 	rar_low = ((u32)addr[0] |
1288 		   ((u32)addr[1] << 8) |
1289 		   ((u32)addr[2] << 16) |
1290 		   ((u32)addr[3] << 24));
1291 	/*
1292 	 * Some parts put the VMDq setting in the extra RAH bits,
1293 	 * so save everything except the lower 16 bits that hold part
1294 	 * of the address and the address valid bit.
1295 	 */
1296 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1297 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1298 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1299 
1300 	if (enable_addr != 0)
1301 		rar_high |= IXGBE_RAH_AV;
1302 
1303 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1304 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1305 
1306 	return 0;
1307 }
1308 
1309 /**
1310  *  ixgbe_clear_rar_generic - Remove Rx address register
1311  *  @hw: pointer to hardware structure
1312  *  @index: Receive address register to write
1313  *
1314  *  Clears an ethernet address from a receive address register.
1315  **/
ixgbe_clear_rar_generic(struct ixgbe_hw * hw,u32 index)1316 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1317 {
1318 	u32 rar_high;
1319 	u32 rar_entries = hw->mac.num_rar_entries;
1320 
1321 	/* Make sure we are using a valid rar index range */
1322 	if (index >= rar_entries) {
1323 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1324 		return IXGBE_ERR_INVALID_ARGUMENT;
1325 	}
1326 
1327 	/*
1328 	 * Some parts put the VMDq setting in the extra RAH bits,
1329 	 * so save everything except the lower 16 bits that hold part
1330 	 * of the address and the address valid bit.
1331 	 */
1332 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1333 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1334 
1335 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1336 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1337 
1338 	/* clear VMDq pool/queue selection for this RAR */
1339 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1340 
1341 	return 0;
1342 }
1343 
1344 /**
1345  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1346  *  @hw: pointer to hardware structure
1347  *
1348  *  Places the MAC address in receive address register 0 and clears the rest
1349  *  of the receive address registers. Clears the multicast table. Assumes
1350  *  the receiver is in reset when the routine is called.
1351  **/
ixgbe_init_rx_addrs_generic(struct ixgbe_hw * hw)1352 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1353 {
1354 	u32 i;
1355 	u32 rar_entries = hw->mac.num_rar_entries;
1356 
1357 	/*
1358 	 * If the current mac address is valid, assume it is a software override
1359 	 * to the permanent address.
1360 	 * Otherwise, use the permanent address from the eeprom.
1361 	 */
1362 	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
1363 	    IXGBE_ERR_INVALID_MAC_ADDR) {
1364 		/* Get the MAC address from the RAR0 for later reference */
1365 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1366 
1367 		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1368 	} else {
1369 		/* Setup the receive address. */
1370 		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1371 		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1372 
1373 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1374 
1375 		/*  clear VMDq pool/queue selection for RAR 0 */
1376 		hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1377 	}
1378 	hw->addr_ctrl.overflow_promisc = 0;
1379 
1380 	hw->addr_ctrl.rar_used_count = 1;
1381 
1382 	/* Zero out the other receive addresses. */
1383 	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1384 	for (i = 1; i < rar_entries; i++) {
1385 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1386 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1387 	}
1388 
1389 	/* Clear the MTA */
1390 	hw->addr_ctrl.mta_in_use = 0;
1391 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1392 
1393 	hw_dbg(hw, " Clearing MTA\n");
1394 	for (i = 0; i < hw->mac.mcft_size; i++)
1395 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1396 
1397 	if (hw->mac.ops.init_uta_tables)
1398 		hw->mac.ops.init_uta_tables(hw);
1399 
1400 	return 0;
1401 }
1402 
1403 /**
1404  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1405  *  @hw: pointer to hardware structure
1406  *  @mc_addr: the multicast address
1407  *
1408  *  Extracts the 12 bits, from a multicast address, to determine which
1409  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1410  *  incoming rx multicast addresses, to determine the bit-vector to check in
1411  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1412  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1413  *  to mc_filter_type.
1414  **/
ixgbe_mta_vector(struct ixgbe_hw * hw,u8 * mc_addr)1415 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1416 {
1417 	u32 vector = 0;
1418 
1419 	switch (hw->mac.mc_filter_type) {
1420 	case 0:   /* use bits [47:36] of the address */
1421 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1422 		break;
1423 	case 1:   /* use bits [46:35] of the address */
1424 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1425 		break;
1426 	case 2:   /* use bits [45:34] of the address */
1427 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1428 		break;
1429 	case 3:   /* use bits [43:32] of the address */
1430 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1431 		break;
1432 	default:  /* Invalid mc_filter_type */
1433 		hw_dbg(hw, "MC filter type param set incorrectly\n");
1434 		break;
1435 	}
1436 
1437 	/* vector can only be 12-bits or boundary will be exceeded */
1438 	vector &= 0xFFF;
1439 	return vector;
1440 }
1441 
1442 /**
1443  *  ixgbe_set_mta - Set bit-vector in multicast table
1444  *  @hw: pointer to hardware structure
1445  *  @hash_value: Multicast address hash value
1446  *
1447  *  Sets the bit-vector in the multicast table.
1448  **/
ixgbe_set_mta(struct ixgbe_hw * hw,u8 * mc_addr)1449 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1450 {
1451 	u32 vector;
1452 	u32 vector_bit;
1453 	u32 vector_reg;
1454 
1455 	hw->addr_ctrl.mta_in_use++;
1456 
1457 	vector = ixgbe_mta_vector(hw, mc_addr);
1458 	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
1459 
1460 	/*
1461 	 * The MTA is a register array of 128 32-bit registers. It is treated
1462 	 * like an array of 4096 bits.  We want to set bit
1463 	 * BitArray[vector_value]. So we figure out what register the bit is
1464 	 * in, read it, OR in the new bit, then write back the new value.  The
1465 	 * register is determined by the upper 7 bits of the vector value and
1466 	 * the bit within that register are determined by the lower 5 bits of
1467 	 * the value.
1468 	 */
1469 	vector_reg = (vector >> 5) & 0x7F;
1470 	vector_bit = vector & 0x1F;
1471 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
1472 }
1473 
1474 /**
1475  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
1476  *  @hw: pointer to hardware structure
1477  *  @netdev: pointer to net device structure
1478  *
1479  *  The given list replaces any existing list. Clears the MC addrs from receive
1480  *  address registers and the multicast table. Uses unused receive address
1481  *  registers for the first multicast addresses, and hashes the rest into the
1482  *  multicast table.
1483  **/
ixgbe_update_mc_addr_list_generic(struct ixgbe_hw * hw,struct net_device * netdev)1484 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
1485 				      struct net_device *netdev)
1486 {
1487 	struct netdev_hw_addr *ha;
1488 	u32 i;
1489 
1490 	/*
1491 	 * Set the new number of MC addresses that we are being requested to
1492 	 * use.
1493 	 */
1494 	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
1495 	hw->addr_ctrl.mta_in_use = 0;
1496 
1497 	/* Clear mta_shadow */
1498 	hw_dbg(hw, " Clearing MTA\n");
1499 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
1500 
1501 	/* Update mta shadow */
1502 	netdev_for_each_mc_addr(ha, netdev) {
1503 		hw_dbg(hw, " Adding the multicast addresses:\n");
1504 		ixgbe_set_mta(hw, ha->addr);
1505 	}
1506 
1507 	/* Enable mta */
1508 	for (i = 0; i < hw->mac.mcft_size; i++)
1509 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
1510 				      hw->mac.mta_shadow[i]);
1511 
1512 	if (hw->addr_ctrl.mta_in_use > 0)
1513 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
1514 		                IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
1515 
1516 	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
1517 	return 0;
1518 }
1519 
1520 /**
1521  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
1522  *  @hw: pointer to hardware structure
1523  *
1524  *  Enables multicast address in RAR and the use of the multicast hash table.
1525  **/
ixgbe_enable_mc_generic(struct ixgbe_hw * hw)1526 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
1527 {
1528 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
1529 
1530 	if (a->mta_in_use > 0)
1531 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
1532 		                hw->mac.mc_filter_type);
1533 
1534 	return 0;
1535 }
1536 
1537 /**
1538  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
1539  *  @hw: pointer to hardware structure
1540  *
1541  *  Disables multicast address in RAR and the use of the multicast hash table.
1542  **/
ixgbe_disable_mc_generic(struct ixgbe_hw * hw)1543 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
1544 {
1545 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
1546 
1547 	if (a->mta_in_use > 0)
1548 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1549 
1550 	return 0;
1551 }
1552 
1553 /**
1554  *  ixgbe_fc_enable_generic - Enable flow control
1555  *  @hw: pointer to hardware structure
1556  *  @packetbuf_num: packet buffer number (0-7)
1557  *
1558  *  Enable flow control according to the current settings.
1559  **/
ixgbe_fc_enable_generic(struct ixgbe_hw * hw,s32 packetbuf_num)1560 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw, s32 packetbuf_num)
1561 {
1562 	s32 ret_val = 0;
1563 	u32 mflcn_reg, fccfg_reg;
1564 	u32 reg;
1565 	u32 rx_pba_size;
1566 	u32 fcrtl, fcrth;
1567 
1568 #ifdef CONFIG_DCB
1569 	if (hw->fc.requested_mode == ixgbe_fc_pfc)
1570 		goto out;
1571 
1572 #endif /* CONFIG_DCB */
1573 	/* Negotiate the fc mode to use */
1574 	ret_val = ixgbe_fc_autoneg(hw);
1575 	if (ret_val == IXGBE_ERR_FLOW_CONTROL)
1576 		goto out;
1577 
1578 	/* Disable any previous flow control settings */
1579 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
1580 	mflcn_reg &= ~(IXGBE_MFLCN_RFCE | IXGBE_MFLCN_RPFCE);
1581 
1582 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
1583 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
1584 
1585 	/*
1586 	 * The possible values of fc.current_mode are:
1587 	 * 0: Flow control is completely disabled
1588 	 * 1: Rx flow control is enabled (we can receive pause frames,
1589 	 *    but not send pause frames).
1590 	 * 2: Tx flow control is enabled (we can send pause frames but
1591 	 *    we do not support receiving pause frames).
1592 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1593 #ifdef CONFIG_DCB
1594 	 * 4: Priority Flow Control is enabled.
1595 #endif
1596 	 * other: Invalid.
1597 	 */
1598 	switch (hw->fc.current_mode) {
1599 	case ixgbe_fc_none:
1600 		/*
1601 		 * Flow control is disabled by software override or autoneg.
1602 		 * The code below will actually disable it in the HW.
1603 		 */
1604 		break;
1605 	case ixgbe_fc_rx_pause:
1606 		/*
1607 		 * Rx Flow control is enabled and Tx Flow control is
1608 		 * disabled by software override. Since there really
1609 		 * isn't a way to advertise that we are capable of RX
1610 		 * Pause ONLY, we will advertise that we support both
1611 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
1612 		 * disable the adapter's ability to send PAUSE frames.
1613 		 */
1614 		mflcn_reg |= IXGBE_MFLCN_RFCE;
1615 		break;
1616 	case ixgbe_fc_tx_pause:
1617 		/*
1618 		 * Tx Flow control is enabled, and Rx Flow control is
1619 		 * disabled by software override.
1620 		 */
1621 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
1622 		break;
1623 	case ixgbe_fc_full:
1624 		/* Flow control (both Rx and Tx) is enabled by SW override. */
1625 		mflcn_reg |= IXGBE_MFLCN_RFCE;
1626 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
1627 		break;
1628 #ifdef CONFIG_DCB
1629 	case ixgbe_fc_pfc:
1630 		goto out;
1631 		break;
1632 #endif /* CONFIG_DCB */
1633 	default:
1634 		hw_dbg(hw, "Flow control param set incorrectly\n");
1635 		ret_val = IXGBE_ERR_CONFIG;
1636 		goto out;
1637 		break;
1638 	}
1639 
1640 	/* Set 802.3x based flow control settings. */
1641 	mflcn_reg |= IXGBE_MFLCN_DPF;
1642 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
1643 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
1644 
1645 	rx_pba_size = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(packetbuf_num));
1646 	rx_pba_size >>= IXGBE_RXPBSIZE_SHIFT;
1647 
1648 	fcrth = (rx_pba_size - hw->fc.high_water) << 10;
1649 	fcrtl = (rx_pba_size - hw->fc.low_water) << 10;
1650 
1651 	if (hw->fc.current_mode & ixgbe_fc_tx_pause) {
1652 		fcrth |= IXGBE_FCRTH_FCEN;
1653 		if (hw->fc.send_xon)
1654 			fcrtl |= IXGBE_FCRTL_XONE;
1655 	}
1656 
1657 	IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(packetbuf_num), fcrth);
1658 	IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(packetbuf_num), fcrtl);
1659 
1660 	/* Configure pause time (2 TCs per register) */
1661 	reg = IXGBE_READ_REG(hw, IXGBE_FCTTV(packetbuf_num / 2));
1662 	if ((packetbuf_num & 1) == 0)
1663 		reg = (reg & 0xFFFF0000) | hw->fc.pause_time;
1664 	else
1665 		reg = (reg & 0x0000FFFF) | (hw->fc.pause_time << 16);
1666 	IXGBE_WRITE_REG(hw, IXGBE_FCTTV(packetbuf_num / 2), reg);
1667 
1668 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, (hw->fc.pause_time >> 1));
1669 
1670 out:
1671 	return ret_val;
1672 }
1673 
1674 /**
1675  *  ixgbe_fc_autoneg - Configure flow control
1676  *  @hw: pointer to hardware structure
1677  *
1678  *  Compares our advertised flow control capabilities to those advertised by
1679  *  our link partner, and determines the proper flow control mode to use.
1680  **/
ixgbe_fc_autoneg(struct ixgbe_hw * hw)1681 s32 ixgbe_fc_autoneg(struct ixgbe_hw *hw)
1682 {
1683 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
1684 	ixgbe_link_speed speed;
1685 	bool link_up;
1686 
1687 	if (hw->fc.disable_fc_autoneg)
1688 		goto out;
1689 
1690 	/*
1691 	 * AN should have completed when the cable was plugged in.
1692 	 * Look for reasons to bail out.  Bail out if:
1693 	 * - FC autoneg is disabled, or if
1694 	 * - link is not up.
1695 	 *
1696 	 * Since we're being called from an LSC, link is already known to be up.
1697 	 * So use link_up_wait_to_complete=false.
1698 	 */
1699 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
1700 	if (!link_up) {
1701 		ret_val = IXGBE_ERR_FLOW_CONTROL;
1702 		goto out;
1703 	}
1704 
1705 	switch (hw->phy.media_type) {
1706 	/* Autoneg flow control on fiber adapters */
1707 	case ixgbe_media_type_fiber:
1708 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
1709 			ret_val = ixgbe_fc_autoneg_fiber(hw);
1710 		break;
1711 
1712 	/* Autoneg flow control on backplane adapters */
1713 	case ixgbe_media_type_backplane:
1714 		ret_val = ixgbe_fc_autoneg_backplane(hw);
1715 		break;
1716 
1717 	/* Autoneg flow control on copper adapters */
1718 	case ixgbe_media_type_copper:
1719 		if (ixgbe_device_supports_autoneg_fc(hw) == 0)
1720 			ret_val = ixgbe_fc_autoneg_copper(hw);
1721 		break;
1722 
1723 	default:
1724 		break;
1725 	}
1726 
1727 out:
1728 	if (ret_val == 0) {
1729 		hw->fc.fc_was_autonegged = true;
1730 	} else {
1731 		hw->fc.fc_was_autonegged = false;
1732 		hw->fc.current_mode = hw->fc.requested_mode;
1733 	}
1734 	return ret_val;
1735 }
1736 
1737 /**
1738  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
1739  *  @hw: pointer to hardware structure
1740  *
1741  *  Enable flow control according on 1 gig fiber.
1742  **/
ixgbe_fc_autoneg_fiber(struct ixgbe_hw * hw)1743 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
1744 {
1745 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
1746 	s32 ret_val;
1747 
1748 	/*
1749 	 * On multispeed fiber at 1g, bail out if
1750 	 * - link is up but AN did not complete, or if
1751 	 * - link is up and AN completed but timed out
1752 	 */
1753 
1754 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
1755 	if (((linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
1756 	    ((linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
1757 		ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
1758 		goto out;
1759 	}
1760 
1761 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
1762 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
1763 
1764 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
1765 			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
1766 			       IXGBE_PCS1GANA_ASM_PAUSE,
1767 			       IXGBE_PCS1GANA_SYM_PAUSE,
1768 			       IXGBE_PCS1GANA_ASM_PAUSE);
1769 
1770 out:
1771 	return ret_val;
1772 }
1773 
1774 /**
1775  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
1776  *  @hw: pointer to hardware structure
1777  *
1778  *  Enable flow control according to IEEE clause 37.
1779  **/
ixgbe_fc_autoneg_backplane(struct ixgbe_hw * hw)1780 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
1781 {
1782 	u32 links2, anlp1_reg, autoc_reg, links;
1783 	s32 ret_val;
1784 
1785 	/*
1786 	 * On backplane, bail out if
1787 	 * - backplane autoneg was not completed, or if
1788 	 * - we are 82599 and link partner is not AN enabled
1789 	 */
1790 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
1791 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
1792 		hw->fc.fc_was_autonegged = false;
1793 		hw->fc.current_mode = hw->fc.requested_mode;
1794 		ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
1795 		goto out;
1796 	}
1797 
1798 	if (hw->mac.type == ixgbe_mac_82599EB) {
1799 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
1800 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
1801 			hw->fc.fc_was_autonegged = false;
1802 			hw->fc.current_mode = hw->fc.requested_mode;
1803 			ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
1804 			goto out;
1805 		}
1806 	}
1807 	/*
1808 	 * Read the 10g AN autoc and LP ability registers and resolve
1809 	 * local flow control settings accordingly
1810 	 */
1811 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
1812 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
1813 
1814 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
1815 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
1816 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
1817 
1818 out:
1819 	return ret_val;
1820 }
1821 
1822 /**
1823  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
1824  *  @hw: pointer to hardware structure
1825  *
1826  *  Enable flow control according to IEEE clause 37.
1827  **/
ixgbe_fc_autoneg_copper(struct ixgbe_hw * hw)1828 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
1829 {
1830 	u16 technology_ability_reg = 0;
1831 	u16 lp_technology_ability_reg = 0;
1832 
1833 	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
1834 			     MDIO_MMD_AN,
1835 			     &technology_ability_reg);
1836 	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
1837 			     MDIO_MMD_AN,
1838 			     &lp_technology_ability_reg);
1839 
1840 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
1841 				  (u32)lp_technology_ability_reg,
1842 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
1843 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
1844 }
1845 
1846 /**
1847  *  ixgbe_negotiate_fc - Negotiate flow control
1848  *  @hw: pointer to hardware structure
1849  *  @adv_reg: flow control advertised settings
1850  *  @lp_reg: link partner's flow control settings
1851  *  @adv_sym: symmetric pause bit in advertisement
1852  *  @adv_asm: asymmetric pause bit in advertisement
1853  *  @lp_sym: symmetric pause bit in link partner advertisement
1854  *  @lp_asm: asymmetric pause bit in link partner advertisement
1855  *
1856  *  Find the intersection between advertised settings and link partner's
1857  *  advertised settings
1858  **/
ixgbe_negotiate_fc(struct ixgbe_hw * hw,u32 adv_reg,u32 lp_reg,u32 adv_sym,u32 adv_asm,u32 lp_sym,u32 lp_asm)1859 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
1860 			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
1861 {
1862 	if ((!(adv_reg)) ||  (!(lp_reg)))
1863 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
1864 
1865 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
1866 		/*
1867 		 * Now we need to check if the user selected Rx ONLY
1868 		 * of pause frames.  In this case, we had to advertise
1869 		 * FULL flow control because we could not advertise RX
1870 		 * ONLY. Hence, we must now check to see if we need to
1871 		 * turn OFF the TRANSMISSION of PAUSE frames.
1872 		 */
1873 		if (hw->fc.requested_mode == ixgbe_fc_full) {
1874 			hw->fc.current_mode = ixgbe_fc_full;
1875 			hw_dbg(hw, "Flow Control = FULL.\n");
1876 		} else {
1877 			hw->fc.current_mode = ixgbe_fc_rx_pause;
1878 			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
1879 		}
1880 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
1881 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
1882 		hw->fc.current_mode = ixgbe_fc_tx_pause;
1883 		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
1884 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
1885 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
1886 		hw->fc.current_mode = ixgbe_fc_rx_pause;
1887 		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
1888 	} else {
1889 		hw->fc.current_mode = ixgbe_fc_none;
1890 		hw_dbg(hw, "Flow Control = NONE.\n");
1891 	}
1892 	return 0;
1893 }
1894 
1895 /**
1896  *  ixgbe_setup_fc - Set up flow control
1897  *  @hw: pointer to hardware structure
1898  *
1899  *  Called at init time to set up flow control.
1900  **/
ixgbe_setup_fc(struct ixgbe_hw * hw,s32 packetbuf_num)1901 static s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num)
1902 {
1903 	s32 ret_val = 0;
1904 	u32 reg = 0, reg_bp = 0;
1905 	u16 reg_cu = 0;
1906 
1907 #ifdef CONFIG_DCB
1908 	if (hw->fc.requested_mode == ixgbe_fc_pfc) {
1909 		hw->fc.current_mode = hw->fc.requested_mode;
1910 		goto out;
1911 	}
1912 
1913 #endif /* CONFIG_DCB */
1914 	/* Validate the packetbuf configuration */
1915 	if (packetbuf_num < 0 || packetbuf_num > 7) {
1916 		hw_dbg(hw, "Invalid packet buffer number [%d], expected range "
1917 		       "is 0-7\n", packetbuf_num);
1918 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
1919 		goto out;
1920 	}
1921 
1922 	/*
1923 	 * Validate the water mark configuration.  Zero water marks are invalid
1924 	 * because it causes the controller to just blast out fc packets.
1925 	 */
1926 	if (!hw->fc.low_water || !hw->fc.high_water || !hw->fc.pause_time) {
1927 		hw_dbg(hw, "Invalid water mark configuration\n");
1928 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
1929 		goto out;
1930 	}
1931 
1932 	/*
1933 	 * Validate the requested mode.  Strict IEEE mode does not allow
1934 	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
1935 	 */
1936 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
1937 		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict "
1938 		       "IEEE mode\n");
1939 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
1940 		goto out;
1941 	}
1942 
1943 	/*
1944 	 * 10gig parts do not have a word in the EEPROM to determine the
1945 	 * default flow control setting, so we explicitly set it to full.
1946 	 */
1947 	if (hw->fc.requested_mode == ixgbe_fc_default)
1948 		hw->fc.requested_mode = ixgbe_fc_full;
1949 
1950 	/*
1951 	 * Set up the 1G and 10G flow control advertisement registers so the
1952 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
1953 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
1954 	 */
1955 
1956 	switch (hw->phy.media_type) {
1957 	case ixgbe_media_type_fiber:
1958 	case ixgbe_media_type_backplane:
1959 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
1960 		reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC);
1961 		break;
1962 
1963 	case ixgbe_media_type_copper:
1964 		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
1965 					MDIO_MMD_AN, &reg_cu);
1966 		break;
1967 
1968 	default:
1969 		;
1970 	}
1971 
1972 	/*
1973 	 * The possible values of fc.requested_mode are:
1974 	 * 0: Flow control is completely disabled
1975 	 * 1: Rx flow control is enabled (we can receive pause frames,
1976 	 *    but not send pause frames).
1977 	 * 2: Tx flow control is enabled (we can send pause frames but
1978 	 *    we do not support receiving pause frames).
1979 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1980 #ifdef CONFIG_DCB
1981 	 * 4: Priority Flow Control is enabled.
1982 #endif
1983 	 * other: Invalid.
1984 	 */
1985 	switch (hw->fc.requested_mode) {
1986 	case ixgbe_fc_none:
1987 		/* Flow control completely disabled by software override. */
1988 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
1989 		if (hw->phy.media_type == ixgbe_media_type_backplane)
1990 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
1991 				    IXGBE_AUTOC_ASM_PAUSE);
1992 		else if (hw->phy.media_type == ixgbe_media_type_copper)
1993 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
1994 		break;
1995 	case ixgbe_fc_rx_pause:
1996 		/*
1997 		 * Rx Flow control is enabled and Tx Flow control is
1998 		 * disabled by software override. Since there really
1999 		 * isn't a way to advertise that we are capable of RX
2000 		 * Pause ONLY, we will advertise that we support both
2001 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2002 		 * disable the adapter's ability to send PAUSE frames.
2003 		 */
2004 		reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
2005 		if (hw->phy.media_type == ixgbe_media_type_backplane)
2006 			reg_bp |= (IXGBE_AUTOC_SYM_PAUSE |
2007 				   IXGBE_AUTOC_ASM_PAUSE);
2008 		else if (hw->phy.media_type == ixgbe_media_type_copper)
2009 			reg_cu |= (IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
2010 		break;
2011 	case ixgbe_fc_tx_pause:
2012 		/*
2013 		 * Tx Flow control is enabled, and Rx Flow control is
2014 		 * disabled by software override.
2015 		 */
2016 		reg |= (IXGBE_PCS1GANA_ASM_PAUSE);
2017 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE);
2018 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
2019 			reg_bp |= (IXGBE_AUTOC_ASM_PAUSE);
2020 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE);
2021 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
2022 			reg_cu |= (IXGBE_TAF_ASM_PAUSE);
2023 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE);
2024 		}
2025 		break;
2026 	case ixgbe_fc_full:
2027 		/* Flow control (both Rx and Tx) is enabled by SW override. */
2028 		reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
2029 		if (hw->phy.media_type == ixgbe_media_type_backplane)
2030 			reg_bp |= (IXGBE_AUTOC_SYM_PAUSE |
2031 				   IXGBE_AUTOC_ASM_PAUSE);
2032 		else if (hw->phy.media_type == ixgbe_media_type_copper)
2033 			reg_cu |= (IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
2034 		break;
2035 #ifdef CONFIG_DCB
2036 	case ixgbe_fc_pfc:
2037 		goto out;
2038 		break;
2039 #endif /* CONFIG_DCB */
2040 	default:
2041 		hw_dbg(hw, "Flow control param set incorrectly\n");
2042 		ret_val = IXGBE_ERR_CONFIG;
2043 		goto out;
2044 		break;
2045 	}
2046 
2047 	if (hw->mac.type != ixgbe_mac_X540) {
2048 		/*
2049 		 * Enable auto-negotiation between the MAC & PHY;
2050 		 * the MAC will advertise clause 37 flow control.
2051 		 */
2052 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
2053 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
2054 
2055 		/* Disable AN timeout */
2056 		if (hw->fc.strict_ieee)
2057 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
2058 
2059 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
2060 		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
2061 	}
2062 
2063 	/*
2064 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
2065 	 * and copper. There is no need to set the PCS1GCTL register.
2066 	 *
2067 	 */
2068 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
2069 		reg_bp |= IXGBE_AUTOC_AN_RESTART;
2070 		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp);
2071 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
2072 		    (ixgbe_device_supports_autoneg_fc(hw) == 0)) {
2073 		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
2074 				      MDIO_MMD_AN, reg_cu);
2075 	}
2076 
2077 	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
2078 out:
2079 	return ret_val;
2080 }
2081 
2082 /**
2083  *  ixgbe_disable_pcie_master - Disable PCI-express master access
2084  *  @hw: pointer to hardware structure
2085  *
2086  *  Disables PCI-Express master access and verifies there are no pending
2087  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2088  *  bit hasn't caused the master requests to be disabled, else 0
2089  *  is returned signifying master requests disabled.
2090  **/
ixgbe_disable_pcie_master(struct ixgbe_hw * hw)2091 s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2092 {
2093 	struct ixgbe_adapter *adapter = hw->back;
2094 	u32 i;
2095 	u32 reg_val;
2096 	u32 number_of_queues;
2097 	s32 status = 0;
2098 	u16 dev_status = 0;
2099 
2100 	/* Just jump out if bus mastering is already disabled */
2101 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2102 		goto out;
2103 
2104 	/* Disable the receive unit by stopping each queue */
2105 	number_of_queues = hw->mac.max_rx_queues;
2106 	for (i = 0; i < number_of_queues; i++) {
2107 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
2108 		if (reg_val & IXGBE_RXDCTL_ENABLE) {
2109 			reg_val &= ~IXGBE_RXDCTL_ENABLE;
2110 			IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
2111 		}
2112 	}
2113 
2114 	reg_val = IXGBE_READ_REG(hw, IXGBE_CTRL);
2115 	reg_val |= IXGBE_CTRL_GIO_DIS;
2116 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, reg_val);
2117 
2118 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2119 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2120 			goto check_device_status;
2121 		udelay(100);
2122 	}
2123 
2124 	hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2125 	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
2126 
2127 	/*
2128 	 * Before proceeding, make sure that the PCIe block does not have
2129 	 * transactions pending.
2130 	 */
2131 check_device_status:
2132 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2133 		pci_read_config_word(adapter->pdev, IXGBE_PCI_DEVICE_STATUS,
2134 							 &dev_status);
2135 		if (!(dev_status & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2136 			break;
2137 		udelay(100);
2138 	}
2139 
2140 	if (i == IXGBE_PCI_MASTER_DISABLE_TIMEOUT)
2141 		hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2142 	else
2143 		goto out;
2144 
2145 	/*
2146 	 * Two consecutive resets are required via CTRL.RST per datasheet
2147 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2148 	 * of this need.  The first reset prevents new master requests from
2149 	 * being issued by our device.  We then must wait 1usec for any
2150 	 * remaining completions from the PCIe bus to trickle in, and then reset
2151 	 * again to clear out any effects they may have had on our device.
2152 	 */
2153 	 hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2154 
2155 out:
2156 	return status;
2157 }
2158 
2159 
2160 /**
2161  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2162  *  @hw: pointer to hardware structure
2163  *  @mask: Mask to specify which semaphore to acquire
2164  *
2165  *  Acquires the SWFW semaphore through the GSSR register for the specified
2166  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2167  **/
ixgbe_acquire_swfw_sync(struct ixgbe_hw * hw,u16 mask)2168 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2169 {
2170 	u32 gssr;
2171 	u32 swmask = mask;
2172 	u32 fwmask = mask << 5;
2173 	s32 timeout = 200;
2174 
2175 	while (timeout) {
2176 		/*
2177 		 * SW EEPROM semaphore bit is used for access to all
2178 		 * SW_FW_SYNC/GSSR bits (not just EEPROM)
2179 		 */
2180 		if (ixgbe_get_eeprom_semaphore(hw))
2181 			return IXGBE_ERR_SWFW_SYNC;
2182 
2183 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2184 		if (!(gssr & (fwmask | swmask)))
2185 			break;
2186 
2187 		/*
2188 		 * Firmware currently using resource (fwmask) or other software
2189 		 * thread currently using resource (swmask)
2190 		 */
2191 		ixgbe_release_eeprom_semaphore(hw);
2192 		msleep(5);
2193 		timeout--;
2194 	}
2195 
2196 	if (!timeout) {
2197 		hw_dbg(hw, "Driver can't access resource, SW_FW_SYNC timeout.\n");
2198 		return IXGBE_ERR_SWFW_SYNC;
2199 	}
2200 
2201 	gssr |= swmask;
2202 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2203 
2204 	ixgbe_release_eeprom_semaphore(hw);
2205 	return 0;
2206 }
2207 
2208 /**
2209  *  ixgbe_release_swfw_sync - Release SWFW semaphore
2210  *  @hw: pointer to hardware structure
2211  *  @mask: Mask to specify which semaphore to release
2212  *
2213  *  Releases the SWFW semaphore through the GSSR register for the specified
2214  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2215  **/
ixgbe_release_swfw_sync(struct ixgbe_hw * hw,u16 mask)2216 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2217 {
2218 	u32 gssr;
2219 	u32 swmask = mask;
2220 
2221 	ixgbe_get_eeprom_semaphore(hw);
2222 
2223 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2224 	gssr &= ~swmask;
2225 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2226 
2227 	ixgbe_release_eeprom_semaphore(hw);
2228 }
2229 
2230 /**
2231  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2232  *  @hw: pointer to hardware structure
2233  *  @regval: register value to write to RXCTRL
2234  *
2235  *  Enables the Rx DMA unit
2236  **/
ixgbe_enable_rx_dma_generic(struct ixgbe_hw * hw,u32 regval)2237 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2238 {
2239 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2240 
2241 	return 0;
2242 }
2243 
2244 /**
2245  *  ixgbe_blink_led_start_generic - Blink LED based on index.
2246  *  @hw: pointer to hardware structure
2247  *  @index: led number to blink
2248  **/
ixgbe_blink_led_start_generic(struct ixgbe_hw * hw,u32 index)2249 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2250 {
2251 	ixgbe_link_speed speed = 0;
2252 	bool link_up = 0;
2253 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2254 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2255 
2256 	/*
2257 	 * Link must be up to auto-blink the LEDs;
2258 	 * Force it if link is down.
2259 	 */
2260 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2261 
2262 	if (!link_up) {
2263 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2264 		autoc_reg |= IXGBE_AUTOC_FLU;
2265 		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2266 		msleep(10);
2267 	}
2268 
2269 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2270 	led_reg |= IXGBE_LED_BLINK(index);
2271 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2272 	IXGBE_WRITE_FLUSH(hw);
2273 
2274 	return 0;
2275 }
2276 
2277 /**
2278  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2279  *  @hw: pointer to hardware structure
2280  *  @index: led number to stop blinking
2281  **/
ixgbe_blink_led_stop_generic(struct ixgbe_hw * hw,u32 index)2282 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2283 {
2284 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2285 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2286 
2287 	autoc_reg &= ~IXGBE_AUTOC_FLU;
2288 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2289 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2290 
2291 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2292 	led_reg &= ~IXGBE_LED_BLINK(index);
2293 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2294 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2295 	IXGBE_WRITE_FLUSH(hw);
2296 
2297 	return 0;
2298 }
2299 
2300 /**
2301  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2302  *  @hw: pointer to hardware structure
2303  *  @san_mac_offset: SAN MAC address offset
2304  *
2305  *  This function will read the EEPROM location for the SAN MAC address
2306  *  pointer, and returns the value at that location.  This is used in both
2307  *  get and set mac_addr routines.
2308  **/
ixgbe_get_san_mac_addr_offset(struct ixgbe_hw * hw,u16 * san_mac_offset)2309 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2310                                         u16 *san_mac_offset)
2311 {
2312 	/*
2313 	 * First read the EEPROM pointer to see if the MAC addresses are
2314 	 * available.
2315 	 */
2316 	hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);
2317 
2318 	return 0;
2319 }
2320 
2321 /**
2322  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2323  *  @hw: pointer to hardware structure
2324  *  @san_mac_addr: SAN MAC address
2325  *
2326  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2327  *  per-port, so set_lan_id() must be called before reading the addresses.
2328  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2329  *  upon for non-SFP connections, so we must call it here.
2330  **/
ixgbe_get_san_mac_addr_generic(struct ixgbe_hw * hw,u8 * san_mac_addr)2331 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2332 {
2333 	u16 san_mac_data, san_mac_offset;
2334 	u8 i;
2335 
2336 	/*
2337 	 * First read the EEPROM pointer to see if the MAC addresses are
2338 	 * available.  If they're not, no point in calling set_lan_id() here.
2339 	 */
2340 	ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2341 
2342 	if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
2343 		/*
2344 		 * No addresses available in this EEPROM.  It's not an
2345 		 * error though, so just wipe the local address and return.
2346 		 */
2347 		for (i = 0; i < 6; i++)
2348 			san_mac_addr[i] = 0xFF;
2349 
2350 		goto san_mac_addr_out;
2351 	}
2352 
2353 	/* make sure we know which port we need to program */
2354 	hw->mac.ops.set_lan_id(hw);
2355 	/* apply the port offset to the address offset */
2356 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2357 	                 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2358 	for (i = 0; i < 3; i++) {
2359 		hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
2360 		san_mac_addr[i * 2] = (u8)(san_mac_data);
2361 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2362 		san_mac_offset++;
2363 	}
2364 
2365 san_mac_addr_out:
2366 	return 0;
2367 }
2368 
2369 /**
2370  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2371  *  @hw: pointer to hardware structure
2372  *
2373  *  Read PCIe configuration space, and get the MSI-X vector count from
2374  *  the capabilities table.
2375  **/
ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw * hw)2376 u32 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2377 {
2378 	struct ixgbe_adapter *adapter = hw->back;
2379 	u16 msix_count;
2380 	pci_read_config_word(adapter->pdev, IXGBE_PCIE_MSIX_82599_CAPS,
2381 	                     &msix_count);
2382 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2383 
2384 	/* MSI-X count is zero-based in HW, so increment to give proper value */
2385 	msix_count++;
2386 
2387 	return msix_count;
2388 }
2389 
2390 /**
2391  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2392  *  @hw: pointer to hardware struct
2393  *  @rar: receive address register index to disassociate
2394  *  @vmdq: VMDq pool index to remove from the rar
2395  **/
ixgbe_clear_vmdq_generic(struct ixgbe_hw * hw,u32 rar,u32 vmdq)2396 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2397 {
2398 	u32 mpsar_lo, mpsar_hi;
2399 	u32 rar_entries = hw->mac.num_rar_entries;
2400 
2401 	/* Make sure we are using a valid rar index range */
2402 	if (rar >= rar_entries) {
2403 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2404 		return IXGBE_ERR_INVALID_ARGUMENT;
2405 	}
2406 
2407 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2408 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2409 
2410 	if (!mpsar_lo && !mpsar_hi)
2411 		goto done;
2412 
2413 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2414 		if (mpsar_lo) {
2415 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2416 			mpsar_lo = 0;
2417 		}
2418 		if (mpsar_hi) {
2419 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2420 			mpsar_hi = 0;
2421 		}
2422 	} else if (vmdq < 32) {
2423 		mpsar_lo &= ~(1 << vmdq);
2424 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2425 	} else {
2426 		mpsar_hi &= ~(1 << (vmdq - 32));
2427 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2428 	}
2429 
2430 	/* was that the last pool using this rar? */
2431 	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
2432 		hw->mac.ops.clear_rar(hw, rar);
2433 done:
2434 	return 0;
2435 }
2436 
2437 /**
2438  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2439  *  @hw: pointer to hardware struct
2440  *  @rar: receive address register index to associate with a VMDq index
2441  *  @vmdq: VMDq pool index
2442  **/
ixgbe_set_vmdq_generic(struct ixgbe_hw * hw,u32 rar,u32 vmdq)2443 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2444 {
2445 	u32 mpsar;
2446 	u32 rar_entries = hw->mac.num_rar_entries;
2447 
2448 	/* Make sure we are using a valid rar index range */
2449 	if (rar >= rar_entries) {
2450 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2451 		return IXGBE_ERR_INVALID_ARGUMENT;
2452 	}
2453 
2454 	if (vmdq < 32) {
2455 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2456 		mpsar |= 1 << vmdq;
2457 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2458 	} else {
2459 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2460 		mpsar |= 1 << (vmdq - 32);
2461 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2462 	}
2463 	return 0;
2464 }
2465 
2466 /**
2467  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
2468  *  @hw: pointer to hardware structure
2469  **/
ixgbe_init_uta_tables_generic(struct ixgbe_hw * hw)2470 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
2471 {
2472 	int i;
2473 
2474 	for (i = 0; i < 128; i++)
2475 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
2476 
2477 	return 0;
2478 }
2479 
2480 /**
2481  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
2482  *  @hw: pointer to hardware structure
2483  *  @vlan: VLAN id to write to VLAN filter
2484  *
2485  *  return the VLVF index where this VLAN id should be placed
2486  *
2487  **/
ixgbe_find_vlvf_slot(struct ixgbe_hw * hw,u32 vlan)2488 static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
2489 {
2490 	u32 bits = 0;
2491 	u32 first_empty_slot = 0;
2492 	s32 regindex;
2493 
2494 	/* short cut the special case */
2495 	if (vlan == 0)
2496 		return 0;
2497 
2498 	/*
2499 	  * Search for the vlan id in the VLVF entries. Save off the first empty
2500 	  * slot found along the way
2501 	  */
2502 	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
2503 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
2504 		if (!bits && !(first_empty_slot))
2505 			first_empty_slot = regindex;
2506 		else if ((bits & 0x0FFF) == vlan)
2507 			break;
2508 	}
2509 
2510 	/*
2511 	  * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
2512 	  * in the VLVF. Else use the first empty VLVF register for this
2513 	  * vlan id.
2514 	  */
2515 	if (regindex >= IXGBE_VLVF_ENTRIES) {
2516 		if (first_empty_slot)
2517 			regindex = first_empty_slot;
2518 		else {
2519 			hw_dbg(hw, "No space in VLVF.\n");
2520 			regindex = IXGBE_ERR_NO_SPACE;
2521 		}
2522 	}
2523 
2524 	return regindex;
2525 }
2526 
2527 /**
2528  *  ixgbe_set_vfta_generic - Set VLAN filter table
2529  *  @hw: pointer to hardware structure
2530  *  @vlan: VLAN id to write to VLAN filter
2531  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
2532  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
2533  *
2534  *  Turn on/off specified VLAN in the VLAN filter table.
2535  **/
ixgbe_set_vfta_generic(struct ixgbe_hw * hw,u32 vlan,u32 vind,bool vlan_on)2536 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
2537                            bool vlan_on)
2538 {
2539 	s32 regindex;
2540 	u32 bitindex;
2541 	u32 vfta;
2542 	u32 bits;
2543 	u32 vt;
2544 	u32 targetbit;
2545 	bool vfta_changed = false;
2546 
2547 	if (vlan > 4095)
2548 		return IXGBE_ERR_PARAM;
2549 
2550 	/*
2551 	 * this is a 2 part operation - first the VFTA, then the
2552 	 * VLVF and VLVFB if VT Mode is set
2553 	 * We don't write the VFTA until we know the VLVF part succeeded.
2554 	 */
2555 
2556 	/* Part 1
2557 	 * The VFTA is a bitstring made up of 128 32-bit registers
2558 	 * that enable the particular VLAN id, much like the MTA:
2559 	 *    bits[11-5]: which register
2560 	 *    bits[4-0]:  which bit in the register
2561 	 */
2562 	regindex = (vlan >> 5) & 0x7F;
2563 	bitindex = vlan & 0x1F;
2564 	targetbit = (1 << bitindex);
2565 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
2566 
2567 	if (vlan_on) {
2568 		if (!(vfta & targetbit)) {
2569 			vfta |= targetbit;
2570 			vfta_changed = true;
2571 		}
2572 	} else {
2573 		if ((vfta & targetbit)) {
2574 			vfta &= ~targetbit;
2575 			vfta_changed = true;
2576 		}
2577 	}
2578 
2579 	/* Part 2
2580 	 * If VT Mode is set
2581 	 *   Either vlan_on
2582 	 *     make sure the vlan is in VLVF
2583 	 *     set the vind bit in the matching VLVFB
2584 	 *   Or !vlan_on
2585 	 *     clear the pool bit and possibly the vind
2586 	 */
2587 	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
2588 	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
2589 		s32 vlvf_index;
2590 
2591 		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
2592 		if (vlvf_index < 0)
2593 			return vlvf_index;
2594 
2595 		if (vlan_on) {
2596 			/* set the pool bit */
2597 			if (vind < 32) {
2598 				bits = IXGBE_READ_REG(hw,
2599 						IXGBE_VLVFB(vlvf_index*2));
2600 				bits |= (1 << vind);
2601 				IXGBE_WRITE_REG(hw,
2602 						IXGBE_VLVFB(vlvf_index*2),
2603 						bits);
2604 			} else {
2605 				bits = IXGBE_READ_REG(hw,
2606 						IXGBE_VLVFB((vlvf_index*2)+1));
2607 				bits |= (1 << (vind-32));
2608 				IXGBE_WRITE_REG(hw,
2609 						IXGBE_VLVFB((vlvf_index*2)+1),
2610 						bits);
2611 			}
2612 		} else {
2613 			/* clear the pool bit */
2614 			if (vind < 32) {
2615 				bits = IXGBE_READ_REG(hw,
2616 						IXGBE_VLVFB(vlvf_index*2));
2617 				bits &= ~(1 << vind);
2618 				IXGBE_WRITE_REG(hw,
2619 						IXGBE_VLVFB(vlvf_index*2),
2620 						bits);
2621 				bits |= IXGBE_READ_REG(hw,
2622 						IXGBE_VLVFB((vlvf_index*2)+1));
2623 			} else {
2624 				bits = IXGBE_READ_REG(hw,
2625 						IXGBE_VLVFB((vlvf_index*2)+1));
2626 				bits &= ~(1 << (vind-32));
2627 				IXGBE_WRITE_REG(hw,
2628 						IXGBE_VLVFB((vlvf_index*2)+1),
2629 						bits);
2630 				bits |= IXGBE_READ_REG(hw,
2631 						IXGBE_VLVFB(vlvf_index*2));
2632 			}
2633 		}
2634 
2635 		/*
2636 		 * If there are still bits set in the VLVFB registers
2637 		 * for the VLAN ID indicated we need to see if the
2638 		 * caller is requesting that we clear the VFTA entry bit.
2639 		 * If the caller has requested that we clear the VFTA
2640 		 * entry bit but there are still pools/VFs using this VLAN
2641 		 * ID entry then ignore the request.  We're not worried
2642 		 * about the case where we're turning the VFTA VLAN ID
2643 		 * entry bit on, only when requested to turn it off as
2644 		 * there may be multiple pools and/or VFs using the
2645 		 * VLAN ID entry.  In that case we cannot clear the
2646 		 * VFTA bit until all pools/VFs using that VLAN ID have also
2647 		 * been cleared.  This will be indicated by "bits" being
2648 		 * zero.
2649 		 */
2650 		if (bits) {
2651 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
2652 					(IXGBE_VLVF_VIEN | vlan));
2653 			if (!vlan_on) {
2654 				/* someone wants to clear the vfta entry
2655 				 * but some pools/VFs are still using it.
2656 				 * Ignore it. */
2657 				vfta_changed = false;
2658 			}
2659 		}
2660 		else
2661 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
2662 	}
2663 
2664 	if (vfta_changed)
2665 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
2666 
2667 	return 0;
2668 }
2669 
2670 /**
2671  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
2672  *  @hw: pointer to hardware structure
2673  *
2674  *  Clears the VLAN filer table, and the VMDq index associated with the filter
2675  **/
ixgbe_clear_vfta_generic(struct ixgbe_hw * hw)2676 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
2677 {
2678 	u32 offset;
2679 
2680 	for (offset = 0; offset < hw->mac.vft_size; offset++)
2681 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
2682 
2683 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
2684 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
2685 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
2686 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
2687 	}
2688 
2689 	return 0;
2690 }
2691 
2692 /**
2693  *  ixgbe_check_mac_link_generic - Determine link and speed status
2694  *  @hw: pointer to hardware structure
2695  *  @speed: pointer to link speed
2696  *  @link_up: true when link is up
2697  *  @link_up_wait_to_complete: bool used to wait for link up or not
2698  *
2699  *  Reads the links register to determine if link is up and the current speed
2700  **/
ixgbe_check_mac_link_generic(struct ixgbe_hw * hw,ixgbe_link_speed * speed,bool * link_up,bool link_up_wait_to_complete)2701 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
2702 				 bool *link_up, bool link_up_wait_to_complete)
2703 {
2704 	u32 links_reg, links_orig;
2705 	u32 i;
2706 
2707 	/* clear the old state */
2708 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
2709 
2710 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
2711 
2712 	if (links_orig != links_reg) {
2713 		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
2714 		       links_orig, links_reg);
2715 	}
2716 
2717 	if (link_up_wait_to_complete) {
2718 		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
2719 			if (links_reg & IXGBE_LINKS_UP) {
2720 				*link_up = true;
2721 				break;
2722 			} else {
2723 				*link_up = false;
2724 			}
2725 			msleep(100);
2726 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
2727 		}
2728 	} else {
2729 		if (links_reg & IXGBE_LINKS_UP)
2730 			*link_up = true;
2731 		else
2732 			*link_up = false;
2733 	}
2734 
2735 	if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
2736 	    IXGBE_LINKS_SPEED_10G_82599)
2737 		*speed = IXGBE_LINK_SPEED_10GB_FULL;
2738 	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
2739 		 IXGBE_LINKS_SPEED_1G_82599)
2740 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
2741 	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
2742 		 IXGBE_LINKS_SPEED_100_82599)
2743 		*speed = IXGBE_LINK_SPEED_100_FULL;
2744 	else
2745 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
2746 
2747 	/* if link is down, zero out the current_mode */
2748 	if (*link_up == false) {
2749 		hw->fc.current_mode = ixgbe_fc_none;
2750 		hw->fc.fc_was_autonegged = false;
2751 	}
2752 
2753 	return 0;
2754 }
2755 
2756 /**
2757  *  ixgbe_get_wwn_prefix_generic Get alternative WWNN/WWPN prefix from
2758  *  the EEPROM
2759  *  @hw: pointer to hardware structure
2760  *  @wwnn_prefix: the alternative WWNN prefix
2761  *  @wwpn_prefix: the alternative WWPN prefix
2762  *
2763  *  This function will read the EEPROM from the alternative SAN MAC address
2764  *  block to check the support for the alternative WWNN/WWPN prefix support.
2765  **/
ixgbe_get_wwn_prefix_generic(struct ixgbe_hw * hw,u16 * wwnn_prefix,u16 * wwpn_prefix)2766 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
2767                                         u16 *wwpn_prefix)
2768 {
2769 	u16 offset, caps;
2770 	u16 alt_san_mac_blk_offset;
2771 
2772 	/* clear output first */
2773 	*wwnn_prefix = 0xFFFF;
2774 	*wwpn_prefix = 0xFFFF;
2775 
2776 	/* check if alternative SAN MAC is supported */
2777 	hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
2778 	                    &alt_san_mac_blk_offset);
2779 
2780 	if ((alt_san_mac_blk_offset == 0) ||
2781 	    (alt_san_mac_blk_offset == 0xFFFF))
2782 		goto wwn_prefix_out;
2783 
2784 	/* check capability in alternative san mac address block */
2785 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
2786 	hw->eeprom.ops.read(hw, offset, &caps);
2787 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
2788 		goto wwn_prefix_out;
2789 
2790 	/* get the corresponding prefix for WWNN/WWPN */
2791 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
2792 	hw->eeprom.ops.read(hw, offset, wwnn_prefix);
2793 
2794 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
2795 	hw->eeprom.ops.read(hw, offset, wwpn_prefix);
2796 
2797 wwn_prefix_out:
2798 	return 0;
2799 }
2800 
2801 /**
2802  *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
2803  *  control
2804  *  @hw: pointer to hardware structure
2805  *
2806  *  There are several phys that do not support autoneg flow control. This
2807  *  function check the device id to see if the associated phy supports
2808  *  autoneg flow control.
2809  **/
ixgbe_device_supports_autoneg_fc(struct ixgbe_hw * hw)2810 static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
2811 {
2812 
2813 	switch (hw->device_id) {
2814 	case IXGBE_DEV_ID_X540T:
2815 		return 0;
2816 	case IXGBE_DEV_ID_82599_T3_LOM:
2817 		return 0;
2818 	default:
2819 		return IXGBE_ERR_FC_NOT_SUPPORTED;
2820 	}
2821 }
2822 
2823 /**
2824  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
2825  *  @hw: pointer to hardware structure
2826  *  @enable: enable or disable switch for anti-spoofing
2827  *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
2828  *
2829  **/
ixgbe_set_mac_anti_spoofing(struct ixgbe_hw * hw,bool enable,int pf)2830 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
2831 {
2832 	int j;
2833 	int pf_target_reg = pf >> 3;
2834 	int pf_target_shift = pf % 8;
2835 	u32 pfvfspoof = 0;
2836 
2837 	if (hw->mac.type == ixgbe_mac_82598EB)
2838 		return;
2839 
2840 	if (enable)
2841 		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
2842 
2843 	/*
2844 	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
2845 	 * MAC anti-spoof enables in each register array element.
2846 	 */
2847 	for (j = 0; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
2848 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
2849 
2850 	/* If not enabling anti-spoofing then done */
2851 	if (!enable)
2852 		return;
2853 
2854 	/*
2855 	 * The PF should be allowed to spoof so that it can support
2856 	 * emulation mode NICs.  Reset the bit assigned to the PF
2857 	 */
2858 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg));
2859 	pfvfspoof ^= (1 << pf_target_shift);
2860 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg), pfvfspoof);
2861 }
2862 
2863 /**
2864  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
2865  *  @hw: pointer to hardware structure
2866  *  @enable: enable or disable switch for VLAN anti-spoofing
2867  *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
2868  *
2869  **/
ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw * hw,bool enable,int vf)2870 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
2871 {
2872 	int vf_target_reg = vf >> 3;
2873 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
2874 	u32 pfvfspoof;
2875 
2876 	if (hw->mac.type == ixgbe_mac_82598EB)
2877 		return;
2878 
2879 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
2880 	if (enable)
2881 		pfvfspoof |= (1 << vf_target_shift);
2882 	else
2883 		pfvfspoof &= ~(1 << vf_target_shift);
2884 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
2885 }
2886