1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2008 - 2012 Intel Corporation. All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22  * USA
23  *
24  * The full GNU General Public License is included in this distribution
25  * in the file called LICENSE.GPL.
26  *
27  * Contact Information:
28  *  Intel Linux Wireless <ilw@linux.intel.com>
29  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30  *
31  * BSD LICENSE
32  *
33  * Copyright(c) 2005 - 2012 Intel Corporation. All rights reserved.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  *
40  *  * Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  *  * Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in
44  *    the documentation and/or other materials provided with the
45  *    distribution.
46  *  * Neither the name Intel Corporation nor the names of its
47  *    contributors may be used to endorse or promote products derived
48  *    from this software without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61  *****************************************************************************/
62 
63 #include <linux/slab.h>
64 #include <net/mac80211.h>
65 
66 #include "iwl-dev.h"
67 #include "iwl-core.h"
68 #include "iwl-agn-calib.h"
69 #include "iwl-trans.h"
70 #include "iwl-agn.h"
71 
72 /*****************************************************************************
73  * INIT calibrations framework
74  *****************************************************************************/
75 
76 /* Opaque calibration results */
77 struct iwl_calib_result {
78 	struct list_head list;
79 	size_t cmd_len;
80 	struct iwl_calib_hdr hdr;
81 	/* data follows */
82 };
83 
84 struct statistics_general_data {
85 	u32 beacon_silence_rssi_a;
86 	u32 beacon_silence_rssi_b;
87 	u32 beacon_silence_rssi_c;
88 	u32 beacon_energy_a;
89 	u32 beacon_energy_b;
90 	u32 beacon_energy_c;
91 };
92 
iwl_send_calib_results(struct iwl_priv * priv)93 int iwl_send_calib_results(struct iwl_priv *priv)
94 {
95 	struct iwl_host_cmd hcmd = {
96 		.id = REPLY_PHY_CALIBRATION_CMD,
97 		.flags = CMD_SYNC,
98 	};
99 	struct iwl_calib_result *res;
100 
101 	list_for_each_entry(res, &priv->calib_results, list) {
102 		int ret;
103 
104 		hcmd.len[0] = res->cmd_len;
105 		hcmd.data[0] = &res->hdr;
106 		hcmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY;
107 		ret = iwl_dvm_send_cmd(priv, &hcmd);
108 		if (ret) {
109 			IWL_ERR(priv, "Error %d on calib cmd %d\n",
110 				ret, res->hdr.op_code);
111 			return ret;
112 		}
113 	}
114 
115 	return 0;
116 }
117 
iwl_calib_set(struct iwl_priv * priv,const struct iwl_calib_hdr * cmd,int len)118 int iwl_calib_set(struct iwl_priv *priv,
119 		  const struct iwl_calib_hdr *cmd, int len)
120 {
121 	struct iwl_calib_result *res, *tmp;
122 
123 	res = kmalloc(sizeof(*res) + len - sizeof(struct iwl_calib_hdr),
124 		      GFP_ATOMIC);
125 	if (!res)
126 		return -ENOMEM;
127 	memcpy(&res->hdr, cmd, len);
128 	res->cmd_len = len;
129 
130 	list_for_each_entry(tmp, &priv->calib_results, list) {
131 		if (tmp->hdr.op_code == res->hdr.op_code) {
132 			list_replace(&tmp->list, &res->list);
133 			kfree(tmp);
134 			return 0;
135 		}
136 	}
137 
138 	/* wasn't in list already */
139 	list_add_tail(&res->list, &priv->calib_results);
140 
141 	return 0;
142 }
143 
iwl_calib_free_results(struct iwl_priv * priv)144 void iwl_calib_free_results(struct iwl_priv *priv)
145 {
146 	struct iwl_calib_result *res, *tmp;
147 
148 	list_for_each_entry_safe(res, tmp, &priv->calib_results, list) {
149 		list_del(&res->list);
150 		kfree(res);
151 	}
152 }
153 
154 /*****************************************************************************
155  * RUNTIME calibrations framework
156  *****************************************************************************/
157 
158 /* "false alarms" are signals that our DSP tries to lock onto,
159  *   but then determines that they are either noise, or transmissions
160  *   from a distant wireless network (also "noise", really) that get
161  *   "stepped on" by stronger transmissions within our own network.
162  * This algorithm attempts to set a sensitivity level that is high
163  *   enough to receive all of our own network traffic, but not so
164  *   high that our DSP gets too busy trying to lock onto non-network
165  *   activity/noise. */
iwl_sens_energy_cck(struct iwl_priv * priv,u32 norm_fa,u32 rx_enable_time,struct statistics_general_data * rx_info)166 static int iwl_sens_energy_cck(struct iwl_priv *priv,
167 				   u32 norm_fa,
168 				   u32 rx_enable_time,
169 				   struct statistics_general_data *rx_info)
170 {
171 	u32 max_nrg_cck = 0;
172 	int i = 0;
173 	u8 max_silence_rssi = 0;
174 	u32 silence_ref = 0;
175 	u8 silence_rssi_a = 0;
176 	u8 silence_rssi_b = 0;
177 	u8 silence_rssi_c = 0;
178 	u32 val;
179 
180 	/* "false_alarms" values below are cross-multiplications to assess the
181 	 *   numbers of false alarms within the measured period of actual Rx
182 	 *   (Rx is off when we're txing), vs the min/max expected false alarms
183 	 *   (some should be expected if rx is sensitive enough) in a
184 	 *   hypothetical listening period of 200 time units (TU), 204.8 msec:
185 	 *
186 	 * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
187 	 *
188 	 * */
189 	u32 false_alarms = norm_fa * 200 * 1024;
190 	u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
191 	u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
192 	struct iwl_sensitivity_data *data = NULL;
193 	const struct iwl_sensitivity_ranges *ranges = hw_params(priv).sens;
194 
195 	data = &(priv->sensitivity_data);
196 
197 	data->nrg_auto_corr_silence_diff = 0;
198 
199 	/* Find max silence rssi among all 3 receivers.
200 	 * This is background noise, which may include transmissions from other
201 	 *    networks, measured during silence before our network's beacon */
202 	silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a &
203 			    ALL_BAND_FILTER) >> 8);
204 	silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b &
205 			    ALL_BAND_FILTER) >> 8);
206 	silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c &
207 			    ALL_BAND_FILTER) >> 8);
208 
209 	val = max(silence_rssi_b, silence_rssi_c);
210 	max_silence_rssi = max(silence_rssi_a, (u8) val);
211 
212 	/* Store silence rssi in 20-beacon history table */
213 	data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
214 	data->nrg_silence_idx++;
215 	if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
216 		data->nrg_silence_idx = 0;
217 
218 	/* Find max silence rssi across 20 beacon history */
219 	for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
220 		val = data->nrg_silence_rssi[i];
221 		silence_ref = max(silence_ref, val);
222 	}
223 	IWL_DEBUG_CALIB(priv, "silence a %u, b %u, c %u, 20-bcn max %u\n",
224 			silence_rssi_a, silence_rssi_b, silence_rssi_c,
225 			silence_ref);
226 
227 	/* Find max rx energy (min value!) among all 3 receivers,
228 	 *   measured during beacon frame.
229 	 * Save it in 10-beacon history table. */
230 	i = data->nrg_energy_idx;
231 	val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
232 	data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
233 
234 	data->nrg_energy_idx++;
235 	if (data->nrg_energy_idx >= 10)
236 		data->nrg_energy_idx = 0;
237 
238 	/* Find min rx energy (max value) across 10 beacon history.
239 	 * This is the minimum signal level that we want to receive well.
240 	 * Add backoff (margin so we don't miss slightly lower energy frames).
241 	 * This establishes an upper bound (min value) for energy threshold. */
242 	max_nrg_cck = data->nrg_value[0];
243 	for (i = 1; i < 10; i++)
244 		max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
245 	max_nrg_cck += 6;
246 
247 	IWL_DEBUG_CALIB(priv, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
248 			rx_info->beacon_energy_a, rx_info->beacon_energy_b,
249 			rx_info->beacon_energy_c, max_nrg_cck - 6);
250 
251 	/* Count number of consecutive beacons with fewer-than-desired
252 	 *   false alarms. */
253 	if (false_alarms < min_false_alarms)
254 		data->num_in_cck_no_fa++;
255 	else
256 		data->num_in_cck_no_fa = 0;
257 	IWL_DEBUG_CALIB(priv, "consecutive bcns with few false alarms = %u\n",
258 			data->num_in_cck_no_fa);
259 
260 	/* If we got too many false alarms this time, reduce sensitivity */
261 	if ((false_alarms > max_false_alarms) &&
262 		(data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) {
263 		IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u\n",
264 		     false_alarms, max_false_alarms);
265 		IWL_DEBUG_CALIB(priv, "... reducing sensitivity\n");
266 		data->nrg_curr_state = IWL_FA_TOO_MANY;
267 		/* Store for "fewer than desired" on later beacon */
268 		data->nrg_silence_ref = silence_ref;
269 
270 		/* increase energy threshold (reduce nrg value)
271 		 *   to decrease sensitivity */
272 		data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK;
273 	/* Else if we got fewer than desired, increase sensitivity */
274 	} else if (false_alarms < min_false_alarms) {
275 		data->nrg_curr_state = IWL_FA_TOO_FEW;
276 
277 		/* Compare silence level with silence level for most recent
278 		 *   healthy number or too many false alarms */
279 		data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref -
280 						   (s32)silence_ref;
281 
282 		IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u, silence diff %d\n",
283 			 false_alarms, min_false_alarms,
284 			 data->nrg_auto_corr_silence_diff);
285 
286 		/* Increase value to increase sensitivity, but only if:
287 		 * 1a) previous beacon did *not* have *too many* false alarms
288 		 * 1b) AND there's a significant difference in Rx levels
289 		 *      from a previous beacon with too many, or healthy # FAs
290 		 * OR 2) We've seen a lot of beacons (100) with too few
291 		 *       false alarms */
292 		if ((data->nrg_prev_state != IWL_FA_TOO_MANY) &&
293 			((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
294 			(data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
295 
296 			IWL_DEBUG_CALIB(priv, "... increasing sensitivity\n");
297 			/* Increase nrg value to increase sensitivity */
298 			val = data->nrg_th_cck + NRG_STEP_CCK;
299 			data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val);
300 		} else {
301 			IWL_DEBUG_CALIB(priv, "... but not changing sensitivity\n");
302 		}
303 
304 	/* Else we got a healthy number of false alarms, keep status quo */
305 	} else {
306 		IWL_DEBUG_CALIB(priv, " FA in safe zone\n");
307 		data->nrg_curr_state = IWL_FA_GOOD_RANGE;
308 
309 		/* Store for use in "fewer than desired" with later beacon */
310 		data->nrg_silence_ref = silence_ref;
311 
312 		/* If previous beacon had too many false alarms,
313 		 *   give it some extra margin by reducing sensitivity again
314 		 *   (but don't go below measured energy of desired Rx) */
315 		if (IWL_FA_TOO_MANY == data->nrg_prev_state) {
316 			IWL_DEBUG_CALIB(priv, "... increasing margin\n");
317 			if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
318 				data->nrg_th_cck -= NRG_MARGIN;
319 			else
320 				data->nrg_th_cck = max_nrg_cck;
321 		}
322 	}
323 
324 	/* Make sure the energy threshold does not go above the measured
325 	 * energy of the desired Rx signals (reduced by backoff margin),
326 	 * or else we might start missing Rx frames.
327 	 * Lower value is higher energy, so we use max()!
328 	 */
329 	data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
330 	IWL_DEBUG_CALIB(priv, "new nrg_th_cck %u\n", data->nrg_th_cck);
331 
332 	data->nrg_prev_state = data->nrg_curr_state;
333 
334 	/* Auto-correlation CCK algorithm */
335 	if (false_alarms > min_false_alarms) {
336 
337 		/* increase auto_corr values to decrease sensitivity
338 		 * so the DSP won't be disturbed by the noise
339 		 */
340 		if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
341 			data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
342 		else {
343 			val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
344 			data->auto_corr_cck =
345 				min((u32)ranges->auto_corr_max_cck, val);
346 		}
347 		val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
348 		data->auto_corr_cck_mrc =
349 			min((u32)ranges->auto_corr_max_cck_mrc, val);
350 	} else if ((false_alarms < min_false_alarms) &&
351 	   ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
352 	   (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
353 
354 		/* Decrease auto_corr values to increase sensitivity */
355 		val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
356 		data->auto_corr_cck =
357 			max((u32)ranges->auto_corr_min_cck, val);
358 		val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
359 		data->auto_corr_cck_mrc =
360 			max((u32)ranges->auto_corr_min_cck_mrc, val);
361 	}
362 
363 	return 0;
364 }
365 
366 
iwl_sens_auto_corr_ofdm(struct iwl_priv * priv,u32 norm_fa,u32 rx_enable_time)367 static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv,
368 				       u32 norm_fa,
369 				       u32 rx_enable_time)
370 {
371 	u32 val;
372 	u32 false_alarms = norm_fa * 200 * 1024;
373 	u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
374 	u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
375 	struct iwl_sensitivity_data *data = NULL;
376 	const struct iwl_sensitivity_ranges *ranges = hw_params(priv).sens;
377 
378 	data = &(priv->sensitivity_data);
379 
380 	/* If we got too many false alarms this time, reduce sensitivity */
381 	if (false_alarms > max_false_alarms) {
382 
383 		IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u)\n",
384 			     false_alarms, max_false_alarms);
385 
386 		val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
387 		data->auto_corr_ofdm =
388 			min((u32)ranges->auto_corr_max_ofdm, val);
389 
390 		val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
391 		data->auto_corr_ofdm_mrc =
392 			min((u32)ranges->auto_corr_max_ofdm_mrc, val);
393 
394 		val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
395 		data->auto_corr_ofdm_x1 =
396 			min((u32)ranges->auto_corr_max_ofdm_x1, val);
397 
398 		val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
399 		data->auto_corr_ofdm_mrc_x1 =
400 			min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val);
401 	}
402 
403 	/* Else if we got fewer than desired, increase sensitivity */
404 	else if (false_alarms < min_false_alarms) {
405 
406 		IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u\n",
407 			     false_alarms, min_false_alarms);
408 
409 		val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
410 		data->auto_corr_ofdm =
411 			max((u32)ranges->auto_corr_min_ofdm, val);
412 
413 		val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
414 		data->auto_corr_ofdm_mrc =
415 			max((u32)ranges->auto_corr_min_ofdm_mrc, val);
416 
417 		val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
418 		data->auto_corr_ofdm_x1 =
419 			max((u32)ranges->auto_corr_min_ofdm_x1, val);
420 
421 		val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
422 		data->auto_corr_ofdm_mrc_x1 =
423 			max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val);
424 	} else {
425 		IWL_DEBUG_CALIB(priv, "min FA %u < norm FA %u < max FA %u OK\n",
426 			 min_false_alarms, false_alarms, max_false_alarms);
427 	}
428 	return 0;
429 }
430 
iwl_prepare_legacy_sensitivity_tbl(struct iwl_priv * priv,struct iwl_sensitivity_data * data,__le16 * tbl)431 static void iwl_prepare_legacy_sensitivity_tbl(struct iwl_priv *priv,
432 				struct iwl_sensitivity_data *data,
433 				__le16 *tbl)
434 {
435 	tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] =
436 				cpu_to_le16((u16)data->auto_corr_ofdm);
437 	tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] =
438 				cpu_to_le16((u16)data->auto_corr_ofdm_mrc);
439 	tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] =
440 				cpu_to_le16((u16)data->auto_corr_ofdm_x1);
441 	tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] =
442 				cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1);
443 
444 	tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] =
445 				cpu_to_le16((u16)data->auto_corr_cck);
446 	tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] =
447 				cpu_to_le16((u16)data->auto_corr_cck_mrc);
448 
449 	tbl[HD_MIN_ENERGY_CCK_DET_INDEX] =
450 				cpu_to_le16((u16)data->nrg_th_cck);
451 	tbl[HD_MIN_ENERGY_OFDM_DET_INDEX] =
452 				cpu_to_le16((u16)data->nrg_th_ofdm);
453 
454 	tbl[HD_BARKER_CORR_TH_ADD_MIN_INDEX] =
455 				cpu_to_le16(data->barker_corr_th_min);
456 	tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] =
457 				cpu_to_le16(data->barker_corr_th_min_mrc);
458 	tbl[HD_OFDM_ENERGY_TH_IN_INDEX] =
459 				cpu_to_le16(data->nrg_th_cca);
460 
461 	IWL_DEBUG_CALIB(priv, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
462 			data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
463 			data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
464 			data->nrg_th_ofdm);
465 
466 	IWL_DEBUG_CALIB(priv, "cck: ac %u mrc %u thresh %u\n",
467 			data->auto_corr_cck, data->auto_corr_cck_mrc,
468 			data->nrg_th_cck);
469 }
470 
471 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
iwl_sensitivity_write(struct iwl_priv * priv)472 static int iwl_sensitivity_write(struct iwl_priv *priv)
473 {
474 	struct iwl_sensitivity_cmd cmd;
475 	struct iwl_sensitivity_data *data = NULL;
476 	struct iwl_host_cmd cmd_out = {
477 		.id = SENSITIVITY_CMD,
478 		.len = { sizeof(struct iwl_sensitivity_cmd), },
479 		.flags = CMD_ASYNC,
480 		.data = { &cmd, },
481 	};
482 
483 	data = &(priv->sensitivity_data);
484 
485 	memset(&cmd, 0, sizeof(cmd));
486 
487 	iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.table[0]);
488 
489 	/* Update uCode's "work" table, and copy it to DSP */
490 	cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
491 
492 	/* Don't send command to uCode if nothing has changed */
493 	if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]),
494 		    sizeof(u16)*HD_TABLE_SIZE)) {
495 		IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
496 		return 0;
497 	}
498 
499 	/* Copy table for comparison next time */
500 	memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]),
501 	       sizeof(u16)*HD_TABLE_SIZE);
502 
503 	return iwl_dvm_send_cmd(priv, &cmd_out);
504 }
505 
506 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
iwl_enhance_sensitivity_write(struct iwl_priv * priv)507 static int iwl_enhance_sensitivity_write(struct iwl_priv *priv)
508 {
509 	struct iwl_enhance_sensitivity_cmd cmd;
510 	struct iwl_sensitivity_data *data = NULL;
511 	struct iwl_host_cmd cmd_out = {
512 		.id = SENSITIVITY_CMD,
513 		.len = { sizeof(struct iwl_enhance_sensitivity_cmd), },
514 		.flags = CMD_ASYNC,
515 		.data = { &cmd, },
516 	};
517 
518 	data = &(priv->sensitivity_data);
519 
520 	memset(&cmd, 0, sizeof(cmd));
521 
522 	iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.enhance_table[0]);
523 
524 	if (cfg(priv)->base_params->hd_v2) {
525 		cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
526 			HD_INA_NON_SQUARE_DET_OFDM_DATA_V2;
527 		cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
528 			HD_INA_NON_SQUARE_DET_CCK_DATA_V2;
529 		cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
530 			HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2;
531 		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
532 			HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
533 		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
534 			HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
535 		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
536 			HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2;
537 		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
538 			HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2;
539 		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
540 			HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
541 		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
542 			HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
543 		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
544 			HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2;
545 		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
546 			HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2;
547 	} else {
548 		cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
549 			HD_INA_NON_SQUARE_DET_OFDM_DATA_V1;
550 		cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
551 			HD_INA_NON_SQUARE_DET_CCK_DATA_V1;
552 		cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
553 			HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1;
554 		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
555 			HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
556 		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
557 			HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
558 		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
559 			HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1;
560 		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
561 			HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1;
562 		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
563 			HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
564 		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
565 			HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
566 		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
567 			HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1;
568 		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
569 			HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1;
570 	}
571 
572 	/* Update uCode's "work" table, and copy it to DSP */
573 	cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
574 
575 	/* Don't send command to uCode if nothing has changed */
576 	if (!memcmp(&cmd.enhance_table[0], &(priv->sensitivity_tbl[0]),
577 		    sizeof(u16)*HD_TABLE_SIZE) &&
578 	    !memcmp(&cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX],
579 		    &(priv->enhance_sensitivity_tbl[0]),
580 		    sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES)) {
581 		IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
582 		return 0;
583 	}
584 
585 	/* Copy table for comparison next time */
586 	memcpy(&(priv->sensitivity_tbl[0]), &(cmd.enhance_table[0]),
587 	       sizeof(u16)*HD_TABLE_SIZE);
588 	memcpy(&(priv->enhance_sensitivity_tbl[0]),
589 	       &(cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX]),
590 	       sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES);
591 
592 	return iwl_dvm_send_cmd(priv, &cmd_out);
593 }
594 
iwl_init_sensitivity(struct iwl_priv * priv)595 void iwl_init_sensitivity(struct iwl_priv *priv)
596 {
597 	int ret = 0;
598 	int i;
599 	struct iwl_sensitivity_data *data = NULL;
600 	const struct iwl_sensitivity_ranges *ranges = hw_params(priv).sens;
601 
602 	if (priv->disable_sens_cal)
603 		return;
604 
605 	IWL_DEBUG_CALIB(priv, "Start iwl_init_sensitivity\n");
606 
607 	/* Clear driver's sensitivity algo data */
608 	data = &(priv->sensitivity_data);
609 
610 	if (ranges == NULL)
611 		return;
612 
613 	memset(data, 0, sizeof(struct iwl_sensitivity_data));
614 
615 	data->num_in_cck_no_fa = 0;
616 	data->nrg_curr_state = IWL_FA_TOO_MANY;
617 	data->nrg_prev_state = IWL_FA_TOO_MANY;
618 	data->nrg_silence_ref = 0;
619 	data->nrg_silence_idx = 0;
620 	data->nrg_energy_idx = 0;
621 
622 	for (i = 0; i < 10; i++)
623 		data->nrg_value[i] = 0;
624 
625 	for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
626 		data->nrg_silence_rssi[i] = 0;
627 
628 	data->auto_corr_ofdm =  ranges->auto_corr_min_ofdm;
629 	data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
630 	data->auto_corr_ofdm_x1  = ranges->auto_corr_min_ofdm_x1;
631 	data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
632 	data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
633 	data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
634 	data->nrg_th_cck = ranges->nrg_th_cck;
635 	data->nrg_th_ofdm = ranges->nrg_th_ofdm;
636 	data->barker_corr_th_min = ranges->barker_corr_th_min;
637 	data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc;
638 	data->nrg_th_cca = ranges->nrg_th_cca;
639 
640 	data->last_bad_plcp_cnt_ofdm = 0;
641 	data->last_fa_cnt_ofdm = 0;
642 	data->last_bad_plcp_cnt_cck = 0;
643 	data->last_fa_cnt_cck = 0;
644 
645 	if (priv->fw->enhance_sensitivity_table)
646 		ret |= iwl_enhance_sensitivity_write(priv);
647 	else
648 		ret |= iwl_sensitivity_write(priv);
649 	IWL_DEBUG_CALIB(priv, "<<return 0x%X\n", ret);
650 }
651 
iwl_sensitivity_calibration(struct iwl_priv * priv)652 void iwl_sensitivity_calibration(struct iwl_priv *priv)
653 {
654 	u32 rx_enable_time;
655 	u32 fa_cck;
656 	u32 fa_ofdm;
657 	u32 bad_plcp_cck;
658 	u32 bad_plcp_ofdm;
659 	u32 norm_fa_ofdm;
660 	u32 norm_fa_cck;
661 	struct iwl_sensitivity_data *data = NULL;
662 	struct statistics_rx_non_phy *rx_info;
663 	struct statistics_rx_phy *ofdm, *cck;
664 	struct statistics_general_data statis;
665 
666 	if (priv->disable_sens_cal)
667 		return;
668 
669 	data = &(priv->sensitivity_data);
670 
671 	if (!iwl_is_any_associated(priv)) {
672 		IWL_DEBUG_CALIB(priv, "<< - not associated\n");
673 		return;
674 	}
675 
676 	spin_lock_bh(&priv->statistics.lock);
677 	rx_info = &priv->statistics.rx_non_phy;
678 	ofdm = &priv->statistics.rx_ofdm;
679 	cck = &priv->statistics.rx_cck;
680 	if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
681 		IWL_DEBUG_CALIB(priv, "<< invalid data.\n");
682 		spin_unlock_bh(&priv->statistics.lock);
683 		return;
684 	}
685 
686 	/* Extract Statistics: */
687 	rx_enable_time = le32_to_cpu(rx_info->channel_load);
688 	fa_cck = le32_to_cpu(cck->false_alarm_cnt);
689 	fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt);
690 	bad_plcp_cck = le32_to_cpu(cck->plcp_err);
691 	bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err);
692 
693 	statis.beacon_silence_rssi_a =
694 			le32_to_cpu(rx_info->beacon_silence_rssi_a);
695 	statis.beacon_silence_rssi_b =
696 			le32_to_cpu(rx_info->beacon_silence_rssi_b);
697 	statis.beacon_silence_rssi_c =
698 			le32_to_cpu(rx_info->beacon_silence_rssi_c);
699 	statis.beacon_energy_a =
700 			le32_to_cpu(rx_info->beacon_energy_a);
701 	statis.beacon_energy_b =
702 			le32_to_cpu(rx_info->beacon_energy_b);
703 	statis.beacon_energy_c =
704 			le32_to_cpu(rx_info->beacon_energy_c);
705 
706 	spin_unlock_bh(&priv->statistics.lock);
707 
708 	IWL_DEBUG_CALIB(priv, "rx_enable_time = %u usecs\n", rx_enable_time);
709 
710 	if (!rx_enable_time) {
711 		IWL_DEBUG_CALIB(priv, "<< RX Enable Time == 0!\n");
712 		return;
713 	}
714 
715 	/* These statistics increase monotonically, and do not reset
716 	 *   at each beacon.  Calculate difference from last value, or just
717 	 *   use the new statistics value if it has reset or wrapped around. */
718 	if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
719 		data->last_bad_plcp_cnt_cck = bad_plcp_cck;
720 	else {
721 		bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
722 		data->last_bad_plcp_cnt_cck += bad_plcp_cck;
723 	}
724 
725 	if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
726 		data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
727 	else {
728 		bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
729 		data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
730 	}
731 
732 	if (data->last_fa_cnt_ofdm > fa_ofdm)
733 		data->last_fa_cnt_ofdm = fa_ofdm;
734 	else {
735 		fa_ofdm -= data->last_fa_cnt_ofdm;
736 		data->last_fa_cnt_ofdm += fa_ofdm;
737 	}
738 
739 	if (data->last_fa_cnt_cck > fa_cck)
740 		data->last_fa_cnt_cck = fa_cck;
741 	else {
742 		fa_cck -= data->last_fa_cnt_cck;
743 		data->last_fa_cnt_cck += fa_cck;
744 	}
745 
746 	/* Total aborted signal locks */
747 	norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
748 	norm_fa_cck = fa_cck + bad_plcp_cck;
749 
750 	IWL_DEBUG_CALIB(priv, "cck: fa %u badp %u  ofdm: fa %u badp %u\n", fa_cck,
751 			bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
752 
753 	iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time);
754 	iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis);
755 	if (priv->fw->enhance_sensitivity_table)
756 		iwl_enhance_sensitivity_write(priv);
757 	else
758 		iwl_sensitivity_write(priv);
759 }
760 
find_first_chain(u8 mask)761 static inline u8 find_first_chain(u8 mask)
762 {
763 	if (mask & ANT_A)
764 		return CHAIN_A;
765 	if (mask & ANT_B)
766 		return CHAIN_B;
767 	return CHAIN_C;
768 }
769 
770 /**
771  * Run disconnected antenna algorithm to find out which antennas are
772  * disconnected.
773  */
iwl_find_disconn_antenna(struct iwl_priv * priv,u32 * average_sig,struct iwl_chain_noise_data * data)774 static void iwl_find_disconn_antenna(struct iwl_priv *priv, u32* average_sig,
775 				     struct iwl_chain_noise_data *data)
776 {
777 	u32 active_chains = 0;
778 	u32 max_average_sig;
779 	u16 max_average_sig_antenna_i;
780 	u8 num_tx_chains;
781 	u8 first_chain;
782 	u16 i = 0;
783 
784 	average_sig[0] = data->chain_signal_a / IWL_CAL_NUM_BEACONS;
785 	average_sig[1] = data->chain_signal_b / IWL_CAL_NUM_BEACONS;
786 	average_sig[2] = data->chain_signal_c / IWL_CAL_NUM_BEACONS;
787 
788 	if (average_sig[0] >= average_sig[1]) {
789 		max_average_sig = average_sig[0];
790 		max_average_sig_antenna_i = 0;
791 		active_chains = (1 << max_average_sig_antenna_i);
792 	} else {
793 		max_average_sig = average_sig[1];
794 		max_average_sig_antenna_i = 1;
795 		active_chains = (1 << max_average_sig_antenna_i);
796 	}
797 
798 	if (average_sig[2] >= max_average_sig) {
799 		max_average_sig = average_sig[2];
800 		max_average_sig_antenna_i = 2;
801 		active_chains = (1 << max_average_sig_antenna_i);
802 	}
803 
804 	IWL_DEBUG_CALIB(priv, "average_sig: a %d b %d c %d\n",
805 		     average_sig[0], average_sig[1], average_sig[2]);
806 	IWL_DEBUG_CALIB(priv, "max_average_sig = %d, antenna %d\n",
807 		     max_average_sig, max_average_sig_antenna_i);
808 
809 	/* Compare signal strengths for all 3 receivers. */
810 	for (i = 0; i < NUM_RX_CHAINS; i++) {
811 		if (i != max_average_sig_antenna_i) {
812 			s32 rssi_delta = (max_average_sig - average_sig[i]);
813 
814 			/* If signal is very weak, compared with
815 			 * strongest, mark it as disconnected. */
816 			if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
817 				data->disconn_array[i] = 1;
818 			else
819 				active_chains |= (1 << i);
820 			IWL_DEBUG_CALIB(priv, "i = %d  rssiDelta = %d  "
821 			     "disconn_array[i] = %d\n",
822 			     i, rssi_delta, data->disconn_array[i]);
823 		}
824 	}
825 
826 	/*
827 	 * The above algorithm sometimes fails when the ucode
828 	 * reports 0 for all chains. It's not clear why that
829 	 * happens to start with, but it is then causing trouble
830 	 * because this can make us enable more chains than the
831 	 * hardware really has.
832 	 *
833 	 * To be safe, simply mask out any chains that we know
834 	 * are not on the device.
835 	 */
836 	active_chains &= hw_params(priv).valid_rx_ant;
837 
838 	num_tx_chains = 0;
839 	for (i = 0; i < NUM_RX_CHAINS; i++) {
840 		/* loops on all the bits of
841 		 * priv->hw_setting.valid_tx_ant */
842 		u8 ant_msk = (1 << i);
843 		if (!(hw_params(priv).valid_tx_ant & ant_msk))
844 			continue;
845 
846 		num_tx_chains++;
847 		if (data->disconn_array[i] == 0)
848 			/* there is a Tx antenna connected */
849 			break;
850 		if (num_tx_chains == hw_params(priv).tx_chains_num &&
851 		    data->disconn_array[i]) {
852 			/*
853 			 * If all chains are disconnected
854 			 * connect the first valid tx chain
855 			 */
856 			first_chain =
857 				find_first_chain(hw_params(priv).valid_tx_ant);
858 			data->disconn_array[first_chain] = 0;
859 			active_chains |= BIT(first_chain);
860 			IWL_DEBUG_CALIB(priv,
861 					"All Tx chains are disconnected W/A - declare %d as connected\n",
862 					first_chain);
863 			break;
864 		}
865 	}
866 
867 	if (active_chains != hw_params(priv).valid_rx_ant &&
868 	    active_chains != priv->chain_noise_data.active_chains)
869 		IWL_DEBUG_CALIB(priv,
870 				"Detected that not all antennas are connected! "
871 				"Connected: %#x, valid: %#x.\n",
872 				active_chains,
873 				hw_params(priv).valid_rx_ant);
874 
875 	/* Save for use within RXON, TX, SCAN commands, etc. */
876 	data->active_chains = active_chains;
877 	IWL_DEBUG_CALIB(priv, "active_chains (bitwise) = 0x%x\n",
878 			active_chains);
879 }
880 
iwlagn_gain_computation(struct iwl_priv * priv,u32 average_noise[NUM_RX_CHAINS],u8 default_chain)881 static void iwlagn_gain_computation(struct iwl_priv *priv,
882 				    u32 average_noise[NUM_RX_CHAINS],
883 				    u8 default_chain)
884 {
885 	int i;
886 	s32 delta_g;
887 	struct iwl_chain_noise_data *data = &priv->chain_noise_data;
888 
889 	/*
890 	 * Find Gain Code for the chains based on "default chain"
891 	 */
892 	for (i = default_chain + 1; i < NUM_RX_CHAINS; i++) {
893 		if ((data->disconn_array[i])) {
894 			data->delta_gain_code[i] = 0;
895 			continue;
896 		}
897 
898 		delta_g = (cfg(priv)->base_params->chain_noise_scale *
899 			((s32)average_noise[default_chain] -
900 			(s32)average_noise[i])) / 1500;
901 
902 		/* bound gain by 2 bits value max, 3rd bit is sign */
903 		data->delta_gain_code[i] =
904 			min(abs(delta_g),
905 			(long) CHAIN_NOISE_MAX_DELTA_GAIN_CODE);
906 
907 		if (delta_g < 0)
908 			/*
909 			 * set negative sign ...
910 			 * note to Intel developers:  This is uCode API format,
911 			 *   not the format of any internal device registers.
912 			 *   Do not change this format for e.g. 6050 or similar
913 			 *   devices.  Change format only if more resolution
914 			 *   (i.e. more than 2 bits magnitude) is needed.
915 			 */
916 			data->delta_gain_code[i] |= (1 << 2);
917 	}
918 
919 	IWL_DEBUG_CALIB(priv, "Delta gains: ANT_B = %d  ANT_C = %d\n",
920 			data->delta_gain_code[1], data->delta_gain_code[2]);
921 
922 	if (!data->radio_write) {
923 		struct iwl_calib_chain_noise_gain_cmd cmd;
924 
925 		memset(&cmd, 0, sizeof(cmd));
926 
927 		iwl_set_calib_hdr(&cmd.hdr,
928 			priv->phy_calib_chain_noise_gain_cmd);
929 		cmd.delta_gain_1 = data->delta_gain_code[1];
930 		cmd.delta_gain_2 = data->delta_gain_code[2];
931 		iwl_dvm_send_cmd_pdu(priv, REPLY_PHY_CALIBRATION_CMD,
932 			CMD_ASYNC, sizeof(cmd), &cmd);
933 
934 		data->radio_write = 1;
935 		data->state = IWL_CHAIN_NOISE_CALIBRATED;
936 	}
937 }
938 
939 /*
940  * Accumulate 16 beacons of signal and noise statistics for each of
941  *   3 receivers/antennas/rx-chains, then figure out:
942  * 1)  Which antennas are connected.
943  * 2)  Differential rx gain settings to balance the 3 receivers.
944  */
iwl_chain_noise_calibration(struct iwl_priv * priv)945 void iwl_chain_noise_calibration(struct iwl_priv *priv)
946 {
947 	struct iwl_chain_noise_data *data = NULL;
948 
949 	u32 chain_noise_a;
950 	u32 chain_noise_b;
951 	u32 chain_noise_c;
952 	u32 chain_sig_a;
953 	u32 chain_sig_b;
954 	u32 chain_sig_c;
955 	u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
956 	u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
957 	u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
958 	u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
959 	u16 i = 0;
960 	u16 rxon_chnum = INITIALIZATION_VALUE;
961 	u16 stat_chnum = INITIALIZATION_VALUE;
962 	u8 rxon_band24;
963 	u8 stat_band24;
964 	struct statistics_rx_non_phy *rx_info;
965 
966 	/*
967 	 * MULTI-FIXME:
968 	 * When we support multiple interfaces on different channels,
969 	 * this must be modified/fixed.
970 	 */
971 	struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS];
972 
973 	if (priv->disable_chain_noise_cal)
974 		return;
975 
976 	data = &(priv->chain_noise_data);
977 
978 	/*
979 	 * Accumulate just the first "chain_noise_num_beacons" after
980 	 * the first association, then we're done forever.
981 	 */
982 	if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) {
983 		if (data->state == IWL_CHAIN_NOISE_ALIVE)
984 			IWL_DEBUG_CALIB(priv, "Wait for noise calib reset\n");
985 		return;
986 	}
987 
988 	spin_lock_bh(&priv->statistics.lock);
989 
990 	rx_info = &priv->statistics.rx_non_phy;
991 
992 	if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
993 		IWL_DEBUG_CALIB(priv, " << Interference data unavailable\n");
994 		spin_unlock_bh(&priv->statistics.lock);
995 		return;
996 	}
997 
998 	rxon_band24 = !!(ctx->staging.flags & RXON_FLG_BAND_24G_MSK);
999 	rxon_chnum = le16_to_cpu(ctx->staging.channel);
1000 	stat_band24 =
1001 		!!(priv->statistics.flag & STATISTICS_REPLY_FLG_BAND_24G_MSK);
1002 	stat_chnum = le32_to_cpu(priv->statistics.flag) >> 16;
1003 
1004 	/* Make sure we accumulate data for just the associated channel
1005 	 *   (even if scanning). */
1006 	if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) {
1007 		IWL_DEBUG_CALIB(priv, "Stats not from chan=%d, band24=%d\n",
1008 				rxon_chnum, rxon_band24);
1009 		spin_unlock_bh(&priv->statistics.lock);
1010 		return;
1011 	}
1012 
1013 	/*
1014 	 *  Accumulate beacon statistics values across
1015 	 * "chain_noise_num_beacons"
1016 	 */
1017 	chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) &
1018 				IN_BAND_FILTER;
1019 	chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) &
1020 				IN_BAND_FILTER;
1021 	chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) &
1022 				IN_BAND_FILTER;
1023 
1024 	chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
1025 	chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
1026 	chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
1027 
1028 	spin_unlock_bh(&priv->statistics.lock);
1029 
1030 	data->beacon_count++;
1031 
1032 	data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
1033 	data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
1034 	data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
1035 
1036 	data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
1037 	data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
1038 	data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
1039 
1040 	IWL_DEBUG_CALIB(priv, "chan=%d, band24=%d, beacon=%d\n",
1041 			rxon_chnum, rxon_band24, data->beacon_count);
1042 	IWL_DEBUG_CALIB(priv, "chain_sig: a %d b %d c %d\n",
1043 			chain_sig_a, chain_sig_b, chain_sig_c);
1044 	IWL_DEBUG_CALIB(priv, "chain_noise: a %d b %d c %d\n",
1045 			chain_noise_a, chain_noise_b, chain_noise_c);
1046 
1047 	/* If this is the "chain_noise_num_beacons", determine:
1048 	 * 1)  Disconnected antennas (using signal strengths)
1049 	 * 2)  Differential gain (using silence noise) to balance receivers */
1050 	if (data->beacon_count != IWL_CAL_NUM_BEACONS)
1051 		return;
1052 
1053 	/* Analyze signal for disconnected antenna */
1054 	if (cfg(priv)->bt_params &&
1055 	    cfg(priv)->bt_params->advanced_bt_coexist) {
1056 		/* Disable disconnected antenna algorithm for advanced
1057 		   bt coex, assuming valid antennas are connected */
1058 		data->active_chains = hw_params(priv).valid_rx_ant;
1059 		for (i = 0; i < NUM_RX_CHAINS; i++)
1060 			if (!(data->active_chains & (1<<i)))
1061 				data->disconn_array[i] = 1;
1062 	} else
1063 		iwl_find_disconn_antenna(priv, average_sig, data);
1064 
1065 	/* Analyze noise for rx balance */
1066 	average_noise[0] = data->chain_noise_a / IWL_CAL_NUM_BEACONS;
1067 	average_noise[1] = data->chain_noise_b / IWL_CAL_NUM_BEACONS;
1068 	average_noise[2] = data->chain_noise_c / IWL_CAL_NUM_BEACONS;
1069 
1070 	for (i = 0; i < NUM_RX_CHAINS; i++) {
1071 		if (!(data->disconn_array[i]) &&
1072 		   (average_noise[i] <= min_average_noise)) {
1073 			/* This means that chain i is active and has
1074 			 * lower noise values so far: */
1075 			min_average_noise = average_noise[i];
1076 			min_average_noise_antenna_i = i;
1077 		}
1078 	}
1079 
1080 	IWL_DEBUG_CALIB(priv, "average_noise: a %d b %d c %d\n",
1081 			average_noise[0], average_noise[1],
1082 			average_noise[2]);
1083 
1084 	IWL_DEBUG_CALIB(priv, "min_average_noise = %d, antenna %d\n",
1085 			min_average_noise, min_average_noise_antenna_i);
1086 
1087 	iwlagn_gain_computation(priv, average_noise,
1088 				find_first_chain(hw_params(priv).valid_rx_ant));
1089 
1090 	/* Some power changes may have been made during the calibration.
1091 	 * Update and commit the RXON
1092 	 */
1093 	iwl_update_chain_flags(priv);
1094 
1095 	data->state = IWL_CHAIN_NOISE_DONE;
1096 	iwl_power_update_mode(priv, false);
1097 }
1098 
iwl_reset_run_time_calib(struct iwl_priv * priv)1099 void iwl_reset_run_time_calib(struct iwl_priv *priv)
1100 {
1101 	int i;
1102 	memset(&(priv->sensitivity_data), 0,
1103 	       sizeof(struct iwl_sensitivity_data));
1104 	memset(&(priv->chain_noise_data), 0,
1105 	       sizeof(struct iwl_chain_noise_data));
1106 	for (i = 0; i < NUM_RX_CHAINS; i++)
1107 		priv->chain_noise_data.delta_gain_code[i] =
1108 				CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
1109 
1110 	/* Ask for statistics now, the uCode will send notification
1111 	 * periodically after association */
1112 	iwl_send_statistics_request(priv, CMD_ASYNC, true);
1113 }
1114