1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3 * Copyright (C) 2003-2014, 2018-2022 Intel Corporation
4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5 * Copyright (C) 2016-2017 Intel Deutschland GmbH
6 */
7 #include <linux/sched.h>
8 #include <linux/wait.h>
9 #include <linux/gfp.h>
10
11 #include "iwl-prph.h"
12 #include "iwl-io.h"
13 #include "internal.h"
14 #include "iwl-op-mode.h"
15 #include "iwl-context-info-gen3.h"
16
17 /******************************************************************************
18 *
19 * RX path functions
20 *
21 ******************************************************************************/
22
23 /*
24 * Rx theory of operation
25 *
26 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
27 * each of which point to Receive Buffers to be filled by the NIC. These get
28 * used not only for Rx frames, but for any command response or notification
29 * from the NIC. The driver and NIC manage the Rx buffers by means
30 * of indexes into the circular buffer.
31 *
32 * Rx Queue Indexes
33 * The host/firmware share two index registers for managing the Rx buffers.
34 *
35 * The READ index maps to the first position that the firmware may be writing
36 * to -- the driver can read up to (but not including) this position and get
37 * good data.
38 * The READ index is managed by the firmware once the card is enabled.
39 *
40 * The WRITE index maps to the last position the driver has read from -- the
41 * position preceding WRITE is the last slot the firmware can place a packet.
42 *
43 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
44 * WRITE = READ.
45 *
46 * During initialization, the host sets up the READ queue position to the first
47 * INDEX position, and WRITE to the last (READ - 1 wrapped)
48 *
49 * When the firmware places a packet in a buffer, it will advance the READ index
50 * and fire the RX interrupt. The driver can then query the READ index and
51 * process as many packets as possible, moving the WRITE index forward as it
52 * resets the Rx queue buffers with new memory.
53 *
54 * The management in the driver is as follows:
55 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
56 * When the interrupt handler is called, the request is processed.
57 * The page is either stolen - transferred to the upper layer
58 * or reused - added immediately to the iwl->rxq->rx_free list.
59 * + When the page is stolen - the driver updates the matching queue's used
60 * count, detaches the RBD and transfers it to the queue used list.
61 * When there are two used RBDs - they are transferred to the allocator empty
62 * list. Work is then scheduled for the allocator to start allocating
63 * eight buffers.
64 * When there are another 6 used RBDs - they are transferred to the allocator
65 * empty list and the driver tries to claim the pre-allocated buffers and
66 * add them to iwl->rxq->rx_free. If it fails - it continues to claim them
67 * until ready.
68 * When there are 8+ buffers in the free list - either from allocation or from
69 * 8 reused unstolen pages - restock is called to update the FW and indexes.
70 * + In order to make sure the allocator always has RBDs to use for allocation
71 * the allocator has initial pool in the size of num_queues*(8-2) - the
72 * maximum missing RBDs per allocation request (request posted with 2
73 * empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
74 * The queues supplies the recycle of the rest of the RBDs.
75 * + A received packet is processed and handed to the kernel network stack,
76 * detached from the iwl->rxq. The driver 'processed' index is updated.
77 * + If there are no allocated buffers in iwl->rxq->rx_free,
78 * the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
79 * If there were enough free buffers and RX_STALLED is set it is cleared.
80 *
81 *
82 * Driver sequence:
83 *
84 * iwl_rxq_alloc() Allocates rx_free
85 * iwl_pcie_rx_replenish() Replenishes rx_free list from rx_used, and calls
86 * iwl_pcie_rxq_restock.
87 * Used only during initialization.
88 * iwl_pcie_rxq_restock() Moves available buffers from rx_free into Rx
89 * queue, updates firmware pointers, and updates
90 * the WRITE index.
91 * iwl_pcie_rx_allocator() Background work for allocating pages.
92 *
93 * -- enable interrupts --
94 * ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the
95 * READ INDEX, detaching the SKB from the pool.
96 * Moves the packet buffer from queue to rx_used.
97 * Posts and claims requests to the allocator.
98 * Calls iwl_pcie_rxq_restock to refill any empty
99 * slots.
100 *
101 * RBD life-cycle:
102 *
103 * Init:
104 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
105 *
106 * Regular Receive interrupt:
107 * Page Stolen:
108 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
109 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
110 * Page not Stolen:
111 * rxq.queue -> rxq.rx_free -> rxq.queue
112 * ...
113 *
114 */
115
116 /*
117 * iwl_rxq_space - Return number of free slots available in queue.
118 */
iwl_rxq_space(const struct iwl_rxq * rxq)119 static int iwl_rxq_space(const struct iwl_rxq *rxq)
120 {
121 /* Make sure rx queue size is a power of 2 */
122 WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
123
124 /*
125 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
126 * between empty and completely full queues.
127 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
128 * defined for negative dividends.
129 */
130 return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
131 }
132
133 /*
134 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
135 */
iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)136 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
137 {
138 return cpu_to_le32((u32)(dma_addr >> 8));
139 }
140
141 /*
142 * iwl_pcie_rx_stop - stops the Rx DMA
143 */
iwl_pcie_rx_stop(struct iwl_trans * trans)144 int iwl_pcie_rx_stop(struct iwl_trans *trans)
145 {
146 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
147 /* TODO: remove this once fw does it */
148 iwl_write_umac_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0);
149 return iwl_poll_umac_prph_bit(trans, RFH_GEN_STATUS_GEN3,
150 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
151 } else if (trans->trans_cfg->mq_rx_supported) {
152 iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
153 return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
154 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
155 } else {
156 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
157 return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
158 FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
159 1000);
160 }
161 }
162
163 /*
164 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
165 */
iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans * trans,struct iwl_rxq * rxq)166 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
167 struct iwl_rxq *rxq)
168 {
169 u32 reg;
170
171 lockdep_assert_held(&rxq->lock);
172
173 /*
174 * explicitly wake up the NIC if:
175 * 1. shadow registers aren't enabled
176 * 2. there is a chance that the NIC is asleep
177 */
178 if (!trans->trans_cfg->base_params->shadow_reg_enable &&
179 test_bit(STATUS_TPOWER_PMI, &trans->status)) {
180 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
181
182 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
183 IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
184 reg);
185 iwl_set_bit(trans, CSR_GP_CNTRL,
186 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
187 rxq->need_update = true;
188 return;
189 }
190 }
191
192 rxq->write_actual = round_down(rxq->write, 8);
193 if (!trans->trans_cfg->mq_rx_supported)
194 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
195 else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ)
196 iwl_write32(trans, HBUS_TARG_WRPTR, rxq->write_actual |
197 HBUS_TARG_WRPTR_RX_Q(rxq->id));
198 else
199 iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
200 rxq->write_actual);
201 }
202
iwl_pcie_rxq_check_wrptr(struct iwl_trans * trans)203 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
204 {
205 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
206 int i;
207
208 for (i = 0; i < trans->num_rx_queues; i++) {
209 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
210
211 if (!rxq->need_update)
212 continue;
213 spin_lock_bh(&rxq->lock);
214 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
215 rxq->need_update = false;
216 spin_unlock_bh(&rxq->lock);
217 }
218 }
219
iwl_pcie_restock_bd(struct iwl_trans * trans,struct iwl_rxq * rxq,struct iwl_rx_mem_buffer * rxb)220 static void iwl_pcie_restock_bd(struct iwl_trans *trans,
221 struct iwl_rxq *rxq,
222 struct iwl_rx_mem_buffer *rxb)
223 {
224 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
225 struct iwl_rx_transfer_desc *bd = rxq->bd;
226
227 BUILD_BUG_ON(sizeof(*bd) != 2 * sizeof(u64));
228
229 bd[rxq->write].addr = cpu_to_le64(rxb->page_dma);
230 bd[rxq->write].rbid = cpu_to_le16(rxb->vid);
231 } else {
232 __le64 *bd = rxq->bd;
233
234 bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
235 }
236
237 IWL_DEBUG_RX(trans, "Assigned virtual RB ID %u to queue %d index %d\n",
238 (u32)rxb->vid, rxq->id, rxq->write);
239 }
240
241 /*
242 * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
243 */
iwl_pcie_rxmq_restock(struct iwl_trans * trans,struct iwl_rxq * rxq)244 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
245 struct iwl_rxq *rxq)
246 {
247 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
248 struct iwl_rx_mem_buffer *rxb;
249
250 /*
251 * If the device isn't enabled - no need to try to add buffers...
252 * This can happen when we stop the device and still have an interrupt
253 * pending. We stop the APM before we sync the interrupts because we
254 * have to (see comment there). On the other hand, since the APM is
255 * stopped, we cannot access the HW (in particular not prph).
256 * So don't try to restock if the APM has been already stopped.
257 */
258 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
259 return;
260
261 spin_lock_bh(&rxq->lock);
262 while (rxq->free_count) {
263 /* Get next free Rx buffer, remove from free list */
264 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
265 list);
266 list_del(&rxb->list);
267 rxb->invalid = false;
268 /* some low bits are expected to be unset (depending on hw) */
269 WARN_ON(rxb->page_dma & trans_pcie->supported_dma_mask);
270 /* Point to Rx buffer via next RBD in circular buffer */
271 iwl_pcie_restock_bd(trans, rxq, rxb);
272 rxq->write = (rxq->write + 1) & (rxq->queue_size - 1);
273 rxq->free_count--;
274 }
275 spin_unlock_bh(&rxq->lock);
276
277 /*
278 * If we've added more space for the firmware to place data, tell it.
279 * Increment device's write pointer in multiples of 8.
280 */
281 if (rxq->write_actual != (rxq->write & ~0x7)) {
282 spin_lock_bh(&rxq->lock);
283 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
284 spin_unlock_bh(&rxq->lock);
285 }
286 }
287
288 /*
289 * iwl_pcie_rxsq_restock - restock implementation for single queue rx
290 */
iwl_pcie_rxsq_restock(struct iwl_trans * trans,struct iwl_rxq * rxq)291 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
292 struct iwl_rxq *rxq)
293 {
294 struct iwl_rx_mem_buffer *rxb;
295
296 /*
297 * If the device isn't enabled - not need to try to add buffers...
298 * This can happen when we stop the device and still have an interrupt
299 * pending. We stop the APM before we sync the interrupts because we
300 * have to (see comment there). On the other hand, since the APM is
301 * stopped, we cannot access the HW (in particular not prph).
302 * So don't try to restock if the APM has been already stopped.
303 */
304 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
305 return;
306
307 spin_lock_bh(&rxq->lock);
308 while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
309 __le32 *bd = (__le32 *)rxq->bd;
310 /* The overwritten rxb must be a used one */
311 rxb = rxq->queue[rxq->write];
312 BUG_ON(rxb && rxb->page);
313
314 /* Get next free Rx buffer, remove from free list */
315 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
316 list);
317 list_del(&rxb->list);
318 rxb->invalid = false;
319
320 /* Point to Rx buffer via next RBD in circular buffer */
321 bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
322 rxq->queue[rxq->write] = rxb;
323 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
324 rxq->free_count--;
325 }
326 spin_unlock_bh(&rxq->lock);
327
328 /* If we've added more space for the firmware to place data, tell it.
329 * Increment device's write pointer in multiples of 8. */
330 if (rxq->write_actual != (rxq->write & ~0x7)) {
331 spin_lock_bh(&rxq->lock);
332 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
333 spin_unlock_bh(&rxq->lock);
334 }
335 }
336
337 /*
338 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
339 *
340 * If there are slots in the RX queue that need to be restocked,
341 * and we have free pre-allocated buffers, fill the ranks as much
342 * as we can, pulling from rx_free.
343 *
344 * This moves the 'write' index forward to catch up with 'processed', and
345 * also updates the memory address in the firmware to reference the new
346 * target buffer.
347 */
348 static
iwl_pcie_rxq_restock(struct iwl_trans * trans,struct iwl_rxq * rxq)349 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
350 {
351 if (trans->trans_cfg->mq_rx_supported)
352 iwl_pcie_rxmq_restock(trans, rxq);
353 else
354 iwl_pcie_rxsq_restock(trans, rxq);
355 }
356
357 /*
358 * iwl_pcie_rx_alloc_page - allocates and returns a page.
359 *
360 */
iwl_pcie_rx_alloc_page(struct iwl_trans * trans,u32 * offset,gfp_t priority)361 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
362 u32 *offset, gfp_t priority)
363 {
364 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
365 unsigned int rbsize = iwl_trans_get_rb_size(trans_pcie->rx_buf_size);
366 unsigned int allocsize = PAGE_SIZE << trans_pcie->rx_page_order;
367 struct page *page;
368 gfp_t gfp_mask = priority;
369
370 if (trans_pcie->rx_page_order > 0)
371 gfp_mask |= __GFP_COMP;
372
373 if (trans_pcie->alloc_page) {
374 spin_lock_bh(&trans_pcie->alloc_page_lock);
375 /* recheck */
376 if (trans_pcie->alloc_page) {
377 *offset = trans_pcie->alloc_page_used;
378 page = trans_pcie->alloc_page;
379 trans_pcie->alloc_page_used += rbsize;
380 if (trans_pcie->alloc_page_used >= allocsize)
381 trans_pcie->alloc_page = NULL;
382 else
383 get_page(page);
384 spin_unlock_bh(&trans_pcie->alloc_page_lock);
385 return page;
386 }
387 spin_unlock_bh(&trans_pcie->alloc_page_lock);
388 }
389
390 /* Alloc a new receive buffer */
391 page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
392 if (!page) {
393 if (net_ratelimit())
394 IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
395 trans_pcie->rx_page_order);
396 /*
397 * Issue an error if we don't have enough pre-allocated
398 * buffers.
399 */
400 if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
401 IWL_CRIT(trans,
402 "Failed to alloc_pages\n");
403 return NULL;
404 }
405
406 if (2 * rbsize <= allocsize) {
407 spin_lock_bh(&trans_pcie->alloc_page_lock);
408 if (!trans_pcie->alloc_page) {
409 get_page(page);
410 trans_pcie->alloc_page = page;
411 trans_pcie->alloc_page_used = rbsize;
412 }
413 spin_unlock_bh(&trans_pcie->alloc_page_lock);
414 }
415
416 *offset = 0;
417 return page;
418 }
419
420 /*
421 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
422 *
423 * A used RBD is an Rx buffer that has been given to the stack. To use it again
424 * a page must be allocated and the RBD must point to the page. This function
425 * doesn't change the HW pointer but handles the list of pages that is used by
426 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
427 * allocated buffers.
428 */
iwl_pcie_rxq_alloc_rbs(struct iwl_trans * trans,gfp_t priority,struct iwl_rxq * rxq)429 void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
430 struct iwl_rxq *rxq)
431 {
432 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
433 struct iwl_rx_mem_buffer *rxb;
434 struct page *page;
435
436 while (1) {
437 unsigned int offset;
438
439 spin_lock_bh(&rxq->lock);
440 if (list_empty(&rxq->rx_used)) {
441 spin_unlock_bh(&rxq->lock);
442 return;
443 }
444 spin_unlock_bh(&rxq->lock);
445
446 page = iwl_pcie_rx_alloc_page(trans, &offset, priority);
447 if (!page)
448 return;
449
450 spin_lock_bh(&rxq->lock);
451
452 if (list_empty(&rxq->rx_used)) {
453 spin_unlock_bh(&rxq->lock);
454 __free_pages(page, trans_pcie->rx_page_order);
455 return;
456 }
457 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
458 list);
459 list_del(&rxb->list);
460 spin_unlock_bh(&rxq->lock);
461
462 BUG_ON(rxb->page);
463 rxb->page = page;
464 rxb->offset = offset;
465 /* Get physical address of the RB */
466 rxb->page_dma =
467 dma_map_page(trans->dev, page, rxb->offset,
468 trans_pcie->rx_buf_bytes,
469 DMA_FROM_DEVICE);
470 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
471 rxb->page = NULL;
472 spin_lock_bh(&rxq->lock);
473 list_add(&rxb->list, &rxq->rx_used);
474 spin_unlock_bh(&rxq->lock);
475 __free_pages(page, trans_pcie->rx_page_order);
476 return;
477 }
478
479 spin_lock_bh(&rxq->lock);
480
481 list_add_tail(&rxb->list, &rxq->rx_free);
482 rxq->free_count++;
483
484 spin_unlock_bh(&rxq->lock);
485 }
486 }
487
iwl_pcie_free_rbs_pool(struct iwl_trans * trans)488 void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
489 {
490 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
491 int i;
492
493 if (!trans_pcie->rx_pool)
494 return;
495
496 for (i = 0; i < RX_POOL_SIZE(trans_pcie->num_rx_bufs); i++) {
497 if (!trans_pcie->rx_pool[i].page)
498 continue;
499 dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
500 trans_pcie->rx_buf_bytes, DMA_FROM_DEVICE);
501 __free_pages(trans_pcie->rx_pool[i].page,
502 trans_pcie->rx_page_order);
503 trans_pcie->rx_pool[i].page = NULL;
504 }
505 }
506
507 /*
508 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
509 *
510 * Allocates for each received request 8 pages
511 * Called as a scheduled work item.
512 */
iwl_pcie_rx_allocator(struct iwl_trans * trans)513 static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
514 {
515 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
516 struct iwl_rb_allocator *rba = &trans_pcie->rba;
517 struct list_head local_empty;
518 int pending = atomic_read(&rba->req_pending);
519
520 IWL_DEBUG_TPT(trans, "Pending allocation requests = %d\n", pending);
521
522 /* If we were scheduled - there is at least one request */
523 spin_lock_bh(&rba->lock);
524 /* swap out the rba->rbd_empty to a local list */
525 list_replace_init(&rba->rbd_empty, &local_empty);
526 spin_unlock_bh(&rba->lock);
527
528 while (pending) {
529 int i;
530 LIST_HEAD(local_allocated);
531 gfp_t gfp_mask = GFP_KERNEL;
532
533 /* Do not post a warning if there are only a few requests */
534 if (pending < RX_PENDING_WATERMARK)
535 gfp_mask |= __GFP_NOWARN;
536
537 for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
538 struct iwl_rx_mem_buffer *rxb;
539 struct page *page;
540
541 /* List should never be empty - each reused RBD is
542 * returned to the list, and initial pool covers any
543 * possible gap between the time the page is allocated
544 * to the time the RBD is added.
545 */
546 BUG_ON(list_empty(&local_empty));
547 /* Get the first rxb from the rbd list */
548 rxb = list_first_entry(&local_empty,
549 struct iwl_rx_mem_buffer, list);
550 BUG_ON(rxb->page);
551
552 /* Alloc a new receive buffer */
553 page = iwl_pcie_rx_alloc_page(trans, &rxb->offset,
554 gfp_mask);
555 if (!page)
556 continue;
557 rxb->page = page;
558
559 /* Get physical address of the RB */
560 rxb->page_dma = dma_map_page(trans->dev, page,
561 rxb->offset,
562 trans_pcie->rx_buf_bytes,
563 DMA_FROM_DEVICE);
564 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
565 rxb->page = NULL;
566 __free_pages(page, trans_pcie->rx_page_order);
567 continue;
568 }
569
570 /* move the allocated entry to the out list */
571 list_move(&rxb->list, &local_allocated);
572 i++;
573 }
574
575 atomic_dec(&rba->req_pending);
576 pending--;
577
578 if (!pending) {
579 pending = atomic_read(&rba->req_pending);
580 if (pending)
581 IWL_DEBUG_TPT(trans,
582 "Got more pending allocation requests = %d\n",
583 pending);
584 }
585
586 spin_lock_bh(&rba->lock);
587 /* add the allocated rbds to the allocator allocated list */
588 list_splice_tail(&local_allocated, &rba->rbd_allocated);
589 /* get more empty RBDs for current pending requests */
590 list_splice_tail_init(&rba->rbd_empty, &local_empty);
591 spin_unlock_bh(&rba->lock);
592
593 atomic_inc(&rba->req_ready);
594
595 }
596
597 spin_lock_bh(&rba->lock);
598 /* return unused rbds to the allocator empty list */
599 list_splice_tail(&local_empty, &rba->rbd_empty);
600 spin_unlock_bh(&rba->lock);
601
602 IWL_DEBUG_TPT(trans, "%s, exit.\n", __func__);
603 }
604
605 /*
606 * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
607 .*
608 .* Called by queue when the queue posted allocation request and
609 * has freed 8 RBDs in order to restock itself.
610 * This function directly moves the allocated RBs to the queue's ownership
611 * and updates the relevant counters.
612 */
iwl_pcie_rx_allocator_get(struct iwl_trans * trans,struct iwl_rxq * rxq)613 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
614 struct iwl_rxq *rxq)
615 {
616 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
617 struct iwl_rb_allocator *rba = &trans_pcie->rba;
618 int i;
619
620 lockdep_assert_held(&rxq->lock);
621
622 /*
623 * atomic_dec_if_positive returns req_ready - 1 for any scenario.
624 * If req_ready is 0 atomic_dec_if_positive will return -1 and this
625 * function will return early, as there are no ready requests.
626 * atomic_dec_if_positive will perofrm the *actual* decrement only if
627 * req_ready > 0, i.e. - there are ready requests and the function
628 * hands one request to the caller.
629 */
630 if (atomic_dec_if_positive(&rba->req_ready) < 0)
631 return;
632
633 spin_lock(&rba->lock);
634 for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
635 /* Get next free Rx buffer, remove it from free list */
636 struct iwl_rx_mem_buffer *rxb =
637 list_first_entry(&rba->rbd_allocated,
638 struct iwl_rx_mem_buffer, list);
639
640 list_move(&rxb->list, &rxq->rx_free);
641 }
642 spin_unlock(&rba->lock);
643
644 rxq->used_count -= RX_CLAIM_REQ_ALLOC;
645 rxq->free_count += RX_CLAIM_REQ_ALLOC;
646 }
647
iwl_pcie_rx_allocator_work(struct work_struct * data)648 void iwl_pcie_rx_allocator_work(struct work_struct *data)
649 {
650 struct iwl_rb_allocator *rba_p =
651 container_of(data, struct iwl_rb_allocator, rx_alloc);
652 struct iwl_trans_pcie *trans_pcie =
653 container_of(rba_p, struct iwl_trans_pcie, rba);
654
655 iwl_pcie_rx_allocator(trans_pcie->trans);
656 }
657
iwl_pcie_free_bd_size(struct iwl_trans * trans)658 static int iwl_pcie_free_bd_size(struct iwl_trans *trans)
659 {
660 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
661 return sizeof(struct iwl_rx_transfer_desc);
662
663 return trans->trans_cfg->mq_rx_supported ?
664 sizeof(__le64) : sizeof(__le32);
665 }
666
iwl_pcie_used_bd_size(struct iwl_trans * trans)667 static int iwl_pcie_used_bd_size(struct iwl_trans *trans)
668 {
669 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ)
670 return sizeof(struct iwl_rx_completion_desc_bz);
671
672 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
673 return sizeof(struct iwl_rx_completion_desc);
674
675 return sizeof(__le32);
676 }
677
iwl_pcie_free_rxq_dma(struct iwl_trans * trans,struct iwl_rxq * rxq)678 static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans,
679 struct iwl_rxq *rxq)
680 {
681 int free_size = iwl_pcie_free_bd_size(trans);
682
683 if (rxq->bd)
684 dma_free_coherent(trans->dev,
685 free_size * rxq->queue_size,
686 rxq->bd, rxq->bd_dma);
687 rxq->bd_dma = 0;
688 rxq->bd = NULL;
689
690 rxq->rb_stts_dma = 0;
691 rxq->rb_stts = NULL;
692
693 if (rxq->used_bd)
694 dma_free_coherent(trans->dev,
695 iwl_pcie_used_bd_size(trans) *
696 rxq->queue_size,
697 rxq->used_bd, rxq->used_bd_dma);
698 rxq->used_bd_dma = 0;
699 rxq->used_bd = NULL;
700 }
701
iwl_pcie_alloc_rxq_dma(struct iwl_trans * trans,struct iwl_rxq * rxq)702 static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans,
703 struct iwl_rxq *rxq)
704 {
705 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
706 struct device *dev = trans->dev;
707 int i;
708 int free_size;
709 bool use_rx_td = (trans->trans_cfg->device_family >=
710 IWL_DEVICE_FAMILY_AX210);
711 size_t rb_stts_size = use_rx_td ? sizeof(__le16) :
712 sizeof(struct iwl_rb_status);
713
714 spin_lock_init(&rxq->lock);
715 if (trans->trans_cfg->mq_rx_supported)
716 rxq->queue_size = trans->cfg->num_rbds;
717 else
718 rxq->queue_size = RX_QUEUE_SIZE;
719
720 free_size = iwl_pcie_free_bd_size(trans);
721
722 /*
723 * Allocate the circular buffer of Read Buffer Descriptors
724 * (RBDs)
725 */
726 rxq->bd = dma_alloc_coherent(dev, free_size * rxq->queue_size,
727 &rxq->bd_dma, GFP_KERNEL);
728 if (!rxq->bd)
729 goto err;
730
731 if (trans->trans_cfg->mq_rx_supported) {
732 rxq->used_bd = dma_alloc_coherent(dev,
733 iwl_pcie_used_bd_size(trans) *
734 rxq->queue_size,
735 &rxq->used_bd_dma,
736 GFP_KERNEL);
737 if (!rxq->used_bd)
738 goto err;
739 }
740
741 rxq->rb_stts = (u8 *)trans_pcie->base_rb_stts + rxq->id * rb_stts_size;
742 rxq->rb_stts_dma =
743 trans_pcie->base_rb_stts_dma + rxq->id * rb_stts_size;
744
745 return 0;
746
747 err:
748 for (i = 0; i < trans->num_rx_queues; i++) {
749 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
750
751 iwl_pcie_free_rxq_dma(trans, rxq);
752 }
753
754 return -ENOMEM;
755 }
756
iwl_pcie_rx_alloc(struct iwl_trans * trans)757 static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
758 {
759 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
760 struct iwl_rb_allocator *rba = &trans_pcie->rba;
761 int i, ret;
762 size_t rb_stts_size = trans->trans_cfg->device_family >=
763 IWL_DEVICE_FAMILY_AX210 ?
764 sizeof(__le16) : sizeof(struct iwl_rb_status);
765
766 if (WARN_ON(trans_pcie->rxq))
767 return -EINVAL;
768
769 trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
770 GFP_KERNEL);
771 trans_pcie->rx_pool = kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
772 sizeof(trans_pcie->rx_pool[0]),
773 GFP_KERNEL);
774 trans_pcie->global_table =
775 kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
776 sizeof(trans_pcie->global_table[0]),
777 GFP_KERNEL);
778 if (!trans_pcie->rxq || !trans_pcie->rx_pool ||
779 !trans_pcie->global_table) {
780 ret = -ENOMEM;
781 goto err;
782 }
783
784 spin_lock_init(&rba->lock);
785
786 /*
787 * Allocate the driver's pointer to receive buffer status.
788 * Allocate for all queues continuously (HW requirement).
789 */
790 trans_pcie->base_rb_stts =
791 dma_alloc_coherent(trans->dev,
792 rb_stts_size * trans->num_rx_queues,
793 &trans_pcie->base_rb_stts_dma,
794 GFP_KERNEL);
795 if (!trans_pcie->base_rb_stts) {
796 ret = -ENOMEM;
797 goto err;
798 }
799
800 for (i = 0; i < trans->num_rx_queues; i++) {
801 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
802
803 rxq->id = i;
804 ret = iwl_pcie_alloc_rxq_dma(trans, rxq);
805 if (ret)
806 goto err;
807 }
808 return 0;
809
810 err:
811 if (trans_pcie->base_rb_stts) {
812 dma_free_coherent(trans->dev,
813 rb_stts_size * trans->num_rx_queues,
814 trans_pcie->base_rb_stts,
815 trans_pcie->base_rb_stts_dma);
816 trans_pcie->base_rb_stts = NULL;
817 trans_pcie->base_rb_stts_dma = 0;
818 }
819 kfree(trans_pcie->rx_pool);
820 trans_pcie->rx_pool = NULL;
821 kfree(trans_pcie->global_table);
822 trans_pcie->global_table = NULL;
823 kfree(trans_pcie->rxq);
824 trans_pcie->rxq = NULL;
825
826 return ret;
827 }
828
iwl_pcie_rx_hw_init(struct iwl_trans * trans,struct iwl_rxq * rxq)829 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
830 {
831 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
832 u32 rb_size;
833 const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
834
835 switch (trans_pcie->rx_buf_size) {
836 case IWL_AMSDU_4K:
837 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
838 break;
839 case IWL_AMSDU_8K:
840 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
841 break;
842 case IWL_AMSDU_12K:
843 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
844 break;
845 default:
846 WARN_ON(1);
847 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
848 }
849
850 if (!iwl_trans_grab_nic_access(trans))
851 return;
852
853 /* Stop Rx DMA */
854 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
855 /* reset and flush pointers */
856 iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
857 iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
858 iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
859
860 /* Reset driver's Rx queue write index */
861 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
862
863 /* Tell device where to find RBD circular buffer in DRAM */
864 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
865 (u32)(rxq->bd_dma >> 8));
866
867 /* Tell device where in DRAM to update its Rx status */
868 iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
869 rxq->rb_stts_dma >> 4);
870
871 /* Enable Rx DMA
872 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
873 * the credit mechanism in 5000 HW RX FIFO
874 * Direct rx interrupts to hosts
875 * Rx buffer size 4 or 8k or 12k
876 * RB timeout 0x10
877 * 256 RBDs
878 */
879 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
880 FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
881 FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
882 FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
883 rb_size |
884 (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
885 (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
886
887 iwl_trans_release_nic_access(trans);
888
889 /* Set interrupt coalescing timer to default (2048 usecs) */
890 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
891
892 /* W/A for interrupt coalescing bug in 7260 and 3160 */
893 if (trans->cfg->host_interrupt_operation_mode)
894 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
895 }
896
iwl_pcie_rx_mq_hw_init(struct iwl_trans * trans)897 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
898 {
899 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
900 u32 rb_size, enabled = 0;
901 int i;
902
903 switch (trans_pcie->rx_buf_size) {
904 case IWL_AMSDU_2K:
905 rb_size = RFH_RXF_DMA_RB_SIZE_2K;
906 break;
907 case IWL_AMSDU_4K:
908 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
909 break;
910 case IWL_AMSDU_8K:
911 rb_size = RFH_RXF_DMA_RB_SIZE_8K;
912 break;
913 case IWL_AMSDU_12K:
914 rb_size = RFH_RXF_DMA_RB_SIZE_12K;
915 break;
916 default:
917 WARN_ON(1);
918 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
919 }
920
921 if (!iwl_trans_grab_nic_access(trans))
922 return;
923
924 /* Stop Rx DMA */
925 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
926 /* disable free amd used rx queue operation */
927 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
928
929 for (i = 0; i < trans->num_rx_queues; i++) {
930 /* Tell device where to find RBD free table in DRAM */
931 iwl_write_prph64_no_grab(trans,
932 RFH_Q_FRBDCB_BA_LSB(i),
933 trans_pcie->rxq[i].bd_dma);
934 /* Tell device where to find RBD used table in DRAM */
935 iwl_write_prph64_no_grab(trans,
936 RFH_Q_URBDCB_BA_LSB(i),
937 trans_pcie->rxq[i].used_bd_dma);
938 /* Tell device where in DRAM to update its Rx status */
939 iwl_write_prph64_no_grab(trans,
940 RFH_Q_URBD_STTS_WPTR_LSB(i),
941 trans_pcie->rxq[i].rb_stts_dma);
942 /* Reset device indice tables */
943 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
944 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
945 iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
946
947 enabled |= BIT(i) | BIT(i + 16);
948 }
949
950 /*
951 * Enable Rx DMA
952 * Rx buffer size 4 or 8k or 12k
953 * Min RB size 4 or 8
954 * Drop frames that exceed RB size
955 * 512 RBDs
956 */
957 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
958 RFH_DMA_EN_ENABLE_VAL | rb_size |
959 RFH_RXF_DMA_MIN_RB_4_8 |
960 RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
961 RFH_RXF_DMA_RBDCB_SIZE_512);
962
963 /*
964 * Activate DMA snooping.
965 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
966 * Default queue is 0
967 */
968 iwl_write_prph_no_grab(trans, RFH_GEN_CFG,
969 RFH_GEN_CFG_RFH_DMA_SNOOP |
970 RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) |
971 RFH_GEN_CFG_SERVICE_DMA_SNOOP |
972 RFH_GEN_CFG_VAL(RB_CHUNK_SIZE,
973 trans->trans_cfg->integrated ?
974 RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
975 RFH_GEN_CFG_RB_CHUNK_SIZE_128));
976 /* Enable the relevant rx queues */
977 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
978
979 iwl_trans_release_nic_access(trans);
980
981 /* Set interrupt coalescing timer to default (2048 usecs) */
982 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
983 }
984
iwl_pcie_rx_init_rxb_lists(struct iwl_rxq * rxq)985 void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
986 {
987 lockdep_assert_held(&rxq->lock);
988
989 INIT_LIST_HEAD(&rxq->rx_free);
990 INIT_LIST_HEAD(&rxq->rx_used);
991 rxq->free_count = 0;
992 rxq->used_count = 0;
993 }
994
995 static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget);
996
iwl_pcie_napi_poll(struct napi_struct * napi,int budget)997 static int iwl_pcie_napi_poll(struct napi_struct *napi, int budget)
998 {
999 struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi);
1000 struct iwl_trans_pcie *trans_pcie;
1001 struct iwl_trans *trans;
1002 int ret;
1003
1004 trans_pcie = container_of(napi->dev, struct iwl_trans_pcie, napi_dev);
1005 trans = trans_pcie->trans;
1006
1007 ret = iwl_pcie_rx_handle(trans, rxq->id, budget);
1008
1009 IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n",
1010 rxq->id, ret, budget);
1011
1012 if (ret < budget) {
1013 spin_lock(&trans_pcie->irq_lock);
1014 if (test_bit(STATUS_INT_ENABLED, &trans->status))
1015 _iwl_enable_interrupts(trans);
1016 spin_unlock(&trans_pcie->irq_lock);
1017
1018 napi_complete_done(&rxq->napi, ret);
1019 }
1020
1021 return ret;
1022 }
1023
iwl_pcie_napi_poll_msix(struct napi_struct * napi,int budget)1024 static int iwl_pcie_napi_poll_msix(struct napi_struct *napi, int budget)
1025 {
1026 struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi);
1027 struct iwl_trans_pcie *trans_pcie;
1028 struct iwl_trans *trans;
1029 int ret;
1030
1031 trans_pcie = container_of(napi->dev, struct iwl_trans_pcie, napi_dev);
1032 trans = trans_pcie->trans;
1033
1034 ret = iwl_pcie_rx_handle(trans, rxq->id, budget);
1035 IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n", rxq->id, ret,
1036 budget);
1037
1038 if (ret < budget) {
1039 int irq_line = rxq->id;
1040
1041 /* FIRST_RSS is shared with line 0 */
1042 if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS &&
1043 rxq->id == 1)
1044 irq_line = 0;
1045
1046 spin_lock(&trans_pcie->irq_lock);
1047 iwl_pcie_clear_irq(trans, irq_line);
1048 spin_unlock(&trans_pcie->irq_lock);
1049
1050 napi_complete_done(&rxq->napi, ret);
1051 }
1052
1053 return ret;
1054 }
1055
_iwl_pcie_rx_init(struct iwl_trans * trans)1056 static int _iwl_pcie_rx_init(struct iwl_trans *trans)
1057 {
1058 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1059 struct iwl_rxq *def_rxq;
1060 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1061 int i, err, queue_size, allocator_pool_size, num_alloc;
1062
1063 if (!trans_pcie->rxq) {
1064 err = iwl_pcie_rx_alloc(trans);
1065 if (err)
1066 return err;
1067 }
1068 def_rxq = trans_pcie->rxq;
1069
1070 cancel_work_sync(&rba->rx_alloc);
1071
1072 spin_lock_bh(&rba->lock);
1073 atomic_set(&rba->req_pending, 0);
1074 atomic_set(&rba->req_ready, 0);
1075 INIT_LIST_HEAD(&rba->rbd_allocated);
1076 INIT_LIST_HEAD(&rba->rbd_empty);
1077 spin_unlock_bh(&rba->lock);
1078
1079 /* free all first - we overwrite everything here */
1080 iwl_pcie_free_rbs_pool(trans);
1081
1082 for (i = 0; i < RX_QUEUE_SIZE; i++)
1083 def_rxq->queue[i] = NULL;
1084
1085 for (i = 0; i < trans->num_rx_queues; i++) {
1086 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1087
1088 spin_lock_bh(&rxq->lock);
1089 /*
1090 * Set read write pointer to reflect that we have processed
1091 * and used all buffers, but have not restocked the Rx queue
1092 * with fresh buffers
1093 */
1094 rxq->read = 0;
1095 rxq->write = 0;
1096 rxq->write_actual = 0;
1097 memset(rxq->rb_stts, 0,
1098 (trans->trans_cfg->device_family >=
1099 IWL_DEVICE_FAMILY_AX210) ?
1100 sizeof(__le16) : sizeof(struct iwl_rb_status));
1101
1102 iwl_pcie_rx_init_rxb_lists(rxq);
1103
1104 spin_unlock_bh(&rxq->lock);
1105
1106 if (!rxq->napi.poll) {
1107 int (*poll)(struct napi_struct *, int) = iwl_pcie_napi_poll;
1108
1109 if (trans_pcie->msix_enabled)
1110 poll = iwl_pcie_napi_poll_msix;
1111
1112 netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
1113 poll);
1114 napi_enable(&rxq->napi);
1115 }
1116
1117 }
1118
1119 /* move the pool to the default queue and allocator ownerships */
1120 queue_size = trans->trans_cfg->mq_rx_supported ?
1121 trans_pcie->num_rx_bufs - 1 : RX_QUEUE_SIZE;
1122 allocator_pool_size = trans->num_rx_queues *
1123 (RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
1124 num_alloc = queue_size + allocator_pool_size;
1125
1126 for (i = 0; i < num_alloc; i++) {
1127 struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
1128
1129 if (i < allocator_pool_size)
1130 list_add(&rxb->list, &rba->rbd_empty);
1131 else
1132 list_add(&rxb->list, &def_rxq->rx_used);
1133 trans_pcie->global_table[i] = rxb;
1134 rxb->vid = (u16)(i + 1);
1135 rxb->invalid = true;
1136 }
1137
1138 iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
1139
1140 return 0;
1141 }
1142
iwl_pcie_rx_init(struct iwl_trans * trans)1143 int iwl_pcie_rx_init(struct iwl_trans *trans)
1144 {
1145 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1146 int ret = _iwl_pcie_rx_init(trans);
1147
1148 if (ret)
1149 return ret;
1150
1151 if (trans->trans_cfg->mq_rx_supported)
1152 iwl_pcie_rx_mq_hw_init(trans);
1153 else
1154 iwl_pcie_rx_hw_init(trans, trans_pcie->rxq);
1155
1156 iwl_pcie_rxq_restock(trans, trans_pcie->rxq);
1157
1158 spin_lock_bh(&trans_pcie->rxq->lock);
1159 iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq);
1160 spin_unlock_bh(&trans_pcie->rxq->lock);
1161
1162 return 0;
1163 }
1164
iwl_pcie_gen2_rx_init(struct iwl_trans * trans)1165 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans)
1166 {
1167 /* Set interrupt coalescing timer to default (2048 usecs) */
1168 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
1169
1170 /*
1171 * We don't configure the RFH.
1172 * Restock will be done at alive, after firmware configured the RFH.
1173 */
1174 return _iwl_pcie_rx_init(trans);
1175 }
1176
iwl_pcie_rx_free(struct iwl_trans * trans)1177 void iwl_pcie_rx_free(struct iwl_trans *trans)
1178 {
1179 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1180 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1181 int i;
1182 size_t rb_stts_size = trans->trans_cfg->device_family >=
1183 IWL_DEVICE_FAMILY_AX210 ?
1184 sizeof(__le16) : sizeof(struct iwl_rb_status);
1185
1186 /*
1187 * if rxq is NULL, it means that nothing has been allocated,
1188 * exit now
1189 */
1190 if (!trans_pcie->rxq) {
1191 IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
1192 return;
1193 }
1194
1195 cancel_work_sync(&rba->rx_alloc);
1196
1197 iwl_pcie_free_rbs_pool(trans);
1198
1199 if (trans_pcie->base_rb_stts) {
1200 dma_free_coherent(trans->dev,
1201 rb_stts_size * trans->num_rx_queues,
1202 trans_pcie->base_rb_stts,
1203 trans_pcie->base_rb_stts_dma);
1204 trans_pcie->base_rb_stts = NULL;
1205 trans_pcie->base_rb_stts_dma = 0;
1206 }
1207
1208 for (i = 0; i < trans->num_rx_queues; i++) {
1209 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1210
1211 iwl_pcie_free_rxq_dma(trans, rxq);
1212
1213 if (rxq->napi.poll) {
1214 napi_disable(&rxq->napi);
1215 netif_napi_del(&rxq->napi);
1216 }
1217 }
1218 kfree(trans_pcie->rx_pool);
1219 kfree(trans_pcie->global_table);
1220 kfree(trans_pcie->rxq);
1221
1222 if (trans_pcie->alloc_page)
1223 __free_pages(trans_pcie->alloc_page, trans_pcie->rx_page_order);
1224 }
1225
iwl_pcie_rx_move_to_allocator(struct iwl_rxq * rxq,struct iwl_rb_allocator * rba)1226 static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq,
1227 struct iwl_rb_allocator *rba)
1228 {
1229 spin_lock(&rba->lock);
1230 list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1231 spin_unlock(&rba->lock);
1232 }
1233
1234 /*
1235 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
1236 *
1237 * Called when a RBD can be reused. The RBD is transferred to the allocator.
1238 * When there are 2 empty RBDs - a request for allocation is posted
1239 */
iwl_pcie_rx_reuse_rbd(struct iwl_trans * trans,struct iwl_rx_mem_buffer * rxb,struct iwl_rxq * rxq,bool emergency)1240 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
1241 struct iwl_rx_mem_buffer *rxb,
1242 struct iwl_rxq *rxq, bool emergency)
1243 {
1244 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1245 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1246
1247 /* Move the RBD to the used list, will be moved to allocator in batches
1248 * before claiming or posting a request*/
1249 list_add_tail(&rxb->list, &rxq->rx_used);
1250
1251 if (unlikely(emergency))
1252 return;
1253
1254 /* Count the allocator owned RBDs */
1255 rxq->used_count++;
1256
1257 /* If we have RX_POST_REQ_ALLOC new released rx buffers -
1258 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1259 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1260 * after but we still need to post another request.
1261 */
1262 if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
1263 /* Move the 2 RBDs to the allocator ownership.
1264 Allocator has another 6 from pool for the request completion*/
1265 iwl_pcie_rx_move_to_allocator(rxq, rba);
1266
1267 atomic_inc(&rba->req_pending);
1268 queue_work(rba->alloc_wq, &rba->rx_alloc);
1269 }
1270 }
1271
iwl_pcie_rx_handle_rb(struct iwl_trans * trans,struct iwl_rxq * rxq,struct iwl_rx_mem_buffer * rxb,bool emergency,int i)1272 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1273 struct iwl_rxq *rxq,
1274 struct iwl_rx_mem_buffer *rxb,
1275 bool emergency,
1276 int i)
1277 {
1278 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1279 struct iwl_txq *txq = trans->txqs.txq[trans->txqs.cmd.q_id];
1280 bool page_stolen = false;
1281 int max_len = trans_pcie->rx_buf_bytes;
1282 u32 offset = 0;
1283
1284 if (WARN_ON(!rxb))
1285 return;
1286
1287 dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1288
1289 while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1290 struct iwl_rx_packet *pkt;
1291 bool reclaim;
1292 int len;
1293 struct iwl_rx_cmd_buffer rxcb = {
1294 ._offset = rxb->offset + offset,
1295 ._rx_page_order = trans_pcie->rx_page_order,
1296 ._page = rxb->page,
1297 ._page_stolen = false,
1298 .truesize = max_len,
1299 };
1300
1301 pkt = rxb_addr(&rxcb);
1302
1303 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) {
1304 IWL_DEBUG_RX(trans,
1305 "Q %d: RB end marker at offset %d\n",
1306 rxq->id, offset);
1307 break;
1308 }
1309
1310 WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1311 FH_RSCSR_RXQ_POS != rxq->id,
1312 "frame on invalid queue - is on %d and indicates %d\n",
1313 rxq->id,
1314 (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1315 FH_RSCSR_RXQ_POS);
1316
1317 IWL_DEBUG_RX(trans,
1318 "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n",
1319 rxq->id, offset,
1320 iwl_get_cmd_string(trans,
1321 WIDE_ID(pkt->hdr.group_id, pkt->hdr.cmd)),
1322 pkt->hdr.group_id, pkt->hdr.cmd,
1323 le16_to_cpu(pkt->hdr.sequence));
1324
1325 len = iwl_rx_packet_len(pkt);
1326 len += sizeof(u32); /* account for status word */
1327
1328 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
1329
1330 /* check that what the device tells us made sense */
1331 if (len < sizeof(*pkt) || offset > max_len)
1332 break;
1333
1334 trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
1335 trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
1336
1337 /* Reclaim a command buffer only if this packet is a response
1338 * to a (driver-originated) command.
1339 * If the packet (e.g. Rx frame) originated from uCode,
1340 * there is no command buffer to reclaim.
1341 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1342 * but apparently a few don't get set; catch them here. */
1343 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1344 if (reclaim && !pkt->hdr.group_id) {
1345 int i;
1346
1347 for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
1348 if (trans_pcie->no_reclaim_cmds[i] ==
1349 pkt->hdr.cmd) {
1350 reclaim = false;
1351 break;
1352 }
1353 }
1354 }
1355
1356 if (rxq->id == trans_pcie->def_rx_queue)
1357 iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1358 &rxcb);
1359 else
1360 iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1361 &rxcb, rxq->id);
1362
1363 /*
1364 * After here, we should always check rxcb._page_stolen,
1365 * if it is true then one of the handlers took the page.
1366 */
1367
1368 if (reclaim) {
1369 u16 sequence = le16_to_cpu(pkt->hdr.sequence);
1370 int index = SEQ_TO_INDEX(sequence);
1371 int cmd_index = iwl_txq_get_cmd_index(txq, index);
1372
1373 kfree_sensitive(txq->entries[cmd_index].free_buf);
1374 txq->entries[cmd_index].free_buf = NULL;
1375
1376 /* Invoke any callbacks, transfer the buffer to caller,
1377 * and fire off the (possibly) blocking
1378 * iwl_trans_send_cmd()
1379 * as we reclaim the driver command queue */
1380 if (!rxcb._page_stolen)
1381 iwl_pcie_hcmd_complete(trans, &rxcb);
1382 else
1383 IWL_WARN(trans, "Claim null rxb?\n");
1384 }
1385
1386 page_stolen |= rxcb._page_stolen;
1387 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
1388 break;
1389 }
1390
1391 /* page was stolen from us -- free our reference */
1392 if (page_stolen) {
1393 __free_pages(rxb->page, trans_pcie->rx_page_order);
1394 rxb->page = NULL;
1395 }
1396
1397 /* Reuse the page if possible. For notification packets and
1398 * SKBs that fail to Rx correctly, add them back into the
1399 * rx_free list for reuse later. */
1400 if (rxb->page != NULL) {
1401 rxb->page_dma =
1402 dma_map_page(trans->dev, rxb->page, rxb->offset,
1403 trans_pcie->rx_buf_bytes,
1404 DMA_FROM_DEVICE);
1405 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1406 /*
1407 * free the page(s) as well to not break
1408 * the invariant that the items on the used
1409 * list have no page(s)
1410 */
1411 __free_pages(rxb->page, trans_pcie->rx_page_order);
1412 rxb->page = NULL;
1413 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1414 } else {
1415 list_add_tail(&rxb->list, &rxq->rx_free);
1416 rxq->free_count++;
1417 }
1418 } else
1419 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1420 }
1421
iwl_pcie_get_rxb(struct iwl_trans * trans,struct iwl_rxq * rxq,int i,bool * join)1422 static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans,
1423 struct iwl_rxq *rxq, int i,
1424 bool *join)
1425 {
1426 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1427 struct iwl_rx_mem_buffer *rxb;
1428 u16 vid;
1429
1430 BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc) != 32);
1431 BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc_bz) != 4);
1432
1433 if (!trans->trans_cfg->mq_rx_supported) {
1434 rxb = rxq->queue[i];
1435 rxq->queue[i] = NULL;
1436 return rxb;
1437 }
1438
1439 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) {
1440 struct iwl_rx_completion_desc_bz *cd = rxq->used_bd;
1441
1442 vid = le16_to_cpu(cd[i].rbid);
1443 *join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED;
1444 } else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
1445 struct iwl_rx_completion_desc *cd = rxq->used_bd;
1446
1447 vid = le16_to_cpu(cd[i].rbid);
1448 *join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED;
1449 } else {
1450 __le32 *cd = rxq->used_bd;
1451
1452 vid = le32_to_cpu(cd[i]) & 0x0FFF; /* 12-bit VID */
1453 }
1454
1455 if (!vid || vid > RX_POOL_SIZE(trans_pcie->num_rx_bufs))
1456 goto out_err;
1457
1458 rxb = trans_pcie->global_table[vid - 1];
1459 if (rxb->invalid)
1460 goto out_err;
1461
1462 IWL_DEBUG_RX(trans, "Got virtual RB ID %u\n", (u32)rxb->vid);
1463
1464 rxb->invalid = true;
1465
1466 return rxb;
1467
1468 out_err:
1469 WARN(1, "Invalid rxb from HW %u\n", (u32)vid);
1470 iwl_force_nmi(trans);
1471 return NULL;
1472 }
1473
1474 /*
1475 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1476 */
iwl_pcie_rx_handle(struct iwl_trans * trans,int queue,int budget)1477 static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget)
1478 {
1479 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1480 struct iwl_rxq *rxq;
1481 u32 r, i, count = 0, handled = 0;
1482 bool emergency = false;
1483
1484 if (WARN_ON_ONCE(!trans_pcie->rxq || !trans_pcie->rxq[queue].bd))
1485 return budget;
1486
1487 rxq = &trans_pcie->rxq[queue];
1488
1489 restart:
1490 spin_lock(&rxq->lock);
1491 /* uCode's read index (stored in shared DRAM) indicates the last Rx
1492 * buffer that the driver may process (last buffer filled by ucode). */
1493 r = le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq)) & 0x0FFF;
1494 i = rxq->read;
1495
1496 /* W/A 9000 device step A0 wrap-around bug */
1497 r &= (rxq->queue_size - 1);
1498
1499 /* Rx interrupt, but nothing sent from uCode */
1500 if (i == r)
1501 IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1502
1503 while (i != r && ++handled < budget) {
1504 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1505 struct iwl_rx_mem_buffer *rxb;
1506 /* number of RBDs still waiting for page allocation */
1507 u32 rb_pending_alloc =
1508 atomic_read(&trans_pcie->rba.req_pending) *
1509 RX_CLAIM_REQ_ALLOC;
1510 bool join = false;
1511
1512 if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 &&
1513 !emergency)) {
1514 iwl_pcie_rx_move_to_allocator(rxq, rba);
1515 emergency = true;
1516 IWL_DEBUG_TPT(trans,
1517 "RX path is in emergency. Pending allocations %d\n",
1518 rb_pending_alloc);
1519 }
1520
1521 IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1522
1523 rxb = iwl_pcie_get_rxb(trans, rxq, i, &join);
1524 if (!rxb)
1525 goto out;
1526
1527 if (unlikely(join || rxq->next_rb_is_fragment)) {
1528 rxq->next_rb_is_fragment = join;
1529 /*
1530 * We can only get a multi-RB in the following cases:
1531 * - firmware issue, sending a too big notification
1532 * - sniffer mode with a large A-MSDU
1533 * - large MTU frames (>2k)
1534 * since the multi-RB functionality is limited to newer
1535 * hardware that cannot put multiple entries into a
1536 * single RB.
1537 *
1538 * Right now, the higher layers aren't set up to deal
1539 * with that, so discard all of these.
1540 */
1541 list_add_tail(&rxb->list, &rxq->rx_free);
1542 rxq->free_count++;
1543 } else {
1544 iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i);
1545 }
1546
1547 i = (i + 1) & (rxq->queue_size - 1);
1548
1549 /*
1550 * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1551 * try to claim the pre-allocated buffers from the allocator.
1552 * If not ready - will try to reclaim next time.
1553 * There is no need to reschedule work - allocator exits only
1554 * on success
1555 */
1556 if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
1557 iwl_pcie_rx_allocator_get(trans, rxq);
1558
1559 if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1560 /* Add the remaining empty RBDs for allocator use */
1561 iwl_pcie_rx_move_to_allocator(rxq, rba);
1562 } else if (emergency) {
1563 count++;
1564 if (count == 8) {
1565 count = 0;
1566 if (rb_pending_alloc < rxq->queue_size / 3) {
1567 IWL_DEBUG_TPT(trans,
1568 "RX path exited emergency. Pending allocations %d\n",
1569 rb_pending_alloc);
1570 emergency = false;
1571 }
1572
1573 rxq->read = i;
1574 spin_unlock(&rxq->lock);
1575 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1576 iwl_pcie_rxq_restock(trans, rxq);
1577 goto restart;
1578 }
1579 }
1580 }
1581 out:
1582 /* Backtrack one entry */
1583 rxq->read = i;
1584 spin_unlock(&rxq->lock);
1585
1586 /*
1587 * handle a case where in emergency there are some unallocated RBDs.
1588 * those RBDs are in the used list, but are not tracked by the queue's
1589 * used_count which counts allocator owned RBDs.
1590 * unallocated emergency RBDs must be allocated on exit, otherwise
1591 * when called again the function may not be in emergency mode and
1592 * they will be handed to the allocator with no tracking in the RBD
1593 * allocator counters, which will lead to them never being claimed back
1594 * by the queue.
1595 * by allocating them here, they are now in the queue free list, and
1596 * will be restocked by the next call of iwl_pcie_rxq_restock.
1597 */
1598 if (unlikely(emergency && count))
1599 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1600
1601 iwl_pcie_rxq_restock(trans, rxq);
1602
1603 return handled;
1604 }
1605
iwl_pcie_get_trans_pcie(struct msix_entry * entry)1606 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
1607 {
1608 u8 queue = entry->entry;
1609 struct msix_entry *entries = entry - queue;
1610
1611 return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
1612 }
1613
1614 /*
1615 * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1616 * This interrupt handler should be used with RSS queue only.
1617 */
iwl_pcie_irq_rx_msix_handler(int irq,void * dev_id)1618 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
1619 {
1620 struct msix_entry *entry = dev_id;
1621 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1622 struct iwl_trans *trans = trans_pcie->trans;
1623 struct iwl_rxq *rxq = &trans_pcie->rxq[entry->entry];
1624
1625 trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0);
1626
1627 if (WARN_ON(entry->entry >= trans->num_rx_queues))
1628 return IRQ_NONE;
1629
1630 if (!rxq) {
1631 if (net_ratelimit())
1632 IWL_ERR(trans,
1633 "[%d] Got MSI-X interrupt before we have Rx queues\n",
1634 entry->entry);
1635 return IRQ_NONE;
1636 }
1637
1638 lock_map_acquire(&trans->sync_cmd_lockdep_map);
1639 IWL_DEBUG_ISR(trans, "[%d] Got interrupt\n", entry->entry);
1640
1641 local_bh_disable();
1642 if (napi_schedule_prep(&rxq->napi))
1643 __napi_schedule(&rxq->napi);
1644 else
1645 iwl_pcie_clear_irq(trans, entry->entry);
1646 local_bh_enable();
1647
1648 lock_map_release(&trans->sync_cmd_lockdep_map);
1649
1650 return IRQ_HANDLED;
1651 }
1652
1653 /*
1654 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1655 */
iwl_pcie_irq_handle_error(struct iwl_trans * trans)1656 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1657 {
1658 int i;
1659
1660 /* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1661 if (trans->cfg->internal_wimax_coex &&
1662 !trans->cfg->apmg_not_supported &&
1663 (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1664 APMS_CLK_VAL_MRB_FUNC_MODE) ||
1665 (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1666 APMG_PS_CTRL_VAL_RESET_REQ))) {
1667 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1668 iwl_op_mode_wimax_active(trans->op_mode);
1669 wake_up(&trans->wait_command_queue);
1670 return;
1671 }
1672
1673 for (i = 0; i < trans->trans_cfg->base_params->num_of_queues; i++) {
1674 if (!trans->txqs.txq[i])
1675 continue;
1676 del_timer(&trans->txqs.txq[i]->stuck_timer);
1677 }
1678
1679 /* The STATUS_FW_ERROR bit is set in this function. This must happen
1680 * before we wake up the command caller, to ensure a proper cleanup. */
1681 iwl_trans_fw_error(trans, false);
1682
1683 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1684 wake_up(&trans->wait_command_queue);
1685 }
1686
iwl_pcie_int_cause_non_ict(struct iwl_trans * trans)1687 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1688 {
1689 u32 inta;
1690
1691 lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1692
1693 trace_iwlwifi_dev_irq(trans->dev);
1694
1695 /* Discover which interrupts are active/pending */
1696 inta = iwl_read32(trans, CSR_INT);
1697
1698 /* the thread will service interrupts and re-enable them */
1699 return inta;
1700 }
1701
1702 /* a device (PCI-E) page is 4096 bytes long */
1703 #define ICT_SHIFT 12
1704 #define ICT_SIZE (1 << ICT_SHIFT)
1705 #define ICT_COUNT (ICT_SIZE / sizeof(u32))
1706
1707 /* interrupt handler using ict table, with this interrupt driver will
1708 * stop using INTA register to get device's interrupt, reading this register
1709 * is expensive, device will write interrupts in ICT dram table, increment
1710 * index then will fire interrupt to driver, driver will OR all ICT table
1711 * entries from current index up to table entry with 0 value. the result is
1712 * the interrupt we need to service, driver will set the entries back to 0 and
1713 * set index.
1714 */
iwl_pcie_int_cause_ict(struct iwl_trans * trans)1715 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1716 {
1717 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1718 u32 inta;
1719 u32 val = 0;
1720 u32 read;
1721
1722 trace_iwlwifi_dev_irq(trans->dev);
1723
1724 /* Ignore interrupt if there's nothing in NIC to service.
1725 * This may be due to IRQ shared with another device,
1726 * or due to sporadic interrupts thrown from our NIC. */
1727 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1728 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1729 if (!read)
1730 return 0;
1731
1732 /*
1733 * Collect all entries up to the first 0, starting from ict_index;
1734 * note we already read at ict_index.
1735 */
1736 do {
1737 val |= read;
1738 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1739 trans_pcie->ict_index, read);
1740 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1741 trans_pcie->ict_index =
1742 ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1743
1744 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1745 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1746 read);
1747 } while (read);
1748
1749 /* We should not get this value, just ignore it. */
1750 if (val == 0xffffffff)
1751 val = 0;
1752
1753 /*
1754 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1755 * (bit 15 before shifting it to 31) to clear when using interrupt
1756 * coalescing. fortunately, bits 18 and 19 stay set when this happens
1757 * so we use them to decide on the real state of the Rx bit.
1758 * In order words, bit 15 is set if bit 18 or bit 19 are set.
1759 */
1760 if (val & 0xC0000)
1761 val |= 0x8000;
1762
1763 inta = (0xff & val) | ((0xff00 & val) << 16);
1764 return inta;
1765 }
1766
iwl_pcie_handle_rfkill_irq(struct iwl_trans * trans)1767 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans)
1768 {
1769 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1770 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1771 bool hw_rfkill, prev, report;
1772
1773 mutex_lock(&trans_pcie->mutex);
1774 prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1775 hw_rfkill = iwl_is_rfkill_set(trans);
1776 if (hw_rfkill) {
1777 set_bit(STATUS_RFKILL_OPMODE, &trans->status);
1778 set_bit(STATUS_RFKILL_HW, &trans->status);
1779 }
1780 if (trans_pcie->opmode_down)
1781 report = hw_rfkill;
1782 else
1783 report = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1784
1785 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1786 hw_rfkill ? "disable radio" : "enable radio");
1787
1788 isr_stats->rfkill++;
1789
1790 if (prev != report)
1791 iwl_trans_pcie_rf_kill(trans, report);
1792 mutex_unlock(&trans_pcie->mutex);
1793
1794 if (hw_rfkill) {
1795 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1796 &trans->status))
1797 IWL_DEBUG_RF_KILL(trans,
1798 "Rfkill while SYNC HCMD in flight\n");
1799 wake_up(&trans->wait_command_queue);
1800 } else {
1801 clear_bit(STATUS_RFKILL_HW, &trans->status);
1802 if (trans_pcie->opmode_down)
1803 clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
1804 }
1805 }
1806
iwl_pcie_irq_handler(int irq,void * dev_id)1807 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1808 {
1809 struct iwl_trans *trans = dev_id;
1810 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1811 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1812 u32 inta = 0;
1813 u32 handled = 0;
1814 bool polling = false;
1815
1816 lock_map_acquire(&trans->sync_cmd_lockdep_map);
1817
1818 spin_lock_bh(&trans_pcie->irq_lock);
1819
1820 /* dram interrupt table not set yet,
1821 * use legacy interrupt.
1822 */
1823 if (likely(trans_pcie->use_ict))
1824 inta = iwl_pcie_int_cause_ict(trans);
1825 else
1826 inta = iwl_pcie_int_cause_non_ict(trans);
1827
1828 if (iwl_have_debug_level(IWL_DL_ISR)) {
1829 IWL_DEBUG_ISR(trans,
1830 "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1831 inta, trans_pcie->inta_mask,
1832 iwl_read32(trans, CSR_INT_MASK),
1833 iwl_read32(trans, CSR_FH_INT_STATUS));
1834 if (inta & (~trans_pcie->inta_mask))
1835 IWL_DEBUG_ISR(trans,
1836 "We got a masked interrupt (0x%08x)\n",
1837 inta & (~trans_pcie->inta_mask));
1838 }
1839
1840 inta &= trans_pcie->inta_mask;
1841
1842 /*
1843 * Ignore interrupt if there's nothing in NIC to service.
1844 * This may be due to IRQ shared with another device,
1845 * or due to sporadic interrupts thrown from our NIC.
1846 */
1847 if (unlikely(!inta)) {
1848 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1849 /*
1850 * Re-enable interrupts here since we don't
1851 * have anything to service
1852 */
1853 if (test_bit(STATUS_INT_ENABLED, &trans->status))
1854 _iwl_enable_interrupts(trans);
1855 spin_unlock_bh(&trans_pcie->irq_lock);
1856 lock_map_release(&trans->sync_cmd_lockdep_map);
1857 return IRQ_NONE;
1858 }
1859
1860 if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
1861 /*
1862 * Hardware disappeared. It might have
1863 * already raised an interrupt.
1864 */
1865 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1866 spin_unlock_bh(&trans_pcie->irq_lock);
1867 goto out;
1868 }
1869
1870 /* Ack/clear/reset pending uCode interrupts.
1871 * Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1872 */
1873 /* There is a hardware bug in the interrupt mask function that some
1874 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1875 * they are disabled in the CSR_INT_MASK register. Furthermore the
1876 * ICT interrupt handling mechanism has another bug that might cause
1877 * these unmasked interrupts fail to be detected. We workaround the
1878 * hardware bugs here by ACKing all the possible interrupts so that
1879 * interrupt coalescing can still be achieved.
1880 */
1881 iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1882
1883 if (iwl_have_debug_level(IWL_DL_ISR))
1884 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1885 inta, iwl_read32(trans, CSR_INT_MASK));
1886
1887 spin_unlock_bh(&trans_pcie->irq_lock);
1888
1889 /* Now service all interrupt bits discovered above. */
1890 if (inta & CSR_INT_BIT_HW_ERR) {
1891 IWL_ERR(trans, "Hardware error detected. Restarting.\n");
1892
1893 /* Tell the device to stop sending interrupts */
1894 iwl_disable_interrupts(trans);
1895
1896 isr_stats->hw++;
1897 iwl_pcie_irq_handle_error(trans);
1898
1899 handled |= CSR_INT_BIT_HW_ERR;
1900
1901 goto out;
1902 }
1903
1904 /* NIC fires this, but we don't use it, redundant with WAKEUP */
1905 if (inta & CSR_INT_BIT_SCD) {
1906 IWL_DEBUG_ISR(trans,
1907 "Scheduler finished to transmit the frame/frames.\n");
1908 isr_stats->sch++;
1909 }
1910
1911 /* Alive notification via Rx interrupt will do the real work */
1912 if (inta & CSR_INT_BIT_ALIVE) {
1913 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1914 isr_stats->alive++;
1915 if (trans->trans_cfg->gen2) {
1916 /*
1917 * We can restock, since firmware configured
1918 * the RFH
1919 */
1920 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
1921 }
1922
1923 handled |= CSR_INT_BIT_ALIVE;
1924 }
1925
1926 /* Safely ignore these bits for debug checks below */
1927 inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1928
1929 /* HW RF KILL switch toggled */
1930 if (inta & CSR_INT_BIT_RF_KILL) {
1931 iwl_pcie_handle_rfkill_irq(trans);
1932 handled |= CSR_INT_BIT_RF_KILL;
1933 }
1934
1935 /* Chip got too hot and stopped itself */
1936 if (inta & CSR_INT_BIT_CT_KILL) {
1937 IWL_ERR(trans, "Microcode CT kill error detected.\n");
1938 isr_stats->ctkill++;
1939 handled |= CSR_INT_BIT_CT_KILL;
1940 }
1941
1942 /* Error detected by uCode */
1943 if (inta & CSR_INT_BIT_SW_ERR) {
1944 IWL_ERR(trans, "Microcode SW error detected. "
1945 " Restarting 0x%X.\n", inta);
1946 isr_stats->sw++;
1947 iwl_pcie_irq_handle_error(trans);
1948 handled |= CSR_INT_BIT_SW_ERR;
1949 }
1950
1951 /* uCode wakes up after power-down sleep */
1952 if (inta & CSR_INT_BIT_WAKEUP) {
1953 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1954 iwl_pcie_rxq_check_wrptr(trans);
1955 iwl_pcie_txq_check_wrptrs(trans);
1956
1957 isr_stats->wakeup++;
1958
1959 handled |= CSR_INT_BIT_WAKEUP;
1960 }
1961
1962 /* All uCode command responses, including Tx command responses,
1963 * Rx "responses" (frame-received notification), and other
1964 * notifications from uCode come through here*/
1965 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1966 CSR_INT_BIT_RX_PERIODIC)) {
1967 IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1968 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1969 handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1970 iwl_write32(trans, CSR_FH_INT_STATUS,
1971 CSR_FH_INT_RX_MASK);
1972 }
1973 if (inta & CSR_INT_BIT_RX_PERIODIC) {
1974 handled |= CSR_INT_BIT_RX_PERIODIC;
1975 iwl_write32(trans,
1976 CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1977 }
1978 /* Sending RX interrupt require many steps to be done in the
1979 * device:
1980 * 1- write interrupt to current index in ICT table.
1981 * 2- dma RX frame.
1982 * 3- update RX shared data to indicate last write index.
1983 * 4- send interrupt.
1984 * This could lead to RX race, driver could receive RX interrupt
1985 * but the shared data changes does not reflect this;
1986 * periodic interrupt will detect any dangling Rx activity.
1987 */
1988
1989 /* Disable periodic interrupt; we use it as just a one-shot. */
1990 iwl_write8(trans, CSR_INT_PERIODIC_REG,
1991 CSR_INT_PERIODIC_DIS);
1992
1993 /*
1994 * Enable periodic interrupt in 8 msec only if we received
1995 * real RX interrupt (instead of just periodic int), to catch
1996 * any dangling Rx interrupt. If it was just the periodic
1997 * interrupt, there was no dangling Rx activity, and no need
1998 * to extend the periodic interrupt; one-shot is enough.
1999 */
2000 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
2001 iwl_write8(trans, CSR_INT_PERIODIC_REG,
2002 CSR_INT_PERIODIC_ENA);
2003
2004 isr_stats->rx++;
2005
2006 local_bh_disable();
2007 if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) {
2008 polling = true;
2009 __napi_schedule(&trans_pcie->rxq[0].napi);
2010 }
2011 local_bh_enable();
2012 }
2013
2014 /* This "Tx" DMA channel is used only for loading uCode */
2015 if (inta & CSR_INT_BIT_FH_TX) {
2016 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
2017 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2018 isr_stats->tx++;
2019 handled |= CSR_INT_BIT_FH_TX;
2020 /* Wake up uCode load routine, now that load is complete */
2021 trans_pcie->ucode_write_complete = true;
2022 wake_up(&trans_pcie->ucode_write_waitq);
2023 /* Wake up IMR write routine, now that write to SRAM is complete */
2024 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2025 trans_pcie->imr_status = IMR_D2S_COMPLETED;
2026 wake_up(&trans_pcie->ucode_write_waitq);
2027 }
2028 }
2029
2030 if (inta & ~handled) {
2031 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
2032 isr_stats->unhandled++;
2033 }
2034
2035 if (inta & ~(trans_pcie->inta_mask)) {
2036 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
2037 inta & ~trans_pcie->inta_mask);
2038 }
2039
2040 if (!polling) {
2041 spin_lock_bh(&trans_pcie->irq_lock);
2042 /* only Re-enable all interrupt if disabled by irq */
2043 if (test_bit(STATUS_INT_ENABLED, &trans->status))
2044 _iwl_enable_interrupts(trans);
2045 /* we are loading the firmware, enable FH_TX interrupt only */
2046 else if (handled & CSR_INT_BIT_FH_TX)
2047 iwl_enable_fw_load_int(trans);
2048 /* Re-enable RF_KILL if it occurred */
2049 else if (handled & CSR_INT_BIT_RF_KILL)
2050 iwl_enable_rfkill_int(trans);
2051 /* Re-enable the ALIVE / Rx interrupt if it occurred */
2052 else if (handled & (CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX))
2053 iwl_enable_fw_load_int_ctx_info(trans);
2054 spin_unlock_bh(&trans_pcie->irq_lock);
2055 }
2056
2057 out:
2058 lock_map_release(&trans->sync_cmd_lockdep_map);
2059 return IRQ_HANDLED;
2060 }
2061
2062 /******************************************************************************
2063 *
2064 * ICT functions
2065 *
2066 ******************************************************************************/
2067
2068 /* Free dram table */
iwl_pcie_free_ict(struct iwl_trans * trans)2069 void iwl_pcie_free_ict(struct iwl_trans *trans)
2070 {
2071 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2072
2073 if (trans_pcie->ict_tbl) {
2074 dma_free_coherent(trans->dev, ICT_SIZE,
2075 trans_pcie->ict_tbl,
2076 trans_pcie->ict_tbl_dma);
2077 trans_pcie->ict_tbl = NULL;
2078 trans_pcie->ict_tbl_dma = 0;
2079 }
2080 }
2081
2082 /*
2083 * allocate dram shared table, it is an aligned memory
2084 * block of ICT_SIZE.
2085 * also reset all data related to ICT table interrupt.
2086 */
iwl_pcie_alloc_ict(struct iwl_trans * trans)2087 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
2088 {
2089 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2090
2091 trans_pcie->ict_tbl =
2092 dma_alloc_coherent(trans->dev, ICT_SIZE,
2093 &trans_pcie->ict_tbl_dma, GFP_KERNEL);
2094 if (!trans_pcie->ict_tbl)
2095 return -ENOMEM;
2096
2097 /* just an API sanity check ... it is guaranteed to be aligned */
2098 if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
2099 iwl_pcie_free_ict(trans);
2100 return -EINVAL;
2101 }
2102
2103 return 0;
2104 }
2105
2106 /* Device is going up inform it about using ICT interrupt table,
2107 * also we need to tell the driver to start using ICT interrupt.
2108 */
iwl_pcie_reset_ict(struct iwl_trans * trans)2109 void iwl_pcie_reset_ict(struct iwl_trans *trans)
2110 {
2111 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2112 u32 val;
2113
2114 if (!trans_pcie->ict_tbl)
2115 return;
2116
2117 spin_lock_bh(&trans_pcie->irq_lock);
2118 _iwl_disable_interrupts(trans);
2119
2120 memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
2121
2122 val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
2123
2124 val |= CSR_DRAM_INT_TBL_ENABLE |
2125 CSR_DRAM_INIT_TBL_WRAP_CHECK |
2126 CSR_DRAM_INIT_TBL_WRITE_POINTER;
2127
2128 IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
2129
2130 iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
2131 trans_pcie->use_ict = true;
2132 trans_pcie->ict_index = 0;
2133 iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
2134 _iwl_enable_interrupts(trans);
2135 spin_unlock_bh(&trans_pcie->irq_lock);
2136 }
2137
2138 /* Device is going down disable ict interrupt usage */
iwl_pcie_disable_ict(struct iwl_trans * trans)2139 void iwl_pcie_disable_ict(struct iwl_trans *trans)
2140 {
2141 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2142
2143 spin_lock_bh(&trans_pcie->irq_lock);
2144 trans_pcie->use_ict = false;
2145 spin_unlock_bh(&trans_pcie->irq_lock);
2146 }
2147
iwl_pcie_isr(int irq,void * data)2148 irqreturn_t iwl_pcie_isr(int irq, void *data)
2149 {
2150 struct iwl_trans *trans = data;
2151
2152 if (!trans)
2153 return IRQ_NONE;
2154
2155 /* Disable (but don't clear!) interrupts here to avoid
2156 * back-to-back ISRs and sporadic interrupts from our NIC.
2157 * If we have something to service, the tasklet will re-enable ints.
2158 * If we *don't* have something, we'll re-enable before leaving here.
2159 */
2160 iwl_write32(trans, CSR_INT_MASK, 0x00000000);
2161
2162 return IRQ_WAKE_THREAD;
2163 }
2164
iwl_pcie_msix_isr(int irq,void * data)2165 irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
2166 {
2167 return IRQ_WAKE_THREAD;
2168 }
2169
iwl_pcie_irq_msix_handler(int irq,void * dev_id)2170 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
2171 {
2172 struct msix_entry *entry = dev_id;
2173 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
2174 struct iwl_trans *trans = trans_pcie->trans;
2175 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
2176 u32 inta_fh_msk = ~MSIX_FH_INT_CAUSES_DATA_QUEUE;
2177 u32 inta_fh, inta_hw;
2178 bool polling = false;
2179 bool sw_err;
2180
2181 if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX)
2182 inta_fh_msk |= MSIX_FH_INT_CAUSES_Q0;
2183
2184 if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS)
2185 inta_fh_msk |= MSIX_FH_INT_CAUSES_Q1;
2186
2187 lock_map_acquire(&trans->sync_cmd_lockdep_map);
2188
2189 spin_lock_bh(&trans_pcie->irq_lock);
2190 inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
2191 inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
2192 /*
2193 * Clear causes registers to avoid being handling the same cause.
2194 */
2195 iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh & inta_fh_msk);
2196 iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
2197 spin_unlock_bh(&trans_pcie->irq_lock);
2198
2199 trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw);
2200
2201 if (unlikely(!(inta_fh | inta_hw))) {
2202 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
2203 lock_map_release(&trans->sync_cmd_lockdep_map);
2204 return IRQ_NONE;
2205 }
2206
2207 if (iwl_have_debug_level(IWL_DL_ISR)) {
2208 IWL_DEBUG_ISR(trans,
2209 "ISR[%d] inta_fh 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2210 entry->entry, inta_fh, trans_pcie->fh_mask,
2211 iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
2212 if (inta_fh & ~trans_pcie->fh_mask)
2213 IWL_DEBUG_ISR(trans,
2214 "We got a masked interrupt (0x%08x)\n",
2215 inta_fh & ~trans_pcie->fh_mask);
2216 }
2217
2218 inta_fh &= trans_pcie->fh_mask;
2219
2220 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) &&
2221 inta_fh & MSIX_FH_INT_CAUSES_Q0) {
2222 local_bh_disable();
2223 if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) {
2224 polling = true;
2225 __napi_schedule(&trans_pcie->rxq[0].napi);
2226 }
2227 local_bh_enable();
2228 }
2229
2230 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) &&
2231 inta_fh & MSIX_FH_INT_CAUSES_Q1) {
2232 local_bh_disable();
2233 if (napi_schedule_prep(&trans_pcie->rxq[1].napi)) {
2234 polling = true;
2235 __napi_schedule(&trans_pcie->rxq[1].napi);
2236 }
2237 local_bh_enable();
2238 }
2239
2240 /* This "Tx" DMA channel is used only for loading uCode */
2241 if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM &&
2242 trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2243 IWL_DEBUG_ISR(trans, "IMR Complete interrupt\n");
2244 isr_stats->tx++;
2245
2246 /* Wake up IMR routine once write to SRAM is complete */
2247 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2248 trans_pcie->imr_status = IMR_D2S_COMPLETED;
2249 wake_up(&trans_pcie->ucode_write_waitq);
2250 }
2251 } else if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
2252 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2253 isr_stats->tx++;
2254 /*
2255 * Wake up uCode load routine,
2256 * now that load is complete
2257 */
2258 trans_pcie->ucode_write_complete = true;
2259 wake_up(&trans_pcie->ucode_write_waitq);
2260
2261 /* Wake up IMR routine once write to SRAM is complete */
2262 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2263 trans_pcie->imr_status = IMR_D2S_COMPLETED;
2264 wake_up(&trans_pcie->ucode_write_waitq);
2265 }
2266 }
2267
2268 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ)
2269 sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR_BZ;
2270 else
2271 sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR;
2272
2273 /* Error detected by uCode */
2274 if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) || sw_err) {
2275 IWL_ERR(trans,
2276 "Microcode SW error detected. Restarting 0x%X.\n",
2277 inta_fh);
2278 isr_stats->sw++;
2279 /* during FW reset flow report errors from there */
2280 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2281 trans_pcie->imr_status = IMR_D2S_ERROR;
2282 wake_up(&trans_pcie->imr_waitq);
2283 } else if (trans_pcie->fw_reset_state == FW_RESET_REQUESTED) {
2284 trans_pcie->fw_reset_state = FW_RESET_ERROR;
2285 wake_up(&trans_pcie->fw_reset_waitq);
2286 } else {
2287 iwl_pcie_irq_handle_error(trans);
2288 }
2289 }
2290
2291 /* After checking FH register check HW register */
2292 if (iwl_have_debug_level(IWL_DL_ISR)) {
2293 IWL_DEBUG_ISR(trans,
2294 "ISR[%d] inta_hw 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2295 entry->entry, inta_hw, trans_pcie->hw_mask,
2296 iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
2297 if (inta_hw & ~trans_pcie->hw_mask)
2298 IWL_DEBUG_ISR(trans,
2299 "We got a masked interrupt 0x%08x\n",
2300 inta_hw & ~trans_pcie->hw_mask);
2301 }
2302
2303 inta_hw &= trans_pcie->hw_mask;
2304
2305 /* Alive notification via Rx interrupt will do the real work */
2306 if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
2307 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
2308 isr_stats->alive++;
2309 if (trans->trans_cfg->gen2) {
2310 /* We can restock, since firmware configured the RFH */
2311 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
2312 }
2313 }
2314
2315 /*
2316 * In some rare cases when the HW is in a bad state, we may
2317 * get this interrupt too early, when prph_info is still NULL.
2318 * So make sure that it's not NULL to prevent crashing.
2319 */
2320 if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP && trans_pcie->prph_info) {
2321 u32 sleep_notif =
2322 le32_to_cpu(trans_pcie->prph_info->sleep_notif);
2323 if (sleep_notif == IWL_D3_SLEEP_STATUS_SUSPEND ||
2324 sleep_notif == IWL_D3_SLEEP_STATUS_RESUME) {
2325 IWL_DEBUG_ISR(trans,
2326 "Sx interrupt: sleep notification = 0x%x\n",
2327 sleep_notif);
2328 trans_pcie->sx_complete = true;
2329 wake_up(&trans_pcie->sx_waitq);
2330 } else {
2331 /* uCode wakes up after power-down sleep */
2332 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
2333 iwl_pcie_rxq_check_wrptr(trans);
2334 iwl_pcie_txq_check_wrptrs(trans);
2335
2336 isr_stats->wakeup++;
2337 }
2338 }
2339
2340 /* Chip got too hot and stopped itself */
2341 if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
2342 IWL_ERR(trans, "Microcode CT kill error detected.\n");
2343 isr_stats->ctkill++;
2344 }
2345
2346 /* HW RF KILL switch toggled */
2347 if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL)
2348 iwl_pcie_handle_rfkill_irq(trans);
2349
2350 if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
2351 IWL_ERR(trans,
2352 "Hardware error detected. Restarting.\n");
2353
2354 isr_stats->hw++;
2355 trans->dbg.hw_error = true;
2356 iwl_pcie_irq_handle_error(trans);
2357 }
2358
2359 if (inta_hw & MSIX_HW_INT_CAUSES_REG_RESET_DONE) {
2360 IWL_DEBUG_ISR(trans, "Reset flow completed\n");
2361 trans_pcie->fw_reset_state = FW_RESET_OK;
2362 wake_up(&trans_pcie->fw_reset_waitq);
2363 }
2364
2365 if (!polling)
2366 iwl_pcie_clear_irq(trans, entry->entry);
2367
2368 lock_map_release(&trans->sync_cmd_lockdep_map);
2369
2370 return IRQ_HANDLED;
2371 }
2372